Under review as a conference paper at ICLR 2025

TOWARD HUMAN-INTERPRETABLE EXPLANATIONS IN
A UNIFIED FRAMEWORK FOR GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

As Graph Neural Networks (GNNs) are increasingly applied across various do-
mains, explainability has become a critical factor for real-world applications. Exist-
ing post-hoc explainability methods primarily focus on estimating the importance
of edges, nodes, or subgraphs in the input graph to identify substructures crucial for
predictions. However, these methods often lack human interpretability and do not
provide a unified framework that incorporates both model-level and instance-level
explanations. In this context, we propose leveraging a set of graphlets—small,
connected, non-isomorphic induced subgraphs widely used in various scientific
fields—and their associated orbits as human-interpretable units to decompose
GNN predictions. Domain experts can select the most relevant graphlets as inter-
pretable units and request unified explanations based on these units. To address
this problem, we introduce UO-Explainer, the Unified and Orbit-based Explainer
for GNNs, which utilizes predefined orbits that are generalizable and universal
across graph domains as interpretable units. Our model decomposes GNN weights
into orbit units to extract class-specific graph patterns (model-level) and to identify
important subgraphs within individual data instances for prediction (instance-level).
Extensive experimental results demonstrate that UO-Explainer outperforms ex-
isting baselines in providing meaningful and interpretable explanations across
both synthetic and real-world datasets. Our code and datasets are available at
https://anonymous.4open.science/r/uocexplainer—F12C.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various domains in-
cluding real-world graph-structured data, such as social networks (Fan et al.,[2019), molecules (Duve;
naud et al.| 2015)), and knowledge graphs (Hogan et al., 2021). Despite the remarkable advancements
in GNN architectures (Hamilton et al.| 2017} Kipf & Welling| 2017} Xu et al., 2019; |Velickovi¢
et al., 2018)), they are still perceived as black box models due to their lack of explainability. This
deficiency limits trust in GNN predictions, hindering their application in areas such as drug de-
velopment (Gaudelet et al.,[2021]) and education (Nakagawa et al.,|2019). Therefore, interpreting
the prediction of GNNs has become crucial and has led to the emergence of various explanatory
approaches.

Explainability methods in graph domains deliver explanations through subgraphs that play a signifi-
cant role in predictions regarding the input graph. Two primary issues arise regarding explainability:
i) a human-interpretability and ii) a unified framework encompassing both model and instance levels.
Many existing post-hoc explanability is grounded on perturbation-based methods (Ying et al., 2019;
Luo et al.,[2020; | Xie et al., 2022} [Zhang et al., 2023} |Schlichtkrull et al., [2022) and gradient-based
methods (Baldassarre & Azizpour, |2019} Pope et al.l 2019) to approximate the importance of edges
or nodes within subgraphs. This stochastic optimization of importance is computationally effective in
applying any graph-structured data, these methods have the potential risk that the output subgraph
does not align with prior human assumption or knowledge. Specifically, consider a scientist studying
gene networks who is interested in understanding whether the presence of certain structures, such as
triangles or rectangles, plays a crucial role in predicting specific properties. This scientist would want
to audit the model’s predictions by utilizing an explanation method that can highlight the importance
of these structures. With existing methods, it is challenging to obtain explicit insights into whether a
triangular or rectangular structure in the network is more important; instead, users often have to rely

https://anonymous.4open.science/r/uoexplainer-F12C

Under review as a conference paper at ICLR 2025

on conjecture based on the generated explanations. Additionally, these explanations do not always
present results in a human-intuitive form, as they may include isolated nodes or disconnected edges,
further hindering their interpretability. Therefore, we emphasize the need for explainability that
centers on human interpretability, a perspective that has been largely underexplored.

Last but not least, human-interpretable explanations should be delivered in a unified framework,
incorporating both global and local levels in terms of the scope of explanation (Yuan et al., 2022}
Prado-Romero et al.| 2024). Most of the existing methods primarily specialize one one-level expla-
nation either model or instance-level explanations. Model-level methods reveal patterns that GNNs
deem significant for specific classes, eventually offering a broad understanding of the GNNs’ general
behavior. On the other hand, instance-level methods focus on individual predictions, identifying the
subgraphs most relevant to the target node or graph. As each type of explanation complements the
other from different perspectives, understanding at both levels enhances the explainability necessary
for grasping the decision-making process of GNNs. However, State-of-the-art (Azzolin et al., 2022
Chen et al., [2023) studies also have rarely explored a unified framework that simultaneously provides
both model-level and instance-level explanations in the user-centric perspective of interest.

In this paper, we prioritize the two crucial perspectives that explanation should be human-interpretable
in the unified framework incorporating both model and instance levels. Our proposed model, UO-
Explainer, the Unified and Orbit-based Explainer for GNNSs, allows users to harness their prior
knowledge by giving room to select the user-defined explanation units in unified views. Considering
the uniqueness of the graph domain to define explanation unit, we exploit orbits within graphlets that
have been studied as a generalizable and universal pattern in many scientific fields such as protein
interaction networks |Przulj et al.| (2004); [Przulj| (2007)), social networks |(Chen & Lui| (2018)); Ahmed
et al.[(2015)), and molecular structure networks |[Kondor et al.|(2009), while users can also adopt a
unique prior perspective to define their unit instead of orbit. To provide unified explanations, we
decompose the weights into orbit representation vectors to understand the contribution of each orbit
for a specific class or prediction. When we break down the weight into orbits, we acknowledge the
contribution of each orbit for model decision-making, which is supposed to be further discussed in the
method section in detail. Through extensive experiments, we demonstrate the superior performance
of UO-Explainer on eight well-known datasets. Consequently, UO-Explainer shows the concrete
performance in a unified framework leveraging the human prior knowledge as orbit generalizable
unit in graph-structured datasets.

In summary, the contributions of our research are as follows:

* We propose UO-Explainer, a unified framework to provide both model-level and instance-
level explanations for node classification based on human-defined explanation units.

* We demonstrate the human interpretable explanation based on orbits generalizable and
effective on graph-structured datasets.

* We perform rigorous and extensive experiments on 8 datasets to evaluate the quality of our
explanations in both model and instance-level explanations.

2 PRELIMINARY

2.1 GRAPH NEURAL NETWORKS (GNNS)

We represents a graph as G = (V,&; A, X) where £ denotes a edge set and V = {v1, vz, -, v)y|}
denotes a node set. A € RIV*VI denotes the adjacent matrix and X € R!VI*%» denotes the node
feature matrix. In this study, we focus on GNNs for node classification tasks as presented in (Kipf]
& Welling, 2017; |Xu et al., 2019). A GNN model f(-) maps input graph into prediction matrix
fAX)=Z¢ RIVIXCl ¢ = {c1,-+,¢ic)} in where C as the set of classes. GNNs can be expressed as
a composite function f = fp o fg of an embedding-model fg(-) and a downstream-model fp(-).
The embedding model embeds an adjacent matrix and node feature matrix into a node representation
matrix H, i.e., fg(A,X)=He RVIxd The representation vector of each node v,, is denoted by the
h, , n-th row vector of matrix H. The downstream-model maps the node representation matrix into
the prediction matrix to classify nodes into each class, i.g., fp(H) = HW +b = Z where W ¢ R(C]
denotes weight matrix and b € RI°/ denotes bias vectors. In this operation, only the m-th column

Under review as a conference paper at ICLR 2025

Instance-level Explanation

O = ArIMAX{Sup o0 Simemor Stmemorc)

—LTTT1e . O~ eI+ - e
PO i g
—

Node representation Class weights (,,) Prediction values

Node-class-orbit
Conen) SCOTe (Sy,, 1 00)
! I
' Class weight decomposition
'
'
'

, A BOOA A el

Prediction value decomposition

vector (hy,)
'

Prepro;cemng

e

—_— 0::’;:‘2:5;‘ s we, T ~0ax[T T [+oaxCL LT +03xCL T[] +o2<[BINIEI ———» Class1 Class 2
we, LT ~o0.2x[T T T] +02x[CT] +0.ax [T 1] +o4~[EINININ
et —
Class-orbit score Orbit basis

(Seyo) (Poy)

Figure 2: Overview of UO-Explainer: The propagation process of the GNN is depicted in the blue
box, while the orange box represents the pipeline of UO-Explainer. The provided explanations are
illustrated in the green box. The dark green node of the input graph denotes the target node. The
colors (red, orange, blue, and yellow) correspond to the orbits within the graphlets.

vector w,., of weight matrix W and the m-th element b, , of bias vectors b are involved in the
computation to predict the class ¢,,, 1.g., Z.,, = Hw,.,_ + b, where z._ denotes the m-th row vector
of matrix Z. Weight regards to specific class as w,, affects only the prediction of the class c,,, so we
call this weight vector a class weight. Furthermore, the prediction value z,,, ., for the class of each
node (the n-th row and m-th column element of Z) can be expressed as z,,, ,, = h,,, - W, +be,, .
computed by the operation between each node representation vector and class weight.

2.2 ORBITS WITHIN GRAPHLETS

2-node graphlet 3-node graphlet 4-node graphlet Graphlets as predominantly observed patterns
i Z% % O";&@ o% . are pre-defined subgraphs with a small number

0 AN A of nodes (Przulj et al.| 2004). Figure [I] shows

g 0 92 9 Ga s some examples of 2-5 node graphlets (Przulj

0
S-node graphlet

et al., 2004; |Przulj, 2007), where g; denotes the

s o e 2 I-th graphlet. The full set of 2-5 node graphlets
06 oy oz e used in our study is presented in Appendix [A]
ous 022 057 All graphlets are non-isomorphic to each other,

9o 910 911 923 929

indicating that each graphlet has a unique struc-
ture. Each graphlet contains nodes with identical
or distinguishable topological positions known
as orbits, e.g., the central node of g; belongs to
09 due to its distinguishable position, whereas
the remaining nodes belong to o;. The set of orbits is represented as O = {og, -+, 0k, -+, o‘o|} where
oy, denotes the k-th orbit.

Figure 1: Graphlets having 2-5 nodes and 0-72
orbits. The same color nodes within each graphlet
belong to the same orbit.

Previous studies have highlighted the usefulness of graphlet-based analysis in various graph data do-
mains, including protein interaction networks (Przulj et al.| 2004} |Przulj, 2007), social networks (Chen
& Luil, 2018 |/Ahmed et al.l 2015)), and molecular structure networks (Kondor et al., [2009). For
example, (Przulj,2007) defined the Graphlet Degree Distribution (GDD) using 2-5 node graphlets and
orbits as units to analyze agreement among biological and chemical networks. (Shervashidze et al.|
2009; [Espejo et al.| [2020)) further compared the empirical similarity of various chemical compound
networks using a 2-5 node graphlet kernel. Since these analyses indicate that 2- to 5-node graphlets
can serve as simple yet effective units for interpreting graph data, we primarily employ them to
provide orbit-based explanations, unless otherwise specified by the user.

3 UO-EXPLAINER

UO-Explainer serves as a unified explainer capable of delivering both model-level and instance-level
explanations for node classification tasks. To deliver explanations in a human-interpretable way, we
exploit a pre-defined set of 0-72 orbits as the explanatory unit, which is recognized as essential and
human-interpretable units within graph domains, while users can also apply other meaning units
regarding their perspective instead of orbits. Upon the interpretable unit, we decompose the weights

Under review as a conference paper at ICLR 2025

that directly influence classification concerning two components such as an embedding model and a
downstream task model. An overview of UO-Explainer is presented in Figure

3.1 ORBIT BASIS LEARNING

To decompose class weights into orbit units requires orbit bases, which are the representation vectors
of each orbit. Orbit bases must necessarily reflect the following two aspects: (1) The distribution
of each orbit within the input graph, and (2) The message passing and aggregation behavior of the
embedding model. To meet the first requirement, we pre-process the orbit-existences on each node in
the input graph. Orbit existence is denoted as ¥,,, ., and determines whether each node v,, belongs
to the orbit oy,.

0 if v, doesn't belong to oy,
Yon.on = (1)

1 if vy, belongs to oy.

We present the toy example of this pre-processing through Figure (3| (a) portrays the input graph.
(b) represents the graphlets and orbits employed in the pre-processing. For simplicity, let us assume
that only the graphlets g2, g3, g are utilized and the orbits used for pre-processing are 03, 04, 05, 011.
Different color nodes inside each graphlet refer to nodes belonging to different orbits. (c) is a
substantial pre-processing process, which checks whether each node can belong to each orbit and
assigns 1 or O to the orbit’s existence. The dark green node represents the pre-processing node. You
can see that node 3 belong to 03, 05, 011. Therefore, Y., o4, Yuvs,04 1 Yvs,055 Yvs,01, are assigned values
of 1, 1, 0, 1, respectively. This pre-processing is performed for all orbits in 2-5 node graphlets at all
nodes within the input graph.

Next, we train a logistic binary classifier to pre-

e dict the existence of each orbit, initializing each
oo, 10 orbit with p,, vector, and taking node repre-
h sentation as input, described by the following

oo equation:
Pre -processing Existence of each
orbit on node 3 ~ . . A
,,,,,,,,,, Yon,0, = 5igmoid(Po,, - hv,)- @
Ve _ i

To satisfy the second aspect, we learn the orbit
basis by incorporating the node representations
o, from the node embedding model when training.

!]
Graphlets and orbits Pre-processing Existence of each

on node v omitonnode4 Then, we apply normalization in Equation as
Do,

Figure 3: Detailed example of the pre-processing Poxr = n: I

step. The dark green node represents the target basis remains constant. Orbit-basis learning is

node for explanation. The colors of nodes within conducted for all orbits, and details of orbit basis

the graphlets represent the orbits respectively. learning can be found in Algorithm

(@) (b)

03

Input Graph

to ensure that the size of the orbit

3.2 MODEL-LEVEL EXPLANATIONS

Model-level explanations are provided by decomposing class weights into a linear combination of
orbit bases, as the following equation:

We, N Sep,00Pog T+ Scpn0,Poy 00+ Seyp 0k Pox

> SemionPoy- 3)

0,€0O

Generally, when a vector is expressed as a linear combination of bases, the coefficients of each
basis indicate to what extent they contribute to forming the vector. Accordingly, the coefficients of
orbit bases are regarded as contributions to the class weights. Furthermore, the bases are learned by
considering each orbit distribution, thereby treating the contribution of orbit basis as the contribution
of each orbit. We define the contribution of orbit o to the class ¢, classification as a class-orbit

SCOre Sc, . o -

The class-orbit scores are trained by the following objective function derived from Equation

min

Sem 1Ok >

Wcm - Z Scm,okpok (4)

0,0

Under review as a conference paper at ICLR 2025

Algorithm 1 Orbit Basis Learning

Input: A set of node representation vectors {hy, hy, -

Y h“IVI }, a set of existences of each orbits for each nodes
{Yv1,002Yva,007 " Y1003 Yoy 072 }-
Output: A set of orbit bases P = {an 5 Poy s Porg }
Initialize P as an empty set
1: for k = 0 to 72 (the number of orbits used) do
2: Initialize P, , asa random vector.
3 for n=1 to V| (the number of nodes) do
4: Gon 05, = 8igmMoid(Po,, - hy,,)
5 L = BCE(Yu, 04,5 Jvn,o)
6 Update po,,
via Vf,% L

7 end for
8 poj, = ok

7 Iyl
9 P.add(pok)
10: end for
11: Return P

To consider only the positive impact of the contributing orbits, we limit the class-orbit score to
positive. However, directly optimizing the objective function for all orbit bases involves a significant
amount of randomness. For example, in the worst case, if all orbit bases are orthogonal, and the
dimension of the class weight is d < |0|, an infinite number of combinations of s.,, ,, can be found
to optimize the Equation [This randomness hinders the learning of the correct contribution of
orbits. Therefore, we modify the objective function using a greedy approach by selecting the orbit
that minimizes the difference between the class weight and the linear combination of selected orbits
in each iteration, as shown in the following equation:

argmin min |w. - [P
01,€0O em >

Poi]Se,. |)

Cm

P, is a matrix consisting of the selected p,, as columns, and S, represents a column vector
consisting s, o, of the selected orbits. [P, |p,,] denotes concatenation of the p,, to P, as
a column, e.g., if orbits 1, 3, and 5 are selected, then P, = [pPo,|Pos|Pos] and S, is a vector
composed of 5., o, 5c,, 05 and 5, .. By stopping the selection when the difference between the
class weight and the linear combination does not decrease, we reduce the randomness and prevent
too many orbits from being included in the explanation for each class. The detailed procedure can be
found in Algorithm 2]

UO-Explainer uses the orbit o; with the highest class-orbit score from Equation E] as the model-level
explanation.

OZm = argimax {scmmov " Sem,060 """ Sem 072 } (6)
0,€0
The orbit with the highest class-orbit score is always accompanied by its corresponding graphlet.
Therefore, the model-level explanation is provided in the form of graph patterns, with the given orbit
as the target node and its corresponding graphlet.

3.3 INSTANCE-LEVEL EXPLANATIONS

Instance-level explanations are provided by decomposing the prediction value of the target node into
orbit units. The class weight decomposition of Equation [3|extends to the decomposition of prediction
values as follows:

Zop,cm M Do, s We, + e,

® Scpm,00 hvn “Poo t' F Scp 0 hvn “Poj, T+ Sep ok hvn *Pox +me’ @)
[S ——

Svp,em, 00 Svp,em,op Svp,em oK

The equation above directly decomposes the prediction value of the target node into orbit units.
Each term represents the magnitude of the decomposed prediction value, similarly indicating the
contribution of orbits, akin to class weight decomposition. Therefore, we define the contribution of
orbit oy, to the class ¢, prediction of target node v,, as node-class-orbit score, sy, .. 0, - 10 provide

Under review as a conference paper at ICLR 2025

Algorithm 2 Class-Orbit Score Learning

Input: A set of orbit bases {Po , ", Poy, » **s Pogs }» & et of class weight vectors {we, =+, We,,, , Weyg }

Output: A set S of selected orbit’s class-orbit scores sc,,, 0,

Variables: A vector composed of an element as a selected orbit’s class-orbit score S
Initialize S as an empty set

1: for m=1 to |C| (the number of classes) do

cm

2 Initialize 1,y = oo

3 Initialize P, as an empty matrix

4 while do

5: selected_orbit = arg min,, co mins, >0 chm ~[PepnlPoy ISem ||
6 L= chm - [Pcm, |pselected,orbit]scm, H
7 if I < l;sn then

8 Imin =1

9: Pcm/ = [Pcm,lpselected,orbit]

10: else

11: S.add(all Scm oy, i1 the Scn)

12: break

13: end if

14: end while

15: end for

16: Return S

instance-level explanations, UO-Explainer extracts the orbit o},
as follows:

,,, With the highest node-class-score

=arg H(loaX {SUH,CWOU 37 SUn,Cm 080 T SV Cm 0K } (3)
o€

Un,Cm

Unlike the model-level explanation, which provides the orbit with the highest contribution and
its corresponding graphlet as an explanation, instance-level explanations must provide subgraphs
around the target node within the input graph. To achieve this, we use the search algorithm based
on the Breadth-First Search (BFS). These algorithms initiate the search from the target node and
explore neighboring nodes by verifying whether their connectivity matches the highest contributed
orbit’s corresponding graphlets. A detailed algorithm is shown in Appendix [B] Through this search,
UO-Explainer can extract a subgraph within the input graph that matches the highest-contributing
orbit for the target node, i.e., the explored subgraph is provided as an instance-level explanation along
with the target node.

3.4 TIME COMPLEXITY ANALYSIS

Training UO-Explainer consists of two main processes: orbit basis learning and class-orbit score
learning, with the time complexity for each process detailed below. The time complexity of orbit
basis learning is O(|O||V|), where training is conducted for each orbit basis across all nodes in
the input graph, as outlined in Algorithm (I} Here, |O| represents the number of orbits used for
explanation, and |V| denotes the total number of nodes in the input graph. The time complexity
for class-orbit score learning depends on the number of orbits selected through greedy search for
each class weight. In our experiments, the number of orbits selected did not exceed 5, rendering
this complexity component negligible. Consequently, the overall time complexity for this phase is
represented as O(|C]), following the procedure in Algorithm [2| where C indicates the number of
classes. In short, the overall time complexity for training UO-Explainer is O(|O||V| +|C|) ~ O(|V)).

The time complexities of the baseline methods are as follows: D4Explainer has a time complexity
of O(|V[’), GNNExplainer is O(|V||€|) where || denotes the number of edges, PGExplainer
and TAGE have a time complexity of O(|£|), and MotifExplainer operates with a complexity of
O(|V||M|), where | M| represents the number of motifs used in explanations. Therefore, in terms
of time complexity, UO-Explainer is less demanding compared to D4Explainer and GNNExplainer.
Alongside such analysis, our unified model is capable of providing both model-level and instance-
level explanations simultaneously, thus demonstrating its competitiveness in terms of time efficiency.
A more detailed time complexity analysis and experiments are described in Appendix

Under review as a conference paper at ICLR 2025

4 RELATED WORK

GNN explanation methods can be categorized into model-level and instance-level, each with its
own scope of explanation (Yuan et al., 2022)). Model-level methods (Yuan et al.,|2020; [Shin et al.,
2022} |Azzolin et al.|2022) offer explanations that describe the general behavior underlying GNN
predictions regarding to specific class. For example, XGNN (Yuan et al., [2020) aims to generate
model-level patterns that maximize the predictive probability of a certain class by training a graph
generator through reinforcement learning. Similarly, PAGE (Shin et al.l 2022) employs graph
representation vectors to iteratively search for human-interpretable prototype graphs. Moreover,
GLGExplainer (Azzolin et al.}2022)) provides general model-level patterns by aggregating instance-
level explanations into logical formulas, utilizing an Entropy-Logic Explainer (E-LEN) (Barbiero
et al.,|2022; |Ciravegna et al.,2023). However, these studies primarily focus on graph classification
tasks and do not directly apply to node classification tasks. To bridge this gap, D4Explainer (Chen
et al., 2023) introduces a method for providing counterfactual model-level explanations for node
classification tasks, alongside instance-level explanations, based on a diffusion model. This approach,
however, results in a high training cost for the explainer incurred by iterative diffusion- and deonising
steps. Moreover, none of the methods for model-level explanations fully consider the user-centric
explanation unit, hindering human-interpretability.

Instance-level methods (Yu & Gaol 2022} |Ying et al., |2019; |Luo et al., [2020; Xie et al., [2022;
Vu & Thai, [2020; [Wang et al., 2023}, [Xiong et al., 2023 |[Zhang et al., 2023} |Ye et al.| 2024} [Lu
et al., 2024) provide explanations in the form of subgraph to elucidate the prediction of a specific
instance by unveiling relational structures with high contributions in the input graph. Notably,
GNNExplainer (Ying et al.l 2019) stands as an early instance-level explainer, optimizing edge and
feature masks to maximize mutual information with GNN prediction results. PGExplainer (Luo
et al. 2020) leverages node representation vectors and trains a parameterized mask predictor to
optimize edge masks for explanation in inductive settings. TAGE (Xie et al.||2022)) explains the GNN
embedding models, allowing efficient explanations for multiple downstream tasks. All these methods
entail learning edge masks to present masked graphs as instance-level explanation subgraphs. Despite
connectivity constraints, it often fails to generate connected subgraphs, resulting in less intuitive
explanations. On the other hand, MotifExplainer (Yu & Gao, [2022) provides an instance-level
explanation that does not rely on edge masks. It computes embedding vectors for each motif and
extracts explanations by restoring the GNN’s prediction value using an attention network. However,
it overlooks both the universal importance of specific motifs and the orbit-based isomorphism when
extracting motifs. Furthermore, the abovementioned methods are limited to providing explanations
in the unified framework capable of simultaneously providing both model-level and instance-level
explanations under the human-interpretable units of interest.

5 EXPERIMENT

We evaluate explanations provided by UO-Explainer at the model-level and instance-level on synthetic
and real-world datasets. These extensive experiments include quantitative and qualitative analysis of
UO-Explainer’s performance compared to recent baselines. For detailed experimental settings, please
refer to Appendix

5.1 DATASETS AND BASELINES

We conducted experiments using five synthetic datasets and three real-world data sets. Synthetic
datasets such as Random Graph (Holme & Kim, 2002), BA-Shapes (Ying et al., 2019), BA-
Community, Tree-Cycle, and Tree-Grid are used to evaluate GNN explanation methods to compare the
generated explanation based on pre-defined ground truths of each dataset. Also, real-world datasets
such as Protein-Protein Interaction (PPI) (Zitnik & Leskovec,[2017)), LastFM-Asia (Rozemberczki
& Sarkar, [2020), and Gene (Zitnik & Leskovec, [2017) are used for node classification tasks. The
detailed information and statistics of each dataset are described in Appendix [

Among the existing methods, D4Explainer (Chen et al.| [2023)) and GLGExplainer (Azzolin et al.,
2022) are the only existing framework that provides model-level explanations for the node classifi-
cation task. For instance-level explanations, we set baselines based on common methods that learn
edge masks, such as GNNExplainer (Ying et al.,|2019), PGExplainer (Luo et al.,[2020), TAGE

Under review as a conference paper at ICLR 2025

Table 1: Model-level explanation on random graph datasets: (a) with 2 or 3-layer GCN, and (b) with
2 or 3-layer GIN. Each task is to classify whether the node belongs to the orbit corresponding task
number. The evaluation metric is the Sub-recall. The best performances are shown in bold.

(a)

Task number 8 11 16 | 21 27 | 31 32 | 33 35 39 | 45 | 47 | 49 | 57 60 | 61 62 | 64
Ground-truth orbit 08 011 016 021 027 | 031 032 033 035 039 | 045 | O47 049 057 060 061 062 064
D4Explainer 02080404]|02]04]04[04]|10]|08]02]04]04]08]02]001]06]06]|0.2
GLGExplainer 08]06|08|06|08|10{10|08|08|08|08|06]|06|10|06]|06]08]|00]|10
UO-Explai 10(10|10|10|10|10|10|00|10|10|10|10|10|10|10| 00|10 |00 |10

(b)

Task number 8 11 16 | 21 | 27 | 31 32 | 33 [35 39 | 45 [47 | 49 | 57 | 59 | 60 | 61 62 | 64
Ground-truth orbit | og 011 | 016 | 021 031 | 032 | 033 039 | Og2 | 047 | 049 | 057 060 | 061 064
D4Explainer 08]06[]06[10|]06]08]08[]06]10][10][06][04]08[]10]08][08]02]04]O06
GLGExplainer 080810 04|10|10|10|10|08|10|10)|06|08|10)|06]| 08| 10]0.0]1.0
UO-Explai i0(10/10|10|10|10|10|10|10|10|10|10|10|10|10|10|10 10|10

59

059

027 035 059 045

Table 2: Model-level explanation results on synthetic datasets. The evaluation metric is the Sub-recall.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
class] class2 class3 | class] class2 class3 class5 class6 class7 | class] class2 class3 classl
Ground-truth Orbit 058 057 056 058 057 056 058 057 056 073 074 075 076
D4Explainer 0.4 0.6 0.4 0.8 0.2 0.8 0.0 0.6 0.4 0.6 0.0 0.2 0.8
GLGExplainer 1.0 1.0 1.0 1.0 0.8 0.2 0.8 1.0 0.8 0.0 0.8 0.2 1.0
UO-Explainer 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 0.8 1.0 1.0 1.0

(Xie et al., [2022), MixupExplainer (Zhang et al.,[2023)), SAME (Ye et al.,|2024)), and EIG (Lu et al.,
2024). Additionally, MotifExplainer (Yu & Gaol|2022), which provides explanations based on motifs
similar to our model, was also set as a baseline.

5.2 EVALUATION METRIC

We evaluate the quality of explanations using Sparsity, Fidelity, Edge-recall, and Sub-recall as
evaluation metrics. Sparsity (Li et al., | 2022)) refers to the ratio of edges in the explanation compared
to the total number of edges in the computation graph of the target node. High sparsity implies
that the proposed explanation has a small number of edges. Fidelity (Li et al.|[2022)) measures the
difference in the probability values when the explanation is excluded from the computation graph
based on the target node. Edge-recall indicates how many edges in the explanations match the edges
in the ground truths. Sub-Recall indicates the proportion of correct answers that the entire presented
explanations match with ground truths. Notably, equations of Sparsity and Fidelity are described in
the Appendix Additionally, we conducted experiments five times and then reported the average
and standard deviations in Appendix [E]

5.3 RESULTS: MODEL-LEVEL EXPLANATIONS

We first validate whether the UO-Explainer can identify the correct orbits for model-level explanations.
We pre-train 2 or 3-layer GCN models (Kipf & Welling| 2017) and 2 or 3-layer GIN models (Xu
et al.,[2019) on Random Graph datasets. We pre-train 2 or 3-layer GCN models (Kipf & Welling|
2017) and 2 or 3-layer GIN models (Xu et al., 2019) on Random Graph datasets. Each task is to
classify whether the node belongs to the orbit corresponding task number. Consequently, explanation
methods are expected to provide the ground-truth pattern in the form of the orbit (target node) with
its corresponding graphlet (pattern) for each task. Tasks with accuracy below 0.8 are excluded as
they are unlikely to yield accurate explanations. We use the Sub-recall metric to evaluate whether the
provided explanation matches the ground-truth pattern.

In Table[I] UO-Explainer shows superior performance compared to other baselines. In particular,
the UO-Explainer constantly provides model-level explanations matching to ground truths for all
tasks except 33, 60, and 62 in the GCN model as shown in (a). This limitation may arise from the
GNN’s expressiveness, failing to learn intended orbits during the pre-training. To address this, we
conducted experiments in the same manner using GIN, known for better expressiveness. The results
are shown in (b) of Table 1| that UO-Explainer accurately provides the explanations matching the

Under review as a conference paper at ICLR 2025

Table 3: Instance-level explanation results on synthetic datasets. The best performances on each
dataset are shown in bold.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
Sub-recall Edge-recall Fidelity | Sub-recall Edge-recall Fidelity | Sub-recall Edge-recall ~Fidelity | Sub-recall Edge-recall Fidelity
GNNEXxplainer 0.004 0.616 0.580 0.006 0.491 0.653 0.000 0.629 0.872 0.119 0.699 0.724
PGExplainer 0.760 0.915 0.574 0.238 0.667 0.652 0.000 0.647 0.876 0.926 0.992 0.732
TAGE 0.682 0.900 0.601 0.352 0.754 0.672 0.003 0.693 0.874 0.963 0.734
MixupExplainer 0.696 0.906 0.612 0.496 0.857 0.693 0.047 0.712 0.8770 0.930 .9¢ 0.734
SAME 0.343 0.720 0.547 0.132 0.680 0.642 0.000 0.238 0.846 0.101 0.635 0.692
EiG-Search 0.878 0.520 0.605 0.078 0.681 0.695 0.004 0.723 0.885 0.083 0.812 0.703
MotifExplainer 0.873 0.890 0.548 0.423 0.714 0.683 0.793 0.857 0.879 0.991 0.993 0.736
UO-Explainer 0.948 0.984 0.623 0.921 0.970 0.716 0.859 0.900 0.888 1.000 1.000 0.737

Table 4: Instance-level explanation results on real datasets. The best fidelity on each dataset is shown
in bold. * notation indicates the lower sparsity setting.

PPI
Task0 Task1 Task2 Task3 Task4 Task5
Fidelity Sparsity | Fidelity —Sparsity | Fidelity Sparsity | Fidelity —Sparsity | Fidelity Sparsity | Fidelity —Sparsity | Fidelity ~Sparsity
GNNExplainer 0.100 0.973 0.325 0.999 0.417 0.999 0.480 0.999 0.250 0.999 0.331 0.999 0.114 0.974
PGExplainer* 0.023 0.973 0.155 0.999 0.223 0.999 0.101 0.999 0.200 0.999 0.005 0.999 0.011 0.974
TAGE* 0.031 0.973 0.109 0.999 0.233 0.999 0.138 0.999 0.214 0.999 0.101 0.999 0.086 0.974
MixupExplainer | 0.005 0.973 0.002 0.999 0.257 0.999 0.246 0.999 0.246 0.999 0.129 0.999 0.100 0.974
EiG-Search 0.180 0.973 0.269 0.999 0.180 0.999 0.379 0.999 0.100 0.999 0.180 0.999 0.095 0.974
SAME 0.022 0.973 0.189 0.999 0.194 0.999 0.189 0.999 0.034 0.999 0.129 0.999 0.049 0.974
MotifExplainer | 0.070 0.992 0.074 0.999 0.012 0.999 0.129 0.999 0.097 0.999 0.050 0.999 0.085 0.994
UO-Explainer | 0.423 0.999 0.358 0.999 0.425 0.999 0.510 0.999 0.623 0.999 0.413 0.999 0.115 0.993

LastFM Asia

correct ground-truth for all tasks. These findings confirm that UO-Explainer is capable of detecting
various orbits and providing correct explanations while UO-Explainer’s explanations mirror the
expressiveness of the GNN’s embedding model. Notably, comparing the performance of original
GNNss to the decomposed class weights model, the performance degradation is less than 5%. On the
other hand, D4Explainer and GLGExplainer show slightly improved or even decreased performance
in the GIN setting and fail to provide consistent explanations matched with the ground truth.

As observed in Table 2] UO-Explainer also outperforms other baselines on the BA-Shapes and
BA-Community dataset. Using 3-layer GCNs for this experiment, UO-Explainer successfully
provides accurate model-level explanations for each class on both datasets. Specifically on the
BA-Shapes dataset, we observe the explanations that the house-like motif plays a crucial role in node
classification by detecting the orbit such as osg, 057, and 0sg in the graphlet go3 as explanations. This
explanation sheds light on the overall behavior of the GNN beyond individual nodes, enabling a
broader interpretation of GNNs. Moreover, our approach provides orbit-corresponding graphlets,
allowing us to determine the topological positions of nodes within the motif for each class. Thus,
UO-Explainer shows that the GNN recognizes the house-like motif as an important pattern for node
classification, assigning nodes on the roof, floor, and top of the roof of the house-like motif to classes
1, 2, and 3, respectively. On the BA-Community dataset, UO-Explainer also finds the ground-truth
pattern as the model-level explanation by detecting the orbit such as 0sg, 057, and osg in the graphlet
go3 as explanations, since the dataset is a union of two BA-SHAPES graphs. In conclusion, the
experimental result demonstrates that orbits as pre-defined explanation units of UO-Explainer serve
crucial patterns of the specific classes for prediction, showing accurate and consistent explanations.

5.4 RESULTS: INSTANCE-LEVEL EXPLANATIONS

Except for MotifExplainer, all baselines provide explanations in the form of subgraphs obtained by
extracting edges exceeding specific threshold values or ranking the top-% edge considered important.
For fair experiments, explanations composed of top-k edges were extracted considering a sparsity
level similar to that of UO-Explainer. In the case of MotifExplainer, we extract one motif as an
instance-level explanation. UO-Explainer used a subgraph within the input graph that matches the
highest-contributing orbit for the target node for the instance-level explanation as mentioned in
Section

The experimental results on synthetic datasets are shown in Table 3] UO-Explainer outperforms
the baseline methods across all evaluation metrics while maintaining a comparable sparsity level.
Notably, UO-Explainer achieves higher sub-recall, indicating accurate detection of ground-truth
subgraphs as explanations. In cases such as Tree-grid and Tree-cycle, where grid- and cycle-shaped
graphlets do not exist within the 2- to 5-node graphlets, we employ grid and cycle graphlets along
with their corresponding orbits and include them as units of explanation. We note that by defining
custom graphlets based on background knowledge or extracted rules tailored to specific problem

Under review as a conference paper at ICLR 2025

'
Methods & TAGE MotifExplainer PGExplainer i UO-Explainer

i

T

| SMAD7 SMAD7 SM/\D7 SMAD7 SMAD7 SMAD7 E SMAD7 SMAD7

I

| / :
INHBASS=ACVRIB ACVRIB H ACVRIB
ACVR

'
!

Explanatlon IDAXX +7§<*|: 1 DAXX ‘\‘ ACVR2A: /VRI DAXX + ACYR2A: /VR] ' DAXX +A(VR2A: /VRI
' \ \
'
'

CVR2A
\ / TGFBRZ

H TRGFB] % CCN2 TRGFB] — CCN2 TRGFBI ™= CCN2 | TRGFB1 —— CCN2
H 1

Fidelity E 0.221 0.101 0.228 : 0.318

Figure 4: Visualization of the explanations provided in the Gene dataset. Each node represents the
ID of a gene, and the red nodes correspond to the target gene mentioned in the explanation. The red
edges denote the edges included in the subgraph provided as part of the explanation.

settings, the proposed method can be extended beyond the pre-defined 2- to 5-node graphlets and
orbits.

Table 4] shows the performance on real datasets, where UO-Explainer outperforms other baselines in
the fidelity metric, except for task O of the PPI dataset. MotifExplainer struggles due to extracting
too many motifs, leading to less meaningful explanations. PGExplainer and TAGE also show poor
performance, often identifying the same or irrelevant edges across nodes, regardless of experimental
changes. GNNEXxplainer, trained iteratively for node-specific explanations, extracts more relevant
edges, especially on larger datasets. The * notation in Table @] highlights that lower sparsity is needed
for competing methods to match UO-Explainer, yet they still include noise edges or less important
subgraphs. In contrast, UO-Explainer performs consistently well even under high sparsity, using
just one orbit-based subgraph for explanations, demonstrating its ability to provide high-quality
instance-level explanations.

5.5 CASE STUDY ON GENE DATASET

As the qualitative analysis, we visualized the explanatory subgraphs described in our method and the
baselines on the gene dataset. The visualization results are presented in Figure] The experiment
results demonstrate that PGExplainer and TAGE provide scattered subgraphs with discontinuous
edges while the sparsity remains at 0.900 for fair comparison. In contrast, UO-Explainer offers a
connected subgraph that is more intuitive while maintaining relatively high fidelity. MotifExplainer
also presents a connected subgraph as an explanation but with relatively lower fidelity. Additionally,
several studies provide evidence that the genes (TGFBR2 (Massagué & Gomis}, [2006), ENG (Breen
et al.}2013), INHBA, and ACVR2B (Attisano & Wrana, |[2013)) identified by UO-Explainer in the
explanations have an impact on the surface receptor signaling pathway, which is the label of the
dataset. For example, in (Bottino et al.| 2021}, it was mentioned that TGFBR2 is one of the TGF-beta
receptors that transmit signals within natural killer cells, exerting a significant influence on cell
development and the function of natural killer cells. These results imply that UO-Explainer provides
human-interpretable explanations compared to other baselines regarding the perspective of interest.

6 DISCUSSION AND CONCLUSION

We introduce UO-Explainer, a human-interpretable explanation method that leverages pre-defined
units, as requested by users, in a unified framework for node classification models. By utilizing
orbits as explanatory units, UO-Explainer decomposes model weights into orbit components, which
serve as essential, human-interpretable units within graph domains. Experimental results on both
synthetic and real-world datasets demonstrate the effectiveness of UO-Explainer, outperforming
baseline methods and delivering higher-quality explanations. UO-Explainer is particularly valuable
in scientific applications, such as drug development and education, where domain knowledge is
critical. By using pre-defined explanation units, users can uncover meaningful patterns and gain
deeper insights through the explanation method.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient graphlet counting for
large networks. In Proceeding of the International Conference on Data Mining, pp. 1-10. IEEE,
2015.

Liliana Attisano and Jeffrey L. Wrana. Signal integration in tgf-3, wnt, and hippo pathways.
F1000prime reports, 5, 2013.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, and Andrea Passerini. Global explain-
ability of gnns via logic combination of learned concepts. arXiv preprint arXiv:2210.07147,
2022.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks, 2019. URL https://arxiv.org/abs/1905.13686.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Pietro Li6, Marco Gori, and Stefano
Melacci. Entropy-based logic explanations of neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6046-6054, 2022.

Cristina Bottino, Thierry Walzer, Angela Santoni, and Roberta Castriconi. Tgf-5 as a key regulator
of nk and ilcs development and functions, 2021.

Michael J Breen, Diarmuid M Moran, Wenzhe Liu, Xiaoke Huang, Calvin PH Vary, and Raymond C
Bergan. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and
bone morphogenetic protein type ii receptors. PLoS One, 8(8):€72407, 2013.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Rex Ying. D4explainer: In-distribution gnn explanations
via discrete denoising diffusion. Advances in neural information processing systems, 2023.

Xiaowei Chen and John CS Lui. Mining graphlet counts in online social networks. ACM Transactions
on Knowledge Discovery from Data, 12(4):1-38, 2018.

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Li6, Marco Maggini,
and Stefano Melacci. Logic explained networks. Artificial Intelligence, 314:103822, 2023.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldn
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Rafael Espejo, Guillermo Mestre, Fernando Postigo, Sara Lumbreras, Andres Ramos, Tao Huang, and
Ettore Bompard. Exploiting graphlet decomposition to explain the structure of complex networks:
the ghust framework. Scientific reports, 10(1):12884, 2020.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In Proceedings of the Web Conference, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph ma-
chine learning within drug discovery and development. Briefings in bioinformatics, 22(6):bbab159,
2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’ Amato, Gerard de Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge
graphs. ACM Computing Surveys (CSUR), 54(4):1-37, 2021.

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering. Physical
review E, 65(2):026107, 2002.

11

https://arxiv.org/abs/1905.13686

Under review as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

Risi Kondor, Nino Shervashidze, and Karsten M. Borgwardt. The graphlet spectrum. In Proceedings
of the International Conference on Machine Learning, 2009.

Yiqiao Li, Jianlong Zhou, Sunny Verma, and Fang Chen. A survey of explainable graph neural
networks: Taxonomy and evaluation metrics. arXiv preprint arXiv:2207.12599, 2022.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu,
Jingtun Zhang, Yi Liu, et al. Dig: A turnkey library for diving into graph deep learning research.
The Journal of Machine Learning Research, 22(1):10873—10881, 2021.

Shengyao Lu, Bang Liu, Keith G. Mills, Jiao He, and Di Niu. Eig-search: Generating edge-induced
subgraphs for gnn explanation in linear time. In International Conference on Machine Learning,
2024.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 2020.

Joan Massagué and Roger R Gomis. The logic of tgf/3 signaling. FEBS letters, 580(12):2811-2820,
2006.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: modeling
student proficiency using graph neural network. In Proceeding of the IEEE/WIC/ACM International
Conference on Web Intelligence, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10772-10781, 2019.

Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. A survey on
graph counterfactual explanations: Definitions, methods, evaluation, and research challenges. ACM
Computing Surveys, 56(7):1-37, April 2024. ISSN 1557-7341. doi: 10.1145/3618105. URL
http://dx.doi.org/10.1145/3618105!.

N. Przulj, D. G. Corneil, and 1. Jurisica. Modeling interactome: scale-free or geometric? Bioinfor-
matics, 20(18):3508-3515, 2004.

NataSa Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23
(2):e177-e183, 2007.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather, from
statistical descriptors to parametric models. In Proceedings of the International Conference on
Information Knowledge Management, 2020.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for nlp
with differentiable edge masking, 2022. URL https://arxiv.org/abs/2010.00577,

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488-495. PMLR, 2009.

Yong-Min Shin, Sun-Woo Kim, Eun-Bi Yoon, and Won-Yong Shin. Prototype-based explanations

for graph neural networks (student abstract). In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

12

http://dx.doi.org/10.1145/3618105
https://arxiv.org/abs/2010.00577

Under review as a conference paper at ICLR 2025

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert,
Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and
Jill P. Mesirov. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43):
15545-15550, 2005.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2018.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. Advances in neural information processing systems, 2020.

Jihong Wang, Minnan Luo, Jundong Li, Yun Lin, Yushun Dong, Jin Song Dong, and Qinghua Zheng.
Empower post-hoc graph explanations with information bottleneck: A pre-training and fine-tuning
perspective. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2349-2360, 2023.

Yaochen Xie, Sumeet Katariya, Xianfeng Tang, Edward Huang, Nikhil Rao, Karthik Subbian, and
Shuiwang Ji. Task-agnostic graph explanations. Advances in neural information processing
systems, 2022.

Ping Xiong, Thomas Schnake, Michael Gastegger, Grégoire Montavon, Klaus Robert Muller, and
Shinichi Nakajima. Relevant walk search for explaining graph neural networks. In International
Conference on Machine Learning, pp. 38301-38324, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2019.

Ziyuan Ye, Rihan Huang, Qilin Wu, and Quanying Liu. Same: Uncovering gnn black box with
structure-aware shapley-based multipiece explanations. Advances in Neural Information Processing
Systems, 36, 2024.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer.
arXiv preprint arXiv:2202.00519, 2022.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 430-438, 2020.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey, 2022. URL https://arxiv.org/abs/2012.15445|

Jiaxing Zhang, Dongsheng Luo, and Hua Wei. Mixupexplainer: Generalizing explanations for graph
neural networks with data augmentation. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3286-3296, 2023.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):1190-1198, 2017.

13

https://arxiv.org/abs/2012.15445

Under review as a conference paper at ICLR 2025

A THE FULL SET OF GRAPHLETS AND ORBITS

2-node graphlet 3-node graphlet 4-node graphlet
o, 03 04 Og 09) 013 014
i 0 05 07 010 ni:i 012
0g 08
9o 91 92 g3 ez s e 97 s

5-node graphlet

R3A T AR TP A
THOH G TG

Figure 5: Entire graphlets having 2-5 nodes and orbits. The same color nodes within each graphlet
belong to the same orbit.

In this work, we have defined the explanatory units as 0-72 orbits and their corresponding graphlet
ranging from O to 29 consisting of 2 to 5 nodes. The full set of utilized graphlets and orbits can be
observed in Figure|§| (Przulyj et al.l 2004; Przuljl 2007).

B ORBIT SEARCH ALGORITHM

In Section [3.1] we have mentioned the implementation of a graphlet search algorithm based on
the Breadth-First Search (BFS) algorithm for extracting the orbit with the highest score and its
corresponding graphlet on the target node. These algorithms initiate the search from the target
node and explore neighboring nodes by verifying whether their connectivity matches the desired
graphlets. We present two algorithmic examples for identifying specific orbits in our study. Algorithm

describes the process of identifying the o1 with its corresponding graphlet g5, while Algorithm
Eoutlines the steps for identifying the o056 with its corresponding graphlet go3. In both algorithms,
N (v) denotes the neighbor function to construct the set of neighboring nodes around a given node v.
Additionally, C(-,n) denotes a combination function to generate the set of combinations consisting
of n elements from a given set -.

Algorithm 3 Orbit 01y Search Algorithm

Input: A graph G = (V, £) where V = {v1, -+, v;, -+, V|| } denotes a set of node and £ = {(vi, v;),, (vg, v1)} denotes a set of edges,
Target node v, .

Output: A set L which contains edge sets of g5 graphlets that make target node belong to orbit 01¢.

Initialize L as an empty set

1: Neighbor set of the target node N, wn = N (vn) where N denotes the neighbor function.

2: A combination set with three elements C; = C' (Ny,, »3) where C denotes Combination function

’ ’ ’
3: forv,, vy, v, in C1 do

’ ’ ’ ’ ’ ’ ’ 7 ’
4: a set of candidate combinations C; = {(v,, vy, v.), (Vy, V4, 0.)s (Ve Ve, v'6)}
5: for v, , vy, Ve inC; do
6 if (vp,vc) € € and {(va, vp), (Va,vc)} ¢ € then
T L.add({(vn,va), (Vn,vs), (Vn, ve), (Vb,ve)})
8: end if
9 end for
10: end for
11: Return L

We present a detailed line-by-line explanation of Algorithm [3|as an exemplary demonstration of
the orbit search process. This algorithm is designed to find g5 graphlets in which the target node
belongs to orbit 01¢. In line 1, we generate the neighbor set AV, from the target node v,,. Since
the number of neighboring nodes within orbit 01 in graphlet g5 is three, line 2 constructs the set

14

Under review as a conference paper at ICLR 2025

C; by forming combinations of three nodes from the neighbor set. Within graphlet g5, there is one
orbit, og, that distinguishes it from the two neighboring nodes, og. Therefore, to ensure that each

node combination in C; also distinguishes between 01 and og, line 4 generates the set Cll, which
reflects requirement. Notably, the first nodes of each tuple in the set are distinct from the remaining
nodes. By observing the connectivity of the nodes in lines 5-6, if it matches the connectivity of the
orbits within g5, the edge set of g5 can be obtained in line 7. It is added to the set L. This algorithm
iterates by considering all possible combinations of neighboring nodes surrounding the target node
v,. Therefore, all existing graphlet g5 that make the target node belong to orbit 01 are in the output
set L. This format can be applied to find entire 2-5 node graphlets. However, it is computationally
expensive. To alleviate this computational cost, by introducing randomness during the generation of
the neighbor set (line 1) or combination set in the algorithm(line 2 and line 4), it becomes possible to
sample the desired number of graphlets. The performance as the number of samples is discussed in
Table 7}

Algorithm 4 Orbit o5 Search Algorithm

Input: A graph G = (V, E) where V = {1, -+, vi, -, v|y| } denotes a set of nodes and £ = {(vi, v;), -+, (vr,vi)} denotes a set of edges,
Target node vy, .

Output: A set L which contains edge sets of g23 graphlets that make target node belong to orbit o5¢.

Initialize L as an empty set

1: Neighbor set of the target node M’n = N (vy,) where N denotes the neighbor function.

2: A combination set with three elements C; = C'(N5,,, , 2) where C' denotes Combination function

3: for vg, vy in C1 do

Un, 3

4. if vy, v, € £ then

5: Neighbor set of vg, Ny, = N(vg)

6: Neighbor set of vy, Ny, = N (vp)

7: for v in NV, do

8: for vy in/\fvb do

9: if (ve,vq) € € and {(vn,ve), (Vn,va), (Vb,ve), (Va,va)} ¢ € then
10: L.add({(vn,va), (Vn,vp), (Va, v6); (Va,ve), (Vo,va), (Ve,va)})
11: end if

12: end for

13: end for

14: end if

15: end for

16: Return L

C TiIME COMPLEXITY ANALYSIS

When UO-Explainer provides instance-level explanations, there are four time-consuming processes:
1) Pre-processing for finding the existence of the orbit, 2) Orbit basis learning, 3) Class-orbit score
learning (Model-level explanation generation), and 4) Generating instance-level explanations.

1) Pre-processing for finding the existence of each orbit. As mentioned in Section[3.1] to learn the
orbit basis, we must find the existence of each orbit for every node, as represented by the equation
This pre-processing can be conducted to search 2-5 node graphlets for each node. The time
complexity of finding each graphlet that includes specific orbits, as can be inferred from Algorithm
and Algorithm is O(d*=1)'| Here, d represents the maximum node degree of the graph data,
and k denotes the number of nodes included in each graphlet and is less than 5. Therefore, the time
complexity of pre-processing for finding all 2-5 node graphlets that include a total 0-72 orbit for an
entire node of graph data is O(|O|[V| d*~1) where || denotes the number of edges and |V| represents
the number of nodes.

2) Orbit basis learning. The time complexity of orbit basis learning is O(|O||V|) since training is
performed for each orbit basis over all nodes as shown in Algorithm [T}

3) Class-orbit score learning. Class-orbit score is trained based on the number of orbits selected by
the greedy search for each class weight. In our experiments, the number of selected orbits was less
than or equal to 5, so this can be sufficiently neglected. Therefore, the time complexity of class-orbit
score learning considers only the number or class C; O(|C|) as shown in Algorithm 2] The training
time required for UO-Explainer and the baselines can be found in Table[/| Model-level explanations

'As referenced from N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient Graphlet Counting for
Large Networks. In Proceedings of the International Conference on Data Mining, 2015, pp. 1-10.

15

Under review as a conference paper at ICLR 2025

Table 5: The training time required for the baselines and UO-Explainer for explanation in the gene
dataset. The training time of the explainer is significantly influenced by the epochs. Therefore, we set
the epochs for each method through a hyper-parameter search to achieve the highest fidelity.

[UO-Explainer | GNNExplainer | MotifExplainer | PGExplainer | TAGE
Training Time(s) | 268 (orbit basis learning)+21 (class-orbit score learning) | 1,681 | 6,074 | 98 | 204

Table 6: The training time required for the baselines and UO-Explainer for explanation in the gene
dataset. The training time of the explainer is significantly influenced by the epochs. Therefore, we set
the epochs for each method through a hyper-parameter search to achieve the highest fidelity.

Instance and Model-level Instance-level Model-level
UO-Explainer GNNExplainer | MotifExplainer | PGExplainer | TAGE | D4Explainer
Training Time(s) | 268 (orbit basis learning)+21 (class-orbit score learning) 1,681 \ 6,074 \ 98 \ 204 502

can be provided immediately after class-orbit score learning. Therefore, the training time of the
UO-Explainer listed in Table [6] equals the time required to provide model-level explanations.

4) Generating instance-level explanations. To provide instance-level explanations, it is necessary
to search graphlets that include the given orbits as explanations for each node and select just one
graphlet having the highest fidelity. Therefore, the time complexity is O(|V|d*~!) since graphlets
need to be directly found for each node. However, instead of finding all graphlets around each
node, we sample a predetermined number of graphlets. Thus, the actual computational cost can be
significantly reduced compared to O(|V|d*~1), while preserving high explanation performance. The
required time and fidelity based on the number of sampled graphlets are shown in Table[/| Even with
a time difference of more than 7 times, as observed when comparing the cases of not sampling and
sampling 70 graphlets for explanation extraction, it can be observed that the fidelity values do not
significantly decrease.

D DETAILED EXPERIMENTAL SETTINGS

In this section, we cover the details of experiments that were not discussed in the main text, such as
the structure of the pre-trained GNN and the hyper-parameter settings of the UO-Explainer.

D.1 DETAILS OF PRE-TRAINED GNNS

We provide detailed information about pre-trained GNNs for datasets other than the random graph,
as already described in Section For each dataset, we utilized a pre-trained GNN architecture
consisting of a 3-layer GCN as the embedding model and a 1-layer MLP as the downstream model.
The hyper-parameters and split ratio are shown in Table [§]

D.2 HYPER-PARAMETER SETTINGS FOR UO-EXPLAINER

UO-Explainer has a total of five hyper-parameters including batch size, epochs, learning rate (LR)
for orbit basis learning, and additional epochs, learning rate (LR) for class-orbit score learning.
Hyper-parameters used in the experiments are reported in Table[9]

D.3 DETAILS OF BASELINES

In our code implementation, we primarily utilized the PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, [2019) frameworks. Additionally, for the GNNExplainer and PGExplainer,
we employed implementations from the PyTorch Geometric framework. For the TAGE, we employed
implementations from the Dive into Graph (DIG) (Liu et al.,|2021) framework. For MotfiExplainer,
we utilized the code provided in the supplementary material available on OpenReview.net, which
was suitably modified following advice received in correspondence with the authors. This revised
implementation is incorporated within our publicly accessible code.

Furthermore, to ensure the equity of our experiments, we diligently endeavored to explore the
hyper-parameter space of the baselines as extensively as possible. The explored hyper-parameter

16

Under review as a conference paper at ICLR 2025

Table 7: The time required and fidelity based on the number of sampled graphlets of UO-Explainerin
the gene dataset. We conducted five experiments for each method and reported the mean and standard
deviation values. The “Entire” refers to the extraction of all graphlets surrounding the target node
without sampling.

of sampled graphlets 1 10 30 50 70 100 Entire
Time(s) 14.572£0.208 | 136.342 +2.305 | 379.342 +22.438 | 597.283 + 3.865 | 838.991 + 3.587 | 1183.459 +5.913 | 6321.783 + 8.462
Fildelity 0.157 £0.018 0.256 + 0.009 0.297 £ 0.011 0.309 +0.014 0.326 + 0.008 0.324 +0.007 0.3543 + 0

Table 8: Details of pre-trained GNNs. LR means learning rate.

Dataset BA-Sahpes | BA-Community | PPIO [PPI1 | PPI2 | PPI3 | PPI4 | PPI5 | LastFM Asia | Gen | Tree-Cycle [Tree-Grid
LR 0.001 0.001 0.003 0.001 0.001 0.001 0.001
Epoch 2,000 5,000 300 600 100 600 3,000
Hidden Dimension 10 30 200 30 100 30 30
Train:Val:Test 8:1:1 8:1:1 10:1:1 8:1:1 8:1:1 8:1:1 10:1:1
Train Accuracy 0.982 0.998 9.998 | 0.998 | 0.997 | 0.998 | 0.994 | 0.998 0.997 0.999 0.993 0.987
Val Accuracy 0.943 0.723 0.953 | 0.959 | 0.970 | 0.962 | 0.976 | 0.981 0.814 0.744 0.966 0.878
Test Accuracy 0.971 0.800 0.971 | 0.967 | 0.973 | 0.957 | 0.980 | 0.936 0.841 0.686 0.966 0.863

space for GNNExplainer includes (Ir, epoch, edge size, node feature size, edge entropy, and node
feature entropy). For each dataset in this study, the experiment was conducted by selecting the
combination of hyper-parameters (100-300-600, 0.01-0.05-0.1, 0.005-0.01-0.1, 0.05-0.1, 0.5-1.0,
0.5-1.0) that yielded the highest performance. The explored hyper-parameter space for PGExplainer
includes (Ir, epoch, edge size, edge entropy, and dimension of MLP). For each dataset in this
study, the experiment was conducted by selecting the combination of hyper-parameters (0.001-
0.003-0.01-0.5-0.1, 0.01-0.05-0.1, 0.05-0.1, 64-128) that yielded the highest performance. The
explored hyper-parameter space for TAGE includes (Ir, epoch, batch size coefficient size, coefficient
entropy, and loss type). For each dataset in this study, the experiment was conducted by selecting
the combination of hyper-parameters (0.000005-0.00005-0.0005-0.005-0.05-0.1, 1-3-5-10-20, 4-16-
64-128, 0.01-0.05, 0.0005-0.005, ‘NCE’-‘JSE’) that yielded the highest performance. The explored
hyper-parameter space for MotifExplainer includes (Ir, epoch, embedding dimension of attention
module). For each dataset in this study, the experiment was conducted by selecting the combination of
hyper-parameters (0.001-0.005-0.01, 30-50-100) that yielded the highest performance. Furthermore,
the motif extraction rules for MotifExplainer encompass three categories: 1) cycles within the graph,
2) edges excluding cycles, and 3) motifs constituted by the fusion of cycles involving two or more
identical nodes. In our experiments, when the number of motifs extracted from the graphs was fewer
than 5000, all three rules were employed to conduct the experiments. However, in cases where the
number exceeded 5000 motifs, a random sample of 5000 motifs was utilized.

D.4 EVALUATION METRICS

Sparsity (Li et al.| [2022) means the proportion of the presented explanation in the computation graph
based on the target node as follows:

1 Mg
Bl T
V&g

Sparsity =)

where G;* denotes the subgraph presented as the explanation for the node v;, G,, denotes to the
computation graph, and |G| means the number of edges in the graph G.

Fidelity (L1 et al.l [2022)) is calculated by taking the difference in the probability values of the input
graph and the probability values when the explanation is excluded from the computation graph based
on the target node, as follows:

4

Z fprob(gvi) - fprob(gvi - gsir) (10)
=1

1
Fidelity = m

where fp-01(Gy,) refers to the probability values of each node v; from the trained GNN f(G) with
respect to the correct class.

17

Under review as a conference paper at ICLR 2025

Table 9: Hyper-parameter settings for UO-Explainer. LR means learning rate.

Dataset Random Graph | BA-Shapes | BA-Community | PPI | LastFM-Asia | Gene | Tree-Cycle | Tree-Grid
Epochs (Orbit basis learning) 3,000 3,000 3,000 3,000 1,000 1,000 1,000 1,000
LR (Orbit basis learning) 0.005 0.005 0.005 0.001 0.003 0.005 0.005 0.005
Batch size (Orbit basis learning) 256 256 256 256 2048 256 256 256
Epochs (Class-orbit score learning) 2,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
LR (Class-orbit score learning) 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Table 10: Statistics of the dataset used for the experiment. # symbols mean the number.

Dataset Random Graph | BA-Shapes | BA-Community PPI LastFM-Asia | Gene | Tree-Cycle | Tree-Grid
Avg # of nodes 340 700 1,400 2,373 7,624 857 871 1,231
Avg # of edges 2,690 4,110 8,920 66,136 55,612 13,992 1,950 3,410

of classes 2 4 8 2 18 2 2 4
of tasks 73 1 1 121 1 1 1 1

E EXPERIMENTAL RESULTS WITH STANDARD DEVIATION.

We conducted five experiments for each method by recording the mean and standard deviation in

Table [T} [T2} [T3] and [14}

F DATASETS

We conducted experiments using five synthetic datasets and three real-world datasets. The statistics
of datasets are shown in Table Additionally, the detailed information on each dataset is described
below.

Random Graph (Holme & Kim) 2002): This dataset does not have node feature values, so we
performed node classification tasks using only the structural information by setting all node feature
values to the same constant value. We set the class of each node based on the existence of its orbit
same as each task number. That is, each node has two classes, ¢y (orbit doesn’t exist) and ¢; (orbit
exists) for a total of 73 independent tasks, one for each orbit. The ground truth for class c; is the
target orbit oy, for each task.

BA-Shapes (Ying et al.,[2019): The node classification dataset consists of a BA graph with 300 nodes
as the base and 80 “house-like motifs” randomly attached, each consisting of 5 nodes. The house-like
motif precisely matches graphlet go3. The class is determined by the positions of the nodes within
the house-like motif; these node positions precisely match the orbits osg, 057, 056 in go3. Therefore,
the ground truth for each class is set to 0ss, 057, 056.

BA-Community (Ying et al., 2019): The node classification dataset is generated by randomly
combining two house-like motifs through edges. The first motif is assigned classes cg, c1, c2, c3 based
on the positions of the nodes, and the second motif is assigned c4, c5, cg, c7, resulting in a total of
eight class labels. The ground truth of each motif is the same as that of the BA-Shapes dataset.

Tree-Cycle (Ying et al.| 2019): The dataset consists of a balanced binary tree as the base and 80
’six-node cycle motifs” randomly attached. The task is to classify nodes as either not belonging (co)
to or belonging to a circle (c1). The ground truth for c¢; class corresponds to the circle motif. However,
2-5 node graphlets do not encompass the six-node circle motif. Thus, we conducted experiments by
incorporating the circle motif and the orbit within the circle into candidate graphlets and orbits.

Tree-Grid (Ying et al., 2019): The base is identical to that of the Tree-Cycle, with a modification
involving the attachment of a “nine-node grid” in place of the circle. The task has been further
challengingly augmented to classify each node as belonging to the center (c;), periphery (c2), or
cross-lines (c3) based on their positions within the grid. Similar to the case of Tree-Cycle, 2-5 node
graphlets do not contain the nine-node grid. Therefore, we included the grid motif and the orbits
within the grid in the candidate set for experimentation.

Protein-Protein Interaction (PPI) (Zitnik & Leskovec,|2017): This is a node classification dataset
that represents protein-protein interactions in various human tissues using 24 different graphs. Each
node represents a protein and features such as positional, motif gene, and immunological signature
are used with a size of 50 dimensions. Protein-to-protein interactions are represented as edges. Each

18

Under review as a conference paper at ICLR 2025

Table 11: Model-level explanation on random graph datasets: (a) with 2 or 3-layer GCN, and (b)
with 2 or 3-layer GIN. Each task is to classify whether the node belongs to the orbit corresponding
task number. The evaluation metric is the Sub-recall. We conducted experiments five times and then
reported the average and standard deviations. The best performances are shown in bold.

(a)

Task number’ 8 1T 16 21 27 31 32 33 35 39 45 47 49 57 59 60 61 62 64
Ground-truth orbit 08 on 016 021 037 031 032 033 O35 039 045 047 019 057 059 960 261 062 064

DAExplainer’ 02+04 [08+04 [04+05[04+05]02+04 [04+05 [04+05[04+05][1.0+00] 08+0.4 02+04 0.4+05 0.4+05 08+04 02+04 [00+00] 06+05 [06+05] 02+04
‘GLGExplainer 08+0.4 0605 0804 0.6+0.5 0.8+0.4 1.0£00 [1.0£0.0 | 0.8+£0.4 0.8+0.4 0.8+0.4 0.8+04 0.6+0.5 06+0.5 1.0£00 | 0605 | 0.6£05 | 0.8+04 0.0+0.0 1.0£0.0
UO-Explainer 1.0£00 | 1.0£00 | 1.0£0.0 | 1.0£0.0 | 1.0£0.0 | 1.0+ 0.0 | 1.0+ 0.0 0+0.0 1.0£0.0 [1.0£0.0 [1.0£0.0 | 1.0£0.0 | 1.0£0.0 | 1.0£0.0 | 1.0+ 0.0 0+0.0 1.0+0.0 0+0.0 1.0+0.0
Task number’ 8 T 16 21 27 3T 32 33 35 39 a5 a7 49 57 59 60 61 62 64
Ground-truth orbit o on 016 o021 07 031 032 033 035 039 062 047 049 057 059 060 061 045 064

D4Explainer 0.8+04 0605 0.6+0.5 1.0£00 [0.6=0.5 0.8+£0.4 0.8+0.4 0.6+0.5 1.0=00[1000 06£05 04205 0804 1.0:00 [0.8+04 0.8+04 0204 0405 06+05
‘GLGExplainer 08+04 08£04 [1.0+£00 | 04405 | 1.0£00| 1.0+00 [1.0£00 [1.0+0.0 | 0804 | 1.0£0.0 | 1.0+0.0 | 0.6+0.5 08204 [1.0£00 | 0605 08+04 | 1.0£00 | 0.0+00 | 1.0£0.0
UO-Explainer 1000|1000 |10+00|10+0.0|1.0:00|10+00|1.0£00|10+00 10200 |1.0£00|10+00|1.0+00 |[1.0+00[10£00|1.0+00|1.0:+00|1.0:00]|1.0+0.0 | 1.0+00

Table 12: Model-level explanation results on synthetic datasets. The evaluation metric is the Sub-
recall. We conducted 5 experiments for each experiment and reported consistent results.

BA-Shapes BA-Community Tree-Grid Tree-Cycle
class] class2 class3 class| class2 class3 class3 class6 class7 class] class2 class3 classlI
Ground-truth Orbit 058 057 056 058 057 056 058 057 056 or3 074 075 076

D4Explainer 04+£05 06+05 04+05[08+04 02+04 08+04 0+£00 06+£05 04+05]06+04 0+0 02+£04 | 08+0.4
GLGExplainer 1.0+00 1.0+0.0 1.0+£0.0| 1.0£0.0 08+04 02+04 08«04 1.0£0.0 08+04 |0.0+0.0 08+04 02+04 1.0+0.0
UO-Explainer 1.0+0.0 1.0+0.0 1.0+£00] 1.0+£0.0 1.0+£00 1.0£00 08«04 1.0+0.0 1.0£00 | 08+04 1.0+£0.0 1.0£0.0 1.0+0.0

node is labeled with 121 dimensions of gene ontology sets, allowing for binary classification of 121
categories, similar to a random graph. We pre-trained a GNN on 20 of these graphs and extracted
explanations for randomly selected graphs to conduct experiments.

LastFM-Asia (Rozemberczki & Sarkar, 2020): This is a social network dataset of LastFM users
in Asia. Each node represents a LastFM user in Asian countries, and edges represent the following
relationships between them. Node features are composed of artists that users like, which we converted
to one-hot encoding for use in experiments. We perform a node classification task to predict the
country of each user across 18 countries.

Gene: For qualitative experiments, we created a straightforward dataset using the gene network
of natural killer cells in humans, as provided by (Zitnik & Leskovecl [2017). Each node of the
dataset represents genes, while the features include positional genes, motif genes, and immunological
signature information of each gene, with each feature consisting of 50 dimensions. The Molecular
Signatures Database (Subramanian et al., 2005) was used to collect the features for each gene. The
labels in the dataset indicate whether a given gene belongs to the cell surface receptor signaling
pathway, with 1 indicating inclusion and 0 indicating exclusion in the gene ontology set.

G LIMITATION AND FUTURE WORK

In this study, we propose UO-Explainer, a GNN explanation method that utilizes graphlets and orbits
as explanation units. Though we have demonstrated that UO-Explainer can provide high-quality
explanations compared to other baselines on extensive experiments, the motifs we can employ as
explanatory units are limited to 2-5 node graphlets. Consequently, we assume thatthis constraint may
occasionally hinder the capture of motifs or patterns when crucial patterns are extremely large when
the input graph is complex. Since many existing works already can approximate the various shaped
subgraphs but do not consider the user-centric perspective, we aim to more focus on the case when
prior assumption or knowledge is crucial based on pre-defined units toward human-interpretable
explanations.

19

Under review as a conference paper at ICLR 2025

Table 13: Instance-level explanation results on synthetic datasets. The best performances on each
dataset are shown in bold. We conducted five experiments for each method by recording the mean
and standard deviation.

BA-Shapes BA-Community Tree-Grid Tree-Cycle

Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity Sub-recall Edge-recall Fidelity
GNNExplainer | 0.004%0.008 0.616£0.010 _ 0.580£0.03] | 0.006=0.008 0491 = 0.010 0.000=0.000 0.629%0.002 0.872+0.006 | 0.110=0.000 0.699 = 0.005 _ 0.724 £ 0.000
PGExplainer | 0.760£0.025 0.915£0.003 0.574£0.020 | 0.2380.015 667 +0.011 0.000£0.000 0.647£0.043 0.876+0.002 | 0.926£0.051 099220005 0.732£0.005
TAGE 0.682£0.045 0.900£0.008 0.601£0.016 | 0.3520.012 0.008 0.003£0.000 0.693£0.013 0.874+0.004 | 0.963£0.011 099420002 0.734%0.004
MixupExplainer | 0.696+0.069 ~ 0.906£0.012 0.612£0.006 | 0.496 +0.029 0019 0.047£0.001 07120001 0.877+0.010 | 0.930£0.012 0.994£0013 0.734+0.002
SAME 0343£0.003 0.720£0.000 0.547+0.003 | 0.132£0.002 0.680 £0.010 0.000+0.000 0.238£0.013 0.846+0.010 | 010120017 0.63520.023 0.692£0.019
EiG-Search | 0.878£0.000 0520£0.000 0.605£0.000 | 0.078£0.000 0.681+0.000 0.004 £ 0.000 £0.000 0.885£0.000 | 0.083£0.000 0812£0.000 0.703£0.000
i 0.873£0.069 0.890£0.060 0.548+0.072 | 0.423+0.045 0.71420.042 0.793+£0.046 0.857+0.051 0.879+0.010 | 0.991£0.000 0.993£0.000 0.736 £ 0.001
UO-Explainer | 0.948=0.016__0.9840.005 _0.623+0.000 | 0.921:0.083 0.97020.030 _0.7160.004 | 0.8590.032_0.900+0.023_0.888+0.024 | 1.00020.000 1.000=0.000 _0.737 = 0.000

Table 14: Instance-level explanation results on real datasets. The best fidelity on each dataset is
shown in bold. * notation indicates the lower sparsity setting. We conducted five experiments for
each method by recording the mean and standard deviation.

PPI

Task0 Taskl Task2 Task3 Taskd TaskS
Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity

GNNExplainer | 0.100%0.016 0073 | 0.32520.000 _ 0.999 | 04170.067 _ 0.999 | 0.480%0.012 0999 | 0.250+0.001 _ 0.999 | 03310001 _ 0099 | 0.114%0.005 0074

PGExplainer* | 0.023£0.00 0973 | 0.155£0.008 0999 | 0.223£0.077 0.999 | 0.101£0.067 0.999 | 0.200£0.001 0999 | 0.005+0.000 0.999 | 0.011£0.002 0.974

TAGE* 0.031£0.002 0.973 09£0.003 0999 | 0.233£0.052 0999 | 0.13320.031 0999 | 0.214£0.019 0.999 | 0.101£0.020 0.999 | 0.086+0.008 0.974
MixupExplainer | 0.005 +0.000 0.002£0.001 0.999 | 0.257£0.002 0.999 | 0.246+0.003
EiG-Search | 0.1800.072 3 | 0.260£0.032 0.999 | 0.180£0.053 0.999 | 0.379£0.073
SAME 0.022£0.002 0973 | 0.189£0.003 0999 | 0.194£0.001 0.999 | 0.1890.004 0.034£0.005 0.999 | 0129£0.033 0999 | 0.049£0.012 0974
MotifExplainer | 0.070£0.008 0992 | 0.074£0.003 0.999 | 0.012£0.028 0999 | 0.129£0.034 0999 | 0.097+0.005 0.999 | 0.050£0.021 0999 | 0.085+0.004 0.994
UO-Explainer | 0.423£0.007 0999 | 0.358£0.022 0.999 | 0.425+0.000 0.999 | 0.510£0.057 0.999 | 0.623+0.020 0.999 | 0.413+0.027 0999 | 0.115£0.009 _ 0.993

LastFM Asia

0.246 +0.003 0.999 0.129 +0.001 0.999 0.100 +0.001 0.974
0.100 £ 0.079 0.999 0.180 +0.072 0.999 0.095 +0.021 0.974

20

	Introduction
	Preliminary
	Graph Neural Networks (GNNs)
	orbits within Graphlets

	UO-Explainer
	Orbit Basis Learning
	Model-level Explanations
	Instance-level Explanations
	Time Complexity Analysis

	Related Work
	Experiment
	Datasets and Baselines
	Evaluation Metric
	Results: Model-level Explanations
	Results: Instance-level Explanations
	Case Study on Gene dataset

	Discussion and Conclusion
	The Full Set of Graphlets and Orbits
	Orbit Search Algorithm
	Time Complexity Analysis
	detailed Experimental Settings
	Details of Pre-trained GNNs
	Hyper-parameter Settings for UO-Explainer
	Details of Baselines
	Evaluation metrics

	Experimental results with standard deviation.
	Datasets
	Limitation and Future Work

