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ABSTRACT

As Graph Neural Networks (GNNs) are increasingly applied across various do-
mains, explainability has become a critical factor for real-world applications. Exist-
ing post-hoc explainability methods primarily focus on estimating the importance
of edges, nodes, or subgraphs in the input graph to identify substructures crucial for
predictions. However, these methods often lack human interpretability and do not
provide a unified framework that incorporates both model-level and instance-level
explanations. In this context, we propose leveraging a set of graphlets—small,
connected, non-isomorphic induced subgraphs widely used in various scientific
fields—and their associated orbits as human-interpretable units to decompose
GNN predictions. Domain experts can select the most relevant graphlets as inter-
pretable units and request unified explanations based on these units. To address
this problem, we introduce UO-Explainer, the Unified and Orbit-based Explainer
for GNNs, which utilizes predefined orbits that are generalizable and universal
across graph domains as interpretable units. Our model decomposes GNN weights
into orbit units to extract class-specific graph patterns (model-level) and to identify
important subgraphs within individual data instances for prediction (instance-level).
Extensive experimental results demonstrate that UO-Explainer outperforms ex-
isting baselines in providing meaningful and interpretable explanations across
both synthetic and real-world datasets. Our code and datasets are available at
https://anonymous.4open.science/r/uoexplainer-F12C.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various domains in-
cluding real-world graph-structured data, such as social networks (Fan et al., 2019), molecules (Duve-
naud et al., 2015), and knowledge graphs (Hogan et al., 2021). Despite the remarkable advancements
in GNN architectures (Hamilton et al., 2017; Kipf & Welling, 2017; Xu et al., 2019; Veličković
et al., 2018), they are still perceived as black box models due to their lack of explainability. This
deficiency limits trust in GNN predictions, hindering their application in areas such as drug de-
velopment (Gaudelet et al., 2021) and education (Nakagawa et al., 2019). Therefore, interpreting
the prediction of GNNs has become crucial and has led to the emergence of various explanatory
approaches.

Explainability methods in graph domains deliver explanations through subgraphs that play a signifi-
cant role in predictions regarding the input graph. Two primary issues arise regarding explainability:
i) a human-interpretability and ii) a unified framework encompassing both model and instance levels.
Many existing post-hoc explanability is grounded on perturbation-based methods (Ying et al., 2019;
Luo et al., 2020; Xie et al., 2022; Zhang et al., 2023; Schlichtkrull et al., 2022) and gradient-based
methods (Baldassarre & Azizpour, 2019; Pope et al., 2019) to approximate the importance of edges
or nodes within subgraphs. This stochastic optimization of importance is computationally effective in
applying any graph-structured data, these methods have the potential risk that the output subgraph
does not align with prior human assumption or knowledge. Specifically, consider a scientist studying
gene networks who is interested in understanding whether the presence of certain structures, such as
triangles or rectangles, plays a crucial role in predicting specific properties. This scientist would want
to audit the model’s predictions by utilizing an explanation method that can highlight the importance
of these structures. With existing methods, it is challenging to obtain explicit insights into whether a
triangular or rectangular structure in the network is more important; instead, users often have to rely
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on conjecture based on the generated explanations. Additionally, these explanations do not always
present results in a human-intuitive form, as they may include isolated nodes or disconnected edges,
further hindering their interpretability. Therefore, we emphasize the need for explainability that
centers on human interpretability, a perspective that has been largely underexplored.

Last but not least, human-interpretable explanations should be delivered in a unified framework,
incorporating both global and local levels in terms of the scope of explanation (Yuan et al., 2022;
Prado-Romero et al., 2024). Most of the existing methods primarily specialize one one-level expla-
nation either model or instance-level explanations. Model-level methods reveal patterns that GNNs
deem significant for specific classes, eventually offering a broad understanding of the GNNs’ general
behavior. On the other hand, instance-level methods focus on individual predictions, identifying the
subgraphs most relevant to the target node or graph. As each type of explanation complements the
other from different perspectives, understanding at both levels enhances the explainability necessary
for grasping the decision-making process of GNNs. However, State-of-the-art (Azzolin et al., 2022;
Chen et al., 2023) studies also have rarely explored a unified framework that simultaneously provides
both model-level and instance-level explanations in the user-centric perspective of interest.

In this paper, we prioritize the two crucial perspectives that explanation should be human-interpretable
in the unified framework incorporating both model and instance levels. Our proposed model, UO-
Explainer, the Unified and Orbit-based Explainer for GNNs, allows users to harness their prior
knowledge by giving room to select the user-defined explanation units in unified views. Considering
the uniqueness of the graph domain to define explanation unit, we exploit orbits within graphlets that
have been studied as a generalizable and universal pattern in many scientific fields such as protein
interaction networks Pržulj et al. (2004); Pržulj (2007), social networks Chen & Lui (2018); Ahmed
et al. (2015), and molecular structure networks Kondor et al. (2009), while users can also adopt a
unique prior perspective to define their unit instead of orbit. To provide unified explanations, we
decompose the weights into orbit representation vectors to understand the contribution of each orbit
for a specific class or prediction. When we break down the weight into orbits, we acknowledge the
contribution of each orbit for model decision-making, which is supposed to be further discussed in the
method section in detail. Through extensive experiments, we demonstrate the superior performance
of UO-Explainer on eight well-known datasets. Consequently, UO-Explainer shows the concrete
performance in a unified framework leveraging the human prior knowledge as orbit generalizable
unit in graph-structured datasets.

In summary, the contributions of our research are as follows:

• We propose UO-Explainer, a unified framework to provide both model-level and instance-
level explanations for node classification based on human-defined explanation units.

• We demonstrate the human interpretable explanation based on orbits generalizable and
effective on graph-structured datasets.

• We perform rigorous and extensive experiments on 8 datasets to evaluate the quality of our
explanations in both model and instance-level explanations.

2 PRELIMINARY

2.1 GRAPH NEURAL NETWORKS (GNNS)

We represents a graph as G = (V,E ;A,X) where E denotes a edge set and V = {v1, v2,⋯, v∣V ∣}
denotes a node set. A ∈ R∣V ∣×∣V ∣ denotes the adjacent matrix and X ∈ R∣V ∣×din denotes the node
feature matrix. In this study, we focus on GNNs for node classification tasks as presented in (Kipf
& Welling, 2017; Xu et al., 2019). A GNN model f(⋅) maps input graph into prediction matrix
f(A,X) = Z ∈ R∣V ∣×∣C∣,C = {c1,⋯, c∣C∣} in where C as the set of classes. GNNs can be expressed as
a composite function f = fD ○ fE of an embedding-model fE(⋅) and a downstream-model fD(⋅).
The embedding model embeds an adjacent matrix and node feature matrix into a node representation
matrix H, i.e., fE(A,X) =H ∈ R∣V ∣×d. The representation vector of each node vn is denoted by the
hvn , n-th row vector of matrix H. The downstream-model maps the node representation matrix into
the prediction matrix to classify nodes into each class, i.g., fD(H) =HW+b = Z where W ∈ Rd×∣C∣

denotes weight matrix and b ∈ R∣C∣ denotes bias vectors. In this operation, only the m-th column
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Figure 2: Overview of UO-Explainer: The propagation process of the GNN is depicted in the blue
box, while the orange box represents the pipeline of UO-Explainer. The provided explanations are
illustrated in the green box. The dark green node of the input graph denotes the target node. The
colors (red, orange, blue, and yellow) correspond to the orbits within the graphlets.

vector wcm of weight matrix W and the m-th element bcm of bias vectors b are involved in the
computation to predict the class cm, i.g., zcm =Hwcm + bcm where zcm denotes the m-th row vector
of matrix Z. Weight regards to specific class as wcm affects only the prediction of the class cm, so we
call this weight vector a class weight. Furthermore, the prediction value zvn,cm for the class of each
node (the n-th row and m-th column element of Z) can be expressed as zvn,cm = hvn ⋅wcm + bcm ,
computed by the operation between each node representation vector and class weight.

2.2 ORBITS WITHIN GRAPHLETS
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Figure 1: Graphlets having 2-5 nodes and 0-72
orbits. The same color nodes within each graphlet
belong to the same orbit.

Graphlets as predominantly observed patterns
are pre-defined subgraphs with a small number
of nodes (Pržulj et al., 2004). Figure 1 shows
some examples of 2-5 node graphlets (Pržulj
et al., 2004; Pržulj, 2007), where gl denotes the
l-th graphlet. The full set of 2-5 node graphlets
used in our study is presented in Appendix A.
All graphlets are non-isomorphic to each other,
indicating that each graphlet has a unique struc-
ture. Each graphlet contains nodes with identical
or distinguishable topological positions known
as orbits, e.g., the central node of g1 belongs to
o2 due to its distinguishable position, whereas

the remaining nodes belong to o1. The set of orbits is represented as O = {o0,⋯, ok,⋯, o∣O∣} where
ok denotes the k-th orbit.

Previous studies have highlighted the usefulness of graphlet-based analysis in various graph data do-
mains, including protein interaction networks (Pržulj et al., 2004; Pržulj, 2007), social networks (Chen
& Lui, 2018; Ahmed et al., 2015), and molecular structure networks (Kondor et al., 2009). For
example, (Pržulj, 2007) defined the Graphlet Degree Distribution (GDD) using 2-5 node graphlets and
orbits as units to analyze agreement among biological and chemical networks. (Shervashidze et al.,
2009; Espejo et al., 2020) further compared the empirical similarity of various chemical compound
networks using a 2-5 node graphlet kernel. Since these analyses indicate that 2- to 5-node graphlets
can serve as simple yet effective units for interpreting graph data, we primarily employ them to
provide orbit-based explanations, unless otherwise specified by the user.

3 UO-EXPLAINER

UO-Explainer serves as a unified explainer capable of delivering both model-level and instance-level
explanations for node classification tasks. To deliver explanations in a human-interpretable way, we
exploit a pre-defined set of 0-72 orbits as the explanatory unit, which is recognized as essential and
human-interpretable units within graph domains, while users can also apply other meaning units
regarding their perspective instead of orbits. Upon the interpretable unit, we decompose the weights
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that directly influence classification concerning two components such as an embedding model and a
downstream task model. An overview of UO-Explainer is presented in Figure 2.

3.1 ORBIT BASIS LEARNING

To decompose class weights into orbit units requires orbit bases, which are the representation vectors
of each orbit. Orbit bases must necessarily reflect the following two aspects: (1) The distribution
of each orbit within the input graph, and (2) The message passing and aggregation behavior of the
embedding model. To meet the first requirement, we pre-process the orbit-existences on each node in
the input graph. Orbit existence is denoted as yvn,ok and determines whether each node vn belongs
to the orbit ok.

yvn,ok = {
0 if vn doesn′t belong to ok
1 if vn belongs to ok.

(1)

We present the toy example of this pre-processing through Figure 3. (a) portrays the input graph.
(b) represents the graphlets and orbits employed in the pre-processing. For simplicity, let us assume
that only the graphlets g2, g3, g6 are utilized and the orbits used for pre-processing are o3, o4, o5, o11.
Different color nodes inside each graphlet refer to nodes belonging to different orbits. (c) is a
substantial pre-processing process, which checks whether each node can belong to each orbit and
assigns 1 or 0 to the orbit’s existence. The dark green node represents the pre-processing node. You
can see that node 3 belong to o3, o5, o11. Therefore, yv3,o3 , yv3,o4 , yv3,o5 , yv3,o11 are assigned values
of 1, 1, 0, 1, respectively. This pre-processing is performed for all orbits in 2-5 node graphlets at all
nodes within the input graph.

Input Graph
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Figure 3: Detailed example of the pre-processing
step. The dark green node represents the target
node for explanation. The colors of nodes within
the graphlets represent the orbits respectively.

Next, we train a logistic binary classifier to pre-
dict the existence of each orbit, initializing each
orbit with p̂ok vector, and taking node repre-
sentation as input, described by the following
equation:

ŷvn,ok = sigmoid(p̂ok ⋅ hvn). (2)

To satisfy the second aspect, we learn the orbit
basis by incorporating the node representations
from the node embedding model when training.
Then, we apply normalization in Equation as
pok =

p̂ok

∣∣p̂ok
∣∣

to ensure that the size of the orbit
basis remains constant. Orbit-basis learning is
conducted for all orbits, and details of orbit basis
learning can be found in Algorithm 1.

3.2 MODEL-LEVEL EXPLANATIONS

Model-level explanations are provided by decomposing class weights into a linear combination of
orbit bases, as the following equation:

wcm ≈ scm,o0po0 +⋯ + scm,okpok +⋯ + scm,oKpoK

≈ ∑
ok∈O

scm,okpok .
(3)

Generally, when a vector is expressed as a linear combination of bases, the coefficients of each
basis indicate to what extent they contribute to forming the vector. Accordingly, the coefficients of
orbit bases are regarded as contributions to the class weights. Furthermore, the bases are learned by
considering each orbit distribution, thereby treating the contribution of orbit basis as the contribution
of each orbit. We define the contribution of orbit ok to the class cm classification as a class-orbit
score scm,ok .

The class-orbit scores are trained by the following objective function derived from Equation 3:

min
scm,ok

>0

RRRRRRRRRRR

RRRRRRRRRRR
wcm − ∑

ok∈O

scm,okpok

RRRRRRRRRRR

RRRRRRRRRRR
. (4)
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Algorithm 1 Orbit Basis Learning
Input: A set of node representation vectors {hv1

,⋯,hvn ,⋯,hv
∣V ∣
}, a set of existences of each orbits for each nodes

{yv1,o0
, yv2,o0

,⋯, yv1,o23
,⋯, yv

∣V ∣
,o72
}.

Output: A set of orbit bases P = {po0
,⋯,pok

,⋯,po72
}

Initialize P as an empty set
1: for k = 0 to 72 (the number of orbits used) do
2: Initialize p̂ok

as a random vector.
3: for n=1 to ∣V ∣ (the number of nodes) do
4: ŷvn,ok

= sigmoid(p̂ok
⋅ hvn)

5: L = BCE(yvn,ok
, ŷvn,ok

)

6: Update p̂ok
via ∇p̂ok

L

7: end for
8: pok

=
p̂ok

∣∣p̂ok
∣∣

9: P.add(pok
)

10: end for
11: Return P

To consider only the positive impact of the contributing orbits, we limit the class-orbit score to
positive. However, directly optimizing the objective function for all orbit bases involves a significant
amount of randomness. For example, in the worst case, if all orbit bases are orthogonal, and the
dimension of the class weight is d < ∣O∣, an infinite number of combinations of scm,ok can be found
to optimize the Equation 4. This randomness hinders the learning of the correct contribution of
orbits. Therefore, we modify the objective function using a greedy approach by selecting the orbit
that minimizes the difference between the class weight and the linear combination of selected orbits
in each iteration, as shown in the following equation:

argmin
ok∈O

min
Scm>0

∣∣wcm − [Pcm ∣pok]Scm ∣∣. (5)

Pcm is a matrix consisting of the selected pok as columns, and Scm represents a column vector
consisting scm,ok of the selected orbits. [Pcm ∣pok] denotes concatenation of the pok to Pcm as
a column, e.g., if orbits 1, 3, and 5 are selected, then Pcm = [po1 ∣po3 ∣po5] and Scm is a vector
composed of scm,o1 , scm,o3 and scm,o5 . By stopping the selection when the difference between the
class weight and the linear combination does not decrease, we reduce the randomness and prevent
too many orbits from being included in the explanation for each class. The detailed procedure can be
found in Algorithm 2.

UO-Explainer uses the orbit o∗cm with the highest class-orbit score from Equation 6 as the model-level
explanation.

o∗cm = argmax
ok∈O

{scm,o0 ,⋯, scm,ok ,⋯, scm,o72}. (6)

The orbit with the highest class-orbit score is always accompanied by its corresponding graphlet.
Therefore, the model-level explanation is provided in the form of graph patterns, with the given orbit
as the target node and its corresponding graphlet.

3.3 INSTANCE-LEVEL EXPLANATIONS

Instance-level explanations are provided by decomposing the prediction value of the target node into
orbit units. The class weight decomposition of Equation 3 extends to the decomposition of prediction
values as follows:

zvn,cm ≈ hvn ⋅wcm + bcm
≈ scm,o0hvn ⋅ po0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

svn,cm,o0

+⋯ + scm,okhvn ⋅ pok
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

svn,cm,ok

+⋯ + scm,oKhvn ⋅ poK
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

svn,cm,oK

+bcm . (7)

The equation above directly decomposes the prediction value of the target node into orbit units.
Each term represents the magnitude of the decomposed prediction value, similarly indicating the
contribution of orbits, akin to class weight decomposition. Therefore, we define the contribution of
orbit ok to the class cm prediction of target node vn as node-class-orbit score, svn,cm,ok . To provide
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Algorithm 2 Class-Orbit Score Learning
Input: A set of orbit bases {po0

,⋯,pok
,⋯,po72

}, a set of class weight vectors {wc1
,⋯,wcm ,⋯,wc

∣C∣
}.

Output: A set S of selected orbit’s class-orbit scores scm,ok
Variables: A vector composed of an element as a selected orbit’s class-orbit score Scm .
Initialize S as an empty set
1: for m=1 to ∣C∣ (the number of classes) do
2: Initialize lmin =∞

3: Initialize Pcm as an empty matrix
4: while do
5: selected orbit = argminok∈O

minScm>0 ∣∣wcm − [Pcm ∣pok
]Scm ∣∣

6: l = ∣∣wcm − [Pcm ∣pselected orbit]Scm ∣∣

7: if l < lmin then
8: lmin = l
9: Pcm = [Pcm ∣pselected orbit]

10: else
11: S.add(all scm,ok

in the Scm)

12: break
13: end if
14: end while
15: end for
16: Return S

instance-level explanations, UO-Explainer extracts the orbit o∗vn,cm with the highest node-class-score
as follows:

o∗vn,cm = argmax
ok∈O

{svn,cm,o0 ,⋯, svn,cm,ok ,⋯, svn,cm,oK}. (8)

Unlike the model-level explanation, which provides the orbit with the highest contribution and
its corresponding graphlet as an explanation, instance-level explanations must provide subgraphs
around the target node within the input graph. To achieve this, we use the search algorithm based
on the Breadth-First Search (BFS). These algorithms initiate the search from the target node and
explore neighboring nodes by verifying whether their connectivity matches the highest contributed
orbit’s corresponding graphlets. A detailed algorithm is shown in Appendix B. Through this search,
UO-Explainer can extract a subgraph within the input graph that matches the highest-contributing
orbit for the target node, i.e., the explored subgraph is provided as an instance-level explanation along
with the target node.

3.4 TIME COMPLEXITY ANALYSIS

Training UO-Explainer consists of two main processes: orbit basis learning and class-orbit score
learning, with the time complexity for each process detailed below. The time complexity of orbit
basis learning is O(∣O∣ ∣V ∣), where training is conducted for each orbit basis across all nodes in
the input graph, as outlined in Algorithm 1. Here, ∣O∣ represents the number of orbits used for
explanation, and ∣V ∣ denotes the total number of nodes in the input graph. The time complexity
for class-orbit score learning depends on the number of orbits selected through greedy search for
each class weight. In our experiments, the number of orbits selected did not exceed 5, rendering
this complexity component negligible. Consequently, the overall time complexity for this phase is
represented as O(∣C∣), following the procedure in Algorithm 2, where C indicates the number of
classes. In short, the overall time complexity for training UO-Explainer is O(∣O∣ ∣V ∣ + ∣C∣) ≈ O(∣V ∣).
The time complexities of the baseline methods are as follows: D4Explainer has a time complexity
of O(∣V ∣3), GNNExplainer is O(∣V ∣ ∣E ∣) where ∣E ∣ denotes the number of edges, PGExplainer
and TAGE have a time complexity of O(∣E ∣), and MotifExplainer operates with a complexity of
O(∣V ∣ ∣M∣), where ∣M∣ represents the number of motifs used in explanations. Therefore, in terms
of time complexity, UO-Explainer is less demanding compared to D4Explainer and GNNExplainer.
Alongside such analysis, our unified model is capable of providing both model-level and instance-
level explanations simultaneously, thus demonstrating its competitiveness in terms of time efficiency.
A more detailed time complexity analysis and experiments are described in Appendix C.
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4 RELATED WORK

GNN explanation methods can be categorized into model-level and instance-level, each with its
own scope of explanation (Yuan et al., 2022). Model-level methods (Yuan et al., 2020; Shin et al.,
2022; Azzolin et al., 2022) offer explanations that describe the general behavior underlying GNN
predictions regarding to specific class. For example, XGNN (Yuan et al., 2020) aims to generate
model-level patterns that maximize the predictive probability of a certain class by training a graph
generator through reinforcement learning. Similarly, PAGE (Shin et al., 2022) employs graph
representation vectors to iteratively search for human-interpretable prototype graphs. Moreover,
GLGExplainer (Azzolin et al., 2022) provides general model-level patterns by aggregating instance-
level explanations into logical formulas, utilizing an Entropy-Logic Explainer (E-LEN) (Barbiero
et al., 2022; Ciravegna et al., 2023). However, these studies primarily focus on graph classification
tasks and do not directly apply to node classification tasks. To bridge this gap, D4Explainer (Chen
et al., 2023) introduces a method for providing counterfactual model-level explanations for node
classification tasks, alongside instance-level explanations, based on a diffusion model. This approach,
however, results in a high training cost for the explainer incurred by iterative diffusion- and deonising
steps. Moreover, none of the methods for model-level explanations fully consider the user-centric
explanation unit, hindering human-interpretability.

Instance-level methods (Yu & Gao, 2022; Ying et al., 2019; Luo et al., 2020; Xie et al., 2022;
Vu & Thai, 2020; Wang et al., 2023; Xiong et al., 2023; Zhang et al., 2023; Ye et al., 2024; Lu
et al., 2024) provide explanations in the form of subgraph to elucidate the prediction of a specific
instance by unveiling relational structures with high contributions in the input graph. Notably,
GNNExplainer (Ying et al., 2019) stands as an early instance-level explainer, optimizing edge and
feature masks to maximize mutual information with GNN prediction results. PGExplainer (Luo
et al., 2020) leverages node representation vectors and trains a parameterized mask predictor to
optimize edge masks for explanation in inductive settings. TAGE (Xie et al., 2022) explains the GNN
embedding models, allowing efficient explanations for multiple downstream tasks. All these methods
entail learning edge masks to present masked graphs as instance-level explanation subgraphs. Despite
connectivity constraints, it often fails to generate connected subgraphs, resulting in less intuitive
explanations. On the other hand, MotifExplainer (Yu & Gao, 2022) provides an instance-level
explanation that does not rely on edge masks. It computes embedding vectors for each motif and
extracts explanations by restoring the GNN’s prediction value using an attention network. However,
it overlooks both the universal importance of specific motifs and the orbit-based isomorphism when
extracting motifs. Furthermore, the abovementioned methods are limited to providing explanations
in the unified framework capable of simultaneously providing both model-level and instance-level
explanations under the human-interpretable units of interest.

5 EXPERIMENT

We evaluate explanations provided by UO-Explainer at the model-level and instance-level on synthetic
and real-world datasets. These extensive experiments include quantitative and qualitative analysis of
UO-Explainer’s performance compared to recent baselines. For detailed experimental settings, please
refer to Appendix D.

5.1 DATASETS AND BASELINES

We conducted experiments using five synthetic datasets and three real-world data sets. Synthetic
datasets such as Random Graph (Holme & Kim, 2002), BA-Shapes (Ying et al., 2019), BA-
Community, Tree-Cycle, and Tree-Grid are used to evaluate GNN explanation methods to compare the
generated explanation based on pre-defined ground truths of each dataset. Also, real-world datasets
such as Protein-Protein Interaction (PPI) (Zitnik & Leskovec, 2017), LastFM-Asia (Rozemberczki
& Sarkar, 2020), and Gene (Zitnik & Leskovec, 2017) are used for node classification tasks. The
detailed information and statistics of each dataset are described in Appendix F.

Among the existing methods, D4Explainer (Chen et al., 2023) and GLGExplainer (Azzolin et al.,
2022) are the only existing framework that provides model-level explanations for the node classifi-
cation task. For instance-level explanations, we set baselines based on common methods that learn
edge masks, such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), TAGE
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Table 1: Model-level explanation on random graph datasets: (a) with 2 or 3-layer GCN, and (b) with
2 or 3-layer GIN. Each task is to classify whether the node belongs to the orbit corresponding task
number. The evaluation metric is the Sub-recall. The best performances are shown in bold.

(a)

Task number 8 11 16 21 27 31 32 33 35 39 45 47 49 57 59 60 61 62 64
Ground-truth orbit o8 o11 o16 o21 o27 o31 o32 o33 o35 o39 o45 o47 o49 o57 o59 o60 o61 o62 o64

D4Explainer 0.2 0.8 0.4 0.4 0.2 0.4 0.4 0.4 1.0 0.8 0.2 0.4 0.4 0.8 0.2 0.0 0.6 0.6 0.2
GLGExplainer 0.8 0.6 0.8 0.6 0.8 1.0 1.0 0.8 0.8 0.8 0.8 0.6 0.6 1.0 0.6 0.6 0.8 0.0 1.0
UO-Explainer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0

(b)

Task number 8 11 16 21 27 31 32 33 35 39 45 47 49 57 59 60 61 62 64
Ground-truth orbit o8 o11 o16 o21 o27 o31 o32 o33 o35 o39 o62 o47 o49 o57 o59 o60 o61 o45 o64

D4Explainer 0.8 0.6 0.6 1.0 0.6 0.8 0.8 0.6 1.0 1.0 0.6 0.4 0.8 1.0 0.8 0.8 0.2 0.4 0.6
GLGExplainer 0.8 0.8 1.0 0.4 1.0 1.0 1.0 1.0 0.8 1.0 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.0 1.0
UO-Explainer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Model-level explanation results on synthetic datasets. The evaluation metric is the Sub-recall.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
class1 class2 class3 class1 class2 class3 class5 class6 class7 class1 class2 class3 class1

Ground-truth Orbit o58 o57 o56 o58 o57 o56 o58 o57 o56 o73 o74 o75 o76
D4Explainer 0.4 0.6 0.4 0.8 0.2 0.8 0.0 0.6 0.4 0.6 0.0 0.2 0.8

GLGExplainer 1.0 1.0 1.0 1.0 0.8 0.2 0.8 1.0 0.8 0.0 0.8 0.2 1.0
UO-Explainer 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 0.8 1.0 1.0 1.0

(Xie et al., 2022), MixupExplainer (Zhang et al., 2023), SAME (Ye et al., 2024), and EIG (Lu et al.,
2024). Additionally, MotifExplainer (Yu & Gao, 2022), which provides explanations based on motifs
similar to our model, was also set as a baseline.

5.2 EVALUATION METRIC

We evaluate the quality of explanations using Sparsity, Fidelity, Edge-recall, and Sub-recall as
evaluation metrics. Sparsity (Li et al., 2022) refers to the ratio of edges in the explanation compared
to the total number of edges in the computation graph of the target node. High sparsity implies
that the proposed explanation has a small number of edges. Fidelity (Li et al., 2022) measures the
difference in the probability values when the explanation is excluded from the computation graph
based on the target node. Edge-recall indicates how many edges in the explanations match the edges
in the ground truths. Sub-Recall indicates the proportion of correct answers that the entire presented
explanations match with ground truths. Notably, equations of Sparsity and Fidelity are described in
the Appendix D.4. Additionally, we conducted experiments five times and then reported the average
and standard deviations in Appendix E.

5.3 RESULTS: MODEL-LEVEL EXPLANATIONS

We first validate whether the UO-Explainer can identify the correct orbits for model-level explanations.
We pre-train 2 or 3-layer GCN models (Kipf & Welling, 2017) and 2 or 3-layer GIN models (Xu
et al., 2019) on Random Graph datasets. We pre-train 2 or 3-layer GCN models (Kipf & Welling,
2017) and 2 or 3-layer GIN models (Xu et al., 2019) on Random Graph datasets. Each task is to
classify whether the node belongs to the orbit corresponding task number. Consequently, explanation
methods are expected to provide the ground-truth pattern in the form of the orbit (target node) with
its corresponding graphlet (pattern) for each task. Tasks with accuracy below 0.8 are excluded as
they are unlikely to yield accurate explanations. We use the Sub-recall metric to evaluate whether the
provided explanation matches the ground-truth pattern.

In Table 1, UO-Explainer shows superior performance compared to other baselines. In particular,
the UO-Explainer constantly provides model-level explanations matching to ground truths for all
tasks except 33, 60, and 62 in the GCN model as shown in (a). This limitation may arise from the
GNN’s expressiveness, failing to learn intended orbits during the pre-training. To address this, we
conducted experiments in the same manner using GIN, known for better expressiveness. The results
are shown in (b) of Table 1 that UO-Explainer accurately provides the explanations matching the
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Table 3: Instance-level explanation results on synthetic datasets. The best performances on each
dataset are shown in bold.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity

GNNExplainer 0.004 0.616 0.580 0.006 0.491 0.653 0.000 0.629 0.872 0.119 0.699 0.724
PGExplainer 0.760 0.915 0.574 0.238 0.667 0.652 0.000 0.647 0.876 0.926 0.992 0.732

TAGE 0.682 0.900 0.601 0.352 0.754 0.672 0.003 0.693 0.874 0.963 0.994 0.734
MixupExplainer 0.696 0.906 0.612 0.496 0.857 0.693 0.047 0.712 0.8770 0.930 0.994 0.734

SAME 0.343 0.720 0.547 0.132 0.680 0.642 0.000 0.238 0.846 0.101 0.635 0.692
EiG-Search 0.878 0.520 0.605 0.078 0.681 0.695 0.004 0.723 0.885 0.083 0.812 0.703

MotifExplainer 0.873 0.890 0.548 0.423 0.714 0.683 0.793 0.857 0.879 0.991 0.993 0.736
UO-Explainer 0.948 0.984 0.623 0.921 0.970 0.716 0.859 0.900 0.888 1.000 1.000 0.737

Table 4: Instance-level explanation results on real datasets. The best fidelity on each dataset is shown
in bold.∗ notation indicates the lower sparsity setting.

PPI LastFM AsiaTask0 Task1 Task2 Task3 Task4 Task5
Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity

GNNExplainer 0.100 0.973 0.325 0.999 0.417 0.999 0.480 0.999 0.250 0.999 0.331 0.999 0.114 0.974
PGExplainer* 0.023 0.973 0.155 0.999 0.223 0.999 0.101 0.999 0.200 0.999 0.005 0.999 0.011 0.974

TAGE* 0.031 0.973 0.109 0.999 0.233 0.999 0.138 0.999 0.214 0.999 0.101 0.999 0.086 0.974
MixupExplainer 0.005 0.973 0.002 0.999 0.257 0.999 0.246 0.999 0.246 0.999 0.129 0.999 0.100 0.974

EiG-Search 0.180 0.973 0.269 0.999 0.180 0.999 0.379 0.999 0.100 0.999 0.180 0.999 0.095 0.974
SAME 0.022 0.973 0.189 0.999 0.194 0.999 0.189 0.999 0.034 0.999 0.129 0.999 0.049 0.974

MotifExplainer 0.070 0.992 0.074 0.999 0.012 0.999 0.129 0.999 0.097 0.999 0.050 0.999 0.085 0.994
UO-Explainer 0.423 0.999 0.358 0.999 0.425 0.999 0.510 0.999 0.623 0.999 0.413 0.999 0.115 0.993

correct ground-truth for all tasks. These findings confirm that UO-Explainer is capable of detecting
various orbits and providing correct explanations while UO-Explainer’s explanations mirror the
expressiveness of the GNN’s embedding model. Notably, comparing the performance of original
GNNs to the decomposed class weights model, the performance degradation is less than 5%. On the
other hand, D4Explainer and GLGExplainer show slightly improved or even decreased performance
in the GIN setting and fail to provide consistent explanations matched with the ground truth.

As observed in Table 2, UO-Explainer also outperforms other baselines on the BA-Shapes and
BA-Community dataset. Using 3-layer GCNs for this experiment, UO-Explainer successfully
provides accurate model-level explanations for each class on both datasets. Specifically on the
BA-Shapes dataset, we observe the explanations that the house-like motif plays a crucial role in node
classification by detecting the orbit such as o56, o57, and o58 in the graphlet g23 as explanations. This
explanation sheds light on the overall behavior of the GNN beyond individual nodes, enabling a
broader interpretation of GNNs. Moreover, our approach provides orbit-corresponding graphlets,
allowing us to determine the topological positions of nodes within the motif for each class. Thus,
UO-Explainer shows that the GNN recognizes the house-like motif as an important pattern for node
classification, assigning nodes on the roof, floor, and top of the roof of the house-like motif to classes
1, 2, and 3, respectively. On the BA-Community dataset, UO-Explainer also finds the ground-truth
pattern as the model-level explanation by detecting the orbit such as o56, o57, and o58 in the graphlet
g23 as explanations, since the dataset is a union of two BA-SHAPES graphs. In conclusion, the
experimental result demonstrates that orbits as pre-defined explanation units of UO-Explainer serve
crucial patterns of the specific classes for prediction, showing accurate and consistent explanations.

5.4 RESULTS: INSTANCE-LEVEL EXPLANATIONS

Except for MotifExplainer, all baselines provide explanations in the form of subgraphs obtained by
extracting edges exceeding specific threshold values or ranking the top-k edge considered important.
For fair experiments, explanations composed of top-k edges were extracted considering a sparsity
level similar to that of UO-Explainer. In the case of MotifExplainer, we extract one motif as an
instance-level explanation. UO-Explainer used a subgraph within the input graph that matches the
highest-contributing orbit for the target node for the instance-level explanation as mentioned in
Section 3.3.

The experimental results on synthetic datasets are shown in Table 3. UO-Explainer outperforms
the baseline methods across all evaluation metrics while maintaining a comparable sparsity level.
Notably, UO-Explainer achieves higher sub-recall, indicating accurate detection of ground-truth
subgraphs as explanations. In cases such as Tree-grid and Tree-cycle, where grid- and cycle-shaped
graphlets do not exist within the 2- to 5-node graphlets, we employ grid and cycle graphlets along
with their corresponding orbits and include them as units of explanation. We note that by defining
custom graphlets based on background knowledge or extracted rules tailored to specific problem
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Figure 4: Visualization of the explanations provided in the Gene dataset. Each node represents the
ID of a gene, and the red nodes correspond to the target gene mentioned in the explanation. The red
edges denote the edges included in the subgraph provided as part of the explanation.

settings, the proposed method can be extended beyond the pre-defined 2- to 5-node graphlets and
orbits.

Table 4 shows the performance on real datasets, where UO-Explainer outperforms other baselines in
the fidelity metric, except for task 0 of the PPI dataset. MotifExplainer struggles due to extracting
too many motifs, leading to less meaningful explanations. PGExplainer and TAGE also show poor
performance, often identifying the same or irrelevant edges across nodes, regardless of experimental
changes. GNNExplainer, trained iteratively for node-specific explanations, extracts more relevant
edges, especially on larger datasets. The ∗ notation in Table 4 highlights that lower sparsity is needed
for competing methods to match UO-Explainer, yet they still include noise edges or less important
subgraphs. In contrast, UO-Explainer performs consistently well even under high sparsity, using
just one orbit-based subgraph for explanations, demonstrating its ability to provide high-quality
instance-level explanations.

5.5 CASE STUDY ON GENE DATASET

As the qualitative analysis, we visualized the explanatory subgraphs described in our method and the
baselines on the gene dataset. The visualization results are presented in Figure 4. The experiment
results demonstrate that PGExplainer and TAGE provide scattered subgraphs with discontinuous
edges while the sparsity remains at 0.900 for fair comparison. In contrast, UO-Explainer offers a
connected subgraph that is more intuitive while maintaining relatively high fidelity. MotifExplainer
also presents a connected subgraph as an explanation but with relatively lower fidelity. Additionally,
several studies provide evidence that the genes (TGFBR2 (Massagué & Gomis, 2006), ENG (Breen
et al., 2013), INHBA, and ACVR2B (Attisano & Wrana, 2013)) identified by UO-Explainer in the
explanations have an impact on the surface receptor signaling pathway, which is the label of the
dataset. For example, in (Bottino et al., 2021), it was mentioned that TGFBR2 is one of the TGF-beta
receptors that transmit signals within natural killer cells, exerting a significant influence on cell
development and the function of natural killer cells. These results imply that UO-Explainer provides
human-interpretable explanations compared to other baselines regarding the perspective of interest.

6 DISCUSSION AND CONCLUSION

We introduce UO-Explainer, a human-interpretable explanation method that leverages pre-defined
units, as requested by users, in a unified framework for node classification models. By utilizing
orbits as explanatory units, UO-Explainer decomposes model weights into orbit components, which
serve as essential, human-interpretable units within graph domains. Experimental results on both
synthetic and real-world datasets demonstrate the effectiveness of UO-Explainer, outperforming
baseline methods and delivering higher-quality explanations. UO-Explainer is particularly valuable
in scientific applications, such as drug development and education, where domain knowledge is
critical. By using pre-defined explanation units, users can uncover meaningful patterns and gain
deeper insights through the explanation method.
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Joan Massagué and Roger R Gomis. The logic of tgfβ signaling. FEBS letters, 580(12):2811–2820,
2006.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: modeling
student proficiency using graph neural network. In Proceeding of the IEEE/WIC/ACM International
Conference on Web Intelligence, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10772–10781, 2019.

Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. A survey on
graph counterfactual explanations: Definitions, methods, evaluation, and research challenges. ACM
Computing Surveys, 56(7):1–37, April 2024. ISSN 1557-7341. doi: 10.1145/3618105. URL
http://dx.doi.org/10.1145/3618105.
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A THE FULL SET OF GRAPHLETS AND ORBITS
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Figure 5: Entire graphlets having 2-5 nodes and orbits. The same color nodes within each graphlet
belong to the same orbit.

In this work, we have defined the explanatory units as 0-72 orbits and their corresponding graphlet
ranging from 0 to 29 consisting of 2 to 5 nodes. The full set of utilized graphlets and orbits can be
observed in Figure 5 (Pržulj et al., 2004; Pržulj, 2007).

B ORBIT SEARCH ALGORITHM

In Section 3.1, we have mentioned the implementation of a graphlet search algorithm based on
the Breadth-First Search (BFS) algorithm for extracting the orbit with the highest score and its
corresponding graphlet on the target node. These algorithms initiate the search from the target
node and explore neighboring nodes by verifying whether their connectivity matches the desired
graphlets. We present two algorithmic examples for identifying specific orbits in our study. Algorithm
3 describes the process of identifying the o10 with its corresponding graphlet g5, while Algorithm
4 outlines the steps for identifying the o56 with its corresponding graphlet g23. In both algorithms,
N(v) denotes the neighbor function to construct the set of neighboring nodes around a given node v.
Additionally, C(⋅, n) denotes a combination function to generate the set of combinations consisting
of n elements from a given set ⋅.

Algorithm 3 Orbit o10 Search Algorithm
Input: A graph G = (V,E) where V = {v1,⋯, vi,⋯, v∣V ∣} denotes a set of node and E = {(vi, vj),⋯, (vk, vl)} denotes a set of edges,

Target node vn.
Output: A set L which contains edge sets of g5 graphlets that make target node belong to orbit o10.
Initialize L as an empty set
1: Neighbor set of the target nodeNvn = N(vn) where N denotes the neighbor function.
2: A combination set with three elements C1 = C(Nvn ,3) where C denotes Combination function

3: for v
′

a, v
′

b, v
′

c in C1 do
4: a set of candidate combinations C

′

1 = {(v
′

a, v
′

b, v
′

c), (v
′

b, v
′

a, v
′

c), (v
′

c, v
′

a, v
′

b)}

5: for va, vb, vc in C
′

1 do
6: if (vb, vc) ∈ E and {(va, vb), (va, vc)} /⊂ E then
7: L.add({(vn, va), (vn, vb), (vn, vc), (vb, vc)})

8: end if
9: end for
10: end for
11: Return L

We present a detailed line-by-line explanation of Algorithm 3 as an exemplary demonstration of
the orbit search process. This algorithm is designed to find g5 graphlets in which the target node
belongs to orbit o10. In line 1, we generate the neighbor set Nvn from the target node vn. Since
the number of neighboring nodes within orbit o10 in graphlet g5 is three, line 2 constructs the set
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C1 by forming combinations of three nodes from the neighbor set. Within graphlet g5, there is one
orbit, o8, that distinguishes it from the two neighboring nodes, o9. Therefore, to ensure that each
node combination in C1 also distinguishes between o10 and o9, line 4 generates the set C ′1, which
reflects requirement. Notably, the first nodes of each tuple in the set are distinct from the remaining
nodes. By observing the connectivity of the nodes in lines 5-6, if it matches the connectivity of the
orbits within g5, the edge set of g5 can be obtained in line 7. It is added to the set L. This algorithm
iterates by considering all possible combinations of neighboring nodes surrounding the target node
vn. Therefore, all existing graphlet g5 that make the target node belong to orbit o10 are in the output
set L. This format can be applied to find entire 2-5 node graphlets. However, it is computationally
expensive. To alleviate this computational cost, by introducing randomness during the generation of
the neighbor set (line 1) or combination set in the algorithm(line 2 and line 4), it becomes possible to
sample the desired number of graphlets. The performance as the number of samples is discussed in
Table 7.

Algorithm 4 Orbit o56 Search Algorithm
Input: A graph G = (V,E) where V = {v1,⋯, vi,⋯, v∣V ∣} denotes a set of nodes and E = {(vi, vj),⋯, (vk, vl)} denotes a set of edges,

Target node vn.
Output: A set L which contains edge sets of g23 graphlets that make target node belong to orbit o56.
Initialize L as an empty set
1: Neighbor set of the target nodeNvn = N(vn) where N denotes the neighbor function.
2: A combination set with three elements C1 = C(Nvn ,2) where C denotes Combination function
3: for va, vb in C1 do
4: if vb, vc ∈ E then
5: Neighbor set of va,Nva = N(va)

6: Neighbor set of vb,Nvb
= N(vb)

7: for vc inNva do
8: for vd inNvb

do
9: if (vc, vd) ∈ E and {(vn, vc), (vn, vd), (vb, vc), (va, vd)} /⊂ E then
10: L.add({(vn, va), (vn, vb), (va, vb), (va, vc), (vb, vd), (vc, vd)})

11: end if
12: end for
13: end for
14: end if
15: end for
16: Return L

C TIME COMPLEXITY ANALYSIS

When UO-Explainer provides instance-level explanations, there are four time-consuming processes:
1) Pre-processing for finding the existence of the orbit, 2) Orbit basis learning, 3) Class-orbit score
learning (Model-level explanation generation), and 4) Generating instance-level explanations.

1) Pre-processing for finding the existence of each orbit. As mentioned in Section 3.1, to learn the
orbit basis, we must find the existence of each orbit for every node, as represented by the equation
1. This pre-processing can be conducted to search 2-5 node graphlets for each node. The time
complexity of finding each graphlet that includes specific orbits, as can be inferred from Algorithm
3 and Algorithm 4, is O(dk−1)1. Here, d represents the maximum node degree of the graph data,
and k denotes the number of nodes included in each graphlet and is less than 5. Therefore, the time
complexity of pre-processing for finding all 2-5 node graphlets that include a total 0-72 orbit for an
entire node of graph data is O(∣O∣ ∣V ∣dk−1) where ∣O∣ denotes the number of edges and ∣V ∣ represents
the number of nodes.

2) Orbit basis learning. The time complexity of orbit basis learning is O(∣O∣ ∣V ∣) since training is
performed for each orbit basis over all nodes as shown in Algorithm 1.

3) Class-orbit score learning. Class-orbit score is trained based on the number of orbits selected by
the greedy search for each class weight. In our experiments, the number of selected orbits was less
than or equal to 5, so this can be sufficiently neglected. Therefore, the time complexity of class-orbit
score learning considers only the number or class C; O(∣C∣) as shown in Algorithm 2. The training
time required for UO-Explainer and the baselines can be found in Table 7. Model-level explanations

1As referenced from N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient Graphlet Counting for
Large Networks. In Proceedings of the International Conference on Data Mining, 2015, pp. 1-10.
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Table 5: The training time required for the baselines and UO-Explainer for explanation in the gene
dataset. The training time of the explainer is significantly influenced by the epochs. Therefore, we set
the epochs for each method through a hyper-parameter search to achieve the highest fidelity.

UO-Explainer GNNExplainer MotifExplainer PGExplainer TAGE
Training Time(s) 268 (orbit basis learning)+21 (class-orbit score learning) 1,681 6,074 98 204

Table 6: The training time required for the baselines and UO-Explainer for explanation in the gene
dataset. The training time of the explainer is significantly influenced by the epochs. Therefore, we set
the epochs for each method through a hyper-parameter search to achieve the highest fidelity.

Instance and Model-level Instance-level Model-level
UO-Explainer GNNExplainer MotifExplainer PGExplainer TAGE D4Explainer

Training Time(s) 268 (orbit basis learning)+21 (class-orbit score learning) 1,681 6,074 98 204 502

can be provided immediately after class-orbit score learning. Therefore, the training time of the
UO-Explainer listed in Table 6 equals the time required to provide model-level explanations.

4) Generating instance-level explanations. To provide instance-level explanations, it is necessary
to search graphlets that include the given orbits as explanations for each node and select just one
graphlet having the highest fidelity. Therefore, the time complexity is O(∣V ∣dk−1) since graphlets
need to be directly found for each node. However, instead of finding all graphlets around each
node, we sample a predetermined number of graphlets. Thus, the actual computational cost can be
significantly reduced compared to O(∣V ∣dk−1), while preserving high explanation performance. The
required time and fidelity based on the number of sampled graphlets are shown in Table 7. Even with
a time difference of more than 7 times, as observed when comparing the cases of not sampling and
sampling 70 graphlets for explanation extraction, it can be observed that the fidelity values do not
significantly decrease.

D DETAILED EXPERIMENTAL SETTINGS

In this section, we cover the details of experiments that were not discussed in the main text, such as
the structure of the pre-trained GNN and the hyper-parameter settings of the UO-Explainer.

D.1 DETAILS OF PRE-TRAINED GNNS

We provide detailed information about pre-trained GNNs for datasets other than the random graph,
as already described in Section 5.3. For each dataset, we utilized a pre-trained GNN architecture
consisting of a 3-layer GCN as the embedding model and a 1-layer MLP as the downstream model.
The hyper-parameters and split ratio are shown in Table 8.

D.2 HYPER-PARAMETER SETTINGS FOR UO-EXPLAINER

UO-Explainer has a total of five hyper-parameters including batch size, epochs, learning rate (LR)
for orbit basis learning, and additional epochs, learning rate (LR) for class-orbit score learning.
Hyper-parameters used in the experiments are reported in Table 9.

D.3 DETAILS OF BASELINES

In our code implementation, we primarily utilized the PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019) frameworks. Additionally, for the GNNExplainer and PGExplainer,
we employed implementations from the PyTorch Geometric framework. For the TAGE, we employed
implementations from the Dive into Graph (DIG) (Liu et al., 2021) framework. For MotfiExplainer,
we utilized the code provided in the supplementary material available on OpenReview.net, which
was suitably modified following advice received in correspondence with the authors. This revised
implementation is incorporated within our publicly accessible code.

Furthermore, to ensure the equity of our experiments, we diligently endeavored to explore the
hyper-parameter space of the baselines as extensively as possible. The explored hyper-parameter
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Table 7: The time required and fidelity based on the number of sampled graphlets of UO-Explainerin
the gene dataset. We conducted five experiments for each method and reported the mean and standard
deviation values. The “Entire” refers to the extraction of all graphlets surrounding the target node
without sampling.

# of sampled graphlets 1 10 30 50 70 100 Entire
Time(s) 14.572 ± 0.208 136.342 ± 2.305 379.342 ± 22.438 597.283 ± 3.865 838.991 ± 3.587 1183.459 ± 5.913 6321.783 ± 8.462
Fildelity 0.157 ± 0.018 0.256 ± 0.009 0.297 ± 0.011 0.309 ± 0.014 0.326 ± 0.008 0.324 ± 0.007 0.3543 ± 0

Table 8: Details of pre-trained GNNs. LR means learning rate.

Dataset BA-Sahpes BA-Community PPI0 PPI1 PPI2 PPI3 PPI4 PPI5 LastFM Asia Gen Tree-Cycle Tree-Grid
LR 0.001 0.001 0.003 0.001 0.001 0.001 0.001

Epoch 2,000 5,000 300 600 100 600 3,000
Hidden Dimension 10 30 200 30 100 30 30

Train:Val:Test 8:1:1 8:1:1 10:1:1 8:1:1 8:1:1 8:1:1 10:1:1
Train Accuracy 0.982 0.998 9.998 0.998 0.997 0.998 0.994 0.998 0.997 0.999 0.993 0.987
Val Accuracy 0.943 0.723 0.953 0.959 0.970 0.962 0.976 0.981 0.814 0.744 0.966 0.878
Test Accuracy 0.971 0.800 0.971 0.967 0.973 0.957 0.980 0.936 0.841 0.686 0.966 0.863

space for GNNExplainer includes (lr, epoch, edge size, node feature size, edge entropy, and node
feature entropy). For each dataset in this study, the experiment was conducted by selecting the
combination of hyper-parameters (100-300-600, 0.01-0.05-0.1, 0.005-0.01-0.1, 0.05-0.1, 0.5-1.0,
0.5-1.0) that yielded the highest performance. The explored hyper-parameter space for PGExplainer
includes (lr, epoch, edge size, edge entropy, and dimension of MLP). For each dataset in this
study, the experiment was conducted by selecting the combination of hyper-parameters (0.001-
0.003-0.01-0.5-0.1, 0.01-0.05-0.1, 0.05-0.1, 64-128) that yielded the highest performance. The
explored hyper-parameter space for TAGE includes (lr, epoch, batch size coefficient size, coefficient
entropy, and loss type). For each dataset in this study, the experiment was conducted by selecting
the combination of hyper-parameters (0.000005-0.00005-0.0005-0.005-0.05-0.1, 1-3-5-10-20, 4-16-
64-128, 0.01-0.05, 0.0005-0.005, ‘NCE’-‘JSE’) that yielded the highest performance. The explored
hyper-parameter space for MotifExplainer includes (lr, epoch, embedding dimension of attention
module). For each dataset in this study, the experiment was conducted by selecting the combination of
hyper-parameters (0.001-0.005-0.01, 30-50-100) that yielded the highest performance. Furthermore,
the motif extraction rules for MotifExplainer encompass three categories: 1) cycles within the graph,
2) edges excluding cycles, and 3) motifs constituted by the fusion of cycles involving two or more
identical nodes. In our experiments, when the number of motifs extracted from the graphs was fewer
than 5000, all three rules were employed to conduct the experiments. However, in cases where the
number exceeded 5000 motifs, a random sample of 5000 motifs was utilized.

D.4 EVALUATION METRICS

Sparsity (Li et al., 2022) means the proportion of the presented explanation in the computation graph
based on the target node as follows:

Sparsity = 1

∣V ∣

∣V ∣

∑
i=1

1 −
∣Gexvi ∣
∣Gvi ∣

(9)

where Gexvi denotes the subgraph presented as the explanation for the node vi, Gvi denotes to the
computation graph, and ∣G∣ means the number of edges in the graph G.

Fidelity (Li et al., 2022) is calculated by taking the difference in the probability values of the input
graph and the probability values when the explanation is excluded from the computation graph based
on the target node, as follows:

Fidelity = 1

∣V ∣

∣V ∣

∑
i=1

fprob(Gvi) − fprob(Gvi − Gexvi ) (10)

where fprob(Gvi) refers to the probability values of each node vi from the trained GNN f(G) with
respect to the correct class.
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Table 9: Hyper-parameter settings for UO-Explainer. LR means learning rate.

Dataset Random Graph BA-Shapes BA-Community PPI LastFM-Asia Gene Tree-Cycle Tree-Grid
Epochs (Orbit basis learning) 3,000 3,000 3,000 3,000 1,000 1,000 1,000 1,000

LR (Orbit basis learning) 0.005 0.005 0.005 0.001 0.003 0.005 0.005 0.005
Batch size (Orbit basis learning) 256 256 256 256 2048 256 256 256

Epochs (Class-orbit score learning) 2,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
LR (Class-orbit score learning) 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Table 10: Statistics of the dataset used for the experiment. # symbols mean the number.

Dataset Random Graph BA-Shapes BA-Community PPI LastFM-Asia Gene Tree-Cycle Tree-Grid
Avg # of nodes 340 700 1,400 2,373 7,624 857 871 1,231
Avg # of edges 2,690 4,110 8,920 66,136 55,612 13,992 1,950 3,410

# of classes 2 4 8 2 18 2 2 4
# of tasks 73 1 1 121 1 1 1 1

E EXPERIMENTAL RESULTS WITH STANDARD DEVIATION.

We conducted five experiments for each method by recording the mean and standard deviation in
Table 11, 12, 13, and 14.

F DATASETS

We conducted experiments using five synthetic datasets and three real-world datasets. The statistics
of datasets are shown in Table 10. Additionally, the detailed information on each dataset is described
below.

Random Graph (Holme & Kim, 2002): This dataset does not have node feature values, so we
performed node classification tasks using only the structural information by setting all node feature
values to the same constant value. We set the class of each node based on the existence of its orbit
same as each task number. That is, each node has two classes, c0 (orbit doesn’t exist) and c1 (orbit
exists) for a total of 73 independent tasks, one for each orbit. The ground truth for class c1 is the
target orbit ok for each task.

BA-Shapes (Ying et al., 2019): The node classification dataset consists of a BA graph with 300 nodes
as the base and 80 ”house-like motifs” randomly attached, each consisting of 5 nodes. The house-like
motif precisely matches graphlet g23. The class is determined by the positions of the nodes within
the house-like motif; these node positions precisely match the orbits o58, o57, o56 in g23. Therefore,
the ground truth for each class is set to o58, o57, o56.

BA-Community (Ying et al., 2019): The node classification dataset is generated by randomly
combining two house-like motifs through edges. The first motif is assigned classes c0, c1, c2, c3 based
on the positions of the nodes, and the second motif is assigned c4, c5, c6, c7, resulting in a total of
eight class labels. The ground truth of each motif is the same as that of the BA-Shapes dataset.

Tree-Cycle (Ying et al., 2019): The dataset consists of a balanced binary tree as the base and 80
”six-node cycle motifs” randomly attached. The task is to classify nodes as either not belonging (c0)
to or belonging to a circle (c1). The ground truth for c1 class corresponds to the circle motif. However,
2-5 node graphlets do not encompass the six-node circle motif. Thus, we conducted experiments by
incorporating the circle motif and the orbit within the circle into candidate graphlets and orbits.

Tree-Grid (Ying et al., 2019): The base is identical to that of the Tree-Cycle, with a modification
involving the attachment of a “nine-node grid” in place of the circle. The task has been further
challengingly augmented to classify each node as belonging to the center (c1), periphery (c2), or
cross-lines (c3) based on their positions within the grid. Similar to the case of Tree-Cycle, 2-5 node
graphlets do not contain the nine-node grid. Therefore, we included the grid motif and the orbits
within the grid in the candidate set for experimentation.

Protein-Protein Interaction (PPI) (Zitnik & Leskovec, 2017): This is a node classification dataset
that represents protein-protein interactions in various human tissues using 24 different graphs. Each
node represents a protein and features such as positional, motif gene, and immunological signature
are used with a size of 50 dimensions. Protein-to-protein interactions are represented as edges. Each
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Table 11: Model-level explanation on random graph datasets: (a) with 2 or 3-layer GCN, and (b)
with 2 or 3-layer GIN. Each task is to classify whether the node belongs to the orbit corresponding
task number. The evaluation metric is the Sub-recall. We conducted experiments five times and then
reported the average and standard deviations. The best performances are shown in bold.

(a)
Task number 8 11 16 21 27 31 32 33 35 39 45 47 49 57 59 60 61 62 64

Ground-truth orbit o8 o11 o16 o21 o27 o31 o32 o33 o35 o39 o45 o47 o49 o57 o59 o60 o61 o62 o64
D4Explainer 0.2 ± 0.4 0.8 ± 0.4 0.4 ± 0.5 0.4 ± 0.5 0.2 ± 0.4 0.4 ± 0.5 0.4 ± 0.5 0.4 ± 0.5 1.0 ± 0.0 0.8 ± 0.4 0.2 ± 0.4 0.4 ± 0.5 0.4 ± 0.5 0.8 ± 0.4 0.2 ± 0.4 0.0 ± 0.0 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.4

GLGExplainer 0.8 ± 0.4 0.6 ± 0.5 0.8 ± 0.4 0.6 ± 0.5 0.8 ± 0.4 1.0 ± 0.0 1.0 ± 0.0 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.6 ± 0.5 0.6 ± 0.5 1.0 ± 0.0 0.6 ± 0.5 0.6 ± 0.5 0.8 ± 0.4 0.0 ± 0.0 1.0 ± 0.0
UO-Explainer 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0 ± 0.0 1.0 ± 0.0 0 ± 0.0 1.0 ± 0.0

(b)
Task number 8 11 16 21 27 31 32 33 35 39 45 47 49 57 59 60 61 62 64

Ground-truth orbit o8 o11 o16 o21 o27 o31 o32 o33 o35 o39 o62 o47 o49 o57 o59 o60 o61 o45 o64
D4Explainer 0.8 ± 0.4 0.6 ± 0.5 0.6 ± 0.5 1.0 ± 0.0 0.6 ± 0.5 0.8 ± 0.4 0.8 ± 0.4 0.6 ± 0.5 1.0 ± 0.0 1.0 ± 0.0 0.6 ± 0.5 0.4 ± 0.5 0.8 ± 0.4 1.0 ± 0.0 0.8 ± 0.4 0.8 ± 0.4 0.2 ± 0.4 0.4 ± 0.5 0.6 ± 0.5

GLGExplainer 0.8 ± 0.4 0.8 ± 0.4 1.0 ± 0.0 0.4 ± 0.5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.8 ± 0.4 1.0 ± 0.0 1.0 ± 0.0 0.6 ± 0.5 0.8 ± 0.4 1.0 ± 0.0 0.6 ± 0.5 0.8 ± 0.4 1.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0
UO-Explainer 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table 12: Model-level explanation results on synthetic datasets. The evaluation metric is the Sub-
recall. We conducted 5 experiments for each experiment and reported consistent results.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
class1 class2 class3 class1 class2 class3 class5 class6 class7 class1 class2 class3 class1

Ground-truth Orbit o58 o57 o56 o58 o57 o56 o58 o57 o56 o73 o74 o75 o76
D4Explainer 0.4 ± 0.5 0.6 ± 0.5 0.4 ± 0.5 0.8 ± 0.4 0.2 ± 0.4 0.8 ± 0.4 0 ± 0.0 0.6 ± 0.5 0.4 ± 0.5 0.6 ± 0.4 0 ± 0 0.2 ± 0.4 0.8 ± 0.4

GLGExplainer 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.8 ± 0.4 0.2 ± 0.4 0.8 ± 0.4 1.0 ± 0.0 0.8 ± 0.4 0.0 ± 0.0 0.8 ± 0.4 0.2 ± 0.4 1.0 ± 0.0
UO-Explainer 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.8 ± 0.4 1.0 ± 0.0 1.0 ± 0.0 0.8 ± 0.4 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

node is labeled with 121 dimensions of gene ontology sets, allowing for binary classification of 121
categories, similar to a random graph. We pre-trained a GNN on 20 of these graphs and extracted
explanations for randomly selected graphs to conduct experiments.

LastFM-Asia (Rozemberczki & Sarkar, 2020): This is a social network dataset of LastFM users
in Asia. Each node represents a LastFM user in Asian countries, and edges represent the following
relationships between them. Node features are composed of artists that users like, which we converted
to one-hot encoding for use in experiments. We perform a node classification task to predict the
country of each user across 18 countries.

Gene: For qualitative experiments, we created a straightforward dataset using the gene network
of natural killer cells in humans, as provided by (Zitnik & Leskovec, 2017). Each node of the
dataset represents genes, while the features include positional genes, motif genes, and immunological
signature information of each gene, with each feature consisting of 50 dimensions. The Molecular
Signatures Database (Subramanian et al., 2005) was used to collect the features for each gene. The
labels in the dataset indicate whether a given gene belongs to the cell surface receptor signaling
pathway, with 1 indicating inclusion and 0 indicating exclusion in the gene ontology set.

G LIMITATION AND FUTURE WORK

In this study, we propose UO-Explainer, a GNN explanation method that utilizes graphlets and orbits
as explanation units. Though we have demonstrated that UO-Explainer can provide high-quality
explanations compared to other baselines on extensive experiments, the motifs we can employ as
explanatory units are limited to 2-5 node graphlets. Consequently, we assume thatthis constraint may
occasionally hinder the capture of motifs or patterns when crucial patterns are extremely large when
the input graph is complex. Since many existing works already can approximate the various shaped
subgraphs but do not consider the user-centric perspective, we aim to more focus on the case when
prior assumption or knowledge is crucial based on pre-defined units toward human-interpretable
explanations.
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Table 13: Instance-level explanation results on synthetic datasets. The best performances on each
dataset are shown in bold. We conducted five experiments for each method by recording the mean
and standard deviation.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity

GNNExplainer 0.004 ± 0.008 0.616 ± 0.010 0.580 ± 0.031 0.006 ± 0.008 0.491 ± 0.010 0.653 ± 0.012 0.000 ± 0.000 0.629 ± 0.002 0.872 ± 0.006 0.119 ± 0.000 0.699 ± 0.005 0.724 ± 0.009
PGExplainer 0.760 ± 0.025 0.915 ± 0.003 0.574 ± 0.020 0.238 ± 0.015 0.667 ± 0.011 0.652 ± 0.017 0.000 ± 0.000 0.647 ± 0.043 0.876 ± 0.002 0.926 ± 0.051 0.992 ± 0.005 0.732 ± 0.005

TAGE 0.682 ± 0.045 0.900 ± 0.008 0.601 ± 0.016 0.352 ± 0.012 0.754 ± 0.008 0.672 ± 0.010 0.003 ± 0.000 0.693 ± 0.013 0.874 ± 0.004 0.963 ± 0.011 0.994 ± 0.002 0.734 ± 0.004
MixupExplainer 0.696 ± 0.069 0.906 ± 0.012 0.612 ± 0.006 0.496 ± 0.029 0.857 ± 0.019 0.693 ± 0.004 0.047 ± 0.001 0.712 ± 0.001 0.877 ± 0.010 0.930 ± 0.012 0.994 ± 0.013 0.734 ± 0.002

SAME 0.343 ± 0.003 0.720 ± 0.009 0.547 ± 0.003 0.132 ± 0.002 0.680 ± 0.010 0.642 ± 0.006 0.000 ± 0.000 0.238 ± 0.013 0.846 ± 0.010 0.101 ± 0.017 0.635 ± 0.023 0.692 ± 0.019
EiG-Search 0.878 ± 0.000 0.520 ± 0.000 0.605 ± 0.000 0.078 ± 0.000 0.681 ± 0.000 0.695 ± 0.000 0.004 ± 0.000 0.723 ± 0.000 0.885 ± 0.000 0.083 ± 0.000 0.812 ± 0.000 0.703 ± 0.000

MotifExplainer 0.873 ± 0.069 0.890 ± 0.069 0.548 ± 0.072 0.423 ± 0.045 0.714 ± 0.042 0.683 ± 0.017 0.793 ± 0.046 0.857 ± 0.051 0.879 ± 0.010 0.991 ± 0.000 0.993 ± 0.000 0.736 ± 0.001
UO-Explainer 0.948 ± 0.016 0.984 ± 0.005 0.623 ± 0.000 0.921 ± 0.083 0.970 ± 0.030 0.716 ± 0.004 0.859 ± 0.032 0.900 ± 0.023 0.888 ± 0.024 1.000 ± 0.000 1.000 ± 0.000 0.737 ± 0.000

Table 14: Instance-level explanation results on real datasets. The best fidelity on each dataset is
shown in bold. ∗ notation indicates the lower sparsity setting. We conducted five experiments for
each method by recording the mean and standard deviation.

PPI LastFM AsiaTask0 Task1 Task2 Task3 Task4 Task5
Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity

GNNExplainer 0.100 ± 0.016 0.973 0.325 ± 0.004 0.999 0.417 ± 0.067 0.999 0.480 ± 0.012 0.999 0.250 ± 0.001 0.999 0.331 ± 0.001 0.999 0.114 ± 0.005 0.974
PGExplainer* 0.023 ± 0.00 0.973 0.155 ± 0.008 0.999 0.223 ± 0.077 0.999 0.101 ± 0.067 0.999 0.200 ± 0.001 0.999 0.005 ± 0.000 0.999 0.011 ± 0.002 0.974

TAGE* 0.031 ± 0.002 0.973 0.109 ± 0.003 0.999 0.233 ± 0.052 0.999 0.138 ± 0.034 0.999 0.214 ± 0.019 0.999 0.101 ± 0.020 0.999 0.086 ± 0.008 0.974
MixupExplainer 0.005 ± 0.000 0.973 0.002 ± 0.001 0.999 0.257 ± 0.002 0.999 0.246 ± 0.003 0.999 0.246 ± 0.003 0.999 0.129 ± 0.001 0.999 0.100 ± 0.001 0.974

EiG-Search 0.180 ± 0.072 0.973 0.269 ± 0.032 0.999 0.180 ± 0.053 0.999 0.379 ± 0.073 0.999 0.100 ± 0.079 0.999 0.180 ± 0.072 0.999 0.095 ± 0.021 0.974
SAME 0.022 ± 0.002 0.973 0.189 ± 0.003 0.999 0.194 ± 0.001 0.999 0.189 ± 0.004 0.999 0.034 ± 0.005 0.999 0.129 ± 0.033 0.999 0.049 ± 0.012 0.974

MotifExplainer 0.070 ± 0.008 0.992 0.074 ± 0.003 0.999 0.012 ± 0.028 0.999 0.129 ± 0.034 0.999 0.097 ± 0.005 0.999 0.050 ± 0.021 0.999 0.085 ± 0.004 0.994
UO-Explainer 0.423 ± 0.007 0.999 0.358 ± 0.022 0.999 0.425 ± 0.000 0.999 0.510 ± 0.057 0.999 0.623 ± 0.029 0.999 0.413 ± 0.027 0.999 0.115 ± 0.009 0.993
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