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Abstract

In this paper, we provide a theoretical analysis of the inductive biases in convolu-
tional neural networks (CNNs). We start by examining the universality of CNNs,
i.e., the ability to approximate any continuous functions. We prove that a depth
of O(log d) suffices for deep CNNs to achieve this universality, where d in the
input dimension. Additionally, we establish that learning sparse functions with
CNNs requires only Õ(log2 d) samples, indicating that deep CNNs can efficiently
capture long-range sparse correlations. These results are made possible through a
novel combination of the multichanneling and downsampling when increasing the
network depth. We also delve into the distinct roles of weight sharing and locality
in CNNs. To this end, we compare the performance of CNNs, locally-connected
networks (LCNs), and fully-connected networks (FCNs) on a simple regression
task, where LCNs can be viewed as CNNs without weight sharing. On the one
hand, we prove that LCNs require Ω(d) samples while CNNs need only Õ(log2 d)
samples, highlighting the critical role of weight sharing. On the other hand, we
prove that FCNs require Ω(d2) samples, whereas LCNs need only Õ(d) samples,
underscoring the importance of locality. These provable separations quantify the
difference between the two biases, and the major observation behind our proof is
that weight sharing and locality break different symmetries in the learning process.

1 Introduction

Convolutional neural networks (CNNs) (Fukushima, 1988; LeCun et al., 1998) are a fundamental
model in deep learning, known for their exceptional performance in many tasks. In particular, CNNs
consistently outperform the fully-connected neural network (FCN) counterparts in vision-related
tasks (Krizhevsky et al., 2012; He et al., 2016; Huang et al., 2017). Uncovering the underlying
mechanism behind the success of CNNs is thus of paramount importance in deep learning.

Zhou (2020a;b); Feng et al. (2022); He et al. (2022) studied the approximation capabilities of CNNs
for target functions in spaces such as continuous functions and Sobolev spaces. Although these results
are important, they cannot explain why CNNs perform better than FCNs. The primary reason for this
limitation is that these works did not take into account the specific structures of CNNs, including
multichanneling, downsampling, weight sharing, and locality. The locality refers to the use of small
filters, e.g., filter sizes can be as small as 3 in popular VGG nets (Simonyan and Zisserman, 2014)
and ResNets (He et al., 2016). Comprehending the inductive biases of these architecture choices is
critical to understand the exceptional performance of CNNs.

Li et al. (2020) designed a simple classification task to demonstrate the superiority of CNNs over
FCNs. The authors prove that for this task, FCNs need Ω(d2) samples while CNNs need only O(1)
samples, thereby providing theoretical support for the superiority of using convolutions. However,
this study neither examined the individual impact of weight sharing and locality nor considered the
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inductive biases of multichanneling and downsampling. Additionally, the analysis was limited to
shallow CNNs and did not examine the interaction between these structures and network depth.

1.1 Our Results
In this work, we conduct a systematic analysis of the inductive biases associated with the specific
structures of CNNs. Our main contributions are summarized as follows.

Universality. We establish the universality of deep CNNs with a depth of O(log d). This is in
contrast to existing works (Zhou, 2020a;b; He et al., 2022), where the universality requires a depth
of at least Ω(d). The key to our improvement is an effective leveraging of the inductive biases of
multichanneling and downsampling:

• Downsampling amplifies the size of the receptive field exponentially, thus explaining the
need for logarithmic depth. Furthermore, we prove that if downsampling is not used, CNNs
require a depth of at least Ω(d), demonstrating the cruciality of downsampling.

• Multichanneling serves as a mechanism for storing extracted information. By increasing
the number of channels whenever the spatial dimension is reduced by downsampling, we
ensure that no information is lost. This combination of multichanneling and downsampling
is widely employed in practical CNNs, ranging from classical LeNet (LeCun et al., 1998) to
modern VGG nets (Simonyan and Zisserman, 2014) and ResNets (He et al., 2016).

It is worth mentioning that while studies like Poggio et al. (2017) and Cagnetta et al. (2022) have
examined similar CNN architectures with O(log d) depth, they did not explicitly establish universality
as our work does. Specifically, Cagnetta et al. (2022) focused on the kernel associated with deep
CNNs having infinitely many channels. In retrospect, one could potentially show that the deep-CNN
kernel is universal by verifying that kernel has no zero eigenvalues.

Learning sparse functions. A function f : Rd 7→ R is said to be sparse if it only depends on
a few coordinates of the input, e.g., f(x) := g(x1, xd) for some g : R2 7→ R. We prove that
learning sparse functions using CNNs requires only Õ(log2 d) samples, which is nearly optimal as
the information-theoretic lower bound of learning such functions is Ω(log d) (Han and Yuan, 2020).

This result is surprising because it has been widely believed that CNNs struggle to capture long-range
correlations. However, our findings suggest that CNNs can efficiently learn long-range sparse ones,
which is a valuable attribute for many applications.

In addition, it is important to note that the near-optimal sample complexity of learning sparse functions
using CNNs is achieved with only O(log d) depth and O(k2 log d) total parameters, where k is the
number of critical coordinates in sparse functions. A lower bound is established to demonstrate
the optimality of the depth requirement. The ability of CNNs to select any k coordinate with only
O(k2 log d) total parameters is remarkable, especially considering that even in the linear case, LASSO
(Tibshirani, 1996) requires Ω(d) parameters. It is the synergy of increased depth, weight sharing, and
multichanneling that gives CNNs this exceptional capability.

Disentangling the weight sharing and locality. We next study the inductive biases of locality and
weight sharing by comparing the performance of CNNs, LCNs, and FCNs on a synthetic regression
task. This allows us to separate the effects of weight sharing and locality.

• CNNs vs. LCNs. We prove that CNNs requires only Õ(log2 d) samples to learn, while
LCNs trained by SGD or Adam with standard initialization need Ω(d) samples. This
provides a separation between CNNs and LCNs and demonstrates the crucial role of weight
sharing.

• LCNs vs. FCNs. We prove that LCNs requires only Õ(d) samples to learn, while FCNs
trained by SGD with Gaussian initialization need Ω(d2) samples. This provably separates
LCNs from FCNs and demonstrates the benefit of locality.

The difference in sample complexity can be attributed to the different symmetries encoded in the
architecture biases. For instance, stochastic gradient descent (SGD) exhibits different symmetries
for these models: a lack of equivariance for CNNs, a local permutation equivariance for LCNs, and
a global orthogonal equivariance for FCNs. The size of the equivariance groups determines the
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minimax sample complexity and distinguishes between different architectures. Similar ideas have
been previously explored in Li et al. (2020); Xiao and Pennington (2022) to understand CNNs; but
these works did not differentiate the roles of weight sharing and locality. For a detailed comparison
with these works, see the related work section in Appendix A.

Technical contribution. The lower bounds for LCNs and FCNs are established using Fano’s
method from minimax theory (Wainwright, 2019, Section 15). However, different from the traditional
statistical setup where the estimator is deterministic, the estimators produced by stochastic optimizers
are random. To address this issue, we develop a variant of Fano’s method for random estimators,
which might be of independent interest. Further details can be found in Appendix B.3.

Related work. We refer to Appendix A for a detailed comparison with other related works.

1.2 Notations

We use poly(z1, . . . , zp) to denote a quantity that depends on z1, . . . , zp polynomially. We use
X ≲ Y to denote X ⩽ CY for some absolute constant C and X ≳ Y is defined analogously. We
also use the standard big-O notations: Θ(·), O(·) and Ω(·). In addition, we use Õ and Ω̃ to hide
higher-order terms, e.g., O((log d)(log log d)2) = Õ(log d) and O(d log d) = Õ(d). In addition, we
use Gort(d) to denote the orthogonal group in dimension d:

Gort(d) = {Q ∈ Rd×d : QQ⊤ = Q⊤Q = Id}.

Let P(Ω) be the set of probability distributions over Ω and M(Ω) be the set of random vari-
ables taking values in Ω. Given two functions f, g over X and {xi}ni=1, let ρ̂n(f, g) =√

1
n

∑n
i=1 |f(xi)− g(xi)|2. Let Sd−1 = {x ∈ Rd : ∥x∥2 = 1}, rSd−1 = {x : x/r ∈ Sd−1}.

Let a ∧ b = min(a, b), [k] = {1, 2, . . . , k} for k ∈ N, and [a, b] = {a, a + 1, . . . , b} for b, a ∈ N
and b > a. For a vector v, denote by ∥v∥p := (

∑
i |vi|p)1/p the ℓp norm. For a matrix A, let ∥A∥

and ∥A∥F be the spectral norm and Frobenius norm, respectively. Moreover, denote by Ai,: and A:,j

the i-th row and j-th column, respectively, and similar notations are also defined for tensors. Given
I = (i1, i2, . . . , ik), let xI = (xi1 , . . . , xik). We use σ to denote both the activation function and
standard deviation of label noise. To avoid ambiguity, we shall use σ(·) and σ to distinguish them.
When applying σ(·) to a vector/matrix/tensor, it should be understood in an element-wise manner.

2 Preliminaries

We consider the standard setup of supervised learning. Let X ⊂ R4d and Y ⊂ R be the input
and output domain, respectively. We are given the training set Sn = {(xi, yi)}ni=1 with yi =

h∗(xi) + ξi, xi
iid∼ P , and ξi

iid∼ N (0, σ2). Here P and h∗ denote the input distribution and target
function, respectively. We assume log2 d ∈ N+ for simplicity. Let h : X ×Θ 7→ R be our parametric
model with Θ = Rp, where p denotes the number of parameters; we often write hθ = h(·; θ) for
short. Our task is to recover h∗ from Sn by using hθ.

Given a threshold A > 0, we also consider the truncated model πA ◦ hθ, where the truncation
operator πA is defined by πA ◦ h(x) = max(min(h(x), A),−A). In addition, we consider both the
square loss ℓ(y, y′) = (y − y′)2/2 and its truncated version ℓB(y, y

′) = 1
2 (y − y′)2 ∧ 1

2B
2. This

loss truncation is applied to handle the noise unboundedness; see Appendix B.2 for more details.

2.1 Network Architectures
A L-layer neural network is given by hθ(x) = Mo ◦ σL ◦ TL ◦ · · · ◦ σ1 ◦ T1(x), where σl and Tl
denote the activation function and linear transform with bias at the l-th layer, respectively. Let z(l)

denote the hidden state of l-th layer: z(l)(x) = σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x) for l ∈ [L] and z(0)(x) = x.
When it is clear from context, we will write z(l) = z(l)(x) and Tlz = Tl(z) for short. In different
architectures, {Tl}Ll=1 are parameterized in different ways. Mo denotes the output layer, which
performs a linear combination of the output features: Mo ◦ z(L)(x) = Wo vec(z

(L)(x)), where Wo

is the weight used to parameterize Mo.
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FCNs. Tl : RCl 7→ RCl−1 is a fully-connected transform parameterized by Tl(z) = W (l)z+ b(l)

with W (l) ∈ RCl×Cl−1 and b(l) ∈ RCl . Here Cl denotes the width of l-th layer.

CNNs. The l-th hidden state is a feature matrix: z(l)(x) ∈ RDl×Cl with Dl and Cl denoting the spa-
tial dimension and number of channels, respectively. Tl : RDl−1×Cl−1 7→ RDl×Cl is parameterized
by a kernel W (l) ∈ RCl×Cl−1×s and bias b(l) ∈ RCl as follows

(Tl(z)):,j =
Cl−1∑
i=1

z:,i ∗s W (l)
j,i,: + b

(l)
j 1, for j = 1, . . . , Cl (1)

where ∗s : Rsk × Rs 7→ Rk denotes the convolution with stride given by
v ∗s w = (v⊤

I1w,v⊤
I2w, . . . ,v⊤

Ik
w) ∈ Rk, (2)

where Ij := [(j − 1)s + 1, js] denotes the j-th patch, and v and w denote the signal and filter,
respectively. As a comparison, we also consider the convolution without stride ∗ : Rk×Rs 7→ Rk−s+1

given by (v ∗ w)i =
∑s
j=1 vi+j−1wj . Note that the stride plays a role of downsampling and in

practice, it is also common to use other downsampling schemes such as max pooling and average
pooling. All results in this paper hold regardless of which one is used and thus, we will focus on the
stride case without loss of generality.

LCNs. A LCN has the same architecture as its CNN counterpart but lacks weight sharing. Conse-
quently, LCNs have more parameters. Specifically, the linear transform Tl : RDl−1×Cl−1 7→ RDl×Cl

is parameterized by W (l) ∈ RCl×Cl−1×Dl−1 and b(l) ∈ RDl×Cl as follows

(Tl(z)):,j =
Cl−1∑
i=1

z:,i ⋆s W
(l)
j,i,: + b

(l)
:,j , for j = 1, . . . , Cl

where the local linear operater ⋆s : Rks × Rks 7→ Rk is defined by v ⋆s w =
(v⊤
I1
wI1 ,v

⊤
I2
wI2 , . . . ,v

⊤
Ik
wIk), where Ij = [(j − 1)s+ 1, js] denotes the indices of j-th patch.

Throughout this paper, we always assume the filter size s = 2 for technical simplicity and thus
Dl = 4d/2l = Dl−1/2 for both CNNs and LCNs.

Regularizer. To regularize CNNs and LCNs, we consider following ℓ2-type norm:

∥θ∥P := ∥Wo∥2 +
L∑
l=1

(∥W (l)∥F + αl∥b(l)∥F ), (3)

where αl =
√
Dl for CNNs and αl = 1 for LCNs. The factor αl is introduced such that ∥θ∥P can

control the Lipschitz norm of hθ, thereby yielding effective capacity controls for CNNs and LCNs.
See Appendix C for more details.

3 Universal Approximation

The following theorem shows that deep ReLU CNNs are universal as long as they are logarithmically
deep with respect to the input dimension and the proof is deferred to Appendix D.1.
Theorem 3.1 (Universality). Consider CNNs with all activation functions to be ReLU. Suppose
L = log2(4d) and Cl = 2l+1 for l ∈ [L− 1] to be fixed and allow the number of channels of the last
layer CL to increase. Then, the CNNs are universal: for any ϵ > 0, any compact set Ω ⊂ R4d, and
any h∗ ∈ C(Ω), there exists a CNN hθ such that supx∈Ω |hθ(x)− h∗(x)| ⩽ ϵ.

Proof idea. Write hθ = Mo ◦σ ◦ TL ◦ z(L−1). First, we show there exists parameters (independent
of h∗) such that

z(L−1)(x) =

(
σ(x1) σ(−x1) σ(x2) σ(−x2) · · · σ(x2d) σ(−x2d)

σ(x2d+1) σ(−x2d+1) σ(x2d+2) σ(−x2d+2) · · · σ(x4d) σ(−x4d)

)
∈ R2×(4d).

This implies that after L− 1 layers, the spatial dimension is reduced to 2 but the spatial information
is stored to different channels in the form of {σ(xi), σ(−xi)}. Comparing z(L−1)(x) with the input
x, there is no information loss since xi = σ(xi)− σ(−xi) for any i ∈ [4d]. Then, the universality
can be established by simply showing that Mo ◦ σ ◦ TL can simulate any two-layer ReLU networks.
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The synergy between multichanneling and downsampling. The key to achieving universality
with a depth of O(log d) lies in a unique synergy between multichanneling and downsampling.
Downsampling can expand the receptive field at an exponential rate, enabling CNNs to capture
long-range correlations with only O(log d) depth. Meanwhile, multichanneling prevents information
loss whenever downsampling operations reduce the spatial dimensions. It is worth noting that this
specific collaboration between multichanneling and downsampling has been adopted in most practical
CNNs, such as VGG Nets (Simonyan and Zisserman, 2014) and ResNets (He et al., 2016). Our
universality analysis provides theoretical support for this widespread architectural choice.

The following proposition further shows that the depth requirement in Theorem 3.1 is optimal, whose
proof can be found in Appendix D.2.
Proposition 3.2. Let X = [0, 1]4d and consider the target function h∗(x) = x1x2d+1. If L ⩽
log2(4d) − 1, then for any Cl ∈ N for l ∈ [L] and any activation functions {σl}Ll=1, we have
infθ supx∈X |hθ(x)− h∗(x)| ⩾ 1

8 .

The intuition behind this is straightforward: If the depth of the CNN is less than log2(4d), the size of
the receptive field will not exceed 2d. Consequently, functions that encode longer-range correlations
cannot be accurately approximated.

The cruciality of downsampling. The following proposition shows that without downsampling, a
minimum depth of Ω(d) is necessary for achieving universality. This highlights the importance of
downsampling as it enables universality with logarithmic depth (Theorem 3.1).
Proposition 3.3. We temporarily use hθ to denote the CNN without downsampling. Let X = [0, 1]4d

and h∗(x) = x1x4d. If L ⩽ 4d − 2, then for any Cl ∈ N for l ∈ [L] and any activation functions
{σl}Ll=1, we have infθ supx∈X |hθ(x)− h∗(x)| ⩾ 1

8 .

The proof is presented in Appendix D.3. The reason behind is simple: vanilla convolution (without
stride) can only capture local correlations of length 2 (since our filter size is s = 2). Stacking L layers
of vanilla convolutions without downsampling will only allow the network to capture correlations of
length L+ 1.

4 Efficient Learning of Sparse Functions

Definition 4.1 (Sparse function). A function f : Rd 7→ R is said to be sparse if f only depends
on a few coordinates. Given k ∈ N with k ≪ d, f is said to be k-sparse if there exist an index set
I = {i1, . . . , ik} ⊂ [d] and g : Rk 7→ R such that f(x) = g(xI), where xI = (xi1 , . . . , xik) ∈ Rk.

The class of sparse functions includes functions of both functions with short-range correlations, such
as f(x) = g(x1, x2), and those with long-range correlations, like f(x) = g(x1, xd). It is widely
held that it is difficult for CNNs to capture long-range correlations due to locality bias. Consequently,
it might seem that CNNs are not well-suited to learning sparse functions like x 7→ g(x1, xd).
However, for CNNs with downsampling, increasing depth can expand the receptive field exponentially,
providing the opportunity to learn long-range correlations. Indeed this has been proven in the
universality analysis.

In this section, we further show that deep CNNs are not only capable of, but also efficient at learning
long-range sparse functions. The term “efficient” refers that the sample complexity depends on the
input dimension logarithmically. This is because deep CNNs can effectively identify any k critical
coordinates using only O(k2 log d) parameters as demonstrated by the following lemma.
Lemma 4.2 (Adaptive coordinate selection for Linear CNNs). Let I = (i1, i2, . . . , ik) ⊂ [d]. For
the linear CNN model hθ with Cl = k for l ∈ [L] and L = log2(d). Then, there exist parameters
(depending on I) such that z(L)(x) = (xi1 , xi2 , . . . , xik).

Proof. First, consider the case of k = 1 where I = (i). Let i − 1 =
∑L−1
l=0 al2

l be the binary
representation of i. Set Wl,l,: = (1− al, al) for l = [L] and all other parameters (including the bias)
to zero. Then, it is easy to verify that z(L)(x) = (xi); see Figure 1 for a diagram illustration.

For the case of k > 1, set the cross-channel weights to zero; for each channel, follow the case of
k = 1 to set weights and bias. Under this setup, different channels have no interaction and proceed in
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a completely independent way. As a result, each channel selects one critical coordinate, and thus,
z(L)(x) = (xi1 , xi2 , . . . , xik).
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Figure 1: A diagram illustration of how CNNs select coordinates adaptively. In this case d = 8, L = 3. The
nonzero coordinate is i = 4, for which a0 = 1, a1 = 1, a2 = 0. The values on edges represent the weights,
which are set according to the proof of Lemma 4.2.

Remark 4.3. Lemma 4.2 indicates that deep CNNs are able to effectively identify any k critical
coordinates with O(log d) depth and O(k2 log d) parameters, which is significantly smaller than d.
The key to this achievement is the adaptivity of neural networks, in combination with weight sharing,
multichanneling, downsampling, and depth, as demonstrated in the proof. Specifically, downsampling
and increased depth allow for capturing long-range sparse correlations with only O(log d) depth,
multichanneling facilitates the storage of information regarding different critical coordinates, and
weight sharing ensures the number of parameters of each layer to be independent of d.

We now proceed to consider the learning of nonlinear sparse functions. We first need the following
feature selection result for ReLU CNNs. The proof is similar to the linear case (Lemma 4.2) and
deferred to Appendix E.1.
Lemma 4.4. Given k,m ∈ N, consider a ReLU CNN with depth L = log2(4d) and the channel
numbers Cl = 2k for all l ∈ [L − 1] and CL = m. Then for any I = (i1, . . . , ik) ⊂ [4d],
u1, . . . ,um ∈ Rk, and c1, . . . , cm ∈ R, there exists θ ∈ Θ such that the L-th layer outputs:

z(L)(x) =
(
σ(u⊤

1 xI + c1), . . . , σ(u
⊤
mxI + cm)

)
∈ R1×m. (4)

Furthermore, this CNN has O(k2 log d+ km) parameters.

According to this lemma, deep CNNs are capable of generating adaptive features of the form:
x 7→ σ(u⊤xI + c) with only O(log d) depth and O(k2 log d) parameters, where the features depend
only on the k critical coordinates. Note that linear combinations of this type of features give two-
layer networks. Therefore, functions of the form f(x) := g(xI) with g : Rk 7→ R can be well
approximated by deep CNNs, as long as g can be wll approximated by two-layer ReLU networks. To
measure the learnability of g, we adopt the Barron regularity as proposed in E et al. (2022).
Definition 4.5 (Barron space). Consider functions admiting the following integral representation
gρ(x) =

∫
Ω
aσ
(
u⊤x+ c

)
ρ(da,du,dc) for all x ∈ X , where σ = ReLU, Ω = R1 ×Rk ×R1 and

ρ ∈ P(Ω). For a function g : X 7→ R, denote by Ag = {ρ : gρ(x) = g(x) for all x ∈ X}. Then,
we define

∥g∥B = inf
ρ∈Af

E(a,u,c)∼ρ [|a| (∥u∥1 + |c|)] , B = {g : ∥g∥B < ∞}.

More explicitly, the Fourier-analytic characterization (Barron, 1993; Klusowski and Barron, 2016)
showed that ∥g∥B ≲

∫
(1+∥ξ∥1)2|ĝ(ξ)|dξ, where ĝ denotes the Fourier transform of g. The analysis

with Barron regularity is often much simpler (E et al., 2019; 2022) and can yield a better dependence
on k than using traditional smoothness measures. Specifically, the Barron regularity allows obtaining
generalization bounds with dimension-independent rates like O(n−1/2). In contrast, for traditional
smoothness measures such as assuming g ∈ Cs([0, 1]k), the resulting error rate would scale like
O(n−s/k), which depends on k exponentially.

Recall ℓB(y, y
′) = 1

2 (y − y′)2 ∧ 1
2B

2. Consider the regularized estimator given by θ̂n =

argminθ
(
1
n

∑n
i=1 ℓB(πA ◦ hθ(xi), yi) + λ∥θ∥P

)
, where A,B, λ are hyperparameters to be tuned.
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Theorem 4.6. Let X = [0, 1]4d and h∗(x) := g(xI) for some I ⊂ [4d] be the target function. Let
k = |I| and suppose g ∈ B, supz |g(z)| ⩽ 1, and d ⩾ 3. For any δ ∈ (0, 1/2), ϵ ∈ (0, 1/2), there
is a choice of A,B, and λ such that w.p. at least 1− 2δ over the sampling of training set we have∥∥∥πA ◦ hθ̂n − h∗

∥∥∥2
L2(P )

⩽ ϵ, whenever

n ⩾ poly(∥g∗∥B, k, σ, log
1

δ
, log

1

ϵ
)

(
log(d)(log log d)3

ϵ3
+

log2(d)(log log d)3

ϵ2

)
.

The proof is presented in Appendix E.2. This theorem shows that learning sparse functions with
deep CNNs requires only Õ(log2 d) samples, which is nearly optimal from an information-theoretic
perspective. This is because Han and Yuan (2020) proved that learning sparse functions requires at
least Ω(log d) samples. It is also important to mention that Cagnetta et al. (2022) showed that using
deep convolutional kernels to learn long-range sparse functions suffers the curse of dimensionality.
The comparison with our results also highlights the significance of adaptivity in neural networks.

Experimental validation. In this experiment, both short-range and long-range sparse target func-
tions are considered. We set the input dimension d = 4096, the sample size n = 400 and the
noise level σ to be zero. For the CNN architecture, the filter size is s = 4, resulting in a depth
L = log4(d) = 6; the number of channels is set to C = 4 across all layers. The Adam optimizer is
employed to our models , and importantly, no regularization is applied. As a comparison, we also
examine two-layer fully-connected networks (FCNs) with a width 10, as well as the ordinary least
linear regression (OLS). The results are shown in Figure 2. One can see clearly that even without any
explicit sparsity regularization, CNN can still learn sparse interactions efficiently in both short-range
and long-range scenarios. In contrast, FCN and OLS overfit the data and fail to generalize to test data.
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Figure 2: CNN can learn sparse functions efficiently. Both short-range (left) and long-range (right)
sparse target functions are considered in this experiment. The training is stopped when the training
loss drops below 10−5.

5 Disentangle the Inductive Biases of Weight Sharing and Locality
To facilitate our statement, in this section, we denote by hcnn

θ , hlcn
θ , hfcn

θ the CNN, LCN, and FCN
model, respectively. We shall consider the following task.
Separation Task. Suppose the input distribution P = N (0, I4d) and the target function h̄∗(x) =
πA0

◦ h∗(x) where A0 is a universal absolute constant to be specified later and

h∗(x) =
1

d

(
d∑
i=1

(x2
2i−1 − x2

2i)

)(
d∑
i=1

(x2
2d+2i−1 − x2

2d+2i)

)
. (5)

The truncation is employed to ensure boundedness of the output. However, we believe that a more
refined analysis could eliminate the need for this constraint. This target function possesses the
structures of both “weight sharing” and “locality” (the global sum can be computed hierarchically
through local additions). We then consider the following comparisons.

• CNNs vs. LCNs. This comparison allows us to isolate the bias of weight sharing as both
models have the same structures, but LCNs do not have weight sharing.
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• LCNs vs. FCNs. This comparison allows us to isolate the bias of locality since the only
difference between FCNs and LCNs is the presence or absence of locality.

By these comparisons, we can evaluate the effectiveness of each bias in contributing to the improved
performance of CNNs over FCNs, and gain insights into how these biases interact with other structures
such as depth, multichanneling, and downsampling.

To establish provable separations, we need both upper and lower bounds of the sample complexity of
learning h̄∗. For the upper bounds, we consider the regularized estimator given by

θ̂n = argmin
θ

(
1

n

n∑
i=1

[ℓB(πA ◦ hθ(xi), yi)] + λ∥θ∥P

)
, (6)

where the model hθ and hyperparameters A,B, and λ will be specified for each comparison. We will
use the covering number-based technique (see Appendix B.2) to upper bound the generalization error.
See also Appendix C for how to bound the covering numbers of deep CNNs and deep LCNs.

Establishing lower bounds is often much more challenging. We will adopt a similar approach to Ng
(2004); Li et al. (2020); Abbe and Boix-Adserà (2022), which involves understanding the learning
hardness through the equivariance group of the learning algorithm.

5.1 Learning Algorithm, Group Equivariance, and Lower Bounds

A learning algorithm A : (X × Y)n 7→ M(Θ) generates a random variable taking values in Θ by
using the training set Sn. This definition includes the situation where our models are returned by
stochastic optimizers such as SGD and Adam. We will denote X

d
= Y as Law(X) = Law(Y ).

G-equivariant/-invariant. Let G be a group acting on X . A learning algorithm A is said to be
G-equivariant1 if ∀ {xi, yi}ni=1 ∈ (X × Y)n and ∀τ ∈ G,x ∈ X :

hA({τ(xi),yi}n
i=1)

◦ τ d
= hA({xi,yi}n

i=1)
. (7)

A distribution µ is said to be G-invariant if for any τ ∈ G, τ(X) ∼ µ if X ∼ µ.

Sample Complexity. Given a target function class F and a learning algorithm A, for a target
accuracy ϵ > 0, the sample complexity C(A,F , ϵ) is defined as the smallest integer n such that

sup
h∗∈F

E
∥∥hA(Sn) − h∗∥∥2

L2(P )
⩽ ϵ, (8)

where the expectation is taken over both the sampling of Sn and the randomness in A. In addition,
we define the minimax sample complexity by C̄(F , ϵ) := infA C(A,F , ϵ), where the infimum is taken
over all learning algorithms, i.e., all the mappings: (X × Y)n 7→ M(Θ).

For a function class F , denote by F ◦G := {f ◦ τ : f ∈ F , τ ∈ G} the G-enlarged class.
Lemma 5.1. (A restatement of (Li et al., 2020, Lemma D.1)) Let AG be the set of all G-equivariant
algorithms. For any function class F and ϵ > 0, it holds that infA∈AG

C(A,F , ϵ) ⩾ C̄(F ◦G, ϵ).

This lemma shows that the sample complexity of learning F with a G-equivalent algorithm can be
lower bounded by the minimax complexity of learning the enlarged class: F ◦ G. The latter can
be handled using standard approaches from minimax theory (see (Wainwright, 2019, Section 15)).
Specifically, we will adopt Fano’s method to lower-bound the minimax sample complexity, which
reduces the problem to find a proper packing of the enlarged class F ◦ G (see Appendix B.3). In
particular, when F = {f∗}, the packing number of F ◦ G can be completely determined by the
packing number of the symmetry group G if f∗ is chosen to satisfy

∥f∗ ◦ τ1 − f∗ ◦ τ2∥2L2(µ) ∼ ∥τ1 − τ2∥2G, (9)

where ∥ · ∥G is a proper norm defined on G. Moreover, estimating the packing number of a symmetry
group is often much easier.

1The definition here is intuitive but not fully rigorous. We refer to Appendix F.1 for a rigorous definition.
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Note that the specific target function (5) in our separation task is designed to satisfies (9) for the
symmetry groups associated with SGD algorithms and thus, the sample complexity can be completely
governed by the size of symmetry groups. Specifically, for SGD algorithms, we have

• The symmetry group of FCNs is the orthogonal group Gort(4d), whose degree of freedom
is Θ(d2). This explains the lower bound Ω(d2) for FCNs.

• The symmetry group of LCNs is the local permutation group Gloc, whose degree of freedom
is Θ(d). This explains the lower bound Ω(d) for LCNs.

See the sections below for more details.

5.2 CNNs vs. LCNs

In this section, we will derive an upper bound of sample complexity for learning h̄∗ with CNNs and a
lower bound for learning h̄∗ with LCNs. The two bounds together provide a quantification of the
effect of weight sharing.

Consider the deep CNN hcnn
θ with L = log2(4d), C1 = CL = 4, Cl = 2 for l ∈ [2, L − 1], and

σ1(x) = σL(x) = ReLU2(x), σl(x) = ReLU(x) for l ∈ [2, L− 1].
Theorem 5.2 (Upper bound of CNNs). Suppose d ⩾ 3 and A0 ⩾ 0 and consider the estimator
θ̂n given by (6). For any ϵ ∈ (0, 1/2) and δ ∈ (0, 1/2), there is a choice of A,B, and λ such that∥∥∥πA ◦ hcnn

θ̂n
− h̄∗

∥∥∥2
L2(P )

⩽ ϵ holds w.p. at least 1− 2δ, whenever

n ⩾ poly(A0, σ, log(1/δ), log(1/ϵ))ϵ
−2(log2 d) (log log d)

3
.

The proof is deferred to Appendix G.2. It is shown that CNNs need only Õ(log2 d) samples to learn
h̄∗. The reason behind this upper bound is that h̄∗ can be accurately represented by deep CNNs with
only O(log d) parameters and well-controlled norms due to the well matching between the weight
sharing and locality in CNNs and the unique characteristics of h̄∗.

Next we turn to establish a lower bound for LCNs. Let ℓ(·, ·) be a general differentiable loss function
and L̂lcn(θ) := 1

n

∑n
i=1 ℓ(h

lcn
θ (xi), yi) + r

(
∥θ∥p

)
, where p ⩾ 1 and r : [0,+∞) → [0,+∞).

Denote by Alcn
T the algorithm that returns solutions by optimizing L̂lcn(·) for T steps using SGD or

Adam. Under mild conditions, it can be shown that Alcn
T is equivariant under the local permutation

group:

Gloc =

{
U ∈ R4d×4d : U = diag (U1, U2, . . . , U2d) , Ui ∈

{(
1 0
0 1

)
,

(
0 1
1 0

)}}
. (10)

Obviously, Gloc is a group under matrix product. To ensure the Gloc-equivariance of Alcn
T , we need

the following assumption, which is satisfied by all popular initialization schemes used in practice.

Assumption 1. At initialization, the fist layer weight satisfies: W (1)
j,1,2k−1 and W

(1)
j,1,2k have the same

marginal distribution for any j ∈ [C1], k ∈ [2d].
Lemma 5.3. Suppose that the input distribution P is Gloc-invariant and Assumption 1 is satisfied.
Then, for any T ∈ N, Alcn

T is Gloc-equivariant for both SGD and Adam.

The proof is deferred to Appendix F.2. Xiao and Pennington (2022) showed that under Gaussian
initialization, the equivariance group of Alcn

T is O(2)⊗I2d, which is slightly larger than Gloc obtained
in the current work. It should be stressed that Gloc is obtained under a much milder assumption of
initialization which holds for the popular uniform initialization scheme. Moreover, we show below
that the Gloc equviariance is sufficient for separating LCNs from CNNs.
Theorem 5.4 (Lower bound of LCNs). Under Assumption 1, there exists absolute constants C, c > 0
such that ∀T ∈ N, ϵ0 ∈ (0, c], d, A0 ⩾ C:

C(Alcn
T , {h̄∗}, ϵ0) = Ω(σ2d)

The proof is deferred to Appendix G.1. By comparing Theorem 5.2 and 5.4, we see that the weight
sharing in CNNs yields an Θ̃(d) improvement on the sample complexity for learning h̄∗. This
highlights the importance of exploiting the “weight sharing” in h̄∗ for efficient learning.
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5.3 LCNs vs. FCNs

We will derive an upper bound of sample complexity for learning h̄∗ with LCNs and a lower bound
for learning h̄∗ with FCNs. The two bounds together provide a quantification of the effect of locality.

We consider the deep LCN hlcn
θ with L = log2(4d), C1 = CL = 4, Cl = 2 for l ∈ [2, L− 1], and

σ1(x) = σL(x) = ReLU2(x), σl(x) = ReLU(x) for l ∈ [2, L− 1].

Theorem 5.5 (Upper bound of LCNs). Suppose d ⩾ 3 and A0 ⩾ 0 and consider the estimator θ̂n
given by (6). Then, for any ϵ ∈ (0, 1/2) and δ ∈ (0, 1/2), there is a choice of A,B, and λ such that∥∥∥πA ◦ hlcn

θ̂n
− h̄∗

∥∥∥2
L2(P )

⩽ ϵ holds w.p. at least 1− 2δ, whenever

n ⩾ poly(A0, σ, log(1/δ), log(1/ϵ))ϵ
−2d log4 d

The proof is deferred to Appendix H.2. It is shown that LCNs needs Õ(d) samples to learn h̄∗. The
reason behind this upper bound is that h̄∗ can be well approximated by LCNs with O(d) parameters
and well-controlled norm. However, as opposed to CNNs, LCNs lack weight sharing and can only
imitate the local features of h̄∗ with the “weight sharing” structure completely ignored.

Next we turn to establish a lower bound for FCNs. Let ℓ(·, ·) be a general differentiable loss
function. Denote by Afcn

T the algorithm: Run SGD for T steps by optimizing L̂fcn(θ) :=
1
n

∑n
i=1 ℓ(h

fcn
θ (xi), yi) + r (∥θ∥2) , where r : [0,+∞) → [0,+∞) is a general penalty function.

We refer to Appendix F.1 for a rigorous definition.

Lemma 5.6. Suppose that the input distribution P is Gort(4d)-invariant and entries of W (1) are
i.i.d. initialized from N (0, β2) for some β > 0. Then, for any T ∈ N, Afcn

T is Gort(4d)-equivariant.

This lemma was proved in (Li et al., 2020, Corollary C.2) and we state it here for completeness. It
implies that training FCNs with SGD induces a larger equivariance group than that of LCNs since
Gloc ⊂ Gort(4d). It is important to note that this lemma only holds for SGD, as Adam is only
permutation invariant. In contrast, the result in Lemma 5.3 applies to both SGD and Adam.

Theorem 5.7 (Lower bound of FCNs). Suppose that the input distribution P is Gort(4d)-invariant
and entries of W (1) are i.i.d. initialized from N (0, β2) for some β > 0. Then there exists absolute
constants C, c > 0 such that ∀T ∈ N, ϵ0 ∈ (0, c], d, A0 ⩾ C:

C(Afcn
T , {h̄∗}, ϵ0) = Ω(σ2d2)

The proof is deferred to Appendix H.1. By comparing Theorem 5.5 and 5.7, we see that the locality
itself yields another Θ̃(d) improvement on the sample complexity for learning h̄∗. This highlights
the importance of exploiting the locality in h̄∗ for efficient learning.

6 Conclusion
In this paper, we delve into the theoretical analysis of the inductive biases associated with the
multichanneling, downsampling, weight sharing, and locality in deep CNN architectures with a focus
on understanding the interplay between network depth and these biases. Our results highlight the
critical role of multichanneling and downsampling in enabling deep CNNs to effectively capture
long-range correlations. We also analyze the effects of weight sharing and locality on breaking the
learning algorithm’s symmetry, through which we make a clear distinction between the two biases:
the global orthogonal equivariance vs. the local permutation equivariance. By leveraging these
symmetries, we establish provable separations for FCNs vs. LCNs and LCNs vs. CNNs, providing a
strong theoretical support for the unique nature of weight sharing and locality.
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A Related Works

Approximation and estimation. Zhou (2020b) established the first universality theorem for CNNs,
which, however, requires the depth to increase as approximation accuracy improved. Later, He et al.
(2022) showed a depth of O(d) is sufficient when multichanneling is utilized. In this paper, we further
reduce the required depth to O(log d) by combining multichanneling with downsampling. We also
prove that without downsampling, CNNs require a minimum depth of Ω(d) to achieve universality,
highlighting the necessity of downsampling for deep CNNs.

Deza et al. (2020) designed some synthetic tasks to show the benefit of depth in CNNs. Okumoto
and Suzuki (2022) analyzed dilated CNNs (Yu and Koltun, 2016) by considering target functions
with mixed and anisotropic smoothness. They showed that dilated CNNs can capture long-range
sparse signals if the dilation rate is on the order of Ω(d). In contrast, we show that for a similar task,
vanilla CNNs can capture the long-range sparse correlations with only O(log d) depth and Õ(log2 d)
samples if downsampling is appropriately combined with multichanneling.

Long and Sedghi (2019); Lin and Zhang (2019) established the upper bounds of the covering number
and Rademacher complexity of deep CNNs, where the effect of weight sharing was incorporated.
We design concrete tasks to instantiate these bounds to demonstrate the superiority of CNNs over
other architectures such as FCNs. Beyond that, we also improve the covering number bound of Long
and Sedghi (2019) in various aspects, including improved dependence on parameter norms (from
exponential to polynomial). See Appendix C.3 for a detailed discussion.

Understanding the inductive bias. Mei et al. (2021); Bietti et al. (2021) studied the superiority of
convolutional kernels by exploiting the translation invariance of convolution. Later, under similar
setups, Misiakiewicz and Mei (2022) studied the benefit of using local kernels in convolutions and
the effect of downsampling; Bietti (2021); Cagnetta et al. (2022) studied the inductive bias of kernel
composition (mimicking the effect of depth in neural networks). However, these studies are limited
to kernel methods and it is generally unclear how the results are relevant for understanding CNNs. In
addition, Gunasekar et al. (2018); Jagadeesan et al. (2022); Razin et al. (2022); Jiang et al. (2021); Du
et al. (2018) studied the inductive biases in linear CNNs. By contrast, we examine vanilla nonlinear
CNNs and show that the nonlinearity of activation functions and the network adaptivity are critical
for reaping the benefits of the CNN-specific structures.

We highlight the work Li et al. (2020), where a provable separation between CNNs and FCNs was
established by exploiting the equivariance groups of the learning algorithm such as SGD and Adam.
However, Li et al. (2020) neither disentangled the effects of locality and weight sharing nor studied
the effects of increasing network depth, multichanneling, and downsampling. Xiao and Pennington
(2022) took a similar idea to explain the inductive bias of CNNs and other architectures but the authors
focused on empirical investigations without providing theoretical guarantees. It is worth noting that
the idea of studying a learning algorithm through its equivariance group was first introduced in Ng
(2004) for linear regression and was also applied to study other hardness problems in deep learning
(Abbe and Boix-Adserà, 2022).

B Technical Background

B.1 Toolbox for Concentrations

Theorem B.1. (Hoeffding’s inequality, (Vershynin, 2018, Theorem 2.2.6)) Let X1, X2, . . . , Xn be
i.i.d. random variables with mean µ and satisfy Xi ∈ [a, b]. Then,

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ⩾ t

}
⩽ 2e

− 2nt2

(b−a)2 .

Definition B.2 (Sub-exponential Random Variable). For a random variable X , define

∥X∥ψ1 = inf{t > 0 : E exp(|X|/t) ⩽ 2} (11)

to be its sub-exponential norm. A random variable X that satisfies ∥X∥ψ1
< +∞ is called a

sub-exponential random variable.
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Lemma B.3. (Bernstein’s inequality, (Vershynin, 2018, Corollary 2.8.3)) Let X1, . . . , XN be inde-
pendent, mean zero, sub-exponential random variables. Then, for every t ⩾ 0, we have

P

{∣∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣∣ ⩾ t

}
⩽ 2 exp

[
−c2 min

(
t2

K2
,
t

K

)
N

]
(12)

where K = maxi ∥Xi∥ψ1
and c2 > 0 is an absolute constant.

We will use covering number, packing number, and Rademacher complexity to measure the complex-
ity of a function class.
Definition B.4 (Covering number). Let (T, ρ) be a metric space. Consider a subset K ⊂ T and let
ε > 0. A subset Kε ⊆ K is called an ε-covering of K if every point in K is within distance ε of
some point of Kε, i.e. ∀x ∈ K,∃x0 ∈ Kε : ρ (x, x0) ⩽ ε. The smallest possible cardinality of an
ε-covering of K is called the covering number of K and is denoted by N (K, ρ, ε).
Definition B.5 (Packing number). Let (T, ρ) be a metric space and K ⊂ T . Given ε > 0, Kε ⊂ K
is said to be an ε-packing of K if ρ(x, y) > ε for all distinct points x, y ∈ Kε. The largest possible
cardinality of an ε-packing of K is called the packing number of K and is denoted by P(K, ρ, ε).
Definition B.6 (Rademacher complexity). The empirical Rademacher complexity of a function class
F on finite samples is defined as

R̂adn(F) = Eξ

[
sup
f∈F

1

n

n∑
i=1

ξif(Xi)

]
(13)

where ξ1, ξ2, . . . , ξn are i.i.d. Rademacher random variables: P(ξi = 1) = P(ξi = −1) = 1
2 . Let

Radn(F) = E[R̂ad(F)] be the population Rademacher complexity.

The following lemma provides an upper bound for the covering number of a general ball.
Lemma B.7. (Long and Sedghi, 2019, Lemma A.8.) Let p be a positive integer and ∥·∥ be a norm in
Rp. Denote by Br = {θ ∈ Rp : ∥θ∥ ⩽ r}. Then, N (Br, ∥ · ∥, t) ⩽

(
3r
t

)p
provided t ⩽ r.

Lemma B.8 (Covering number of Lipschitz class). Let g : X ×Θ 7→ R with Θ = Rp be a general
parametric model and ∥ · ∥ be a norm over Θ. Define Θr = {θ : ∥θ∥ ⩽ r} and Gr = {gθ : ∥θ∥ ⩽ r}.
Suppose for any θ, θ′ ∈ Θr, we have |gθ(z)− gθ′(z)| ⩽ B(z) ∥θ − θ′∥. Given z1, z2, . . . , zn ∈ X ,

let B̂n =
√

1
n

∑n
i=1 B

2(zi) and ρ̂n(f, g) =
√

1
n

∑n
i=1(f(zi)− g(zi))2 for any f, g ∈ F . Then for

t ⩽ rB̂n, we have

N (Gr, ρ̂n, t) ⩽

(
3B̂nr

t

)p
. (14)

Proof. Note that

ρ̂n(gθ, gθ′) =

√√√√ 1

n

n∑
i=1

(gθ(zi)− gθ′(zi))2 ⩽

√√√√ 1

n

n∑
i=1

B(zi)2∥θ − θ′∥ = B̂n∥θ − θ′∥.

This implies that for any t > 0, an t/B̂n-cover of Θr w.r.t. ∥ · ∥ induces a t-cover of Gr w.r.t. ρ̂n.
Therefore,

N (Gr, ρ̂n, t) ⩽ N (Θr, ∥ · ∥, t/B̂n) ⩽

(
3r

t/B̂n

)p
,

where the last step follows from Lemma B.7. Thus, we complete the proof.

Then we recall the uniform law of large number via Rademacher complexity, which can be found in
(Wainwright, 2019, Theorem 4.10).
Lemma B.9. Assume that f ranges in [0, R] for all f ∈ F . For any n ⩾ 1, for any δ ∈ (0, 1), w.p. at
least 1− δ over the choice of the i.i.d. training set S = {X1, . . . , Xn}, we have

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ⩽ 2Radn(F) +R

√
log(4/δ)

n
(15)
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Next, the Dudley’s integral entropy bound given below shows that the Rademacher complexity can
be further upper bounded by using the covering number.

Lemma B.10. Given n samples X1, . . . , Xn, let ρ̂n(f, g) :=
√

1
n

∑n
i=1(f(Xi)− g(Xi))2 for

f, g ∈ F and D = supf,g∈F ρ̂n(f, g) be the diameter of F with respect to ρ̂n. Then,

R̂adn(F) ⩽ 12

∫ D

0

√
logN (F , ρ̂n, t)

n
dt (16)

Corollary B.11. Given R ⩾ 1, let F be a set of functions from X to [0, R] and P be an arbitrary
probability distribution over X . Given n ∈ N, let X1, X2, . . . , Xn be i.i.d. samples drawn from P .
Assume that there exists a K̂n, which may depend on the training data X1, X2, . . . , Xn, such that

N (F , ρ̂n, t) ⩽
(

3K̂n

t

)p
for all 0 < t ⩽ K̂n. Then, for any δ ∈ (0, 1), w.p. at least 1− δ we have

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≲ R

√
p log(E[K̂n] + 3)

n
+R

√
log(4/δ)

n
(17)

Proof. When 2R ⩽ K̂n,∫ D

0

√
logN (F , ρ̂n, t)

n
dt ⩽

√
p

n

∫ 2R

0

√
log(3K̂n/t) dt

⩽

√
p

n

∫ 2R

0

(√
log(3K̂n + 1)

)
dt+

√
p

n

∫ 2R

0

√
log(1/t) dt

⩽

(
2R

√
log(3K̂n + 1) + 4R log(3)

)√
p

n

≲ R

√
p log(K̂n + 3)

n

(18)

When 2R ⩾ K̂n,∫ D

0

√
logN (F , ρ̂n, t)

n
dt ⩽

∫ K̂n

0

√
logN (F , ρ̂n, t)

n
dt+

∫ 2R

K̂n

√
logN (F , ρ̂n, t)

n
dt

⩽

(
K̂n

√
log(3K̂n + 1) + 2

)√
p

n
+

∫ 2R

K̂n

√
p log(3)

n
dt

⩽

(
2R

√
log(3K̂n + 1) + 4R log(3)

)√
p

n

≲ R

√
p log(K̂n + 3)

n

(19)

By applying Lemma B.10, we have

Radn(F) = E[R̂adn(F)] ≲ RE

√p log(K̂n + 3)

n

 ⩽ R

√
p log(E[K̂n + 3])

n
, (20)

where the last step follows from the Jensen’s inequality and the fact that both
√
z and log(z) are

concave with respect to z. By plugging (20) into (15), we complete the proof.

B.2 A Generalization Bound for Learning with Unbounded Noise

We first recall our setup: yi = h∗(xi) + ξi with xi
iid∼ P and ξi

iid∼ N (0, σ2). We assume
supx∈X |h∗(x)| ⩽ A and denote by hθ our parametric model.
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Truncation. Due to supx∈X |h∗(x)| ⩽ A, we can consider the truncated model πA ◦ hθ, which
does not lose the expressivity but can make the mathematical analysis much simpler. In addition,
due to the noise, the labels are unbounded but the generalization bound in Corollary B.11 requires
boundedness. To handle this challenge, we define a truncated loss ℓB(y, y′) := 1

2 (y − y′)2 ∧ 1
2B

2.
The value of B will be specified later. For the truncated loss, we have

|∂yℓB(y, y′)| ⩽ B, |ℓB(y, y′)| ⩽
B2

2
. (21)

To facilitate our statements, we define the following truncated risks

LA(θ) = Ex,y [ℓ(πA ◦ hθ(x), y)]
LA,B(θ) = Ex,y [ℓB(πA ◦ hθ(x), y)]

L̂A,B(θ) =
1

n

n∑
i=1

[ℓB(πA ◦ hθ(xi), yi)] .

In particular,

LA(θ) =
1

2
∥πA ◦ hθ − h∗∥2L2(P ) +

1

2
σ2. (22)

Assumption 2 (Model capacity). Let ∥ · ∥ be a norm over the parameter space Θ used to control the
model capacity. Define HJ = {x 7→ hθ(x) : ∥θ∥ ⩽ J}. Denote by pH the number of parameters.
Let ∥ · ∥U be a norm satisfying that there exists a constant αH such that

∥θ∥ ⩽ αH∥θ∥U , ∀θ ∈ Θ. (23)

We make the following assumptions.

• Covering number. Suppose that there exists a γ̂n : R⩾0 → R⩾0 such that

N (HJ , ρ̂n, t) ⩽

(
3γ̂n(J)

t

)pH
for t ⩽ γ̂n(J). (24)

Note that γ̂n(·) may depend on the training data x1,x2, . . . ,xn and we let γ(J) = E[γ̂n(J)]

• Approximation error. We assume that there is θ∗ ∈ Θ such that

∥πA ◦ hθ∗ − h∗∥2L2(P ) ⩽ ϵ∗ and ∥θ∗∥U ⩽ M∗ (25)

Thus, LA(θ∗) ⩽ (ϵ∗ + σ2)/2.

The assumption (25) essentially means that h∗ can be well approximated by our model hθ with the
parameter norm ∥θ∗∥U well controlled.

Consider the regularized estimator given by

θ̂n ∈ argmin
θ

(
L̂A,B(θ) + λ∥θ∥U

)
, (26)

where A,B, and λ are hyperparameters to determined later.

Remark B.12. Note that penalizing the upper bound ∥θ∥U instead of ∥θ∥ is very common in practice.
First, if the constant αH is not too big, then this choice does not hurt the performance too much.
Second, the upper bound ∥θ∥U is often more interpretable and easier to compute than ∥θ∥.

Lemma B.13 (Properties of θ̂n). For any δ ∈ (0, 1), let Uλ = 1
2λ

(
ϵ∗ + σ2 +B2

√
2 log (2/δ)

n

)
+

M∗. With probability at least 1− δ, we have

L̂A,B(θ̂n) ⩽
1

2
(ϵ∗ + σ2) +

1

2
B2

√
2 log (2/δ)

n
+ λM∗

∥θ̂n∥U ⩽ Uλ.

(27)
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Proof. Noting that θ∗ is independent of the training data, we have for any δ ∈ (0, 1), it holds w.p. at
least 1− δ that

L̂A,B(θ
∗)

(a)

⩽ LA,B(θ
∗) +

1

2
B2

√
2 log(2/δ)

n
⩽ LA(θ

∗) +
1

2
B2

√
2 log(2/δ)

n
(b)

⩽
1

2
(ϵ∗ + σ2) +

1

2
B2

√
2 log(2/δ)

n
,

where (a) and (b) follow from the Hoeffding’s inequality (Theorem B.1) and the approximation
assumption (25), respectively.

Since θ̂n is one solution of the minimization problem, we have

L̂A,B(θ̂n) + λ
∥∥∥θ̂n∥∥∥

U
⩽ L̂A,B(θ

∗) + λ ∥θ∗∥U

⩽
1

2
(ϵ∗ + σ2) +

1

2
B2

√
2 log (2/δ)

n
+ λM∗.

Then, the conclusions follow trivially from the above inequality.

Proposition B.14 (Excess risk). Denote by θ̂n the estimator defined in (26). Suppose Assumption 2
holds and B > 2A. For any δ ∈ (0, 1/2), we have w.p. at least 1− 2δ that

∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

− ϵ∗ ≲
σ3B

(B − 2A)2
e−

(B−2A)2

2σ2 + λM∗

+B2

√
pH log(Bγ(Uλ/αH) + 3)

n
+B2

√
log(4/δ)

n
.

Remark B.15. If γ(J) ∼ JβH , then by taking B = C(2A+ σ
√
log n) with C ⩾ 1 and λ ∼ 1/

√
n,

we have∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

− ϵ∗ ≲
M∗ + poly(σ,A, log n, log(4/δ), logM∗, log(1/αH))

√
pHβH√

n
.

(28)
Thus, we show how to set the hyperparameters B, λ to yield a standard Õ(1/

√
n) rate. Note that on

the right hand side of (28), αH, βH and pH depend on the model hθ and we will specify them for
CNNs and LCNs separately in this paper. However, it should be stressed that Proposition B.14 is
generally applicable, which might be of independent interest.

Proof. We will prove this theorem by utilizing the following decomposition:

LA(θ̂n) = LA(θ̂n)− LA,B(θ̂n) (Step 1)

+ LA,B(θ̂n)− L̂A,B(θ̂n) (Step 2)

+ L̂A,B(θ̂n) (Step 3).

Step 1. We first need the following tail bound of N (0, σ2) (Vershynin, 2018, Proposition 2.1.2): For
X ∼ N (0, σ2), it holds that

P{X ⩾ t} ⩽
σ

t
· 1√

2π
e−t

2/(2σ2) ∀t > 0. (29)
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For any θ, denote Z(x) = πA ◦ hθ(x)− h∗(x) + ξ where ξ ∼ N (0, σ2). Then, we have

|LA(θ)− LA,B(θ)| =
1

2
EZ
[(
Z2 −B2

)
1|Z|⩾B

]
=

1

2

∫ +∞

0

P
(
Z2 −B2 ⩾ t

)
dt

⩽
1

2

∫ +∞

0

P
(
|ξ| ⩾

√
B2 + t− 2A

)
dt

(a)

⩽
1√
2π

∫ +∞

0

σ√
B2 + t− 2A

e−
(
√

B2+t−2A)2

2σ2 dt

=

∫ +∞

B

2σ√
2π

s

s− 2A
e−

(s−2A)2

2σ2 ds (s =
√
B2 + t)

⩽
2σ2B

B − 2A

∫ +∞

B

1

σ
√
2π

e−
(s−2A)2

2σ2 ds

=
2σ2B

B − 2A
P (ξ ⩾ B − 2A)

(b)

⩽
2σ3B

(B − 2A)2
√
2π

e−
(B−2A)2

2σ2 ,

where (a) and (b) follow from (29). By taking θ = θ̂n, we have

LA(θ̂n)− LA,B(θ̂n) ⩽
2σ3B

(B − 2A)2
√
2π

e−
(B−2A)2

2σ2 . (30)

Step 2. Define FJ = {(x, y) 7→ ℓB(πA ◦ hθ(x), y) : ∥θ∥ ⩽ J}. Due to

|ℓB(πA ◦ hθ(x), y)− ℓB(πA ◦ hθ′(x), y)| ⩽ B |πA ◦ hθ(x)− πA ◦ hθ′(x)|
⩽ B |hθ(x)− hθ′(x)| ,

we have N (FJ , ρ̂n, t) ⩽ N (HJ , ρ̂n, t/B) ⩽ (3Bγ̂n(J)/t)
pH for t ⩽ Bγ̂n(J), where the last

inequality comes from Assumption 2. For any J > 0, by Corollary B.11 and noting γ(J) = E[γ̂n(J)],
It is straightforward that the following holds w.p. 1− δ

sup
∥θ∥P⩽J

∣∣∣LA,B(θ)− L̂A,B(θ)
∣∣∣ ≲ B2

√
pH log(Bγ(J) + 3)

n
+B2

√
log(4/δ)

n
.

By Lemma B.13, it holds w.p. 1− δ that ∥θ̂n∥U ⩽ Uλ, which leads to ∥θ̂n∥ ⩽ Uλ/αH. Plugging it
into the above bound gives: w.p. 1− 2δ it holds that

LA,B(θ̂n)− L̂A,B(θ̂n) ≲ B2

√
log(4/δ)

n
+B2

√
pH log(Bγ(Uλ/αH) + 3)

n
. (31)

Step 3. By Lemma B.13,

L̂A,B(θ̂n) ⩽
1

2
(ϵ∗ + σ2) +

1

2
B2

√
2 log (2/δ)

n
+ λM∗. (32)

Combining (30), (31) and (32) gives

LA,B(θ̂n)−
1

2
(ϵ∗ + σ2) ≲ B2

√
log(4/δ)

n
+B2

√
pH log(Bγ(Uλ/αH) + 3)

n
+ λM∗. (33)

Then we complete the proof by noting LA,B(θ̂n) =
1
2

∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

+ 1
2σ

2.
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B.3 Fano’s Method for Random Estimators

In this paper, the lower bounds for LCNs and FCNs are established using Fano’s method from
minimax theory (Wainwright, 2019, Section 15). However, different from the traditional statistical
setup where the estimator is deterministic, the estimators produced by stochastic optimizers are
random. To address this issue, we develop a variant of Fano’s method for random estimators, which
might be of independent interest.

We first recall the definition of Kullback–Leibler (KL) divergence.

Definition B.16 (KL Divergence). Given two distributions Q and P , the KL divergence between
them is given by

DKL(Q∥P ) :=

{
EQ
[
log dQ

dP

]
when Q is absolutely continuous with respect to P,

+∞ otherwise.

If the distributions have densities with respect to some underlying measure ν: dQ = q dν, dP = p dν,
then then the KL divergence can be written in the form

DKL(Q∥P ) =

∫
q(x) log

q(x)

p(x)
dv(x).

In particular, we will use the fact: for P = N (µ1, σ
2) and Q = N (µ2, σ

2), we have

DKL(P∥Q) =
|µ1 − µ2|2

2σ2
(34)

and the following lemma.

Lemma B.17. Denote by Qn, Pn the n-fold product distribution of Q and P , respectively. When Q
is absolutely continuous with respect to P , DKL(Qn∥Pn) = nDKL(Q∥P )

Proof. This follows trivially from the fact that dQn

dPn
= d(Q×···×Q)

d(P×···×P ) =
(

dQ
dP

)n
.

Minimax Risk. Let {Pθ : θ ∈ Θ} be a set of probability distributions indexed by θ ∈ Θ and
supported on Ω. Let Zθ be a sample drawn from Pθ. A random estimator A : Ω 7→ M(Θ) returns
a random variable taking values in Θ, which is a random estimate of θ by using the sample Zθ.
Note that in this definition, the estimator is a random variable and it can model the one produced by
stochastic optimizers such as SGD and Adam. In addition, when it is deterministic, this definition
recovers the one commonly used in the statistical literature.

Let d : Θ×Θ 7→ R⩾0 be a metric over Θ. The minimax risk of learning distributions in {Pθ : θ ∈ Θ}
is defined by

inf
A∈A

sup
θ∈Θ

Eθ,A
[
d (θ,A(Zθ))2

]
, (35)

where Eθ,A means the expectation with respect to Zθ and A, and the outer infimum is taken over A,
i.e., the set of all the mappings from Ω to M(Θ).

We next present a modification of Fano’s method for random estimators. The proof process resembles
that of the original Fano’s method, but with some necessary modifications. This extension, although
not difficult, can be very useful as random estimators have become ubiquitous nowdays.

Theorem B.18 (Fano’s method for random estimators). Suppose that for M ∈ N and A > 0, there
exists a packing θ1, . . . , θM ∈ Θ such that d (θi, θj)

2 ⩾ 4A for any i ̸= j, then

inf
A∈A

sup
θ∈Θ

Eθ,A
[
d (θ,A(Zθ))2

]
⩾ A ·

1− 1

M2 logM

M∑
i,j

DKL

(
Pθi∥Pθj

)
− log 2

logM

 (36)
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Proof. By Markov’s inequality, Eθ
[
EA

[
d (θ,A(Zθ))2

]]
⩾ A · Pθ

(
EA

[
d (θ,A(Zθ))2

]
> A

)
, it

is sufficient to lower bound

inf
A∈A

sup
θ∈Θ

Pθ
(
EA

[
d (θ,A(Zθ))2

]
> A

)
(37)

for some A > 0. This will be useful for techniques based on information theory.

The principle is simple: pack the index set Θ with balls of some radius 4A, that is find θ1, . . . , θM ∈ Θ
such that

∀i ̸= j, d (θi, θj)
2 ⩾ 4A,

and transform the estimation problem into a hypothesis test, that is, an algorithm going from the data
Zθ to one out of M potential outcomes.

To this end, we take the supremum over a smaller set:

sup
θ∈Θ

Pθ
(
EA

[
d (θ,A(Zθ))2

]
> A

)
⩾ max
j∈[M ]

Pθj
(
EA

[
d
(
θj ,A(Zθj )

)2]
> A

)
(38)

Any algorithm A gives a test

g(A(Zθ)) = arg min
j∈[M ]

EA

[
d (θj ,A(Zθ))2

]
∈ [M ], (39)

where ties are broken arbitrarily (e.g., by selecting the minimal index).

If, for some j ∈ [M ], g(A(Zθj )) ̸= j, there exists k ̸= j, such that EA

[
d
(
θk,A(Zθj )

)2]
⩽

EA

[
d
(
θj ,A(Zθj )

)2]
. Moreover, using the triangle inequality for d(·, ·), we get:

d (θj , θk)
2 ⩽ 2EA

[
d
(
θj ,A(Zθj )

)2
+ d

(
A(Zθj ), θk

)2]
, (40)

then,

EA

[
d
(
θj ,A(Zθj )

)2]
⩾

1

2
d (θj , θk)

2 − EA

[
d
(
A(Zθj ), θk

)2]
⩾

1

2
d (θj , θk)

2 − EA

[
d
(
A(Zθj ), θj

)2]
(using the optimal k),

(41)

which implies EA

[
d
(
θj ,A(Zθj )

)2]
⩾ 1

4d (θj , θk)
2 ⩾ A. Thus, we have

Pθj
(
EA

[
d
(
θj ,A(Zθj )

)2]
> A

)
⩾ Pθj (g(A(Zθj )) ̸= j), (42)

leading to

inf
A∈A

sup
θ∈Θ

Eθ,A
[
d (θ,A(Zθ))2

]
⩾ A · inf

g
max

j∈{1,...,M}
Pθj (g(Zθj ) ̸= j)

⩾ A · inf
g

1

M

M∑
j=1

Pθj (g(Zθj ) ̸= j), (43)

which can be further lower bounded using the following lemma (Bach, 2023, Corollary 12.1).
Lemma B.19 (Fano’s inequality for multiple hypothesis testing). Given M distributions
P1, P2, . . . , PM over Ω, let Zθj ∼ Pθj for j = 1, 2, . . . ,M . Then

inf
g

1

M

M∑
j=1

Pθj (g(Zθj ) ̸= j) ⩾ 1− 1

M2 logM

M∑
j,j′=1

DKL

(
Pθj∥Pθj′

)
− log 2

logM
, (44)

where the infimum is taken over all testing methods, i.e., all maps from Ω to [M ].

Combining Lemma B.19 and equation (43), we complete the proof.

In this paper, we will mostly use a variant of the above Fano’s inequality for regression problems.
Recall that in regression, the data are generated by y = h(x) + ξ with x ∼ P and ξ ∼ N (0, σ2).
Let Qh be the joint distribution of (x, y) and Sn = {(xi, yi)}ni=1 be n i.i.d. samples drawn from Qh.
Denote by Qn,h the n-fold product distribution of Qh. Let F be the class of target functions. In such
a case, the set of probability distributions is indexed by h ∈ F :

{Qn,h : h ∈ F} .
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Proposition B.20 (Fano’s method for regression). Let F be a target function class. If there exists a
packing h1, . . . , hM ∈ F such that for any i ̸= j, ∥hi − hj∥2L2(P ) ⩾ 4A, we have

inf
A∈A

sup
h∗∈F

E[
∥∥hA(Sn) − h∗∥∥2

L2(P )
] ⩾ A ·

1− n

2σ2M2 logM

M∑
j,j′=1

∥hj − hj′∥2L2(P ) −
log 2

logM

 ,

(45)
where the expectation is taken over both the sampling of Sn and randomness of A.

Proof. Define d(h, h′)2 = ∥h− h′∥2L2(P ). WLOG, assume that P has a density function p and
denote by ϕh,x the density function of N (h(x), σ2). Then, the density function of Qh is p(x)ϕh,x(y).
Then, we have

DKL (Qn,h∥Qn,h′) = nDKL (Qh∥Qh′)

= n

∫
p(x)ϕx,h(y) log

(
p(x)ϕx,h(y)

p(x)ϕx,h′(y)

)
dxdy

= n

∫
p(x)

(∫
ϕx,h(y) log

(
ϕx,h(y)

ϕx,h′(y)

)
dy

)
dx

=
n

2σ2

∫
|h(x)− h′(x)|2p(x) dx =

n

2σ2
∥h− h′∥2L2(P ),

where the first equality follows from Lemma B.17 and the third equality is due to equation (34). We
remark that this equality is also right when P does not admit a density. In this case, we can construct
and verify the Radon-Nikodym derivative, and then compute the KL divergence by the definition.
Lastly, by plugging the above estimate into (36) in Theorem B.18, we complete the proof.

Remark B.21. When we use Fano’s method (Proposition B.20) to lower-bound the minimax risk, the
most important step is to construct a “proper” packing. Take a look at the lower bound in (45). For
fixed M ∈ N and A > 0, a proper packing should ensure

∑M
i,j=1 ∥hi − hj∥2L2(P ) to be as small as

possible; otherwise the packing may yield a suboptimal lower bound. In fact, in most applications,
we will simply attempt to bound the worst-case resolution: supi,j ∥hi − hj∥2L2(P ).

C Capacity Control for CNNs and LCNs

We first define a norm on the parameter space for controlling the model capacity effectively. Let
θ = {θ1, θ2, . . . , θL,Wo} denote all the parameters of our network, where θl ∈ Θl and Wo ∈ Θo
denote the parameters used to parameterize Tl and Mo, respectively.

Denote by Vl the space of l-th layer hidden state. Let Ṽl ∈ Rpl be the vectorized version of
Vl armed with standard ℓ2 norm and T̃l : Ṽl−1 7→ Ṽl be the corresponding representation of Tl.
Since T̃l is linear, there must exist unique A : Θl 7→ Rpl×pl−1 and B : Θl 7→ Rpl such that
T̃l vec(z(l)) = A(θl) vec(z

(l)) +B(θl). Then we define

∥θl∥ = ∥T̃l∥ := ∥A(θl)∥2 + ∥B(θl)∥2, (46)

to control the “magnitude” of T̃l, which ensures that for any z̃ ∈ Ṽl−1 we have ∥T̃lz̃∥2 ⩽ ∥T̃l∥(∥z̃∥2+
1). Furthermore, we consider a new norm over the whole parameter space Θ by

∥θ∥ := ∥Wo∥2 +
L∑
l=1

∥θl∥. (47)

It is equivalent to say ∥θ∥ = ∥Mo∥+
∑L
l=1 ∥T̃l∥, which is the sum of operator norms of all linear

transforms.

We remark that we will show the norm (47) provides tight control of covering number of CNNs and
LCNs, but is less informative and interpretable. Thus, we introduce the ∥θ∥P norm in (3) for CNNs
and LCNs, which is an upper bound of ∥θ∥ as demonstrated below. As opposed to ∥θ∥, ∥θ∥P is much
more explicit, interpretable, and easier to compute. In the following, for both CNNs and LCNs, we
will first derive the matrix form of T̃l, thereby obtaining A(·) and B(·). Abusing notation, we will
use Tl to denote T̃l for simplicity.

23



C.1 CNNs

Recall that for l ∈ [L], Tl : RDl−1×Cl−1 7→ RDl×Cl is parameterized by a kernel W (l) ∈
RCl×Cl−1×s and bias b(l) ∈ RCl as follows

(Tl(z)):,j =
Cl−1∑
i=1

z:,i ∗s W (l)
j,i,: + b

(l)
j 1, for j = 1, . . . , Cl. (48)

We further point out that the number of parameters in our CNN is

Ncnn = CLDL +

L−1∑
l=0

(2Cl + 1)Cl+1 (49)

A patch-based reformulation of CNNs. For technical simplicity, it is easier to take a patch-based
viewpoint of Tl: Tl operates on each patch with an identical local linear transform. Note that
Dl = Dl−1/s and we can divide z(l−1) into Dl patchs of the shape s× Cl−1:

z(l−1) =


P

(l−1)
1

P
(l−1)
2

...
P

(l−1)
Dl

 ∈ RDl−1×Cl−1 , P
(l−1)
j = z

(l−1)
Ij ,:

∈ Rs×Cl−1 for j ∈ [Dl],

where Ij := [(j − 1)s + 1, js] denotes the j-th patch. Then Tl essentially makes the following
transform

Tlz(l−1) =


A(l)P

(l−1)
1

A(l)P
(l−1)
2

...
A(l)P

(l−1)
Dl

 ,

where A(l) : Rs×Cl−1 → R1×Cl is the local patch transform given by

(A(l)P )i =

Cl−1∑
j=1

s∑
k=1

Wi,j,kPj,k + b
(l)
i for i = 1, 2, . . . , Cl.

In a matrix form, A(l) is given by

A(l)P = W̃ (l) vec(P ) + b(l),

where

W̃ (l) =


vec(W1,:,:)

⊤

vec(W2,:,:)
⊤

...
vec(WCl,:,:)

⊤

 ∈ RCl×(sCl−1). (50)

The matrix form of Tl. Let

z̃(l) = (vec(P
(l)
1 )⊤, vec(P

(l)
2 )⊤, . . . , vec(P

(l)
Dl

)⊤)⊤ ∈ RDlCl .

Abusing the notation, we still use Tl : RDl−1Cl−1 → RDlCl to denote the matrix form of the one
defined in (48). Then, we have

Tlz̃(l−1) = K(l)z̃(l−1) + s(l) (51)
where

K(l) =


W̃ (l) 0 . . . 0

0 W̃ (l) . . . 0
...

...
. . .

...
0 0 . . . W̃ (l)

 ∈ RDlCl×Dl−1Cl−1 , s(l) =


b(l)

b(l)

...
b(l)

 ∈ RDlCl ,

where the block matrix has Dl blocks and W̃ (l) is given by (50).
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The parameter norm. By (51), it is easy to see that

∥Tl∥ ⩽
∥∥∥K(l)

∥∥∥
2
+
∥∥∥s(l)∥∥∥

2
=
∥∥∥W̃ (l)

∥∥∥
2
+

√
d

2l−2

∥∥∥b(l)
∥∥∥
2
⩽
∥∥∥W (l)

∥∥∥
F
+
√

Dl

∥∥∥b(l)
∥∥∥
2

(52)

Then, we have

∥θ∥ = ∥Wo∥2 +
L∑
l=1

∥Tl∥ ⩽ ∥Wo∥2 +
L∑
l=1

(∥W (l)∥F +
√
Dl∥b(l)∥2) = ∥θ∥P . (53)

Lemma C.1. For any θ, θ′ satisfy that ∥θ∥ ⩽ J and ∥θ′∥ ⩽ J and any x ∈ X , assume σl
satisfies σl(0) = 0 and locally Lipschitz condition ∥σl(y)− σl(z)∥2 ⩽ Ql(x) ∥y − z∥2 for any
y, z ∈ {Tl ◦ · · · ◦ σ1 ◦ T1(x) : ∥θ∥ ⩽ J}. We further denote Q̄σ(x) =

∏L
l=1(Ql(x) + 1). Then, we

have
|hθ(x)− hθ′(x)| ⩽ Q̄σ(x)(∥x∥2 + 1)(1 + J)L ∥θ − θ′∥ (54)

Proof. First assume that θ, θ′ only differ in the l-th layer, l = 1, . . . , L.

|hθ(x)− hθ′(x)| =
∣∣∣Mo ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)−Mo ◦ · · · ◦ σl ◦ T̃l ◦ · · · ◦ σ1 ◦ T1(x)

∣∣∣
⩽ Lip(Mo ◦ · · · ◦ σl)

∥∥∥Tl − T̃l
∥∥∥ (∥σl−1 ◦ · · · ◦ σ1 ◦ T1(x)∥2 + 1)

⩽ Lip(Mo ◦ · · · ◦ σl)
∥∥∥Tl − T̃l

∥∥∥ (∥x∥2 + 1)(1 + J)l−1

l−1∏
j=1

(Qj(x) + 1)


⩽

 L∏
j=l

(Qj(x) + 1)

 (1 + J)L−l+1
∥∥∥Tl − T̃l

∥∥∥ (∥x∥2 + 1)(1 + J)l−1

l−1∏
j=1

(Qj(x) + 1)


= Q̄σ(x)(∥x∥2 + 1)(1 + J)L

∥∥∥Tl − T̃l
∥∥∥

(55)

Second, assume θ, θ′ only differ in the final layer. We have

|hθ(x)− hθ′(x)| =
∣∣∣Mo ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)− M̃o ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)

∣∣∣
⩽
∥∥∥Wo − W̃o

∥∥∥
2
∥(σL ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x))∥2

⩽
∥∥∥Wo − W̃o

∥∥∥
2
Q̄σ(x)(∥x∥2 + 1)(1 + J)L

(56)

Lastly, we consider general θ, θ′ with ∥θ∥ ⩽ J and ∥θ′∥ ⩽ J . We claim that one can find θ1, . . . , θL+1

such that

• ∥θl∥ ⩽ J for all l ∈ [L+ 1];

• θ′ = θL+1, θ and θ1 only differ in one layer;

• for any l, θl and θl+1 only differ in one layer.

It is easy to check that this can be done by first replacing the maximum norm layer in θ by the
minimum norm layer in θ′, and so on.

Then, by applying the telescoping sum, we complete the proof.

Theorem C.2 (Covering number of CNN). Let hθ denote the CNN described in Section 2.1
and define HCNN

J = {hθ : ∥θ∥ ⩽ J}. Given x1,x2, . . . ,xn ∈ X , denote M̂n =√
1
n

∑n
i=1

(
Q̄σ(xi)

)2
(∥xi∥2 + 1)2. Then, we have

N (HCNN
J , ρ̂n, t) ⩽

(
3M̂nJ(1 + J)L

t

)Ncnn

, (57)
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given 0 < t ⩽ M̂nJ(1 + J)L.

Proof. The conclusion follows trivially from Lemma C.1 and Lemma B.8.

C.2 LCNs

Recall that for LCNs, the linear transform Tl : RDl−1×Cl−1 7→ RDl×Cl is parameterized by W (l) ∈
RCl×Cl−1×Dl−1 and b(l) ∈ RDl×Cl as follows

(Tl(z)):,j =
Cl−1∑
i=1

z:,i ⋆s W
(l)
j,i,: + b

(l)
:,j , for j = 1, . . . , Cl.

We further point out that the number of parameters in our LCN model is

Nlcn = CLDL +

L−1∑
l=0

(2Cl + 1)Cl+1Dl+1 (58)

A patch-based reformulation of LCNs. We reformulate deep LCNs in the same way as CNNs.
Let z̃(l) ∈ RDlCl be the vectorized features; then the matrix form of Tl : RDl−1Cl−1 → RDlCl is
given by

Tlz(l−1) = K(l)z̃(l−1) + s(l) (59)

where K(l) = diag{W̃ (l)
1 , · · · , W̃ (l)

Dl
} and W̃

(l)
i ∈ RCl×(sCl−1), where

W̃ (l) =


vec(W1,:,I1)

⊤

vec(W2,:,I2)
⊤

...
vec(WCl,:,ICl

)⊤

 ∈ RCl×(sCl−1), s(l) =


b⊤
1,:

b⊤
2,:
...

b⊤
Dl,:

 ∈ RDlCl , (60)

where Ij = [(j − 1)s+ 1, js].

Parameter norm. By (59), it is obvious that

∥Tl∥ ⩽ ∥K(l)∥2 + ∥s(l)∥2 ⩽ max
j∈[Dl]

∥W̃ (l)
j ∥+ ∥b(l)∥F

⩽ ∥W (l)∥F + ∥b(l)∥F .

Thus

∥θ∥ = ∥Wo∥+
L∑
l=1

∥Tl∥ ⩽ ∥Wo∥+
L∑
l=1

(∥W (l)∥F + ∥b(l)∥F ) = ∥θ∥P . (61)

In the following, we provide an upper bound of the covering number of deep LCNs, whose proof is
nearly the same as that of deep CNNs.

Lemma C.3. For any θ, θ′ satisfy that ∥θ∥ ⩽ J and ∥θ′∥ ⩽ J and any x ∈ X , assume σl
satisfies σl(0) = 0 and locally Lipschitz condition ∥σl(y)− σl(z)∥2 ⩽ Ql(x) ∥y − z∥2 for any
y, z ∈ {Tl ◦ · · · ◦ σ1 ◦ T1(x) : ∥θ∥ ⩽ J}. We further denote Q̄σ(x) =

∏L
l=1(Ql(x) + 1). Then, we

have

|hθ(x)− hθ′(x)| ⩽ Q̄σ(x)(∥x∥2 + 1)(1 + J)L ∥θ − θ′∥ (62)

The proof is exactly the same as that of Lemma C.1, i.e., the case of CNNs.
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Proof. First assume that θ, θ′ only differ in the l-th layer, l = 1, . . . , L.

|hθ(x)− hθ′(x)| =
∣∣∣Mo ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)−Mo ◦ · · · ◦ σl ◦ T̃l ◦ · · · ◦ σ1 ◦ T1(x)

∣∣∣
⩽ Lip(Mo ◦ · · · ◦ σl)

∥∥∥Tl − T̃l
∥∥∥ (∥σl−1 ◦ · · · ◦ σ1 ◦ T1(x)∥2 + 1)

⩽ Lip(Mo ◦ · · · ◦ σl)
∥∥∥Tl − T̃l

∥∥∥ (∥x∥2 + 1)(1 + J)l−1

l−1∏
j=1

(Qj(x) + 1)


⩽

 L∏
j=l

(Qj(x) + 1)

 (1 + J)L−l+1
∥∥∥Tl − T̃l

∥∥∥ (∥x∥2 + 1)(1 + J)l−1

l−1∏
j=1

(Qj(x) + 1)


= Q̄σ(x)(∥x∥2 + 1)(1 + J)L

∥∥∥Tl − T̃l
∥∥∥

(63)

Second, assume θ, θ′ only differ in the final layer. We have

|hθ(x)− hθ′(x)| =
∣∣∣Mo ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)− M̃o ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x)

∣∣∣
⩽
∥∥∥Wo − W̃o

∥∥∥
2
∥(σL ◦ · · · ◦ σl ◦ Tl ◦ · · · ◦ σ1 ◦ T1(x))∥2

⩽
∥∥∥Wo − W̃o

∥∥∥
2
Q̄σ(x)(∥x∥2 + 1)(1 + J)L

(64)

Lastly, we consider general θ, θ′ with ∥θ∥ ⩽ J and ∥θ′∥ ⩽ J . We claim that one can find θ1, . . . , θL+1

such that

• ∥θl∥ ⩽ J for all l ∈ [L+ 1];

• θ′ = θL+1, θ and θ1 only differ in one layer;

• for any l, θl and θl+1 only differ in one layer.

It is easy to check that this can be done by first replacing the maximum norm layer in θ by the
minimum norm layer in θ′, and so on.

Then, by applying the telescoping sum, we complete the proof.

Theorem C.4 (Covering number of LCNs). Let hθ denote the LCN model described in Sec-
tion 2.1 and define HLCN

J = {hθ : ∥θ∥ ⩽ J}. Given x1,x2, . . . ,xn ∈ X , denote M̂n =√
1
n

∑n
i=1

(
Q̄σ(xi)

)2
(∥xi∥2 + 1)2. Then, we have

N (HLCN
J , ρ̂n, t) ⩽

(
3M̂nJ(1 + J)L

t

)Nlcn

, (65)

given 0 < t ⩽ M̂nJ(1 + J)L.

Proof. The conclusion follows trivially from Lemma C.3 and Lemma B.8.

Remark C.5. Note that the number of parameters of a LCN is much larger that of its CNN counterpart
due to the lack of weight sharing. As a result, the covering number of LCNs is accordingly much
larger than that of CNNs.

C.3 Comparison with Long and Sedghi (2019).

We acknowledge that our proofs follow a similar approach developed in Long and Sedghi (2019) but
we improve Long and Sedghi (2019) in various aspects.
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• We provide an upper bound of the covering number of LCNs while Long and Sedghi (2019)
only considered CNNs. Moreover, our bounds apply to activation functions that are not
Lipschitz continuous such as the squared ReLU: σ(z) = max(0, z)2. Theis activation
function has become popular recently in solving scientific computing problems (Li and Yu,
2019; E and Yu, 2018) and training large NLP pre-trained models (So et al., 2021).

• The bound in Long and Sedghi (2019) depends on the parameter norm J exponentially.
In contrast, our bound depends on J only polynomially. This improvement is critical for
obtaining a sharp generalization bound for the case where the parameter norm is relatively
large. For instance, by applying Long and Sedghi (2019) to the setting of learning the
separation task in Theorem 5.5, the corresponding sample complexity bound of LCNs will
become Õ(d2). In contrast, our bound is Õ(d). This improvement is very critical since the
lower bound of learning with FCNs is Ω(d2) and therefore, without this improvement, we
are unable to establish the provable separation between LCNs and FCNs.

D Universal Approximation: Proofs in Section 3

D.1 Proof of Theorem 3.1

We first recall a well-known universality result of two-layer ReLU networks.

Lemma D.1. (Leshno et al., 1993) Let Ω be any compact set in Rd and σ be the ReLU func-
tion. For any h ∈ C(Ω) and any ϵ > 0, there exists a a two-layer neural network fm(x; θ′) =∑m
j=1 ajσ(u

⊤
j x+ cj) such that

sup
x∈Ω

|fm(x; θ′)− h(x)| ⩽ ϵ. (66)

Lemma D.2 (Feature extraction). With the choice of architecture in Theorem 3.1, the exist parameters
such that z(L−1)(x) ∈ R2×(4d) satisfies

z(L−1)(x) =

(
σ(x1) σ(−x1) σ(x2) σ(−x2) · · · σ(x2d) σ(−x2d)

σ(x2d+1) σ(−x2d+1) σ(x2d+2) σ(−x2d+2) · · · σ(x4d) σ(−x4d)

)
∈ R2×4d.

Remark D.3. This lemma shows that z(L−1)(x) strictly stores spatial information into different
channels. Note that 4d is the number of channels and 2 is the spatial dimension. The stored
information information is in the form of {σ(xi), σ(−xi)}4di=1. Noticing t = σ(t)− σ(−t), we can
conclude that there is no information loss since for any h : R4d 7→ R, h(x1, x2, . . . , x4d) can be
represented using the stored features as follows

h(σ(x1)− σ(−x1), σ(x2)− σ(−x2), . . . , σ(x4d)− σ(−x4d)).

It is worth noting that obviously, the weights and bias in T1, . . . , TL−1 do not depend on the target
function h∗.

Proof. We provide a constructive proof to this lemma. First, we set all bias to be zero, i.e., b(l) = 0
for all l ∈ [L− 1]. Next we state how to set the weights for different layers.

• When l = 0, z(0) = x = (x1, x2, . . . , x4d).

• When l = 1, set W (1) ∈ R1×4×2 as follows W (1)
1,1,: = (1, 0)⊤, W (1)

1,2,: = (−1, 0)⊤, W (1)
1,3,: =

(0, 1)⊤, W (1)
1,4,: = (0,−1)⊤. Under this construction, it is easy to verify that

(z(1))⊤ =

 σ(x1) σ(x3) . . . σ(x4d−1)
σ(−x1) σ(−x3) . . . σ(−x4d−1)
σ(x2) σ(x4) . . . σ(x4d)
σ(−x2) σ(−x4) . . . σ(−x4d))

 ∈ R4×2d (67)
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• Similarly, for l = 2, we can set W (2) ∈ R4×8×2 such that

(z(2))⊤ =



σ(x1) σ(x5) . . . σ(x4d−3)
σ(−x1) σ(−x5) . . . σ(−x4d−3)
σ(x2) σ(x6) . . . σ(x4d−2)
σ(−x2) σ(−x6) . . . σ(−x4d−2))
σ(x3) σ(x7) . . . σ(x4d−1))
σ(−x3) σ(−x7) . . . σ(−x4d−1))
σ(x4) σ(x8) . . . σ(x4d))
σ(−x4) σ(−x8) . . . σ(−x4d))


∈ R8×d

• By induction, when l = L− 1, we have

(z(L−1))⊤ =



σ(x1) σ(x2d+1)
σ(−x1) σ(−x2d+1)
σ(x2) σ(x2d+2)
σ(−x2) σ(−x2d+2)

...
...

σ(x2d−1) σ(x4d−1)
σ(−x2d−1) σ(−x4d−1)
σ(x2d) σ(x4d)
σ(−x2d) σ(−x4d)


∈ R4d×2

Specifically, the above result is achieved by setting the weights of l = 2, . . . , L− 1 as follows 2. For
1 ⩽ j ⩽ Cl−1 and j is odd, we set

W
(l)
j,j,: = −W

(l)
j+1,j,: = W

(l)
j+1,j+1,: = −W

(l)
j,j+1,: = (1, 0)⊤

W
(l)
j,j+Cl−1,:

= −W
(l)
j+1,j+Cl−1,:

= W
(l)
j+1,j+1+Cl−1,:

= −W
(l)
j,j+1+Cl−1,:

= (0, 1)⊤

Recall that W (l)
i,j,: represent the filter used to extract the information from the i-th input channel to the

j-th output channel. Let j′ = (j + 1)/2 if j is odd. To prove the above result, we only show that for
any l ∈ [L− 1],

z
(l)
:,j =

{
(σ(xj′), σ(xj′+2l), . . . , σ(xj′+(Dl−1)2l)) if j is odd
(σ(−xj′), σ(−xj′+2l), . . . , σ(−xj′+(Dl−1)2l)) if j is even.

(68)

We verify this below by induction.

First, the case of l = 1 holds due to (68). Assume (68) holds for 1, . . . , l − 1, let us compute
(Tl(z(l−1))):,j . Without loss of generality, we only consider the case where j is odd.

• When j ⩽ Cl−1,

(Tlz(l−1)):,j =

Cl−1∑
i=1

z
(l−1)
:,i ∗s W (l)

j,i,: + b
(l)
j

= z
(l−1)
:,j ∗s W (l)

j,j,: + z
(l−1)
:,j+1 ∗s W (l)

j+1,j,:

Hence,

(Tlz(l−1))i,j = z
(l−1)
2i−1,j − z

(l−1)
2i−1,j+1

= σ(xj′+(2i−2)2l−1)− σ(−xj′+(2i−2)2l−1) = xj′+(i−1)2l

• When j ⩾ Cl−1 we similarly have

(Tlz(l−1)):,j =

Cl−1∑
i=1

z
(l−1)
:,i ∗s W (l)

j,i,: + b
(l)
j

= z
(l−1)
:,j−Cl−1

∗s W (l)
j−Cl−1,j,:

+ z
(l−1)
:,j+1−Cl−1

∗s W (l)
j+1−Cl−1,j,:

2The following verification is rigorous but not intuitive.
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So

(Tlz(l−1))i,j = z
(l−1)
2i,j−Cl−1

− z
(l−1)
2i,j+1−Cl−1

= σ(xj′−Cl−1/2+(2i−1)2l−1)− σ(−xj′−Cl−1/2+(2i−1)2l−1) = xj′+(i−1)2l

Thus, the case of l + 1 also holds.

Proof of Theorem 3.1. By setting the weights and biases of the first L − 1 layers according to
Lemma D.2, we have hθ(x) = Mo ◦ σ ◦ TL(z(L−1)(x)), where

z(L−1)(x) =

(
σ(x1) σ(−x1) σ(x2) σ(−x2) · · · σ(x2d) σ(−x2d)

σ(x2d+1) σ(−x2d+1) σ(x2d+2) σ(−x2d+2) · · · σ(x4d) σ(−x4d)

)
By Lemma D.1, for any h∗ ∈ C(Ω), there exists a a two-layer neural network fm(x; θ′) =∑m
j=1 ajσ(u

⊤
j x + cj) such that supx∈Ω |fm(x; θ′)− h∗(x)| ⩽ ϵ. Then our proof is completed

by showing that we can construct appropriate TL and Mo such that the deep CNN hθ can simulate
the two-layer neural network fm(·; θ′).

1. set CL = m, b(L)j = cj . For odd i, let i′ = (i + 1)/2 and set W (L)
i,j,: = ((uj)i′ , (uj)i′+2d)

and for even i we set W (L)
j,i,: = −W

(L)
j,i−1,:. Under this construction,

(z(L)(x))1,j = σ

CL−1∑
i=1

(z(L−1)(x)):,i ∗s W (L)
i,j,: + b

(L)
j


= σ(

4d∑
i=1

(uj)i(σ(xi)− σ(−xi)) + cj)

= σ(u⊤
j x+ cj)

2. Set Wo = (a1, . . . , am). Then, the CNN hθ represents exactly the same function as
fm(·; θ′):

hθ(x) = Mo ◦ z(L)(x) =
m∑
j=1

aj(z
(L)(x))1,j =

m∑
j=1

ajσ(u
⊤
j x+ cj) = fm(x; θ′).

Thus, we complete the proof.

D.2 Proof of Proposition 3.2

Given two functions f, g over X , let ρ∞(f, g) := supx∈X |f(x)− g(x)|.
We prove this theorem by contradiction. First, any CNN hθ with the depth L ⩽ log2(d) + 1 can be
represent as

hθ(x) = g1(x1, . . . , x2d) + g2(x2d+1, . . . , x4d) (69)

for some g1 and g2. This is because that the size of receptive field is no greater than 2d. Obviously,
hθ cannot represent long-range functions like h∗(x) := x1x2d+1. Specifically, we have

inf
θ
ρ∞(hθ, h

∗) ⩾ inf
g1,g2

sup
x∈X

|g1(x1, . . . , x2d) + g2(x2d+1, . . . , x4d)− x1x2d+1| (70)

If there exist g1 and g2 such that

sup
x∈X

|g1(x1, . . . , x2d) + g2(x2d+1, . . . , x4d)− x1x2d+1| ⩽
1

8
, (71)
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then taking special x’s gives

|g1(0, 0, . . . , 0) + g2(0, 0, . . . , 0)| ⩽
1

8

|g1(0, 0, . . . , 0) + g2(1, 0, . . . , 0)| ⩽
1

8

|g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)| ⩽
1

8

|g1(1, 0, . . . , 0) + g2(1, 0, . . . , 0)− 1| ⩽ 1

8

(72)

From the first three inequalities, we have

|g1(1, 0, . . . , 0) + g2(1, 0, . . . , 0)|
= |g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)− g2(0, 0, . . . , 0)− g1(0, 0, . . . , 0) + g1(0, 0, . . . , 0) + g2(1, 0, . . . , 0)|
⩽ |g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)|+ |g2(0, 0, . . . , 0) + g1(0, 0, . . . , 0)|+ |g1(0, 0, . . . , 0) + g2(1, 0, . . . , 0)|

⩽
3

8
,

which is contradictory to the fourth inequality in (72). Thus (71) cannot hold and we complete the
proof.

D.3 Proof of Proposition 3.3

We first recall that ρ∞(f, g) := supx∈X |f(x)− g(x)|.
We prove this theorem by contradiction. First, without downsampling, any CNN with depth L ⩽
4d− 2 can be represented as

hθ(x) = g1(x1, x2, . . . , x4d−1) + g2(x2, x3, . . . , x4d), (73)

for some g1, g2. In this form, x4d and x1 do not have direct correlation and intuitively, it should be
impossible to represent functions like h∗(x) := x1x4d by using this CNN. This intuition can be made
rigorously as follows. Note that

inf
θ
ρ∞(hθ, h

∗) ⩾ inf
g1,g2

sup
x∈X

|g1(x1, . . . , x4d−1) + g2(x2, . . . , x4d)− x1x4d| (74)

If there is g1, g2 such that

sup
x∈X

|g1(x1, x2, . . . , x4d−1) + g2(x2, x4, . . . , x4d)− x1x4d| ⩽
1

8
, (75)

then
|g1(0, 0, . . . , 0) + g2(0, 0, . . . , 0)| ⩽

1

8

|g1(0, 0, . . . , 0) + g2(0, 0, . . . , 1)| ⩽
1

8

|g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)| ⩽
1

8

|g1(1, 0, . . . , 0) + g2(0, 0, . . . , 1)− 1| ⩽ 1

8

(76)

From the first three inequalities, we have

|g1(1, 0, . . . , 0) + g2(0, 0, . . . , 1)|
= |g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)− g2(0, 0, . . . , 0)− g1(0, 0, . . . , 0) + g1(0, 0, . . . , 0) + g2(0, 0, . . . , 1)|
⩽ |g1(1, 0, . . . , 0) + g2(0, 0, . . . , 0)|+ |g2(0, 0, . . . , 0) + g1(0, 0, . . . , 0)|+ |g1(0, 0, . . . , 0) + g2(0, 0, . . . , 1)|

⩽
3

8
,

which is contradictory to the fourth inequalities in (76). Therefore, (75) cannot hold and we complete
the proof.
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E Learning Sparse Functions: Proofs of Section 4

E.1 Proof of Lemma 4.4

Here we prove a complete version of Lemma 4.4.
Lemma E.1 (Adaptive coordinate selection). Given k,m ∈ N, consider a ReLU CNN model with
depth L = log2(4d) and the channel numbers satisfying Cl = 2k for all l = 1, . . . , L − 1 and
CL = m. Then for any I = (i1, . . . , ik) ⊂ [d] with 1 ⩽ i1 < · · · < ik ⩽ d, u1, . . . ,um ∈ Rk, and
c1, . . . , cm ∈ R, there exists θ ∈ Θ such that the CNN hθ outputs:

z(L)(x) =
(
σ(u⊤

1 xI + c1), . . . , σ(u
⊤
mxI + cm)

)
∈ R1×m.

Furthermore, for this CNN, the number of parameters is O(k2 log d+ km) and the parameter norm
satisfies

∥θ∥P ≲
√
k log d+

√√√√ m∑
i=1

∥ui∥22 +

√√√√ m∑
i=1

c2i + ∥Wo∥2

In this case, the proof is the same as that of linear CNNs (Lemma 4.2) since we only need to double
the channels: every two channels form a group, storing {σ(xi), σ(−xi)}ki=1; different groups of
channels proceed still independently like the case of linear CNNs. Specifically, for l = 1, 2, . . . , L−1,
we follow a similar idea to set weights and biases such that

z(L−1)(x) =

(
σ(xt1), σ(−xt1), σ(xt2), σ(−xt2), . . . , σ(xtk), σ(−xtk)
σ(xs1), σ(−xs1), σ(xs2), σ(−xs2), . . . , σ(xsk), σ(−xsk)

)
∈ R2×2k,

where for any j ∈ [k], either tj = ij or sj = ij . Then, we set the weights and bias of L-th layer
according to {ui}mi=1 and {ci}mi=1 such that the outputs are {σ(u⊤

i xI + ci)}mi=1. We refer to the
following proof for details.

Proof. For any j ∈ [k], we write the ij’s binary represention as follows

ij − 1 =

L−1∑
l=0

aj,l2
l (77)

where aj,l ∈ {0, 1}. Here, “−1” is used to ensure the ij ∈ [0, 2L − 1]. Next, we set the weights and
bias according to the binary representation (77).

Set weights and bias adaptively:

• For l = 1, W (1) ∈ R1×2k×2. For j ∈ [k], set

W
(1)
2j−1,1,: = −W

(1)
2j,1,: = (1− aj,0, aj,0).

• For l = 2, . . . , L− 1, W (l) ∈ R2k×2k×2. For j ∈ [k], set

W
(l)
2j−1,2j−1,: = W

(l)
2j,2j,: = −W

(l)
2j−1,2j,: = −W

(l)
2j,2j−1,: = (1− aj,l−1, aj,l−1).

• For any l ∈ [L− 1], set all entries in W (l) unmentioned above and b(l) to zeros.

Note that aj,l ∈ {0, 1} for all j ∈ [k] and l ∈ [L]. Thus, under the above construction, all nonzero
filters are taken from {(1, 0), (−1, 0), (0, 1), (0,−1)}.

The forward selection process. Let us compute Tlz(l−1) for l = 1, . . . , L − 1. Let sj,l = 1 +∑l−1
p=0 aj,p2

p. We claim that for l ∈ [L− 1],

(Tlz(l−1)):,j =

{
(xsj′,l , x2l+sj′,l

, · · · , x4d−2l+sj′,l
) if j is odd,

−(Tlz(l−1)):,j−1 if j is even
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We will verify this by induction.

For l = 1
(T1z(0)):,j = (T1(x)):,j = x ∗s W (1)

j,1,:

So when j is even (T1z(0)):,j = −(T1z(0)):,j−1 and when j is odd we have

(T1z(0)):,j = (x1+aj′,0 , x3+aj′,0 , · · · , x4d−1+aj′,0)

where j′ = (j + 1)/2 as above. l = 1 has been verified.

Then, assume that the case of 1, · · · , l− 1 hold, we compute (Tlz(l−1)):,j . Without loss of generality,
we only consider the case where j is odd. Observing that

(Tlz(l−1)):,j =

Cl−1∑
i=1

z
(l−1)
:,i ∗s W (l)

j,i,: + b
(l)
j

= z
(l−1)
:,j ∗s W (l)

j,j,: + z
(l−1)
:,j+1 ∗s W (l)

j,j+1,:

,

which implies

(Tlz(l−1))i,j = (1− aj′,l−1)σ(x2l−1(2i−2)+sj′,l−1
) + aj′,l−1σ(x2l−1(2i−1)+sj′,l−1

)

−
[
(1− aj′,l−1)σ(−x2l−1(2i−2)+sj′,l−1

) + aj′,l−1σ(−x2l−1(2i−1)+sj′,l−1
)
]

= x2l(i−1)+sj′,l−1+aj′,l−12
l−1

= x(i−1)2l+sj′,l

.

Thus, the claim is verified and after L− 1 layer,

z
(L−1)
1,: = (σ(xs1,L−1

), σ(−xs1,L−1
), · · · , σ(xsk,L−1

), σ(−xsk,L−1
))

z
(L−1)
2,: = (σ(x2L−1+s1,L−1

), σ(−x2L−1+s1,L−1
), · · · , σ(x2L−1+sk,L−1

), σ(−x2L−1+sk,L−1
))

For the L-th layer, for j = 1, 2, . . . , k set

W
(L)
2i−1,j,: = −W

(L)
2i,j,: = (uj)i · (1− ai,L−1, ai,L−1)

b
(L)
j = cj

We compute

(TLz(L−1)):,j =

2k∑
i=1

z
(L−1)
:,i ∗s W (L)

j,i,: + b
(L)
j

=

k∑
p=1

(uj)p(σ(xip)− σ(−xip)) + cj

= u⊤
j xI + cj .

Thus we complete the proof of the first part.

Bounding the parameter norm. Under the above construction, we have:

• When l = 1, 2, . . . , L − 1, there exists an absolute constant C > 0 such that ∥W (l)∥F ⩽
C
√
k and b(l) = 0. Thus, by equation (52) we have∥∥∥W (l)

∥∥∥
F
+

√
d

2l−2

∥∥∥b(l)
∥∥∥
2
⩽ C

√
k;

• Furthermore, the parameter norm in L-th layer satisfies∥∥∥W (L)
∥∥∥
F
+
∥∥∥b(L)

∥∥∥
2
≲

√√√√ m∑
i=1

∥ui∥22 +

√√√√ m∑
i=1

c2i .

Combining them, we complete the proof.
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E.2 Proof of Theorem 4.6

We will need following approximation result of two-layer ReLU networks .

Lemma E.2. (A restatement of (E et al., 2022, Theorem 4)) For any f ∈ B, any probability
distribution P on X = [0, 1]d and integer m ⩾ 1, there exists a two-layer neural network fm(x; θ) =
1
m

∑m
k=1 akσ

(
u⊤
k x+ ck

)
where θ denotes the parameters {(ak,uk, ck) , k ∈ [m]} in the neural

network, such that

∥f − fm(·; θ)∥2L2(P ) ⩽
3∥f∥2B
m

, (78)

Furthermore, we have
1

m

m∑
j=1

|aj |
(
∥uj∥1 + |cj |

)
⩽ 2∥f∥B (79)

Proposition E.3. Let X = [0, 1]4d. Suppose h∗(x) = g∗(xI) with |I| = k. Consider deep ReLU
CNNs with L = log2(4d) and Cl = 2k for l ∈ [L − 1] and CL = m. Then, for any g∗ ∈ B, there
exist θ∗ such that

∥hθ∗ − h∗∥2L2(P ) ⩽
3 ∥g∗∥2B

m
(80)

with the number of parameters being O(k2 log d+ km) and

∥θ∗∥P ≲
√
k log d+m+ ∥g∗∥B (81)

Proof. Using lemma E.2, there exists a two layer ReLU network fm(xI) =
1
m

∑m
k=1 akσ

(
u⊤
k xI + ck

)
such that

∥h∗(x)− fm(xI)∥2L2(µ) = ∥g∗(xI)− fm(xI)∥2L2(µ) ⩽
3 ∥g∗∥2B

m
∥uk∥1 + |ck| = 1,∀k

1

m

m∑
k=1

|ak| ⩽ 2 ∥g∗∥B

(82)

By Lemma 4.4, we can choose the weights and bias such that the feature map of L-th layer is

z(L)(x) =
(
σ(u⊤

1 xI + c1), . . . , σ(u
⊤
mxI + cm)

)⊤
(83)

By setting the parameters of output layer as Wo =
1
m (a1, . . . , am), it is easy to check that hθ∗(x) =

Mo ◦ z(L)(x) = fm(xI) and the parameter number Ncnn = O(k2 log d+ km).

Next, we turn to bound the parameter norm. Under the above parameter setting, we have

∥Wo∥2 ⩽ ∥Wo∥1 ⩽
1

m

m∑
k=1

|ak| ⩽ 2 ∥g∗∥B√√√√ m∑
i=1

∥ui∥22 +

√√√√ m∑
i=1

c2i ⩽
m∑
i=1

(∥ui∥1 + |ci|) = m.

Applying Lemma 4.4 gives

∥θ∗∥P ≲ ∥g∗∥B +
√
k log d+

√√√√ m∑
i=1

∥ui∥22 +

√√√√ m∑
i=1

c2i

≲ ∥g∗∥B +
√
k log d+m

(84)

Thus, we complete the proof.
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Proof of Theorem 4.6. Let HCNN
J = {hθ : ∥θ∥ ⩽ J}. By proposition B.14 and the covering

number satisfies

N (HCNN
J , ρ̂n, t) ⩽

(
3γ̂n(J)

t

)Ncnn

(85)

where γ̂n(J) = M̂nJ(1+J)L and Ncnn = O(k2 log d+km). Here we use the fact that Q̄σ(x) ⩽ 2L

for all x and L = log2 d+ 2 for deep ReLU CNNs. In addition, note that

γ(J) = E[γ̂n(J)] ⩽ 2LJ(1 + J)L E

√√√√ 1

n

n∑
i=1

(∥xi∥+ 1)2


⩽ 2LJ(1 + J)L

√√√√ 1

n

n∑
i=1

E[(∥xi∥+ 1)2] ≲
√
d2LJ(1 + J)L (86)

where the second inequality follows from the Jensen’s inequality since
√
· is concave.

Recalling we have αH = 1 from equation (53) and applying Proposition B.14, we have∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

−ϵ∗ ≲
σ3B

(B − 2A)2
e−

(B−2A)2

2σ2 +λM∗+B2

√
log(4/δ)

n
+B2

√
Ncnn log(Bγ(Uλ))

n
,

where

ϵ∗ =
3∥g∗∥2B

m
, M∗ ≲

√
k log d+m+ ∥g∗∥B ,

Taking A = 1, B = 2 + σ
√
log n, λ = ϵ/n2, m =

6∥g∗∥2
B

ϵ and applying Lemma B.13, we have∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

− ϵ/2 ≲
σ2

√
n
+ ϵ

√
k log d+

∥g∗∥2
B

ϵ + ∥g∗∥B
n2

+B2

√
log(1/δ)

n

+B2

√
(k2 log d+ k

∥g∗∥2
B

ϵ )(log(B) + log(γ(Uλ)))

n
, (87)

where

log(γ(Uλ)) ≲ log(d) log

(
1

2λ

(
1 + σ2 +B2

√
2 log (2/δ)

n

)
+

√
k log d+

∥g∗∥2B
ϵ

+ ∥g∗∥B

)
.

Simplify the right side of equation (87) becomes∥∥∥πA ◦ hθ̂n − h∗
∥∥∥2
L2(P )

− ϵ/2 ≲

poly(∥g∗∥B, k, σ, log(1/δ), log log n, log(1/ϵ))
log n√

n

√
log(d)

(
log d+

1

ϵ

)
(log n+ log log d)

This implies that, for a target accuracy ϵ and failure probability δ,

n ⩾ poly(∥g∗∥B, k, σ, log
1

δ
, log

1

ϵ
)

(
log(d)(log log d)3

ϵ3
+

log2(d)(log log d)3

ϵ2

)
.

is enough.

F Symmetries of Learning Algorithm and Proofs of Lemma 5.3 and 5.6

F.1 Learning Algorithm and Group Equivariance

(Li et al., 2020, Appendix C) established a framework to verify the group equivariance of an iterative
algorithm, which however considers neither stochastic nor adaptive algorithms such as Adam. In this
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section, we provide an extension of (Li et al., 2020, Appendix C) to include these situations. It should
be stressed that the extension is mostly straightforward compared with (Li et al., 2020, Appendix C)
and we provide the extension here only for clarity and completeness.

In the following, denote A
d
= B as Law(A) = Law(B). Let GX be a group acting on X . Then, for

any τ ∈ GX and Sn = {xi, yi}ni=1, let τ(Sn) = {(τ(xi), yi)}ni=1. We also occasionally write the
group action τθ = τ(θ) for simplicity when it is clear from the context.

Recall that hθ is our parametric model and θ ∈ Θ = Rp. We make the following assumption.

Assumption 3. Given a group GX acting on X . We assume that there exist a group GΘ acting on Θ
and a group isomorphism Q : GX → GΘ such that for all τ ∈ GX ,

hQ(τ)(θ) ◦ τ = hθ.

The above assumption is satisfied by both FCNs and LCNs and we will verify it later. Here, we take
linear regression as an example to gain some intuition. In such a case, hθ(x) = ⟨w,x⟩. Given the
group GX = O(d) acting on the input domain, we can set Q = id and GΘ = O(d). Then, for any
U ∈ O(d), we have hQ(U)(θ) ◦ U(x) = ⟨Uw, Ux⟩ = ⟨w,x⟩ = hθ(x).

Suppose Assumption 3 holds. Given a learning algorithm A : (X × Y)n 7→ M(Θ), we say A is
GX -equivariant if ∀Sn ∈ (X × Y)n and τ ∈ GX :

A(τ(Sn))
d
= Q(τ) ◦ A(Sn). (88)

We can also informally define the equivariance in the model space as follows

hA(τ(Sn)) ◦ τ
d
= hA(Sn), (89)

where hA(Sn) and hA(τ(Sn)) should be understood as random variables taking values in the space of
all the algorithms A. The definition (89) is intuitive and has been adopted in Abbe and Boix-Adserà
(2022); Li et al. (2020) but it should be stressed that (89) is not rigorous as it is generally unclear
how to deal with the measurability issue in A, the space of algorithm. We thus will adopt (88) for its
rigorous nature.

Iterative algorithm. In the following, we will focus on the learning algorithm given by

θ0 ∼ Pinit

θt+1 = Ft+1(θt, . . . , θ0, Sn, ξt+1) for t = 0, 1, . . . , T − 1,
(90)

where Ft : (Θ)t × (X × Y)n × Ω 7→ Θ is a deterministic update map and {ξt}Tt=1 are i.i.d. freshly
generated random variables taking values in Ω, which encode the algorithm randomness and ξt is
independent of Sn and {θ0, θ1, . . . , θt}.

Take SGD as a concrete example. Let Ω = {0, 1}n denote the set of minibatch selection masks and
the corresponding algorithm map is given by

Ft+1(θt, . . . , θ0, Sn, ξt+1) = θt − ηt∇θ

(
1

n

n∑
i=1

(ξt+1)i ℓ(hθt(xi), yi) + λr(∥θt∥p)

)
.

Note that one should not confuse ξt with the SGD noise, where latter is state-dependent.

Assumption 4. • Pinit is GΘ-invariant.

• ∀ τ ∈ GX , θ ∈ Θ, t ∈ N, Sn ∈ (X × Y)n, and ξ ∈ Ω:

Q(τ) ◦ Ft+1(θt, . . . , θ0, Sn, ξ) = Ft+1

(
Q(τ)θt, . . . , Q(τ)θ0, τ(Sn), ξ

)
. (91)

The second assumption can be thought as that the update map Ft(·) is equivariant under the joint group
action (τ,Q(τ)). Still taking the linear regression as an example, let X = (x1, . . . ,xn) ∈ Rd×n be
n inputs and y ∈ Rn be the labels. Then, the GD update for minimizing L̂(w) := 1

2

∥∥X⊤w − y
∥∥2
2

would be
wt+1 = wt − ηX

(
X⊤wt − y

)
=: Ft+1(wt, Sn).
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Let GX = GΘ = Gort(d), Q = id. We thus have for any U ∈ O(d), Q(U) = U and

Q(U)Ft+1(wt, Sn) = U
(
wt − ηX

(
X⊤wt − y

))
= Uwt − η(UX)

(
(UX)⊤(Uwt)− y

)
= Ft+1(Q(U)wt, U(Sn)),

which verifies the equivariance (91).
Proposition F.1. Let AT denote the iterative algorithm (90). Under Assumption 3 and 4, we have for
any T ∈ N, AT is GX -equivariant.

Proof. Fix Sn ∈ (X × Y)n and τ ∈ GX . Let {θt}⊤t=0 and {θ̃t}⊤t=0 be the trajectories independently
generated by the iterative algorithm by using the data Sn and τ(Sn), respectively. By the definition
(88), it suffices to prove that for any t ∈ N,

(θ̃t, . . . , θ̃0)
d
= (Q(τ)θt, . . . , Q(τ)θ0). (92)

Next we prove it by induction.

When T = 0, θ0, θ̃0 ∼ Pinit. For any τ ∈ GX , we have Q(τ) ∈ GΘ. The assumption that Pinit is
GΘ-invariant implies θ̃0

d
= Q(τ)θ0.

Assume (92) holds for T = 0, 1, . . . , t. Let {ξt} and {ξ̃t} be the “noise” used to generate {θt} and
{θ̃t}, respectively. Then, we have

(Q(τ)θt+1, . . . , Q(τ)θ0)
d
= (Q(τ)Ft+1(θt, . . . , θ0, Sn, ξt+1), Q(τ)θt, . . . , Q(τ)θ0)

d
= (Ft+1(Q(τ)θt, . . . , Q(τ)θ0, τ(Sn), ξt+1), Q(τ)θt, . . . , Q(τ)θ0)

d
= (Ft+1(θ̃t, . . . , θ̃0, τ(Sn), ξ̃t+1), θ̃t, . . . , θ̃0)

d
= (θ̃t+1, . . . , θ̃0),

where the second step follows from Assumption (4); the third step follows from the assumption that
(92) holds for T = t . Thus, we prove that (92) holds for T = t+ 1.

By induction, we complete the proof.

F.2 Verifying the Group Equivariance of SGD and Adam

Let ℓ(·, ·) be a general loss function. Consider a regularized empirical risk

L̂n(θ) :=
1

n

n∑
i=1

ℓ(hθ(xi), yi) + r(∥θ∥p)

where p ⩾ 1 and and r : [0,+∞) → [0,+∞).

At the t-th step, let St = {i1, . . . , ik} be k i.i.d. indices uniformly drawn from [n]. Define the
minibatch risk by

L̂St
(θ) :=

1

|St|
∑
i∈St

ℓ(hθ(xi), yi) + r(∥θ∥p).

In each step, stochastic gradient descent (SGD) updates as follows

θt+1 = θt − ηt∇θL̂St(θt).

Adam optimizer (Kingma and Ba, 2014) updates as follows

vt+1 = αvt + (1− α)
(
∇θL̂St(θt)

)2
mt+1 = βmt + (1− β)∇θL̂St

(θt)

θt+1 = θt − ηt
mt+1/

(
1− βt+1

)√
vt+1/ (1− αt+1) + ϵ1

,

(93)

where α, β ∈ (0, 1), ϵ > 0, and the square and division should be understood in an element-wise
manner. We just consider initialization v0 = m0 = 0 for simplicity. For both SGD and Adam, ηt is
the learning rate at the t-th step.
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FCNs: Proof of Lemma 5.6 For hfcn
θ , write θ = (w1, . . . ,wm, θ̄) ∈ Rp, where m is the width of

the first layer, wj ∈ Rd for j = 1, . . . ,m denotes the weights of the first layer, and θ̄ denotes other
parameters. Then, we can write hfcn

θ (x) = gθ̄(w
⊤
1 x, . . . ,w

⊤
mx) for some g : Rm × Rp−md 7→ R.

Consider GX = Gort(d) and

Q : U → diag{U,U, . . . , U, Ip−md}. (94)

Let GΘ := {Q(U) : U ∈ GX }. Then, it is not hard to verify that GΘ is a group under matrix product
and Q : GX 7→ GΘ is a group isomorphism.

First, it is not hard to verify that the Gaussian initialization Pinit is invariant under GΘ. To verify (91)
for SGD, we can simply consider the case where n = 1 and Sn = {(x, y)} without loss of generality.
First, we can show that there exist functions {si(·)}mi=1 and O(·) such that

Ft+1(θt, . . . , θ0, Sn, ξt+1) = θt − ηt∇θℓ(h
fcn
θt (x), y) = θt − ηt


s1(W

⊤x, θ̄t)x
s2(W

⊤x, θ̄t)x
...

sm(W⊤x, θ̄t)x
O(W⊤x, θ̄t)

 ,

where W = (w1,w2, . . . ,wm) ∈ Rd×m. It is not hard to verify that (91) holds for the above update
map. Then, Lemma 5.6 follows trivially from Proposition F.1.

LCNs: Proof of Lemma 5.3 Here we only prove Lemma 5.3 for the Adam optimizer since the
SGD case is similar to the proof above.

WLOG, we let C1 = 1 in the LCN model. Denote by θ̄ = W
(1)
1,1,: the the filter weights of the first

layer and θ̄c all the other parameters. Then, θ = {θ̄, θ̄c} and W
(1)
1,1,: ∈ RD0 . Let GX = Gloc and

define
Q : U → diag{U, I}. (95)

Let GΘ = {Q(U) : U ∈ GX }. It is not hard to verify that GΘ is a group under the matrix
multiplication and Q is the group isomorphism.

First, it is obvious that under Assumption 1, Pinit is Gloc-invariant. To verify (91) for Adam, we can
simply consider the case where r(·) = 0, n = 1 and Sn = {(x, y)} without loss of generality. In this
case, for the first step, we have

F1(θ0, Sn, ξ1) = θ0− cα,βη0
∇θℓ(hθ0(x), y)√

|∇θℓ(hθ0(x), y)|2 + ϵ1
= θ0−η0


s1(θ̄0 ⋆s x, θ̄

c
0)xI1

s2(θ̄0 ⋆s x, θ̄
c
0)xI2

...
sD1

(θ̄0 ⋆s x, θ̄
c
0)xID1

O(θ̄0 ⋆s x, θ̄
c
0)

 (96)

for some function {si(·)}D1
i=1 and O(·). Here we recall that in our paper s = 2 and the local linear

operater ⋆s : Rks × Rks 7→ Rk is defined by v ⋆s w = (v⊤
I1
wI1 ,v

⊤
I2
wI2 , . . . ,v

⊤
Ik
wIk), where

Ij = [(j − 1)s+ 1, js] denotes the indices of j-th patch.

Noting (Uθ̄0)⋆s (Ux) = θ̄0 ⋆sx for any U ∈ Gloc, it is therefore not hard to verify that (91) holds for
the update map (96). Thus we show the Gloc-equivariance of Adam for training LCNs with T = 1.
The case of T > 1 can be shown in the same way.

Remark F.2. Note that the case of FCNs was established in (Li et al., 2020, Corollary C.2) but the
proof there is not fully rigorous. We here provide a completely rigorous proof. The case of LCNs under
Gaussian initialization was studied in Xiao and Pennington (2022), where the equivariance group is
Gort(2)⊗ I2d. We instead show that under much milder condition on initialization, the equivariance
group becomes the local permutation group (10). It should be stressed that the major contribution of
this section is providing a rigorous/unified framework to verify these group equivariance instead of
yielding new insights.
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G CNNs vs. LCNs: Proofs of Section 5.2

G.1 Proof of Theorem 5.4

By Lemma 5.1, we only need to lower bound the minimax error of learning the enlarged class
{h̄∗} ◦Gloc. To this end, we need to find a proper packing of this enlarged class and then apply the
Fano’s method, i.e., Proposition B.20. To this end, we will prove
Lemma G.1. There exist absolute positive constants C, c1, c2 > 0, c3 > 1 such that if d ⩾ C and
A0 ⩾ C, there exists h1, h2, . . . , hM ∈ {h̄∗} ◦Gloc satisfying that

sup
i,j

∥hi − hj∥2L2(P ) ⩽ c2, inf
i ̸=j

∥hi − hj∥2L2(P ) ⩾
1

4
c1, and M ⩾ cd3.

Assuming Lemma G.1 is right for now and applying the above packing to Fano’s inequality (Proposi-
tion B.20), we have

inf
A∈A

sup
h∈{h̄∗}◦Gloc

E∥hlcn
A(Sn)

− h∥2L2(P ) ⩾A

1− n

2σ2M2 logM

M∑
j,j′=1

∥hj − hj′∥2L2(P ) −
log 2

logM


⩾

1

16
c1

(
1− c2n

2σ2d log c3
− log 2

d log c3

)
(97)

Taking n such that the RHS of the above inequality satisfies

1

16
c1

(
1− c2n

2σ2d log c3
− log 2

d log c3

)
⩽

c1
32

=: ϵ0 (98)

gives n = Ω(σ2d). Thus, we can conclude that C({h̄∗} ◦Gloc, ϵ0) = Ω(σ2d). Thus, we complete
the proof of Theorem 5.4.

G.1.1 Proof of Lemma G.1

We now show how to construct a packing of {h̄∗} ◦ Gloc to satisfy the condition in Lemma
G.1. The key idea is to reduce the problem to pack the equivariance group Gloc. For U =
diag (U1, U2, . . . , U2d) ∈ Gloc, denote by Ui ∈ R2×2 the i-th block matrix. Define a metric
over Gloc: for any U,U ′ ∈ Gloc,

ρloc(U,U
′) := ♯{i : Ui ̸= U ′

i}. (99)

In addition, we consider a subgroup of Gloc:

Gsemiloc = {diag (U1, U2, . . . , U2d) ∈ Gloc : Ui = I2 for i > d} (100)

Clearly, a packing of {h̄∗} ◦Gsemiloc is also a packing of {h̄∗} ◦Gloc. For Gsemiloc, we have
Lemma G.2. There exist absolute constants C, c1, c2 > 0 such that if d,A0 ⩾ C, for any τ, τ ′ ∈
Gsemiloc, we have

c1
ρloc(τ, τ

′)

d
⩽
∥∥h̄∗ ◦ τ − h̄∗ ◦ τ ′

∥∥2
L2(P )

⩽ c2
ρloc(τ, τ

′)

d
. (101)

Proof idea. The proof of this lemma is quite technically lengthy and is thus deferred to Appendix
I.1. Recall that h̄∗ = πA0

◦ h∗. If there is no truncation, i.e., A0 = ∞, the proof is straightforward in
the sense that a direct calculation gives ∥h∗ ◦ τ − h∗ ◦ τ ′∥2L2(P ) = cρloc(τ, τ

′)/d for some absolute
constant c. When A0 is finite but large enough, by concentration inequalities, we can expect that the
truncated target function works in a way similar to the orginal one. Indeed the lengthy part in the
proof is to estimate the influence of truncation.

In the following, we show that Gsemiloc is isometric to the Hamming space:
Definition G.3 (Hamming Space). The Hamming cube {0, 1}n consists of all binary strings of length
n. The Hamming distance dH(x, y) between two binary strings is defined as the number of bits
where x and y disagree, i.e.

dH(x, y) := #{i : x(i) ̸= y(i)}, x, y ∈ {0, 1}n.
We call ({0, 1}n, dH) the Hamming space.

39



Specifically, it is obvious that

• (Gloc, ρloc) and ({0, 1}2d, dH) are isometric.

• (Gsemiloc, ρloc) and ({0, 1}d, dH) are isometric.

For the Hamming space, we have the following bounds for packing and covering numbers.
Lemma G.4. (Vershynin, 2018, Excercise 4.2.16) Let K = {0, 1}n. For every 0 < m ⩽ n, we have

P (K, dH ,m) ⩾ N (K, dH ,m) ⩾
2n∑⌊m⌋
k=0

(
n
k

)
Proof. Without loss of generality we set m as an integer. The first inequality follows trivially from
the definition and thus, we only need to prove the second one.

Set Bm,x = {y ∈ K : dH(x, y) ⩽ m}. For any x ∈ K, any k ⩽ m, there are
(
n
k

)
elements satisfing

dH(x, y) = k. This is because the ways of choosing k elements from n elements are
(
n
k

)
, and

dH(x, y) = k if and only if x and y have k different coordinates. By taking a union bound we have
|Bm,x| ⩽

∑m
k=0

(
n
k

)
, where | · | denotes the cardinality. The ball of radius m and center x can only

cover at most |Bm,x| elements, However there are 2n elements in K. So we have

N (K, dH ,m) ⩾
2n

supx |Bm,x|
⩾

2n∑m
k=0

(
n
k

) (102)

By the isometries and Lemma G.4, we trivially have
Lemma G.5. For any 0 < m ⩽ d,

P(Gloc, ρloc,m) ⩾ N (Gloc, ρloc,m) ⩾
4d∑⌊m⌋

k=0

(
2d
k

)
P(Gsemiloc, ρloc,m) ⩾ N (Gsemiloc, ρloc,m) ⩾

2d∑⌊m⌋
k=0

(
d
k

)
To further simplify the lower bounds, we need

Lemma G.6. (Vershynin, 2018, Exercise 0.0.5) Given m ∈ [n],
∑m
k=0

(
n
k

)
⩽
(
en
m

)m
.

Proof. To prove this we only need to prove
(
m
n

)m∑m
k=0

(
n
k

)
⩽ em , and we observe that(m

n

)m m∑
k=0

(
n

k

)
⩽

m∑
k=0

(m
n

)k (n
k

)
⩽

m∑
k=0

mk

k!
⩽

+∞∑
k=0

mk

k!
= em (103)

Proof of Lemma G.1. Note that for any τ, τ ′ ∈ Gsemiloc, ρloc(τ, τ ′) ⩽ d. Then, applying Lemma
G.2, we have for any h = h̄∗ ◦ τ, h′ = h̄∗ ◦ τ ′ ∈ {h̄∗} ◦Gsemiloc that

∥h− h′∥2L2(P ) ⩽
c2ρloc(τ, τ

′)

d
⩽ c2. (104)

In addition, Lemma G.2 implies ∥h− h′∥2L2(P ) ⩾
c1
d ρloc(τ, τ

′). Thus, for 0 < δ ⩽ 1
2

√
c1:

P({h̄∗} ◦Gsemiloc, L
2(P ), δ) ⩾ N ({h̄∗} ◦Gsemiloc, L

2(P ), δ)

⩾ N (Gsemiloc, ρloc, dδ
2/c1)

⩾
2d∑⌊ δ2d

c1
⌋

m=0

(
d
m

) ,
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where the last step follows from Lemma G.5. By Lemma G.6 and taking δ∗ = 1
2

√
c1, we have

P({h̄∗} ◦Gsemiloc, L
2(P ),

1

2

√
c1) ⩾

2d∑⌊d/4⌋
m=0

(
d
m

) ⩾

(
2

(5e)1/4

)d
. (105)

Let c3 = 2
(5e)1/4

, which is greater than 1.

Combining equation (104) and (105), we complete the proof.

G.2 Proof of Theorem 5.2

Let σ(z) := ReLU(z) in this subsection for notation simplicity. We first recall the architecture of
the CNN model: L = log2(4d), channel number C1 = CL = 4, Cl = 2 for l = 2, . . . , L− 1, and
activation functions σ1(z) = σL(z) = σ2(z), σl(z) = σ(z) for l = 2, . . . , L− 1.

Step I: Representing the target using CNNs.
Lemma G.7. There is a parametrization θ∗ such that hcnn

θ∗ = h∗ and ∥θ∗∥P ≲ log d.

Proof. We provide a constructive proof of this lemma. We fist set all the bias to zeros. Then we set
the parameter of the filters W (l) ∈ RCl×Cl−1×2 as follows.

• For l = 1, W (1)
1,1,: = −W

(1)
2,1,: = (1, 0), and W

(1)
3,1,: = −W

(1)
4,1,: = (0, 1).

• For l = 2, W (2)
1,1,: = −W

(2)
1,2,: = W

(2)
1,3,: = −W

(2)
1,4,: = (1, 1) and W

(2)
2,i,: = −W

(2)
1,i,: for

i = 1, 2, 3, 4.

• For l = 3, . . . , L− 1, W (l)
1,1,: = −W

(l)
1,2,: = (1, 1) and W

(l)
2,i,: = −W

(l)
1,i,: for i = 1, 2.

• For l = L, W (L)
1,1,: = −W

(L)
2,1,: = (1, 1), W (L)

3,1,: = −W
(L)
4,1,: = (1,−1) and W

(L)
j,2,: = −W

(L)
j,1,:

for j = 1, 2, 3, 4.

• For the final linear layer, Wo =
1
4d (1, 1,−1,−1).

First, it is easy to check the output of the first two layer by direct calculation. Concretely, we have

(z(1))⊤ =

 σ2(x1) σ2(x3) · · · σ2(x4d−1)
σ2(−x1) σ2(−x3) · · · σ2(−x4d−1)
σ2(x2) σ2(x4) · · · σ2(x4d)
σ2(−x2) σ2(−x4) · · · σ2(−x4d))

 ∈ R4×2d (106)

and

(z(2))⊤ =

(
σ
(
x2
1 − x2

2 + x2
3 − x2

4

)
· · · σ

(
x2
4d−3 − x2

4d−2 + x2
4d−1 − x2

4d

)
σ
(
−x2

1 + x2
2 − x2

3 + x2
4

)
· · · σ

(
−x2

4d−3 + x2
4d−2 − x2

4d−1 + x2
4d

)) ∈ R2×d

(107)

Next, we are going to prove the following conclusion for l = 2, . . . , L− 1 by induction

(z(l))⊤ =

 σ
(∑2l−1

k=1 (x
2
2k−1 − x2

2k)
)

· · · σ
(∑2l−1

k=1 (x
2
4d−2k+3 − x2

4d−2k+2)
)

σ
(
−
∑2l−1

k=1 (x
2
2k−1 − x2

2k)
)

· · · σ
(
−
∑2l−1

k=1 (x
2
4d−2k+3 − x2

4d−2k+2)
) ∈ R2×d/2l−2

(108)
First, by (107), it holds for l = 2. Next we assume (108) holds for the case of l − 1 and verify it
holds also for the case of l.

By the definition of our CNN model, we have

(Tlz(l−1))i,j = z
(l−1)
2i−1,1W

(l)
j,1,1 + z

(l−1)
2i−1,2W

(l)
j,2,1 + z

(l−1)
2i,1 W

(l)
j,1,2 + z

(l−1)
2i,2 W

(l)
j,2,2 (109)
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when j = 1,

(Tlz(l−1))i,1 =z
(l−1)
2i−1,1 − z

(l−1)
2i−1,2 + z

(l−1)
2i,1 − z

(l−1)
2i,2

=

2l−2∑
k=1

(
x2
2k−1+(2i−2)2l−1 − x2

2k+(2i−2)2l−1

)
+

2l−2∑
k=1

(
x2
2k−1+(2i−1)2l−1 − x2

2k+(2i−1)2l−1

)

=

2l−1∑
k=1

(
x2
2k−1+(i−1)2l − x2

2k+(i−1)2l

)
,

which verifies (108) for j = 1. The case of j = 2 can be verified in the same way.

So by now we have verified that the output of the L− 1 layer is

(z(L−1))⊤ =

 σ
(∑d

i=1(x
2
2i−1 − x2

2i)
)

σ
(∑d

i=1(x
2
2d+2i−1 − x2

2d+2i)
)

σ
(
−
∑d
i=1(x

2
2i−1 − x2

2i)
)

σ
(
−
∑d
i=1(x

2
2d+2i−1 − x2

2d+2i)
) ∈ R2×2 (110)

Noting σ(x)− σ(−x) = x, we can recover
∑d
i=1(x

2
2i−1 − x2

2i) and
∑d
i=1(x

2
2i+2d−1 − x2

2i+2d) by
using the feature stored in z(L−1).

Recall that in our last layer, our activation function is σL(x) = σ2(x), and we have σ2(x)+σ2(−x) =

x2. Noting that 4αβ = (α+ β)2 − (α− β)2 and viewing
∑d
i=1(x

2
2i−1 − x2

2i),
∑d
i=1(x

2
2i+2d−1 −

x2
2i+2d) as α and β, respectively, a simple calculation would lead to hcnn

θ∗ (x) = h∗(x).

Note that for all l ∈ [L], b(l) = 0, Cl ⩽ 4. Then, it is obvious that there exists an absolute
constant C > 0 such that

∥∥W (l)
∥∥
F

⩽ C for any l ∈ [L] and ∥Wo∥2 ⩽ C. Thus, we have
∥θ∗∥P = ∥Wo∥2 +

∑L
l=1

∥∥W (l)
∥∥
F
≲ L ≲ log d.

Step II: Estimating the sample complexity.

Recall the input distribution P = N (0, I4d). Let HCNN
J = {hθ : ∥θ∥ ⩽ J}, where we recall ∥·∥ is

defined in Appendix C. By Proposition B.14, the covering number satisfies

N (HCNN
J , ρ̂n, t) ⩽

(
3γ̂n(J)

t

)Ncnn

(111)

where γ̂n(J) = M̂nJ(1 + J)L, M̂n =

√
1
n

∑n
i=1

(
Q̄σ(xi)

)2
(∥xi∥2 + 1)2 and Ncnn = O(log d).

We will use the fact that L = log2 d+ 2.

First, we turn to the estimate of Q̄σ(xi). To this end, we give a simple lemma to estimate the local
Lipschitz constant of our activation functions.
Lemma G.8. If for |x| , |y| ⩽ M , we have |β(x)− β(y)| ⩽ K |x− y|, then we will have

∥β(x)− β(y)∥2 ⩽ K ∥x− y∥2
for any ∥x∥2 , ∥y∥2 ⩽ M .

Proof. ∥β(x)− β(y)∥22 =
∑
i(β(xi)− β(yi))

2 ⩽
∑
iK

2(xi − yi)
2 = K2 ∥x− y∥22

Our σ1(·) = σL(·) = σ2(·) activation functions are 2K Lipschitz continuous when restricted
in [−K,K]. So for Q1(xi), since ∥T1(xi)∥2 ⩽ ∥T1∥ (∥xi∥2 + 1) ⩽ J(∥xi∥2 + 1), we have
Q1(xi) ⩽ 2J(∥xi∥2 + 1). For QL(xi), we similarly have

∥TL ◦ · · · ◦ σ1 ◦ T1(xi)∥2 ⩽ (1 + J)L+1(∥xi∥2 + 1)2,

so QL(xi) ⩽ 2(1+J)L+1(∥xi∥2+1)2 is straightforward. Thus, Q̄σ(xi) ⩽ 2L+2(1+J)L+2(∥xi∥2+
1)3. Therefore, we will have

γ(J) = E [γ̂n(J)] ≲ J(1 + J)L E[M̂n]

≲ J(1 + J)2L+22L+2
√

E[(∥x∥2 + 1)8] ≲ d2J(1 + J)2L+22L+2 (112)
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where the third step follows from the Jensen’s inequality and the fact that z 7→
√
z is concave; the

last step uses the higher-order moment bound of sub-exponential random variables (Vershynin, 2018,
Proposition 2.7.1).

Recalling we have αH = 1 from equation (53) and applying Proposition B.14, we have w.p. at least
1− 2δ∥∥∥πA ◦ hθ̂n − h∗

∥∥∥2
L2(P )

−ϵ∗ ≲
σ3B

(B − 2A)2
e−

(B−2A)2

2σ2 +λM∗+B2

√
log(4/δ)

n
+B2

√
Ncnn log(Bγ(Uλ))

n
,

where
ϵ∗ = 0, M∗ ≲ log d

Taking A = A0, B = 2A+ σ
√
log n, λ = 1/

√
n and applying Lemma B.13, we have∥∥∥πA0

◦ hθ̂n − h∗
∥∥∥2
L2(P )

⩽ poly(A0)

(
σ2

√
n
+

log d√
n

+B2

√
log(1/δ)

n
+B2

√
log d(log(B) + log(γ(Uλ)))

n

)
where

log(γ(Uλ)) ≲ log(d) log

(
1

2λ

(
σ2 +B2

√
2 log (2/δ)

n

)
+ log d

)
.

Simplify the inequality, we have∥∥∥πA0
◦ hθ̂n − h∗

∥∥∥2
L2(P )

⩽ poly(A0, σ, log(1/δ), log log n)
log n log d

√
log n+ log log d√
n

This implies that, for a target accuracy ϵ and failure probability δ,

n ⩾ poly(σ, log
1

δ
, log

1

ϵ
)ϵ−2 log2 d(log log d)3

is enough.

H LCNs vs. FCNs: Proofs of Section 5.3

H.1 Proof of Theorem 5.7

Under the assumptions in Theorem 5.7, Lemma 5.6 implies that Afcn
T is Gort(4d)-equivalent. Then,

by Lemma 5.1, we have

C(Afcn
T , {h̄∗}, ϵ) ⩾ C̄({h̄∗} ◦Gort(4d), ϵ).

We next use the Fano’s method (Proposition B.20) to bound the right hand side, by which the key to
obtaining a tight bound is to construct a packing of {h̄∗} ◦Gort(4d) as large as possible. Specifically,
we will prove the following lemma.
Lemma H.1. There exist absolute positive constants C, c5, c6 > 0 such that if d,A0 ⩾ C, there
exists h1, h2, . . . , hM ∈ {h̄∗} ◦O(4d) satisfying that

sup
i,j

∥hi − hj∥2L2(P ) ⩽ c6, inf
i̸=j

∥hi − hj∥2L2(P ) ⩾
1

4
c5, and M ⩾ 2d(d−1)/2.

Assuming Lemma H.1 is right for now and applying the above packing to Fano’s inequality (Proposi-
tion B.20), we have

inf
A∈A

sup
h∗∈h̄∗◦O(4d)

E
[∥∥hA(Sn) − h∗∥∥2

L2(P )

]
⩾A

1− n

2σ2M2 logM

M∑
i,j=1

∥hi − hj∥2L2(P ) −
log 2

logM


⩾
1

4
c5

(
1− c6n

σ2d(d− 1) log 2
− 2

d(d− 1)

)
Taking n such that the right hand side to satisfy

1

4
c5

(
1− c6n

σ2d(d− 1) log 2
− 2

d(d− 1)

)
⩽

c5
8

=: ϵ0

gives n = Ω(σ2d2). Thus, we can conclude that C̄({h̄∗} ◦Gort(4d), ϵ0) = Ω(σ2d2). Otherwise, the
minimax error becomes larger than ϵ0.
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H.1.1 Proof of Lemma H.1

We now turn to construct a proper packing for {h̄∗} ◦Gort(4d) to satisfy the condition in Lemma H.1.
To simplify the statement, define q : R2d 7→ R and gU : R2d 7→ R for U ∈ Rd×d by

q(x) =

d∑
i=1

(x2
2i−1 − x2

2i) gU (x) = xT1:dUxd+1:2d.

Lemma H.2. (A restatement of (Li et al., 2020, Lemma D.2)) For any U ∈ Gort(d), there exist
τU ∈ Gort(2d) such that

gU (x) = q ◦ τU (x).

This lemma implies that for any U ∈ Gort(d),

1

d

(
xT1:dUxd+1:2d

)( d∑
i=1

(x2
2i+2d−1 − x2

2i+2d)

)
= d−1q ◦ τU (x1:2d)q(x2d+1:4d)

= h∗ ◦
(
τU 0
0 I2d

)
(x) ∈ {h∗} ◦Gort(4d), (113)

where we slightly abuse the notation: using f(x) to denote the function f(·).
Let

UA0
=

{
πA0

◦ fU : fU (x) =
1

d

(
xT1:dUxd+1:2d

)( d∑
i=1

(x2
2i+2d−1 − x2

2i+2d)

)
, U ∈ Gort(d)

}
.

(114)
Note that equation (113) implies

UA0
⊂ {h̄∗} ◦Gort(4d).

Next, the following lemma shows that when the target truncation threshold A0 is large enough, finding
a packing of

(
UA0 , ∥ · ∥L2(P )

)
, thus a packing of

(
{h̄∗} ◦Gort(4d), ∥·∥L2(P )

)
, can be reduced to

pack the equivariance group
(
Gort(d), ∥ · ∥F /

√
d
)

.

Lemma H.3. There exist absolute constants C, c3, c4 > 0 such that when d,A0 ⩾ C, we have for
any U,U ′ ∈ Gort(d) that

c3
d
∥U − U ′∥2F ⩽ ∥πA0

◦ fU − πA0
◦ fU ′∥2L2(P ) ⩽

c4
d
∥U − U ′∥2F

Proof idea. The proof of this lemma is technically lengthy and deferred to Appendix I.2. Note that
when A0 = +∞, i.e., there is no truncation in the target function, a simple calculation leads to

E
[
(fU (X)− fU ′(X))2

]
=

4 ∥U − U ′∥2F
d

When A0 is finite but large enough, by concentration inequalities, we can show that the influence of
truncation is negligible, although the proof is lengthy.
Lemma H.4. (Li et al., 2020, Lemma D.4.) For any positive integer d ⩾ 2 and any positive ϵ ⩽ c2/2,
we have

P(Gort(d), c1 ∥·∥F /
√
d, ϵ) ⩾

(c2
ϵ

) d(d−1)
2

where c1 and c2 are two positive absolute constants.

The above lemma provides a lower bound of the packing number of
(
Gort(d), ∥ · ∥F /

√
d
)

. Intuitively

speaking, this lemma is true due to the fact that Gort(d) can be viewed as a d(d−1)
2 dimensional

compact manifold from a Lie group perspective.

Proof of Lemma H.1. First, for any U,U ′ ∈ Gort(d), we have

∥U − U ′∥2F ⩽ 2(∥U∥2F + ∥U ′∥2F ) = 4d.
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By Lemma H.3, we have

∥πA0
◦ fU − πA0

◦ fU ′∥2L2(P ) ⩽
c4
d
∥U − U ′∥2F ⩽ 4c4. (115)

By Lemma H.4 and taking ϵ0 = c2/2, we there exist U1, . . . , UM ∈ Gort(d) with M ⩾ 2
d(d−1)

2 such
that ∥Ui − Uj∥F ⩾ c2

√
d

2c1
for any i ̸= j. Thus, by Lemma H.3, we have for any i ̸= j that

∥πA0
◦ fUi

− πA0
◦ fUj

∥2L2(P ) ⩾
c3
d

c22d

4c21
=: c5. (116)

Combining (115) and (116), we can conclude that {πA0
◦ fUj

}mj=1 are a packing that satisfy the
condition in Lemma H.1. Thus, we complete the proof.

H.2 Proof of Theorem 5.5

Let σ(z) := ReLU(z) in this subsection for notation simplicity. We first recall the architecture of
the LCN model: L = log2(4d), channel number C1 = CL = 4, Cl = 2 for l = 2, . . . , L − 1, and
activation functions σ1(z) = σL(z) = σ2(z), σl(z) = σ(z) for l = 2, . . . , L− 1.

Step I: Representing the target using LCNs.

Lemma H.5. There is a parametrization θ∗ such that hlcn
θ∗ = h∗ and ∥θ∗∥P ≲ d.

Proof. With the same depth, activation functions, and channel numbers, a LCN can simulate its
CNN counterpart. By the proof of Lemma G.7, the exact representation is obvious. The parameter
norm bound is due to

∥θ∥P = ∥Wo∥+
L∑
l=1

(∥W (l)∥F + ∥b(l)∥F )

≲ 1 +

L∑
l=1

(Dl + 0) = 1 +

log d+2∑
l=1

4d

2l
≲ d.

Step II: Estimating the sample complexity.

Recall the input distribution P = N (0, I4d). Let HLCN
J = {hθ : ∥θ∥ ⩽ J}, where we recall ∥·∥ is

defined in Appendix C. By Proposition B.14, the covering number satisfies

N (HLCN
J , ρ̂n, t) ⩽

(
3γ̂n(J)

t

)Nlcn

(117)

where γ̂n(J) = M̂nJ(1 + J)L, M̂n =

√
1
n

∑n
i=1

(
Q̄σ(xi)

)2
(∥xi∥2 + 1)2 and Nlcn = O(d). Here

we use the fact that L = log2 d + 2. Following the same argument as in Appendix G.2 we have
Q̄σ(xi) ⩽ 2L+2(1 + J)L+2(∥xi∥2 + 1)3. Therefore, we will have

γ(J) = E [γ̂n(J)] ≲ J(1 + J)L E[M̂n]

(a)

≲ J(1 + J)2L+22L+2
√
E[(∥x∥2 + 1)8]

(b)

≲ d2J(1 + J)2L+22L+2 (118)

where (a) uses the Jensen’s inequality and (b) follows from the higher-order moment bound of
sub-exponential random variables (Vershynin, 2018, Proposition 2.7.1).

Recalling we have αH = 1 from equation (61) and applying Proposition B.14, we have with
probability at least 1− 2δ∥∥∥πA ◦ hθ̂n − h∗

∥∥∥2
L2(P )

−ϵ∗ ≲
σ3B

(B − 2A)2
e−

(B−2A)2

2σ2 +λM∗+B2

√
log(4/δ)

n
+B2

√
Nlcn log(Bγ(Uλ))

n
,

where
ϵ∗ = 0, M∗ ≲ d
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Taking A = A0, B = 2A+ σ
√
log n, λ = 1/

√
n and applying Lemma B.13, we have∥∥∥πA0 ◦ hθ̂n − h∗

∥∥∥2
L2(P )

⩽ poly(A0)

(
σ2

√
n
+

log d√
n

+B2

√
log(1/δ)

n
+B2

√
d(log(B) + log(γ(Uλ)))

n

)
where

log(γ(Uλ)) ≲ log(d) log

(
1

2λ

(
σ2 +B2

√
2 log (2/δ)

n

)
+ d

)
.

Simplify the inequality, we have∥∥∥πA0
◦ hθ̂n − h∗

∥∥∥2
L2(P )

⩽ poly(A0, σ, log(1/δ), log log n)
log n

√
d log d

√
log n+ log d√
n

This implies that, for a target accuracy ϵ and failure probability δ,

n ⩾ poly(A0, σ, log
1

δ
, log

1

ϵ
)ϵ−2d log4 d

is enough.

I Auxiliary Lemmas for Appendix G and H

Recall our input distribution P = N (0, I4d). Recall that target function h̄∗ = πA0
◦ h∗ where

h∗(x) =
1

d

(
d∑
i=1

(x2
2i−1 − x2

2i)

)(
d∑
i=1

(x2
2d+2i−1 − x2

2d+2i)

)
In the following, we show that the truncation operator πA0 on h∗ ◦ U for any U ∈ Gort(4d) will not
matter a lot when A0 is moderately large.
Lemma I.1. Let X ∼ P . For any U ∈ Gort(4d), there exists one absolute constant c1 > 0 such that

for any δ ∈ (0, 1), if A0 ⩾ max
(

log(4/δ)
c1

, log2(4/δ)
c21d

)
, it holds that

P{πA0
◦ h∗ ◦ U(X) = h∗ ◦ U(X)} ⩾ 1− δ

Proof. Without loss of generality, we can set U = I4d since P is invariant under Gort(4d). For
simplicity, let Yi = X2

2i−1−X2
2i for i ∈ [2d] in this proof. It is easy to check that Yi are i.i.d. random

variables with ∥Yi∥ψ1
≲ 1. Then, using the Bernstein’s inequality (Lemma B.3) gives

P

{∣∣∣∣∣
d∑
i=1

Yi

∣∣∣∣∣ ⩾ √
dt

}
= P

{∣∣∣∣∣1d
d∑
i=1

Yi

∣∣∣∣∣ ⩾ t√
d

}
⩽ 2e−c1 min(

√
dt,t2)

where c1 > 0 is one absolute constant. Setting the failure probability to be smaller than δ/2:

2e−c1 min(t2,
√
dt) ⩽ δ/2 gives t ⩾ max

(√
log(4/δ)
c1

, log(4/δ)

c1
√
d

)
=: Cδ. This implies that it holds

w.p. at least 1− δ/2 that ∣∣∣∣∣
d∑
i=1

Yi

∣∣∣∣∣ ⩽ Cδ
√
d.

Similarly, it holds w.p. at least 1− δ/2 that∣∣∣∣∣
2d∑

i=d+1

Yi

∣∣∣∣∣ ⩽ Cδ
√
d.

Combining them leads to

P{πA0 ◦ h∗(X) = h∗(X)} = P{h∗(X) ⩽ C2
δ } ⩾ 1− δ.

46



I.1 Proof of Lemma G.2

For any τ = diag (U1, U2, . . . , U2d) , τ
′ = diag (U1, U

′
2, . . . , U

′
2d) ∈ Gsemiloc, let

I = {i ∈ [2d] : Ui ̸= U ′
i}

be the set of indices where the local permutations are different for τ and τ ′. Let s = |I|. By the
definition of Gsemiloc, we must have j ⩽ d for any j ∈ I. Thus, we have

h∗ ◦ τ(x)− h∗ ◦ τ ′(x) = 2

d

∑
j∈I

(−1)oj (x2
2j−1 − x2

2j)

( d∑
i=1

(x2
2d+2i−1 − x2

2d+2i)

)
, (119)

where oj ∈ {+1,−1} for j ∈ I . Because of the symmetry of P , we can assume oj = 1 for all j ∈ I
without loss of generality.

Upper bound. First, recall that X ∼ N (0, I4d), we have∥∥h̄∗ ◦ τ − h̄∗ ◦ τ ′
∥∥2
L2(P )

= E |πA0
◦ h∗ ◦ τ(X)− πA0

◦ h∗ ◦ τ ′(X)|2

⩽ E |h∗ ◦ τ(X)− h∗ ◦ τ ′(X)|2

= E

 4

d2

∑
j∈I

(
X2

2j−1 −X2
2j

)2(
d∑
i=1

(
X2

2d+2i−1 −X2
2d+2i

))2


=
4

d2
E


∑
j∈I

(X2
2j−1 −X2

2j)

2
E

( d∑
i=1

(X2
2d+2i−1 −X2

2d+2i)

)2


=
4

d2
Var

∑
j∈I

(X2
2j−1 −X2

2j)

Var

(
d∑
i=1

(X2
2d+2i−1 −X2

2d+2i)

)

=
4

d2
· sd ·

(
Var

(
Y 2 − Z2

))2
=

64s

d
(120)

where Y, Z ∼ N (0, 1) are independent random variables.

Lower Bound. Denote the events

E1 = {x : πA0
◦ h∗ ◦ τ(x) = h∗ ◦ τ(x)}

E2 = {x : πA0 ◦ h∗ ◦ τ ′(x) = h∗ ◦ τ ′(x)}

for the lower bound, we have

∥h̄∗ ◦ τ − h̄∗ ◦ τ ′∥2L2(P ) ⩾ E
[
1[E1∩E2](X)(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))2

]
= E

[
(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))2

]
− E

[
1(E1∩E2)c(h

∗ ◦ τ(X)− h∗ ◦ τ ′(X))2
]

⩾ E
[
(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))2

]
−
√
(1− P(E1 ∩ E2))E [(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))4] (121)

where the last inequality follows from the Cauchy-Schwarz inequality: (EY Z)
2 ⩽ EY 2 EZ2.

For the first term on the RHS of (121), we have from (120) that

E
[
(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))

2
]
=

64s

d
(122)
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For the second term on the RHS of (121), we have

E
[
(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))4

]
=

16

d4
E


∑
j∈I

(X2
2j−1 −X2

2j)

4(
d∑
i=1

(X2
2i+2d−1 −X2

2i+2d)

)4


=
16

d4
E


∑
j∈I

(X2
2j−1 −X2

2j)

4
E

( d∑
i=1

(X2
2i+2d−1 −X2

2i+2d)

)4


(123)
We first compute the first term by expanding it.

E


∑
j∈I

(X2
2j−1 −X2

2j)

4
 =

∑
i,j∈I

E
[
(X2

2j−1 −X2
2j)

2(X2
2j−1 −X2

2i)
2
]

≲ s2,

where we use the fact: E
[
(X2

2j−1 −X2
2j)

2(X2
2i−1 −X2

2i)
2
]
= O(1) for all i, j. By the same

argument, we have

E

( d∑
i=1

(X2
2i+2d−1 −X2

2i+2d)

)4
 ≲ d2 (124)

That leads to the following estimate: there exists an absolute constant c3 > 0 such that

E
[
(h∗ ◦ τ(X)− h∗ ◦ τ ′(X))4

]
⩽ c3

s2

d2
(125)

By Lemma I.1, there is an absolute constant C such that when A0 ⩾ C, we have

1− P(E1 ∩ E2) ⩽
1

c3
(126)

Plugging (122), (125), and (126) into (121) gives∥∥h̄∗ ◦ τ − h̄∗ ◦ τ ′
∥∥2
L2(P )

⩾
64s

d
− s

d
=

63s

d
(127)

Combining the upper bound and the lower bound, we complete the proof.

I.2 Proof of Lemma H.3

For any U ∈ O(d), let hU = πA0
◦ fU with

fU (x) =
1

d

(
x⊤
1:dUxd+1:2d

)( d∑
i=1

(x2
2d+2i−1 − x2

2d+2i)

)
.

Thus, we have hU ∈ {h̄∗} ◦Gort(4d) due to Lemma H.2.

Upper Bound. We have

∥hU − hU ′∥2L2(P ) = E
[
(πA0 ◦ fU (X)− πA0 ◦ fU ′(X))

2
]

⩽ E
[
(fU (X)− fU ′(X))2

]
=

1

d2
E

(X⊤
1:d(U − U ′)Xd+1:2d

)2( d∑
i=1

(X2
2d+2i−1 −X2

2d+2i)

)2


=
1

d2
E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)2]E
( d∑

i=1

(X2
2d+2i−1 −X2

2d+2i)

)2
 ,

(128)
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where the last step follows from the independence between X1:2d and X2d+1:4d.

Note that by equation (120),

E

( d∑
i=1

(X2
2d+2i−1 −X2

2d+2i)

)2
 = 4d (129)

And, for the first term, we have

E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)2]
= E

[
E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)2 |Xd+1:2d

]]
= E

[
E
[
X⊤
d+1:2d(U − U ′)⊤X1:dX

⊤
1:d(U − U ′)Xd+1:2d|Xd+1:2d

]]
= E

[
X⊤
d+1:2d(U − U ′)⊤(U − U ′)Xd+1:2d

]
= Tr

(
(U − U ′)⊤(U − U ′)

)
= ∥U − U ′∥2F

(130)
Plugging (129) and (130) into (128) gives

∥hU − hU ′∥2L2(P ) ⩽
4 ∥U − U ′∥2F

d

Lower Bound. Define events

E1 = {x : πA0
◦ fU (x) = fU (x)}

E2 = {x : πA0
◦ fU ′(x) = fU ′(x)}.

Then, we have

∥hU − hU ′∥2L2(P ) ⩾ E
[
1[E1∩E2](fU (X)− fU ′(X))2

]
= E

[
(fU (X)− fU ′(X))2

]
− E

[
1(E1∩E2)c(fU (X)− fU ′(X))2

]
⩾ E

[
(fU (X)− fU ′(X))2

]
−
√
(1− P(E1 ∩ E2))E [(fU (X)− fU ′(X))4]

(131)
where the last step uses the Cauchy-Schwartz inequality: (E[Y Z])

2 ⩽ EY 2 EZ2. We next bound
the two terms of the right hand side separately.

For the second term, we observe that

E
[
(fU (X)− fU ′(X))4

]
=

1

d4
E

(X⊤
1:d(U − U ′)Xd+1:2d

)4( d∑
i=1

(X2
2d+2i−1 −X2

2d+2i)

)4


=
1

d4
E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)4]E
( d∑

i=1

(X2
2d+2i−1 −X2

2d)

)4


≲
1

d2
E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)4]
(132)

where the last step follows from (124). Note that conditioned on Xd+1:2d,

X⊤
1:d(U − U ′)Xd+1:2d ∼ N (0, ∥(U − U ′)Xd+1:2d∥

2
2).

Combining with the fact that EY 4 = 3σ2 for Y ∼ N (0, σ2), we have

E
[(
X⊤

1:d(U − U ′)Xd+1:2d

)4]
= 3E

[
∥(U − U ′)Xd+1:2d∥

4
2

]
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Let B = U − U ′, Z ∼ N(0, Id), and B⊤B = D. Then,

E
[
∥(U − U ′)Xd+1:2d∥

4
2

]
= E

[
(Z⊤DZ)2

]
= E


∑

i,j

Di,jZiZj

2


=
∑
i,j

D2
i,j E

[
Z2
i Z

2
j

]
≲ ∥D∥2F ⩽ ∥B∥4F = ∥U − U ′∥4F (133)

Plugging (133) into (132) gives

E
[
(fU (X)− fU ′(X))4

]
⩽ c4

∥U − U ′∥4F
d2

(134)

for some absolute constant c4 > 0. By Lemma I.1, there is an absolute constant C such that when
A0 ⩾ C, we have

1− P(E1 ∩ E2) ⩽
1

c4
(135)

Continuing the equation (131), we have

∥hU − hU ′∥2L2(P ) ⩾ E
[
(fU (X)− fU ′(X))2

]
−
√
(1− P(E1 ∩ E2))E [(fU (X)− fU ′(X))4]

⩾ E
[
(fU (X)− fU ′(X))2

]
−

√
1

c4
· c4

∥U − U ′∥4F
d2

=
4

d
∥U − U ′∥2F − ∥U − U ′∥2F

d

=
3

d
∥U − U ′∥2F ,

(136)
where in the third step we use the result from the above upper bound:

E
[
(fU (X)− fU ′(X))2

]
=

4∥U − U ′∥2F
d

.

Combining the upper bound and the lower bound, we complete the proof.
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