
Under review as submission to TMLR

Training Dynamics of the Cooldown Stage in
Warmup-Stable-Decay Learning Rate Scheduler

Anonymous authors
Paper under double-blind review

Abstract

Learning rate scheduling is essential in transformer training, where the final annealing plays a1

crucial role in getting the best performance. However, the mechanisms behind this cooldown2

phase, with its characteristic drop in loss, remain poorly understood. To address this, we3

provide a comprehensive analysis focusing solely on the cooldown phase in the Warmup-4

Stable-Decay (WSD) learning rate scheduler. Our analysis reveals that different cooldown5

shapes reveal a fundamental bias-variance trade-off in the resulting models, with shapes that6

balance exploration and exploitation consistently outperforming alternatives. Similarly, we7

find substantial performance variations — comparable to those from cooldown shape selec-8

tion — when tuning AdamW hyperparameters. Notably, we observe consistent improvements9

with higher values of β2 during cooldown. From a loss landscape perspective, we provide10

visualizations of the landscape during cooldown, supporting the river valley loss perspective11

empirically. These findings offer practical recommendations for configuring the WSD sched-12

uler in transformer training, emphasizing the importance of optimizing the cooldown phase13

alongside traditional hyperparameter tuning.14

1 Introduction15

Learning rate scheduling remains a critical component in training transformer-based language models. Since16

the introduction of transformers by Vaswani et al. (2017), learning rate scheduling has become standard17

practice in transformer training pipelines and remains prevalent in recent works such as Meta AI (2024) and18

DeepSeek-AI et. al (2024). Among various proposed strategies, cosine decay (Loshchilov & Hutter, 2017)19

remains one of the most commonly employed methods.20

An alternative approach, the Warmup-Stable-Decay (WSD) scheduler, has recently gained popularity. This21

method features three phases: an initial warmup phase with a linear learning rate increase, a stable phase22

maintaining constant rates, and a final decay phase reducing rates to zero. Hägele et al. (2024); Hu23

et al. (2024) demonstrated that WSD achieves performance comparable to, or better than, cosine decay24

in transformer-based language modeling. Importantly, it allows training without a predefined training length25

and enables continuation from any point in the stable phase.26

Notably, WSD-trained models exhibit loss curves that remain relatively high during the stable phase but27

drop sharply during cooldown. Previous work has provided extensive analysis of WSD parameters and their28

impact on final performance (Hägele et al., 2024) as well as the role of the warmup phase (Kosson et al.,29

2024b). However, the cooldown phase dynamics remain under-explored.30

This work aims to address this gap by investigating the behavior and impact of the cooldown stage in the WSD31

learning rate scheduler, providing insights into its effects. We propose a bias-variance framework for cooldown32

learning rate scheduling shapes, through which we explain why some shapes tend to perform better than33

others. Schematics for the proposed framework are displayed in Figure 1. The study examines hyperparameter34

effects, including AdamW’s beta parameters, weight decay strength, and batch size configurations, with35

experimental results verifying alignment between observed outcomes and the proposed framework.36

1

Under review as submission to TMLR

Schematic loss surface

0.066 0.068 0.070 0.072 0.074
Bias, KL to reference model predictions

2

4

6

P
re

di
ct

io
ns

va
r.

,
10

4

0.5

0.7

0.9
linear

cosinemirror cosine

square

sqrt

Experimental bias-variance
for cooldown shapes

optimum
high variance,
low bias

trade-off
low variance,
high bias

Figure 1: Conceptual visualization of the relationship between different learning rate cooldown
shapes and their bias and variance. On the left, we show a conceptual visualization of loss surface
points in two dimensions. Colors refer to different approaches, with crosses denoting the result of independent
runs and the circles marking the mean for each method. The methods exhibit different bias-variance trade-
offs with respect to the optimum in the middle, where the variance measures the spread in the individual
solutions and the bias is the error in the mean solution. On the right, we categorize different cooldown
shapes based on their bias-variance characteristics. Here the bias is computed as the average distance to a
better reference model (obtained by longer training on the same data), whereas the variance is obtained over
experiments with different data ordering (shuffling).

2 Background: Learning Rate Scheduler37

0 25 50 75 100
Training steps, %

0

25

50

75

100

L
R

,
m

ax
L

R
%

linear
cosine
wsd

Figure 2: Different learning rate schedules. We
show the cosine, WSD, and linear schedules. A
warmup stage of 5% of the training length is added
to each schedule.

Learning rate scheduling is a technique used in neu-38

ral network training where the optimization algo-39

rithm’s learning rate is adjusted during training ac-40

cording to a predefined rule. Figure 2 illustrates41

various scheduling techniques.42

A warmup phase is commonly employed at the be-43

ginning of training, during which the learning rate is44

gradually increased from small values to the desired45

level. This approach allows the model to tolerate a46

higher peak learning rate during training, improves47

stability in the initial phase, and positively affects48

final performance (Kosson et al., 2024b; Kalra &49

Barkeshli, 2024).50

Cosine learning rate scheduling is a widely used tech-51

nique. This method adjusts the learning rate follow-52

ing a cosine curve, starting at a maximum value af-53

ter a warmup period and gradually decreasing it to a54

minimum value, often near zero. The key parameter55

for the cosine schedule is the training duration. As observed in Hoffmann et al. (2022), achieving optimal56

model performance for a specific token count requires matching the training duration to the cosine scheduler57

length. This finding was also verified by Hägele et al. (2024). Therefore, cosine learning rate scheduling has58

a significant drawback: training sessions resumed after the cosine curve ends result in worse performance59

compared to training sessions with a cosine schedule of the required length.60

2

Under review as submission to TMLR

2.1 Warmup Stable Decay Scheduler61

An alternative to the cosine learning rate scheduler is the warmup-stable-decay (WSD) scheduler (Figure 2).62

It consists of three stages: warmup, a constant learning rate, and decay (cooldown). The cooldown stage is63

relatively short, typically around 20% of the total training duration. A notable feature of WSD is that it64

avoids the primary drawback of the cosine scheduler. Training can be resumed seamlessly from the end of65

the constant learning rate stage without performance degradation.66

The performance of this scheduler for language modeling, particularly in the context of the Llama-like67

model (Touvron et al., 2023), is analyzed in depth by Hägele et al. (2024). Their key finding is that the WSD68

learning rate scheduler can match or even surpass the performance of the cosine scheduler.69

A critical part of WSD performance is the cooldown stage. As seen in Figure 3, a dramatic drop in validation70

perplexity occurs during the cooldown stage. Such performance improvement is also observed in downstream71

tasks, as demonstrated by Hägele et al. (2024). Gaining insights into the cooldown stage may reveal ways to72

further improve performance. For this reason, this work focuses on the specifics of the cooldown stage.73

3 Experimental Setup74

20 40 60 80 100
Training steps, %

18

20

22

24

26
V

al
id

at
io

n
pe

rp
le

xi
ty

pre-cooldown
cooldown,
different LR
scheduling

Figure 3: The drop in perplexity during the
cooldown stage. The cooldown stage begins at 80%
of the training, which leads to a dramatic drop in per-
plexity during the final 20%.

As noted earlier, this work focuses exclusively on the75

cooldown stage. Therefore, the pre-cooldown model76

is kept consistent across all experiments, and only77

the hyperparameters during the cooldown stage are78

modified.79

The model used is a standard decoder-only trans-80

former with 210 million parameters (Vaswani et al.,81

2017), identical to Llama (Touvron et al., 2023).82

Unless otherwise specified, we use the AdamW opti-83

mizer with weight decay (Loshchilov & Hutter, 2019;84

Kingma & Ba, 2017) and standard LLM training85

parameters. Training is conducted on a subset of86

SlimPajama (Soboleva et al., 2023). The dataset is87

split into training and validation parts, and valida-88

tion perplexity is used to evaluate performance. We89

provide a detailed description of the model architec-90

ture and used techniques in App. A.91

The pre-cooldown model is trained for 26,400 iter-92

ations (2.7B tokens) with 300 warmup steps. The cooldown stage length is commonly set to 20%, which93

has been identified as an effective fraction for achieving strong final performance, as shown by Hägele et al.94

(2024). During the cooldown stage, the learning rate is always reduced to zero.95

4 Cooldown Shape: Does It Matter?96

As noted by Hägele et al. (2024), the shape of the cooldown phase significantly impacts the performance of97

WSD. Figure 4 illustrates the validation perplexity for various cooldown shapes, as well as the shapes them-98

selves. Interestingly, validation perplexity closely follows the shape of the learning rate and reaches different99

final values. However, Hägele et al. (2024) did not explore the reasons behind the different performance100

observed for different cooldown shapes.101

3

Under review as submission to TMLR

80 85 90 95 100
Training steps, %

0

25

50

75

100
L

R
,

m
ax

L
R

%

80 85 90 95 100
Training steps, %

19

20

21

V
al

id
at

io
n

pe
rp

le
xi

ty

linear cosine mirror cosine square sqrt

Figure 4: The surprising effect of cooldown shapes on final performance. On the left, different
shapes of learning rate scheduling during the cooldown stage. On the right, the corresponding validation
perplexities. Validation perplexity follows a pattern similar to that of the learning rate, but the final perfor-
mance varies. It is clear that cooldown shapes affect the course of training as well as the final perplexity.

4.1 Bias-Variance Point of View102

To understand why different cooldown shapes yield varying performance, we need to examine the underlying103

optimization dynamics. Specifically, we propose the following: different cooldown shapes create a fundamental104

bias-variance trade-off that explains their varying performance. Figure 1 illustrates this concept schematically.105

Essentially, the cooldown shape controls a critical balance: more aggressive exploration (high learning rates)106

of the loss surface increases variance across models (if trained with different data orderings), while potentially107

yielding superior performance; in contrast, focusing on exploiting (low learning rates) the current region of108

the loss surface produces more consistent solutions but may sacrifice overall quality.109

80 85 90 95 100
Training steps, %

0

25

50

75

100

L
R

,
m

ax
L

R
%

1.0
0.9
0.7
0.5
0.3
0.1

Figure 5: Lowered linear cooldown shapes. The
parameter controls the starting learning rate, where
100% is the learning rate of a constant stage.

To investigate this, we propose the following frame-110

work. For each cooldown shape, we train N mod-111

els from the same constant stage model with identi-112

cal hyperparameters but different data orders: each113

model is trained on a random permutation of the114

same dataset portion for 33,000 steps in total (3.4B115

tokens). In addition to the cooldown shapes men-116

tioned earlier, we use "lowered linear" shapes dis-117

played in Figure 5.118

We train models with a longer cooldown stage119

(59,400 steps in total, 6B tokens) using the sqrt120

cooldown shape, which we refer to as reference mod-121

els that represent a good solution in the optimization122

landscape. The dataset portion used for the refer-123

ence models is the same as that for the shorter exper-124

iments but is permuted with repetitions to match the125

extended training duration. In total, N = 9 models126

are trained for different data permutations.127

We evaluate models with different cooldown shapes and data orderings on the validation dataset portion. For128

each of these models, we calculate the KL divergence to the average prediction of N reference models (referred129

4

Under review as submission to TMLR

to as single reference model predictions) and determine the variance of the predictions from the N models.130

That is, for vocabulary size V , if sink ∈ RV represents model predictions (soft-labels) trained with cooldown131

shape i by data permutation n for token k, and rnk ∈ RV represents reference model predictions (soft-labels)132

trained on data permutation n for token k, the complete formulas used are presented in equation (1).133

biasi = 1
K

K∑
k=1

KL

(
1
N

N∑
n=1

rnk,
1
N

N∑
n=1

sink

)
,

variancei = 1
N

N∑
n=1

∥sink − sik∥2
axis=k.

(1)

We believe the proposed framework captures information about optimization stability through the variance134

of prediction vectors and captures the distance to a better solution achievable by learning on the same data.135

Surprisingly, similar results can be achieved in weight space. We show how different measures of the bias136

and variance affect the results in App. C.137

80 85 90 95 100
Training steps, %

0

25

50

75

100

L
R

,
m

ax
L

R
%

linear 0.7
sqrt

Figure 6: Comparison of the sqrt cooldown shape
and lowered linear 0.7. The shapes are similar,
achieving comparable performance, although the low-
ered linear 0.7 exhibits slightly better perplexity.

Plot interpretation. The experimental results138

are presented in Figure 7. From the figure, we139

observe a clear relationship between bias and vari-140

ance, which we believe explains why some cooldown141

shapes tend to perform better than others. We note142

that the sqrt shape occupies a favorable position,143

achieving a balance between bias and variance. This144

can be interpreted from an exploration/exploitation145

perspective: shapes with high variance and low bias146

tend to explore the loss surface more extensively,147

leading to significantly different solutions. Con-148

versely, shapes with low variance and high bias tend149

to exploit the current solution by descending into150

the loss basin.151

One notable feature of Figure 7 is that sqrt lies close152

to the lowered linear shape with a parameter of 0.7.153

We observe that the lowered linear 0.7 cooldown154

achieves performance comparable to, or even bet-155

ter than, sqrt. This result shows that there is nothing special about the shape of sqrt — it is just one of the156

shapes that achieves a good trade-off between bias and variance; both shapes are presented in Figure 6.157

We verify this finding on a broader scale by measuring the performance of different cooldown shapes and158

evaluating the performance of the averaged model (in weight space) for each cooldown shape (Figure 8). The159

evident positive correlation in Figure 8 (right) demonstrates that the bias observed in the bias-variance plot160

(Figure 7) serves as a reliable indicator of the actual performance of cooldown shapes.161

We reproduce the bias-variance plot for a smaller model and a different dataset. The results align with the162

discussion in this section and are presented in App. D.163

4.2 Data Points Bias164

We also explored the possibility of using data points bias as a basis for the bias-variance plot. This idea165

stems from the notion that different cooldown schedulers can affect bias towards recent data points differently.166

From this perspective, the best cooldown scheduler would be the one that improves overall performance the167

most while keeping the bias towards recent data points low. Naturally, a trade-off emerges that is similar to168

the one we observed before.169

5

Under review as submission to TMLR

0.08 0.10
Bias, KL to reference

2

4

P
re

di
ct

io
ns

va
r.

,
10

3

0.1

0.3

0.5

0.7

0.9
1.0

Lowered linear

0.0675 0.0700 0.0725
Bias, KL to reference

4

6

P
re

di
ct

io
ns

va
r.

,
10

3

0.5

0.7

0.9
linear

cosinemirror cosine

square

sqrt

Lowered linear and shapes

Figure 7: Bias-variance plot for different cooldown shapes. We use the KL divergence to measure bias
as the average distance between predictions on the validation dataset portion of a reference model (average
predictions of models trained for longer on the same data) and an experimental model’s mean predictions.
Variance is the variation in predictions for experiments with different data orderings (Equation 1). On the
left, we compare only lowered linear shapes (Figure 5), which exhibit an expected decrease in variance and
increase in bias with decreasing parameter value. On the right, the full range of nonlinear shapes along
with selected lowered linear shapes for reference. The lowered linear shape with parameter 0.7 and the sqrt
shape occupy favorable positions, achieving a balanced trade-off between bias and variance.

18.30 18.35 18.40 18.45 18.50
Validation perplexity

linear 0.7
sqrt

linear 0.5
linear 0.9

linear
mirror cosine

linear 0.3
cosine
square

linear 0.1

0.07 0.08 0.09 0.10 0.11
Bias

18.0

18.2

18.4

18.6

18.8

V
al

id
at

io
n

pe
rp

le
xi

ty

Figure 8: Validation perplexity and bias correlation. On the left, bars represent the mean performance
for experiments with different data permutations during cooldown. The error bars represent the minimum
and maximum values among corresponding experiments. We observe that lowered linear 0.7 and sqrt achieve
similar performance, which aligns with the findings from the bias-variance plot in Figure 7. On the right,
we compare the validation perplexity of mean models for each shape with the bias from the bias-variance
plot in Figure 7. This demonstrates a high correlation between validation perplexity and bias, proving that
the proposed bias is a good proxy for evaluating average model performance.

To calculate the bias towards data points, we retrospectively calculate the perplexity for previously observed170

batches in the original order after model training is completed (Bergsma et al., 2025). The results of this171

evaluation are displayed in Figure 9. Recency bias is evident in both the pre-cooldown model and the post-172

cooldown models. However, the structure of the bias differs: the pre-cooldown model shows strong recency173

bias towards recent points, while the post-cooldown models exhibit a U-shaped bias. This can be explained174

by the fact that the final cooldown steps are performed with a near-zero learning rate, making the impact of175

the final data points negligible.176

6

Under review as submission to TMLR

0 25 50 75 100
Step index, %

16

18

20

22

24
B

at
ch

pe
rp

le
xi

ty

pre-cooldown model
lowered linear 0.1
sqrt

cosine
square

−5.0 −4.5 −4.0 −3.5
Shift, improvement over pre-cooldown

1

2

3

4

D
ev

ia
ti

on
,

bi
as

un
ifo

rm
it

y 0.9
linear

0.7

0.5

square

0.3

cosinemirror cosine

sqrt

0.1

Figure 9: Shift-deviation result plots. On the left, evaluation of models on training data after training
was completed (100-step window-averaged). It is clear that the pre-cooldown model has pronounced recency
bias that ends abruptly at 80% of the total steps (the training limit of the pre-cooldown model). The post-
cooldown models have a lower overall mean perplexity and a different recency bias structure. It is clear that
cooldown shape affects recency bias structure. On the right, the shift-deviation plot for different cooldown
shapes. It is clear that the pattern is similar to the one we observed before in Figure 7. We explore this
similarity further in App. E.

Overall, the structure of recency bias is greatly controlled by the cooldown shape. We can quantify it using177

the following framework. Let p(bi) be the pre-cooldown model perplexity on batch bi, and c(bi) be the post-178

cooldown model perplexity on batch bi. We can define the shift and deviation for a specific cooldown shape179

as:180

differencei = c(bi) − p(bi),

shift = 1
|cooldown|

∑
i∈cooldown

differencei,

deviation = 1
N

N∑
i=1

[differencei − shift]2 .

(2)

The idea behind this is that shift represents the improvement of the post-cooldown model over the pre-181

cooldown model, while deviation represents the consistency of this improvement across different data points.182

We empirically found that shift calculation is better done only over the cooldown portion of the data, as it183

leads to an unskewed shift-deviation plot and high correlation with the previously observed results. We do184

not have a firm justification for this, but we believe it is due to the fact that the pre-cooldown model was not185

trained on cooldown data at all, and therefore the shift is not skewed by the pre-cooldown model’s recency186

bias.187

The results of the evaluation are displayed in Figure 9. The structure of the plot is similar to what we188

observed before. We present additional visualizations in App. E.189

7

Under review as submission to TMLR

4.3 Bias-Variance Plot Conclusions190

We conclude that different cooldown shapes regulate a trade-off between bias and variance during cooldown,191

which significantly impacts performance. Moreover, the same trade-off emerges from the recency bias point192

of view.193

Furthermore, we find that there is a set of cooldown shapes, such as lowered linear 0.7 and sqrt, that provide194

an optimal trade-off. Both cooldown shapes are presented in Figure 6.195

5 Averaging vs Longer Training196

Averaging of models from different runs is a technique extensively used in recent works. In particular, recently197

released influential models like OLMo2 (OLMo et al., 2025) and Llama3 (Meta AI, 2024) use a technique of198

performing multiple independent cooldown stages and averaging the final models, a technique also referred199

to as model souping (Wortsman et al., 2022). Another approach is merging completely different runs — a200

technique explored in Command A model training (Cohere et al., 2025).201

mirror
cosine

linear
0.7 sqrt

square
cosine

0.1

18

19

20

V
al

id
at

io
n

pe
rp

le
xi

ty 33k runs mean
33k single run
52.8k sqrt

Figure 10: Performance comparison of averaged
models to longer training. High-variance cooldown
shapes yield the best performance. However, a simple
longer run outperforms all averages.

With this motivation, we investigate how averag-202

ing final models compares to longer training for dif-203

ferent cooldown shapes. Specifically, we perform204

a cooldown stage four times on non-intersecting205

dataset portions from the same pre-cooldown model.206

Additionally, we train one model for longer on all207

data observed by the shorter runs. The longer run208

uses the sqrt cooldown shape for a total of 52.8k209

steps and a 20% cooldown portion. In total, the210

longer run achieves the same flops and data portion211

as four smaller runs combined. Then, we average212

model weights trained on different dataset portions213

for each cooldown shape and calculate performance214

on validation data. The results are displayed in Fig-215

ure 10. While all averages perform worse than a216

simple longer run, it is evident that high-variance217

low-bias shapes provide the best performance. We218

also consider the possibility that averages perform219

worse than the longer run due to the model under-220

fitting the data, and longer training may close the221

gap or even surpass it.222

Therefore, in the setting of model averaging, high-variance low-bias shapes like mirror cosine perform better223

than trade-off shapes like sqrt. We also discover that a bias-variance plot emerges in model weight space,224

which we discuss in App. C.225

6 Cooldown Stage Hyperparameters226

While tuning hyperparameters is arguably infeasible for large model runs that are extremely expensive and227

are often only performed once, the cooldown represents a significantly shorter part of training and can228

potentially be tuned. Therefore, to better understand the impact of modifying the cooldown shape, we229

examine the significance of hyperparameter selection during the cooldown stage. This investigation could230

provide insights into the relative importance of various factors when tuning the model’s training. It is divided231

into two parts: batch size selection and Adam hyperparameter selection.232

8

Under review as submission to TMLR

6.1 Batch Size Impact233

We use the sqrt cooldown shape and vary the batch size, adjusting the number of steps to maintain the same234

total token count. Additionally, as described by Chiley et al. (2019); Busbridge et al. (2023); Pagliardini et al.235

(2024), we adjust the AdamW β1 and β2 parameters to match the optimizer’s statistics token half-life. In236

essence, the token half-life is the number of successive previous steps that contribute to half of the optimizer’s237

EMA accumulator. For a new batch size B̂ = kB, the momentum is set as p̂ = pk. We also perform simple238

experiments without adjusting β1 and β2 (Figure 11b).239

Batch size variation conclusions. We observe in Figure 11a that increasing the batch size leads to240

a deterioration in quality. However, examining the absolute values reveals that this variation is minor.241

Therefore, while increasing the batch size can negatively impact performance, we believe this aligns with242

observations about critical batch sizes described by McCandlish et al. (2018). Therefore, despite the unusual243

loss behavior during the cooldown stage, it appears that batch size variations adhere to patterns previously244

observed in the literature.245

Interestingly, significant performance improvements are observed when no adjustments are made to β1 and246

β2 (Figure 11b). This indicates that the token half-life of AdamW states may not be optimal in our setting,247

a topic further explored in Section 6.2.248

500 1000 1500 2000
Batch size

18.16

18.18

18.20

18.22

V
al

id
at

io
n

pe
rp

le
xi

ty

(a) With AdamW β1 and β2 adjustments

500 1000 1500 2000
Batch size

18.20

18.25

18.30

18.35
V

al
id

at
io

n
pe

rp
le

xi
ty

(b) Without AdamW β1 and β2 adjustments

Figure 11: Impact of batch size variation during the cooldown stage on validation perplexity. Each
batch sample contains 512 tokens, and the base batch size is 200. On the left, besides modifying the batch
size, AdamW parameters β1 and β2 are adjusted to match the token half-life, resulting in minor performance
deterioration. On the right, the batch size is increased without modifying the AdamW parameters, which
leads to substantial improvement. This highlights the importance of the AdamW token half-life.

6.2 AdamW Parameters Impact249

We explore how AdamW betas impact cooldown stage performance and compare the resulting performance250

improvements to those achieved through shape selection. For all experiments, we use the sqrt cooldown251

shape and vary the tokens’ half-life by adjusting β1 = 0.9 and β2 = 0.95, modifying both using the parameter252

p: β̂1 = βp
1 , β̂2 = βp

2 . The results are presented in Figure 12. In addition to modifying both β1 and β2,253

we conduct experiments with β2 variation while keeping β1 = 0.9 fixed. These results are also shown in254

Figure 12.255

Tokens Half-Life Variation Conclusions. We observe that varying the AdamW tokens’ half-life can256

lead to significantly different performance outcomes. From the experiment with varying both β1 = 0.9 and257

β2 = 0.95, we see that the best cooldown shape at p = 1 is almost identical, in terms of perplexity, to the258

9

Under review as submission to TMLR

worst at p = 0.3. Therefore, modifying AdamW parameters during cooldown is worthwhile, as performance259

improvements can be comparable to those achieved through cooldown shape selection.260

From the second plot in Figure 12, it is noticeable that performance greatly depends on β2 variations, with261

surprisingly large values tending to yield the best results.262

Additionally, a notable property is that the optimal cooldown shape, from a bias-variance perspective, remains263

unchanged with the choice of β1 and β2 within a reasonable range of values. This is clearly seen in Figure 12,264

as sqrt acts as a lower bound for all the shapes tested unless p becomes too small. In the case of small p,265

the AdamW tokens’ half-life becomes so large that the optimizer state is almost not updated, which is not a266

reasonable setting and requires higher learning rates.267

0.10.05 1.00.50.25
p, β1 = 0.9p, β2 = 0.95p

18.2

18.4

18.6

18.8

19.0

V
al

id
at

io
n

pe
rp

le
xi

ty

β1 = 0.9689,
β2 = 0.9847

1e-05 0.001 0.1
p, β1 = 0.9, β2 = 0.95p

18.2

18.4

18.6

18.8

V
al

id
at

io
n

pe
rp

le
xi

ty

β2 = 0.999995

cosine
linear

miror cosine
sqrt

square
range for different
cooldown shapes

Figure 12: Evaluation of the impact of AdamW parameters on cooldown performance. On the
left, we vary both β1 and β2. On the right, we vary only β2. The betas are adjusted using the parameter p:
β̂ = βp, with base betas β1 = 0.9 and β2 = 0.95. Examining the range for different cooldown shapes makes it
clear that a good choice of hyperparameters can greatly improve performance, matching or even surpassing
the importance of cooldown shape selection.

7 Examining the Loss Landscape268

The "river valley perspective" is one of the intuitions behind the WSD scheduler proposed by Wen et al.269

(2024), suggesting that WSD optimization can be visualized as descending from a mountain top along a270

river. The constant learning rate stage corresponds to descending in the general direction of the river’s271

flow, while the cooldown stage corresponds to descending directly into the river itself. However, a clear272

visualization of the river valley is still lacking. This section focuses on visualizing the river valley during the273

WSD cooldown stage.274

To achieve this, we plot the loss landscape using the following coordinates:275

e1 A vector in weight space connecting the pre-cooldown checkpoint to the final model after cooldown.276

We refer to this as the global optimization direction.277

e2 A vector corresponding to ten optimizer steps from a given point. We refer to this as the Adam steps278

direction. We choose ten steps to minimize the impact of noise on the obtained vector.279

10

Under review as submission to TMLR

Loss Landscape Plots Interpretation. Figures 13 and 29 present the results. These plots clearly show280

a river valley along the global optimization direction at the beginning of the cooldown stage. It remains281

visible in the middle of the cooldown stage, though less pronounced as optimization nears descent into the282

basin. By the end of the cooldown stage, only the final basin is visible. We believe these plots provide strong283

evidence supporting the river valley basin concept.284

-0.3

0.0

0.3

G
lo

ba
l o

pt
im

iza
tio

n

-3.0
-1.5

0.0
1.5

3.0
Adam steps

19.94

36.32

Cooldown start (81.8% steps)

current point plot min point

-0.3
0.0

0.3
Global optimization

-3.0

-1.5

0.0

1.5

3.0

Adam
steps

17.86

19.34
Cooldown end (100.0% steps)

Figure 13: Loss landscape plots at different cooldown points. We plot the loss landscape using two
vectors: the global optimization direction (the line between the pre-cooldown checkpoint and the final model)
and the Adam steps direction (the line between the given point and ten optimizer steps from it). The Z-axis
represents perplexity on a portion of validation data. We see a potential valley along the global optimization
direction, which is less pronounced as optimization nears descent into the basin. A larger plot is presented
in Figure 29.

8 Related Work285

Learning rate schedulers. The evolution of learning rate schedulers has been driven by the need to ad-286

just the learning rate during training to improve optimization convergence. This need can also be viewed287

as a matter of balancing exploration and exploitation (Iyer et al., 2020; Subramanian et al., 2024). Tradi-288

tional approaches, such as step decay (reducing the learning rate at fixed intervals) and exponential decay289

(continuously reducing the learning rate), laid the foundation for schedule-based optimization (Li & Arora,290

2019; Ge et al., 2019; Smith et al., 2017). The cosine schedule (Loshchilov & Hutter, 2017) is one of the291

most common choices in large-scale deep learning. Others include inverse square root (Raffel et al., 2020;292

Chowdhery et al., 2023), Noam (Vaswani et al., 2017) or stepwise schedules (Bi et al., 2024). In the last year,293

Warmup-Stable-Decay (WSD), also called the trapezoidal schedule (Dosovitskiy et al., 2020) , has become294

popular for its benefits of an undetermined training length, performance (Zhai et al., 2022; Shen et al., 2024a;295

Hägele et al., 2024; Hu et al., 2024) and continual learning (Ibrahim et al., 2024; Gupta et al., 2023; Janson296

et al., 2025).297

Given the significant impact of the learning rate scheduler on model performance, and considering the com-298

plexity of finding the optimal learning rate for LLMs due to the interplay between learning rate, batch size,299

number of training tokens, model size, and other hyperparameters, multiple works have focused on schedule-300

11

Under review as submission to TMLR

free optimization (Defazio et al., 2024) or scheduling techniques that work well with different model sizes301

(Shen et al., 2024b).302

Understanding dynamics of learning rate schedulers. The interaction between learning schedules and303

optimization dynamics remains an active research area. For example, for WSD, Wen et al. (2024) proposed304

the "river valley" hypothesis to explain WSD behavior, while Subramanian et al. (2024) analyzed phase305

transitions in loss landscapes during schedule changes. Our work extends these observations through direct306

visualization of the cooldown-stage loss landscape. Additionally, recent work by Schaipp et al. (2025) showed307

that the empirical behavior of the WSD scheduler behaves surprisingly similarly to a performance bound308

from non-smooth convex optimization theory (Defazio et al., 2023) which stems from either non-smoothness309

or non-vanishing gradient norms. We investigate such gradient norms in the cooldown stage in App. G.310

9 Conclusions311

This work provides a comprehensive analysis of the cooldown stage in the WSD learning rate scheduler,312

offering insights into its dynamics and impact on model performance. The key findings from this study are313

summarized below.314

Cooldown Shape Selection. The shape of the cooldown phase critically influences model performance.315

We introduce a bias-variance framework to compare different cooldown shapes, identifying sqrt and lowered316

linear 0.7 as optimal choices due to their ability to balance exploration and exploitation. We observe that317

high-variance low-bias shapes like square perform better when final model averaging is performed. We also318

provide a recency bias perspective that aligns with the bias-variance framework.319

Hyperparameter Sensitivity. Our experiments show that varying the batch size during the cooldown320

stage has a relatively minor impact on performance, consistent with prior findings on critical batch sizes.321

However, adjusting the AdamW hyperparameters (β1 and β2) revealed significant performance differences,322

comparable to those observed with cooldown shape selection. Notably, larger values of β2 consistently yielded323

improved results, highlighting the importance of fine-tuning these parameters.324

Loss Landscape Visualization. We further validate the "river valley perspective" through loss landscape325

visualizations. These plots illustrate how optimization transitions from broad exploration during the constant326

learning rate phase to focused descent into a loss basin during the cooldown phase, providing evidence for327

this conceptual framework.328

10 Future Work329

While our analysis is limited to moderate model sizes, we validate the main findings across different numbers330

of parameters and datasets (D). For future directions, we believe there remain several important opportunities331

to deepen our understanding:332

1. Our work focuses solely on the validation loss and the optimization landscape. However, future work333

should explore the relevance of observed effects for downstream tasks and model behavior, although334

a connection between loss and downstream performance was previously observed (Du et al.; Hägele335

et al., 2024).336

2. Related to the above, it remains unclear what mechanistic changes occur in the model over the course337

of the cooldown stage. As a first step, we explore internal feature quality improvement over the course338

of the cooldown stage with experiments in App. H, but we did not arrive at useful conclusions. Other339

possible approaches include the recently proposed model diffing frameworks (Bricken et al., 2024;340

Lindsey et al., 2024).341

12

Under review as submission to TMLR

References342

Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware minimization343

without computational overhead, 2024. URL https://arxiv.org/abs/2401.12033.344

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness. Straight to345

zero: Why linearly decaying the learning rate to zero works best for llms. arXiv preprint arXiv:2502.15938,346

2025.347

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,348

Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv349

preprint arXiv:2401.02954, 2024.350

Trenton Bricken, Siddharth Mishra-Sharma, Jonathan Marcus, Adam Jermyn, Christopher Olah, Kelley351

Rivoire, and Thomas Henighan. Stage-wise model diffing, 2024. URL https://transformer-circuits.352

pub/2024/model-diffing/index.html.353

Dan Busbridge, Jason Ramapuram, Pierre Ablin, Tatiana Likhomanenko, Eeshan Gunesh Dhekane, Xavier354

Suau, and Russ Webb. How to scale your ema. 2023. URL https://arxiv.org/abs/2307.13813.355

Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la Fuente, Vishal356

Subbiah, and Michael James. Online normalization for training neural networks. Advances in Neural357

Information Processing Systems, 32, 2019. arXiv:1905.05894.358

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,359

Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language360

modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.361

Team Cohere, Aakanksha, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Yazeed Alnumay, Sophia Al-362

thammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, Raphaël Avalos, Zahara Aviv,363

Sammie Bae, Saurabh Baji, Alexandre Barbet, Max Bartolo, Björn Bebensee, Neeral Beladia, Walter364

Beller-Morales, Alexandre Bérard, Andrew Berneshawi, Anna Bialas, Phil Blunsom, Matt Bobkin, Adi365

Bongale, Sam Braun, Maxime Brunet, Samuel Cahyawijaya, David Cairuz, Jon Ander Campos, Cassie366

Cao, Kris Cao, Roman Castagné, Julián Cendrero, Leila Chan Currie, Yash Chandak, Diane Chang,367

Giannis Chatziveroglou, Hongyu Chen, Claire Cheng, Alexis Chevalier, Justin T. Chiu, Eugene Cho, Eu-368

gene Choi, Eujeong Choi, Tim Chung, Volkan Cirik, Ana Cismaru, Pierre Clavier, Henry Conklin, Lucas369

Crawhall-Stein, Devon Crouse, Andres Felipe Cruz-Salinas, Ben Cyrus, Daniel D’souza, Hugo Dalla-Torre,370

John Dang, William Darling, Omar Darwiche Domingues, Saurabh Dash, Antoine Debugne, Théo Dehaze,371

Shaan Desai, Joan Devassy, Rishit Dholakia, Kyle Duffy, Ali Edalati, Ace Eldeib, Abdullah Elkady, Sarah372

Elsharkawy, Irem Ergün, Beyza Ermis, Marzieh Fadaee, Boyu Fan, Lucas Fayoux, Yannis Flet-Berliac,373

Nick Frosst, Matthias Gallé, Wojciech Galuba, Utsav Garg, Matthieu Geist, Mohammad Gheshlaghi Azar,374

Seraphina Goldfarb-Tarrant, Tomas Goldsack, Aidan Gomez, Victor Machado Gonzaga, Nithya Govin-375

darajan, Manoj Govindassamy, Nathan Grinsztajn, Nikolas Gritsch, Patrick Gu, Shangmin Guo, Kilian376

Haefeli, Rod Hajjar, Tim Hawes, Jingyi He, Sebastian Hofstätter, Sungjin Hong, Sara Hooker, Tom Hosk-377

ing, Stephanie Howe, Eric Hu, Renjie Huang, Hemant Jain, Ritika Jain, Nick Jakobi, Madeline Jenkins,378

JJ Jordan, Dhruti Joshi, Jason Jung, Trushant Kalyanpur, Siddhartha Rao Kamalakara, Julia Kedrzycki,379

Gokce Keskin, Edward Kim, Joon Kim, Wei-Yin Ko, Tom Kocmi, Michael Kozakov, Wojciech Kryś-380

ciński, Arnav Kumar Jain, Komal Kumar Teru, Sander Land, Michael Lasby, Olivia Lasche, Justin Lee,381

Patrick Lewis, Jeffrey Li, Jonathan Li, Hangyu Lin, Acyr Locatelli, Kevin Luong, Raymond Ma, Lukas382

Mach, Marina Machado, Joanne Magbitang, Brenda Malacara Lopez, Aryan Mann, Kelly Marchisio, Olivia383

Markham, Alexandre Matton, Alex McKinney, Dominic McLoughlin, Jozef Mokry, Adrien Morisot, Au-384

tumn Moulder, Harry Moynehan, Maximilian Mozes, Vivek Muppalla, Lidiya Murakhovska, Hemangani385

Nagarajan, Alekhya Nandula, Hisham Nasir, Shauna Nehra, Josh Netto-Rosen, Daniel Ohashi, James386

Owers-Bardsley, Jason Ozuzu, Dennis Padilla, Gloria Park, Sam Passaglia, Jeremy Pekmez, Laura Pen-387

stone, Aleksandra Piktus, Case Ploeg, Andrew Poulton, Youran Qi, Shubha Raghvendra, Miguel Ramos,388

13

https://arxiv.org/abs/2401.12033
https://transformer-circuits.pub/2024/model-diffing/index.html
https://transformer-circuits.pub/2024/model-diffing/index.html
https://transformer-circuits.pub/2024/model-diffing/index.html
https://arxiv.org/abs/2307.13813
https://arxiv.org/abs/1905.05894

Under review as submission to TMLR

Ekagra Ranjan, Pierre Richemond, Cécile Robert-Michon, Aurélien Rodriguez, Sudip Roy, Laura Ruis,389

Louise Rust, Anubhav Sachan, Alejandro Salamanca, Kailash Karthik Saravanakumar, Isha Satyakam,390

Alice Schoenauer Sebag, Priyanka Sen, Sholeh Sepehri, Preethi Seshadri, Ye Shen, Tom Sherborne,391

Sylvie Chang Shi, Sanal Shivaprasad, Vladyslav Shmyhlo, Anirudh Shrinivason, Inna Shteinbuk, Amir392

Shukayev, Mathieu Simard, Ella Snyder, Ava Spataru, Victoria Spooner, Trisha Starostina, Florian Strub,393

Yixuan Su, Jimin Sun, Dwarak Talupuru, Eugene Tarassov, Elena Tommasone, Jennifer Tracey, Billy394

Trend, Evren Tumer, Ahmet Üstün, Bharat Venkitesh, David Venuto, Pat Verga, Maxime Voisin, Alex395

Wang, Donglu Wang, Shijian Wang, Edmond Wen, Naomi White, Jesse Willman, Marysia Winkels, Chen396

Xia, Jessica Xie, Minjie Xu, Bowen Yang, Tan Yi-Chern, Ivan Zhang, Zhenyu Zhao, and Zhoujie Zhao.397

Command a: An enterprise-ready large language model, 2025. URL https://arxiv.org/abs/2504.00698.398

DeepSeek-AI et. al. Deepseek-v3 technical report. 2024. URL https://arxiv.org/abs/2412.19437.399

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how much?400

adaptive learning rate scheduling by refinement. Oct 2023. URL http://arxiv.org/abs/2310.07831v1.401

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok402

Cutkosky. The road less scheduled, 2024. URL https://arxiv.org/abs/2405.15682.403

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-404

terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth405

16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.406

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of language407

models from the loss perspective.408

Rong Ge, Sham M. Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A near409

optimal, geometrically decaying learning rate procedure. CoRR, abs/1904.12838, 2019. URL http://410

arxiv.org/abs/1904.12838.411

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene Belilovsky,412

Irina Rish, and Timothée Lesort. Continual pre-training of large language models: How to (re)warm your413

model? Aug 2023. URL http://arxiv.org/abs/2308.04014v2.414

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,415

Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal416

large language models. Advances in Neural Information Processing Systems, 35:30016–30030, 2022.417

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-418

ang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao,419

Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li, Zhiyuan420

Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language models with scalable training421

strategies. Apr 2024. URL https://arxiv.org/abs/2404.06395v2.422

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin Jaggi.423

Scaling laws and compute-optimal training beyond fixed training durations. Neural Information Processing424

Systems, May 2024.425

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory Anthony, Eugene426

Belilovsky, Timothée Lesort, and Irina Rish. Simple and scalable strategies to continually pre-train large427

language models. Transactions on Machine Learning Research, 2024.428

Nikhil Iyer, V. Thejas, Nipun Kwatra, Ramachandran Ramjee, and Muthian Sivathanu. Wide-minima429

density hypothesis and the explore-exploit learning rate schedule. CoRR, abs/2003.03977, 2020. URL430

https://arxiv.org/abs/2003.03977.431

14

https://arxiv.org/abs/2504.00698
https://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2310.07831v1
https://arxiv.org/abs/2405.15682
http://arxiv.org/abs/1904.12838
http://arxiv.org/abs/1904.12838
http://arxiv.org/abs/1904.12838
http://arxiv.org/abs/2308.04014v2
https://arxiv.org/abs/2404.06395v2
https://arxiv.org/abs/2003.03977

Under review as submission to TMLR

Paul Janson, Vaibhav Singh, Paria Mehrbod, Adam Ibrahim, Irina Rish, Eugene Belilovsky, and Benjamin432

Thérien. Beyond cosine decay: On the effectiveness of infinite learning rate schedule for continual pre-433

training. arXiv preprint arXiv:2503.02844, 2025.434

Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms and435

improvements. 2024. URL https://arxiv.org/abs/2406.09405.436

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2017. URL https:437

//arxiv.org/abs/1412.6980.438

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay balances learning439

across neural networks. In Forty-first International Conference on Machine Learning, 2024a. URL https:440

//openreview.net/forum?id=MQirNNU2pC. arXiv:2305.17212.441

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate warmup in442

GPT training. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.443

URL https://openreview.net/forum?id=ZgDNrpS46k. arXiv:2410.23922.444

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. CoRR,445

abs/1910.07454, 2019. URL http://arxiv.org/abs/1910.07454.446

Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training with one447

line of code, 2025. URL https://arxiv.org/abs/2411.16085.448

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher449

Olah. Sparse crosscoders for cross-layer features and model diffing, 10 2024. URL https://450

transformer-circuits.pub/2024/crosscoders/index.html.451

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In International452

Conference on Learning Representations, 2017.453

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on454

Learning Representations, 2019.455

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest collection456

of educational content, 2024. URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.457

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of large-batch458

training. 2018. URL https://arxiv.org/abs/1812.06162.459

Meta AI. The llama 3 herd of models. 2024. URL https://arxiv.org/abs/2407.21783.460

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling461

Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson,462

David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin,463

Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda,464

Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam465

Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A.466

Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2025. URL https://arxiv.org/abs/2501.00656.467

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older, 2024.468

URL https://arxiv.org/abs/2409.03137.469

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models470

are unsupervised multitask learners. 2019.471

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,472

Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.473

Journal of machine learning research, 21(140):1–67, 2020. URL http://arxiv.org/abs/1910.10683v4.474

15

https://arxiv.org/abs/2406.09405
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=MQirNNU2pC
https://openreview.net/forum?id=MQirNNU2pC
https://openreview.net/forum?id=MQirNNU2pC
https://arxiv.org/abs/2305.17212
https://openreview.net/forum?id=ZgDNrpS46k
https://arxiv.org/abs/2410.23922
http://arxiv.org/abs/1910.07454
https://arxiv.org/abs/2411.16085
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2409.03137
http://arxiv.org/abs/1910.10683v4

Under review as submission to TMLR

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Nikolai Gerasimenko, Ivan Oseledets, Denis475

Dimitrov, and Andrey Kuznetsov. Your transformer is secretly linear. In Lun-Wei Ku, Andre Martins,476

and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational477

Linguistics (Volume 1: Long Papers), pp. 5376–5384, Bangkok, Thailand, August 2024. Association for478

Computational Linguistics. doi: 10.18653/v1/2024.acl-long.293. URL https://aclanthology.org/2024.479

acl-long.293/.480

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surprising agree-481

ment between convex optimization theory and learning-rate scheduling for large model training, 2025. URL482

https://arxiv.org/abs/2501.18965.483

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/2002.05202.484

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with 0.1m485

dollars. Apr 2024a. URL http://arxiv.org/abs/2404.07413v1.486

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza487

Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and token number agnostic488

learning rate scheduler. August 2024b.489

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase the batch490

size. CoRR, abs/1711.00489, 2017. URL http://arxiv.org/abs/1711.00489.491

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey. SlimPa-492

jama: A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.net/blog/493

slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023. URL https:494

//huggingface.co/datasets/cerebras/SlimPajama-627B.495

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced496

transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.497

Shreyas Subramanian, Vignesh Ganapathiraman, and Corey D Barrett. Hop, skip, jump to convergence: Dy-498

namics of learning rate transitions for improved training of large language models. In Yaser Al-Onaizan, Mo-499

hit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP500

2024, pp. 16349–16362, Miami, Florida, USA, November 2024. Association for Computational Linguistics.501

doi: 10.18653/v1/2024.findings-emnlp.954. URL https://aclanthology.org/2024.findings-emnlp.502

954/.503

Akiyoshi Tomihari and Issei Sato. Understanding linear probing then fine-tuning language models from NTK504

perspective. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.505

URL https://openreview.net/forum?id=1v4gKsyGfe.506

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,507

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation508

language models. arXiv preprint arXiv:2302.13971, 2023.509

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,510

and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,511

volume 30, 2017.512

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding warmup-513

stable-decay learning rates: A river valley loss landscape perspective. 2024. URL https://arxiv.org/514

abs/2410.05192.515

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S.516

Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model517

soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference518

time, 2022. URL https://arxiv.org/abs/2203.05482.519

16

https://aclanthology.org/2024.acl-long.293/
https://aclanthology.org/2024.acl-long.293/
https://aclanthology.org/2024.acl-long.293/
https://arxiv.org/abs/2501.18965
https://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2404.07413v1
http://arxiv.org/abs/1711.00489
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2104.09864
https://aclanthology.org/2024.findings-emnlp.954/
https://aclanthology.org/2024.findings-emnlp.954/
https://aclanthology.org/2024.findings-emnlp.954/
https://openreview.net/forum?id=1v4gKsyGfe
https://arxiv.org/abs/2410.05192
https://arxiv.org/abs/2410.05192
https://arxiv.org/abs/2410.05192
https://arxiv.org/abs/2203.05482

Under review as submission to TMLR

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In Proceed-520

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12104–12113,521

June 2022.522

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://arxiv.org/523

abs/1910.07467.524

17

https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467

Under review as submission to TMLR

A Experiments Context525

The experimental setup mirrors that of Hägele et al. (2024). Specifically, we employ a decoder-only526

transformer model resembling Llama3 (Meta AI, 2024). The architecture incorporates SwiGLU activa-527

tions (Shazeer, 2020), RoPE (Su et al., 2023), RMSNorm (Zhang & Sennrich, 2019), and alternating at-528

tention and feed-forward layers. Unless explicitly stated otherwise, we adhere to the following methods and529

hyperparameters.530

We use the AdamW optimizer with beta parameters set to (β1, β2) = (0.9, 0.95), ε = 10−8, a decoupled531

weight decay of 0.1 (Loshchilov & Hutter, 2019), and gradient clipping at 1.0. All runs are trained with532

bfloat16 automatic mixed precision. We generally apply a short warmup of 300 steps. The batch size is set533

to 200, corresponding to 0.1 million tokens for a sequence length of 512. The vocabulary is derived from the534

GPT-2 tokenizer (Radford et al., 2019) and consists of 50,304 tokens. Hidden shapes of the used model are535

presented in Table 1.536

Model Size dmodel nlayers ffw dim head dim nheads
60M 512 10 1536 64 8
210M 768 24 2048 64 12

Table 1: Model configurations with varying parameter counts. The 210M parameter model is used in the
majority of the experiments. The 60M parameter model is used for experiments in App. D.

B Used Cooldown Shapes Formulas537

The formulas for cooldown shapes used in the article and presented on Figure 4 are:538

x ∈ [0, 1],
linear = 1 − x,

cosine = 1 + cos(πx)
2 ,

mirror cosine = 2(1 − x) − 1 + cos(πx)
2 ,

square = 1 − x2,

sqrt = 1 −
√

x.

C Bias-Variance Plot Basis Selection539

In addition to the basis for bias-variance plots proposed in equation (1) (KL-based space), we analyze how540

results change with the selection of different bases.541

C.1 Model Weights Space542

Surprisingly, the same structure is observed when results are plotted in model weights space. We use each543

experiment’s model weights as a vector of model parameters of size p. That is, if sin ∈ Rp represents model544

weights trained with cooldown shape i by data permutation n, and rn ∈ Rp represents reference model545

weights trained on data permutation n, the complete formulas used are presented in equation (3). In essence,546

we measure bias as the distance between the mean reference and experimental models, and variance as the547

variance of model weights across different permutations.548

18

Under review as submission to TMLR

biasi =

∥∥∥∥∥ 1
N

(
N∑

n=1
rn −

N∑
n=1

sin

)∥∥∥∥∥ ,

variancei = 1
N − 1

N∑
n=1

∥sin − si∥2.

(3)

Plots in this basis are presented in Figure 14. The experiments used are the same as in section 4.1, but549

with different coordinates. We also plot a comparison of the two spaces in Figure 15. We see that while550

some variations are observed, the general structure of the plot remains the same. Presumably, variations551

between plots should become less noticeable with an increase in the number of experiments with different552

data permutations.553

300 325 350
Bias, model weights space

0

2

4

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.1
0.3

0.5

0.7

0.9

1.0

Lowered linear

280 290 300
Bias, model weights space

2

4

6

8

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.5

0.7

0.9

linear

cosine

mirror cosine

square

sqrt

Lowered linear and shapes

Figure 14: Bias-variance plot in model weights space. The general structure agrees with the discussion
in section 4.1.

280 290 300
Bias, model weights space

2

4

6

8

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.5

0.7

0.9

linear

cosine

mirror cosine

square

sqrt

Model weights space

0.0675 0.0700 0.0725
Bias, KL to reference

4

6

P
re

di
ct

io
ns

va
r.

,
10

3

0.5

0.7

0.9
linear

cosinemirror cosine

square

sqrt

KL-based space

Figure 15: Comparison of bias-variance plots in KL-based space and model weights space. While
minor variations are noticeable, the general structure of the plots is the same.

19

Under review as submission to TMLR

C.2 Loss Space554

Another coordinate space used for the bias-variance plot is a simple loss-based space. If sin ∈ R represents555

the model validation loss trained with cooldown shape i by data permutation n, the complete formulas used556

are presented in equation (4), which are simply the mean and variance.557

biasi = 1
N

N∑
n=1

sin,

variancei = 1
N

N∑
n=1

∥sin − si∥2.

(4)

3.175 3.180 3.185 3.190
Bias, loss

0.5

1.0

1.5

V
ar

ia
nc

e,
lo

ss
,

10
4

linear

cosine

mirror cosine

square

sqrt

0.1

0.3

0.5

0.7
0.9

Figure 16: Comparison of the bias-variance plot in loss coordinates. While the general idea of the bias-
variance trade-off is noticeable, the plot appears skewed.

2.90 2.91 2.92 2.93
Bias, mean model loss

0.5

1.0

1.5

V
ar

ia
nc

e,
lo

ss
,

10
4

linear

cosine

mirror cosine

square

sqrt

0.1

0.3

0.5

0.7
0.9

(a) Bias-variance plot where bias represents the loss of the
average model and variance is the variance of losses
for each specific shape and different data permutations.

2.90 2.91 2.92 2.93
Bias, mean model loss

0

2

4

6

8

V
ar

.,
m

od
el

w
ei

gh
ts

,
10

5

linear

cosine

mirror cosine

square

sqrt

0.1
0.3

0.5

0.7

0.9

(b) Bias-variance plot where bias represents the loss of
the average model and variance is the variance of
model weights for each specific shape and different data
permutations.

Figure 17: Miscellaneous loss-based bias-variance plots.

20

Under review as submission to TMLR

Plots in this basis are displayed in Figure 16. The observed trade-off is not as vivid as in KL-based or model558

weights coordinates and appears to be a skewed version of the plots observed before.559

We also tried using the loss of the average model as bias instead of the mean of the losses, and the variance560

of the losses (Figure 17a). Additionally, we tried using the loss of the average model as bias and the variance561

of model weights as variance for each experiment (Figure 17b). While both of these plots produce reasonable562

results, we believe they are less interpretable than the approach used in the main part of the paper.563

D Bias Variance Plot Reproduction564

We reproduced the bias-variance plot for a smaller model with 60M parameters and for a different dataset.565

The observed results align with previous experiments presented in the paper.566

D.1 Smaller Model567

We reproduced the bias-variance plot for a smaller model with 60M parameters. We used the same architec-568

ture as in the main experiments but modified the number of layers and the hidden dimension. The results569

are presented in Figure 18 and Figure 19. From the plots, it is evident that the general structure and relative570

positions of different shapes agree with the previous experiments.571

0.08 0.10
Bias, KL to reference

1

2

3

P
re

di
ct

io
ns

va
r.

,
10

3

0.1

0.3

0.5

0.7

0.9
1.0

Lowered linear

0.065 0.070
Bias, KL to reference

2

3

4

5

P
re

di
ct

io
ns

va
r.

,
10

3

0.5

0.7

0.9
linear

cosine
mirror cosine

square

sqrt

Lowered linear and shapes

Figure 18: Bias-variance plot for different cooldown shapes for the smaller model in KL-based space. The
observed results agree with our earlier discussion in the paper.

21

Under review as submission to TMLR

200 220 240 260
Bias, model weights space

0

1

2

3

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.1
0.3

0.5

0.7

0.9

1.0

Lowered linear

190 200 210 220
Bias, model weights space

2

4

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.5

0.7

0.9

linear

cosine

mirror cosine

square

sqrt

Lowered linear and shapes

Figure 19: Bias-variance plot for different cooldown shapes for the smaller model in model weights space.
The observed results agree with our earlier discussion in the paper.

D.2 Different Dataset572

Additionally, we reproduced the bias-variance plot using a different dataset and the same model. We used573

the fineweb-edu (Lozhkov et al., 2024) 10 billion token subset. The results are presented in Figure 20 and574

Figure 21.575

0.06 0.07 0.08 0.09
Bias, KL to reference

1

2

3

P
re

di
ct

io
ns

va
r.

,
10

3

0.1

0.3

0.5

0.7

0.9
1.0

Lowered linear

0.060 0.062 0.064
Bias, KL to reference

2

3

4

P
re

di
ct

io
ns

va
r.

,
10

3

0.5

0.7

0.9
linear

cosinemirror cosine

square

sqrt

Lowered linear and shapes

Figure 20: Bias-variance plot for different cooldown shapes for the fineweb-edu dataset in KL-based space.
The observed results agree with our earlier discussion in the paper.

22

Under review as submission to TMLR

300 325 350 375
Bias, model weights space

0

2

4

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.1
0.3

0.5

0.7

0.9

1.0

Lowered linear

300 320
Bias, model weights space

2.5

5.0

7.5

M
od

el
w

ei
gh

ts
va

r.
,

10
5

0.5

0.7

0.9
linear

cosine

mirror cosine

square

sqrt

Lowered linear and shapes

Figure 21: Bias-variance plot for different cooldown shapes for the fineweb-edu dataset in model weights
space. The observed results agree with our earlier discussion in the paper.

E Data Points Bias Supplements576

We present additional visualizations for the recency bias-based shift-deviation framework in this section.577

Figure 22 shows the unreduced components from equation 2.578

We also explore how well the shift-deviation plot (Figure 9) aligns with the bias-variance plot (Figure 7). The579

correlation is presented in Figure 23. It is clear that both perspectives align well. The plot in shift-deviation580

coordinates, with shift calculated over the entire training process, is presented in Figure 24. The correlation581

with bias is not as strong, but the general structure remains the same, though skewed.582

80 85 90 95 100
Batch index, %

−6

−4

−2

P
er

pl
ex

it
y

im
pr

ov
em

en
t,

c
(b

i
)−

p
(b

i
)

0 25 50 75 100
Batch index, %

10−1

100

101

D
ev

ia
ti

on
,

[(
c
(b

i
)−

p
(b

i
))

−
bi

as
]2

lowered linear 0.1 sqrt cosine square

Figure 22: Bias-variance statistics from equation 2. On the left, unreduced and 100-batch window-
smoothed shift from eq. 2 (calculated only during cooldown). On the right, the unreduced and 100-batch
window-smoothed deviation from eq. 2. It is clear that low-deviation shapes such as lowered linear 0.1 lie
close to zero on the right plot, indicating more uniform data point bias. However, on the left plot, they lie
high, indicating low improvement over the pre-cooldown model (shift). Conversely, high-deviation shapes
such as square have low shift and high deviation.

23

Under review as submission to TMLR

−5.0 −4.5 −4.0 −3.5
Shift, improvement over pre-cooldown

0.08

0.10

B
ia

s,
K

L
to

re
fe

re
nc

e ρspearman = 0.976,
pvalue = 0.000

1 2 3 4
Deviation, bias uniformity

0

2

4

6

P
re

di
ct

io
ns

va
r.

,
10

3 ρspearman = 0.964,
pvalue = 0.000

Figure 23: Comparison between bias-variance and shift-deviation plots. The left plot shows the
correlation between shift and bias, while the right plot shows the correlation between deviation and variance.
The correlation is calculated using the Spearman rank correlation coefficient. High correlation is clearly
visible, indicating that the two perspectives align well.

−3.6 −3.4 −3.2 −3.0
Shift, improvement over pre-cooldown

0.5

1.0

D
ev

ia
ti

on
,

bi
as

un
ifo

rm
it

y 0.9
linear

0.7

0.5

square

0.3

cosinemirror cosine

sqrt

0.1

−3.6 −3.4 −3.2 −3.0
Shift, improvement over pre-cooldown

0.06

0.08

0.10

B
ia

s,
K

L
to

re
fe

re
nc

e ρspearman = 0.176,
pvalue = 0.627

Figure 24: Shift-deviation plot with shift calculated over the entire training process. On the
left, the shift is calculated over the entire training process, and on the right, the resulting correlation with
bias is presented. It is noticeable that the correlation with previous results is not as strong, but the general
structure remains the same. Also, unwanted skew is visible on the left plot.

24

Under review as submission to TMLR

F Weight Decay and Optimizer State583

sqrt linear mirror cosine cosine square
18.3

18.4

18.5

18.6

V
al

id
at

io
n

pe
rp

le
xi

ty

18.34

18.39
18.42

18.47

18.54

18.35

18.40 18.40

18.47

18.52

18.35

18.40
18.42

18.48

18.54regular
no weight decay
reset optimizer

Figure 25: Comparison of cooldown performance without weight decay or with an optimizer
state reset to usual runs. For the sqrt shape, disabling weight decay or resetting the optimizer slightly
worsens performance, while for high-variance shapes, disabling weight decay can improve performance.

In all the experiments, we use AdamW with a weight decay of 0.1 and resume training from the pre-cooldown584

stage, restoring the optimizer state. It is worth examining how the cooldown stage performs without weight585

decay or with a reset optimizer state. Figure 25 presents the results of these experiments, grouped by different586

cooldown shapes.587

No Weight Decay and Reset Optimizer State Performance Conclusions. Switching off weight588

decay or resetting the optimizer state negatively impacts bias-variance optimal shapes like sqrt, although the589

effect is not dramatic, as evident from the absolute values of the difference.590

Interestingly, switching off weight decay improves performance for high-variance shapes such as square or591

mirror cosine. This can be explained by introducing an “effective learning rate”, as discussed by Kosson592

et al. (2024a). For high-variance shapes, switching off weight decay acts as an additional decaying factor for593

the learning rate, altering the shape’s position on the bias-variance plot.594

G Momentum & Gradient Alignment595

Motivated by the idea that the cooldown stage optimization exhibits some unusual properties, we explore how596

gradients align with the AdamW momentum state during the cooldown stage. To do this, we calculate the597

cosine angle between the optimizer’s state and the corresponding gradient during training for each parameter598

individually (Figure 26a). Additionally, we collect gradient norms during the cooldown stage (Figure 26b).599

Gradient Alignment Conclusions. We observe that alignment with momentum increases during the600

cooldown stage, indicating that gradients become more aligned between optimization steps: starting from601

negative alignment with momentum and moving to slightly positive. This rising alignment suggests that the602

optimizer’s state and the gradients converge toward a more stable direction as training progresses through603

the cooldown phase (Becker et al., 2024; Liang et al., 2025).604

25

Under review as submission to TMLR

80 85 90 95 100
Training steps, %

-0.050

0.000

co
s(

w
g

r
a

d
,w

m
o

m
e

n
tu

m
)

linear
cosine
mirror cosine

square
sqrt

(a) Average cosine similarity between gradients and the cor-
responding AdamW momentum state (exp_avg).

80 85 90 95 100
Training steps, %

0.225

0.250

0.275

0.300

0.325

G
ra

di
en

t
no

rm

(b) Gradient norm during the cooldown stage, calculated
as a l2 norm of single vector across all gradients.

Figure 26: Gradient statistics during the cooldown stage. Confidence bands represent the 95% confi-
dence interval. Values are averaged using a sliding window of 400 steps.

H Features Evolution Experiments605

We investigate how output features from different transformer layers evolve during training. To analyze606

this, we apply linear probes (Razzhigaev et al., 2024; Tomihari & Sato, 2024) during the cooldown stage607

at intervals of 1000 steps across all transformer hidden layers. The linear layers are trained for 2,000 steps608

(1 million tokens) using the AdamW optimizer on a subset of the training data, then evaluated on 1,000609

evaluation batches from a held-out portion of the training dataset. Linear probing weights are initialized610

with the current lm-head weight.611

Results discussion. Figure 27 demonstrates progressive improvements in linear probe perplexities612

throughout the cooldown phase across layers. Figure 28 reveals the temporal dynamics of these changes,613

showing that the final layers exhibit the most significant relative improvement during cooldown. This pat-614

tern suggests that deeper layers undergo more substantial feature refinement in later training stages compared615

to earlier layers.616

26

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer index

0

2

4

6
P

er
pl

ex
it

y
im

pr
ov

em
en

t

Figure 27: Perplexity improvement over the course of the cooldown stage for linear probing of
different hidden transformer layers. The zero layer corresponds to embeddings.

80 85 90 95 100
Training steps, %

0.900

0.925

0.950

0.975

1.000

R
el

ti
ve

pe
rp

le
xi

ty

80 85 90 95 100
Training steps, %

0.900

0.925

0.950

0.975

1.000

R
el

at
iv

e
pe

rp
le

xi
ty

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

Figure 28: Dynamics of perplexity improvement over the course of the cooldown stage for linear
probing of different hidden transformer layers. The zero layer corresponds to embeddings. Perplexity
relative to the start of the cooldown stage is reported. Left uses a sqrt cooldown shape, right uses a square
cooldown shape.

27

Under review as submission to TMLR

I Loss Landscape Plots617

-0.3

0.0

0.3
G

lo
ba

l o
pt

im
iza

tio
n

-3.0 -1.5 0.0 1.5 3.0
Adam steps

19.94

36.32

Cooldown start (81.8% steps)

-0.15

0.00

0.15

G
lo

ba
l o

pt
im

iza
tio

n

-0.2 -0.1 0.0 0.1 0.2
Adam steps

19.99

20.64

-0.3

0.0

0.3

Glob
al

op
tim

iza
tio

n-3.0
-1.5

0.0
1.5

3.0

Adam steps

18.54

22.45

Cooldown mid (90.9% steps)

-0.15

0.00

0.15

Glob
al

op
tim

iza
tio

n-0.2
-0.1

0.0
0.1

0.2

Adam steps

18.54

18.86

-0.3
0.0

0.3
Global optimization

-3.0
-1.5

0.0
1.5

3.0

Adam
steps

17.86

19.34
Cooldown end (100.0% steps)

current point plot min point

-0.15
0.00

0.15
Global optimization

-0.2
-0.1

0.0
0.1

0.2

Adam
steps

17.86

18.24

Figure 29: Plots of the loss landscape at different cooldown points. The Z-axis represents perplexity
on a portion of the validation data. On the left, plots from a larger scale are displayed; on the right, the
same plot points are shown at a smaller scale.

28

	Introduction
	Background: Learning Rate Scheduler
	Warmup Stable Decay Scheduler

	Experimental Setup
	Cooldown Shape: Does It Matter?
	Bias-Variance Point of View
	Data Points Bias
	Bias-Variance Plot Conclusions

	Averaging vs Longer Training
	Cooldown Stage Hyperparameters
	Batch Size Impact
	AdamW Parameters Impact

	Examining the Loss Landscape
	Related Work
	Conclusions
	Future Work
	Experiments Context
	Used Cooldown Shapes Formulas
	Bias-Variance Plot Basis Selection
	Model Weights Space
	Loss Space

	Bias Variance Plot Reproduction
	Smaller Model
	Different Dataset

	Data Points Bias Supplements
	Weight Decay and Optimizer State
	Momentum & Gradient Alignment
	Features Evolution Experiments
	Loss Landscape Plots

