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ABSTRACT

Instruction-following is a fundamental capability of language models, requiring
the model to recognize even the most subtle requirements in the instructions and
accurately reflect them in its output. Such an ability is well-suited for and often op-
timized by preference learning. However, existing methods often directly sample
multiple independent responses from the model when creating preference pairs.
Such practice can introduce content variations irrelevant to whether the instruc-
tion is precisely followed (e.g., different expressions about the same semantic),
interfering with the goal of teaching models to recognize the key differences that
lead to improved instruction following. In light of this, we introduce SPAR, a self-
play framework integrating tree-search self-refinement to yield valid and compa-
rable preference pairs free from distractions. By playing against itself, an LLM
employs a tree-search strategy to refine its previous responses with respect to the
instruction while minimizing unnecessary variations. Our experiments show that
a LLaMA3-8B model, trained over three iterations guided by SPAR, surpasses
GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Fur-
thermore, SPAR demonstrates promising scalability, greatly enhancing the per-
formance of LLaMA3-70B. We also identify how inference scaling in tree search
would impact model performance. Code and data will be publicly available.

Write a story and end it with “The devil is in the details.”

Response 1: Response 2: Refined Response:

Learn more about the 
story content (interfering)

Learn exactly about the 
ending sentence (expected)

<Hansel and Gretel>
……………………
…… they defeated 
the witch. The devil 
is in the details.

<Little Red Riding Hood>
…………………………..
… In the end, they lived 
happily together.

<Little Red Riding Hood>
…………………………..
… In the end, they lived 
happily together. The 
devil is in the details.

story： story： story：

Figure 1: An example of the interfering factors (story content) in independently sampled multiple
responses (Left). Refined response pairs exclude these factors, highlight the key difference (ending
sentence), and lead to improved performance on iteratively trained LLaMA3-8B-Instruct (Right).

1 INTRODUCTION

To date, Large Language Models (LLMs) have achieved great success in a wide range of tasks
(Brown et al., 2020; Zeng et al., 2022; Chowdhery et al., 2023; Touvron et al., 2023; GLM et al.,
2024). As LLMs are applied to various scenarios, their instruction-following capability becomes
crucial (Ouyang et al., 2022; Bai et al., 2022), especially to follow instructions with multiple con-
straints (Zeng et al., 2023; Zhou et al., 2023; Jiang et al., 2023b). The failure to accurately follow
instructions can even lead to safety issues (Ruan et al., 2023).
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Subtle nuances can determine the success of instruction-following tasks (Zhou et al., 2023), making
preference learning (Rafailov et al., 2024; Hou et al., 2024) a well-suited solution. However, existing
methods usually sample multiple independent responses from the target model (Yuan et al., 2024;
Wu et al., 2024; Dong et al., 2024), inadvertently introducing irrelevant variations to whether the
instruction was successfully followed. As illustrated in Figure 1, given the instruction: “Write a
story and end it with The devil is in the details”, sampling multiple independent responses from an
LLM can result in responses as different as the story Little Red Riding Hood vs. Hansel and Gretel.
This variation in the narrative content can interfere with the model’s ability to learn how to realize the
critical requirement—the specified ending sentence—and ultimately mislead the comparison within
the preference pair. Therefore, effective learning from preference pairs necessitates excluding these
extraneous factors and focusing on the key differences that drive the success of instruction-following.

In this paper, we propose SPAR, a self-play method integrated with tree-search refinement to en-
hance instruction-following capabilities of LLMs. The key lies in iteratively teaching LLMs to learn
instruction-following from nuances by playing against itself with structured tree search. In each turn
of self-play, an LLM takes two different roles: the actor and the refiner, which are both initialized
from the same model. The actor executes complex instructions while the refiner critiques and refines
the actor’s responses. During the iteration, we first collect the actor’s responses which fail to follow
the instructions accurately, as judged by the refiner. Starting from those failed responses, we apply a
tree-search algorithm for refinement, which ensures consistent improvements against previous turns
and naturally creates valid comparison counterparts for model training.

We conduct experiments on several LLMs, LLaMA3 series (MetaAI, 2024), GLM-4-9B (GLM
et al., 2024), and Mistral-7B-Instruct (Jiang et al., 2023a), over multiple iterations. Through ex-
tensive experiments, we demonstrate significant improvements in the models’ instruction-following
capability, outperforming other self-improvement methods such as self-rewarding (Yuan et al., 2024)
and meta-rewarding (Wu et al., 2024). Notably, after three iterations, SPAR improves LLaMA3-8B-
Instruct over GPT-4-Turbo on the IFEval benchmark (Zhou et al., 2023). Moreover, scaling test-
time compute by integrating tree-search refinement during inference can further improve the quality
of instruction following. Additionally, we find that with several iterations, the refiner’s judgment
and refinement capabilities can match or even exceed those of the distilled LLM, indicating great
potential for continuous self-improvement without being limited by the initial bootstrapping data.
Ablation studies demonstrate the importance of each component within our framework. Importantly,
our method does not degrade performance on general benchmarks. In summary, our contributions
are:

• We reveal that preference pairs derived from independently sampled responses often contain
interfering factors, hampering preference learning to improve instruction following. As a re-
sult, a performing solution has to minimize such interference and highlight the key differences
contributing to the success of instruction following.

• We introduce SPAR, a novel self-play framework that enables continuous self-improvement in
instruction-following tasks. Through three iterations, our method boosts LLaMA3-8B-Instruct
to achieve GPT4-level performance and scales effectively to enhance LLaMA3-70B-Instruct.

• We construct a high-quality dataset with 43K complex instruction-following prompts and an
SFT dataset that can improve the instruction-following capabilities of LLMs.

2 METHOD

We introduce SPAR, an automated and scalable approach designed for self-improvement of
instruction-following tasks through self-play. The core idea is to create paired responses with
minimal irrelevant variations, thereby highlighting the key differences that manifest the success
of instruction-following.

2.1 OVERALL FRAMEWORK

The overall framework of SPAR is illustrated in Figure 2. Briefly, our framework involves an actor
model and a refiner model, which are both initialized from the same base model. The actor generates
responses to given instructions while the refiner judges and refines these responses. This iterative
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Refiner
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Negative Data Collection

{ xx, yy, jj }

Tree Search 
Refinement

Negative Data

Actor
Mt+1Mt+1

Refiner
Rt+1Rt+1

Model 
Training

DPO Training RFT Training
Actor Data

{ xx, y8 > y0y8 > y0 }

Refiner Data
{ xx, yiyi →→ jiji }

{ xx, y3y3, j3j3 →→ y8y8 }

{ xx, y0y0, j0j0 }

{ xx, y8y8, j8j8 }

{ xx, y3y3, j3j3 }

Refine y3y3 →→  y8y8
Judge y8y8 →→  j8j8

Refiner
RtRt

1

Judge

2

Prompt Response

Correct Response

Operations of Each Branch

Breadth First Search

Models for Next 
Iteration

Negative Data
Judgement { xx, y1y1, j1j1 } { xx, y2y2, j2j2 }

…

… … …

Figure 2: SPAR iterative training framework. At iteration t, the refiner Rt first judges the generated
responses from the actor Mt to collect negative data. Next, a tree-search algorithm is employed to
refine these imperfect responses. Finally, using the data from the above steps, we can optimize the
actor and refiner for the next iteration, aiming for continuous self-improvement.

self-play process, involving response generation, judgment, and refinement, fosters continuous self-
improvement.

Formally, in each iteration, given an instruction x from the prompt set, the actor generates a response
y. The refiner identifies the responses that do not follow the instructions accurately, termed as
negative responses. Our objective is to refine the negative response (represented as y0 in Figure
2) into a correct response (represented as y8 in the figure). These generated refinement pairs, e.g.,
(x, y8 > y0), are collected and used to optimize the actor via DPO. Simultaneously, we apply RFT
to improve the refiner. This process prepares both models for the next iteration of self-improvement.

In this iterative process, we face two major challenges: the scarcity of complex instruction-following
data and the difficulty of achieving successful refinements. To address the lack of high-quality, multi-
constraint instruction-following datasets, we generate complex instructions using a taxonomy-based
approach and create corresponding SFT datasets to initialize the actor and refiner models (§2.2).
To ensure a high success rate in refining negative responses, we employ a tree search strategy that
systematically explores refinement paths and facilitates subsequent training (§2.3).

2.2 DATA CONSTRUCTION

To support the subsequent self-play enhancement, we first bootstrap a base LLM with capabilities
to act as both actor and refiner.

2.2.1 PROMPT CREATION

Given the scarcity of high-quality data for instruction-following tasks, especially those with multiple
constraints, we start by creating a high-quality dataset of instruction-following prompts.

Seed Prompts. To ensure the quality and diversity of our dataset, and to prevent issues like in-
sufficient diversity or even model collapse (Liu et al., 2024; Shumailov et al., 2024), we use a seed
set of prompts derived from the Infinity-Instruct dataset (Zhao et al., 2024), which contains ten mil-
lion high-quality conversations. After applying rule-based filtering based on length, keywords, and
self-BLEU, we obtain approximately 50k seed prompts.

Taxonomy-based Prompt Construction. Complex prompts constructed without human interven-
tion tend to be poorly diversified, as the types of constraints added are often distributed unevenly
(Sun et al., 2024). Therefore, we adopt a taxonomy-based mechanism to make constraint types com-
prehensive and balanced. Our taxonomy for instruction-following constraints is derived from Cheng
et al. (2024) and further refined to be more comprehensive.

After building the constraint taxonomy, we employ it to construct complex instruction-following
tasks based on seed prompts. We sample a main constraint type and employ a strong LLM to
add several other constraints to make the original prompt more complex. Moreover, we leverage
the strong LLM to assess the validity of the generated prompt, ensuring that the constraints do
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not conflict with each other or create unreasonable scenarios with the original task. The detailed
taxonomy and prompt can be found in Appendix A.

2.2.2 ACTOR AND REFINER INITIALIZATION

The taxonomy-based prompt construction results in about 43k prompts. We utilize 8k prompts for
actor initialization, another 5k for the refiner, and save 30k for further self-play training.

Actor Data Creation. To bootstrap the actor model with strong instruction-following capabilities,
we first collect a strong LLM’s responses to these complex prompts, thereby producing supervised
fine-tuning (SFT) data (x, y) ∈ DActor for the actor model, where x is the complex instruction and y
is the strong LLM’s response. Then, we fine-tune the base model to get an initial actor M0.

Refiner Data Creation. To bootstrap the refiner model with strong judgment and refinement ca-
pability, we sample responses from the initial actor M0. Then, we collect the judgments from a
strong LLM to form a dataset, (x, y, j) ∈ DJSFT. We collect responses that are judged not to ac-
curately follow instructions and term them as negative responses. For these negative responses, we
use the strong LLM to correct them with minimal revisions to avoid irrelevant variations. In this
way, we get a refinement dataset, (x, ynegative, j, yrefined) ∈ DRSFT. The refiner is then trained with
DRefiner = DJSFT ∪DRSFT to create the initial refiner R0.

Training Strategy. For both actor and refiner models, we use standard supervised fine-tuning with
the loss function:

L = − 1

N

N∑
i=1

logP (ri|q, r<i), (1)

where q denotes the input, r signifies the target response, and N represents the length of r. For
actor training, we have input q = x and target r = y. When it comes to the refiner, we use input
q = (x, y) and target r = j for DJSFT, and input q = (x, ynegative, j) and target r = yrefined for DRSFT.

2.3 TREE-SEARCH INTEGRATED SELF-PLAY TRAINING

After initializing the actor and refiner models, we embark on an iterative process for continuous
self-improvement. In each iteration, we first collect the negative data, where the responses fail to
accurately follow the instructions (§2.3.1). Then, we utilize a tree-search algorithm to refine the
negative responses (§2.3.2) and form the training data for the next iteration of the actor (§2.3.3) and
refiner (§2.3.4). This iterative self-play pipeline allows us to continuously improve both models.

2.3.1 NEGATIVE DATA COLLECTION

For each prompt x, we first sample K responses {y1, y2, . . . , yK} from the actor model. This
step ensures that there are enough negative responses to support subsequent learning. Then, for
each prompt and response pair, we utilize the refiner to generate a judgment, which contains two
parts: a label suggesting whether the response follows the instruction and an explanation about the
assessment. To make this judgment more accurate, we incorporate the self-consistency mechanism
(Wang et al., 2022), which is also applied in the subsequent refinement process. Specifically, we
obtain multiple judgments from the refiner and determine the final label through majority voting, as
detailed in Appendix D.4. After majority voting, we randomly select one judgment that matches the
voted label to serve as the final judgment. This process allows us to identify challenging prompts
that elicit responses that do not accurately follow the instructions, yielding tuples in the form of
(x, ynegative, j), where ynegative is the incorrect response and j is its corresponding judgment.

2.3.2 TREE-SEARCH REFINEMENT

After collecting these negative instances, the core step is to refine the responses to form preference
pairs. These self-refined pairs are crucial for highlighting the subtle differences that can determine
the success of instruction-following tasks, thereby facilitating effective learning. Given that direct
refinement often results in a low success rate, we employ a tree-search approach. We implement
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both breadth-first search (BFS) and depth-first search (DFS) strategies for this refinement. Detailed
algorithms for these methods are provided in Appendix B.

To illustrate our process, we take BFS as an example and illustrate the procedure in Figure 2. Starting
with an incorrect instruction-response pair and its judgment as the root node, we expand the search
tree level-by-level until a correct response is found. At each intermediate node, we generate potential
refinements for the current response and evaluate its correctness using the refiner. The number of
generated refinements corresponds to the number of branches. Specifically, at a level of the tree,
the refiner: 1). generates potential refinements for each node in the current level; 2). judges the
correctness of these refinements. This creates a set of child nodes with new responses and their
corresponding judgments. The search process continues until we obtain a tuple (x, ynegative, yrefined),
where yrefined is the newly refined, correct response. Importantly, SPAR combines the strengths
of both tree-search and self-refinement, exploring multiple refinement paths while minimizing the
interfering factors, producing effective preference learning data.

2.3.3 ACTOR TRAINING

To optimize the actor model, we leverage the refinement pairs for preference learning using DPO.
At iteration t, we train the actor model Mt with refinement pairs (ynegative, yrefined), treating ynegative
as the rejected response (yl) and yrefined as the chosen response (yw). The training dataset is denoted
as Dt

dpo and the DPO loss is described as follows:

LDPO(π
t
θ;πref) = −E(x,yw,yl)∼Dt

dpo

[
log σ

(
β log

πt
θ(yw|x)

πref(yw|x)
− β log

πt
θ(yl|x)

πref(yl|x)

)]
(2)

where πt
θ represents the actor model Mt, and the reference model πref initialized with Mt remains

fixed during the training process. This results in a new actor model, Mt+1, for the next iteration.

2.3.4 REFINER TRAINING

Given that the input for the refiner is templated, we use RFT to obtain the new refiner Rt+1. The RFT
training data consists of two components: the refinement data and the judgment data for improving
the refiner’s corresponding capabilities.

Refinement Training Data. The refinement training data consists of tuples that capture the pro-
cess of refining incorrect responses. For each incorrect response from the tree-search based refine-
ment step, we collect tuples in the form of (x, yp, jp, yrefined), where (x, yp, jp) represents the parent
node of the final correct response in the refinement tree, and yrefined is the correctly refined response.

Judgment Training Data. The judgment training data is derived both from the negative data
collection and nodes of the tree-search process. This dataset consists of tuples (x, yi, ji), where
x is the prompt, yi is a response to x, and ji is the judgment consistent with majority voting.

Then, we perform supervised fine-tuning using the constructed training data. For the refinement
data Dt

refine we use the tuples (x, yp, jp, yrefined) with input q = (x, yp, jp) and target r = yrefined. For
the judgment data Dt

judge, we use the tuples (x, yi, ji) with input q = (x, yi) and target r = ji. The
supervised fine-tuning loss is given by Eq (1). By employing this self-play training process with
the tree-search based self-refinement strategy, SPAR iteratively enhances both the actor and refiner
models, aiming for continuous self-improvement in instruction-following tasks.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Backbone Models. We have conducted experiments on several popular LLMs:

• LLaMA3 Series (MetaAI, 2024) are the best-performing models of their size, showcasing top-
tier instruction-following capabilities among open-source LLMs.

• GLM-4-9B-Chat (GLM et al., 2024) excels in instruction-following tasks, offering competitive
performance under 10B parameters.
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• Mistral-7B-Instruct (Jiang et al., 2023a) is one of the most popular LLMs and has shown good
performance across a wide range of tasks.

Settings. In this work, we focus on enhancing the instruction-following abilities of LLMs in a
self-play fashion. Due to the limited capabilities of LLaMA3-8B-Instruct and Mistral-7B-Instruct,
we apply SFT to enhance their performance as actor and refiner models. In contrast, the more
advanced LLaMA3-70B-Instruct is directly employed in both roles. Following this, we perform a
three-iteration self-play training using 10k prompts per iteration from our generated dataset. In each
iteration, we apply DPO for the actor and RFT for the refiner. We refer to the trained LLaMA3-
8B-Instruct as SPAR-8B, LLaMA3-70B-Instruct as SPAR-70B, GLM-4-9B-Chat as SPAR-9B, and
Mistral-7B-Instruct as SPAR-7B. More implementation details are provided in Appendix C.

Baselines. We compare our method with four popular self-improvement approaches, including:

• AutoIF (Dong et al., 2024) incorporates code feedback and online DPO training to improve
instruction-following ability in both distillation and self-evolution settings.

• SELF (Lu et al., 2023) proposes leveraging language feedback to guide response generation in
order to achieve iterative self-improvement.

• Self-rewarding (Yuan et al., 2024) proposes to combine the reward model and policy model to
enhance alignment capabilities simultaneously.

• Meta-rewarding (Wu et al., 2024) further introduces a meta-judge to address judgment capa-
bility limitations, building on the self-rewarding framework.

• Humpback (Li et al., 2023a) proposes training an instruction generation model to synthesize
high-quality data using web resources.

3.2 EVALUATION BENCHMARKS

As both the actor and refiner continually evolve within our framework, it’s crucial to comprehen-
sively evaluate both of their capabilities.

Actor’s Instruction-following Capability. To assess the actor’s ability to follow instructions, we
rely on two widely-used benchmarks: IFEval (Zhou et al., 2023) and FollowBench (Jiang et al.,
2023b). IFEval offers 541 verifiable instructions specifically designed for code-based evaluation.
These instructions cover 25 verifiable types, including tasks like Keyword Frequency and Number of
Words. FollowBench, on the other hand, encompasses five categories of more subjective constraints:
Content, Situation, Style, Format, and Example. This dataset features 820 meticulously curated
instructions across five difficulty levels and utilizes a hybrid assessment approach combining rule-
based and LLM-as-judge evaluations.

Refiner’s Judgment and Refinement Capability. For assessing the refiner’s judgment capability,
we turn to LLMBar (Zeng et al., 2023), a dataset designed to measure the assessment ability of
LLMs in the context of instruction-following tasks. LLMBar includes 419 instruction-response
pairs, categorized into two subsets: Natural and Adversarial. Originally, the task involves pair-wise
comparisons to identify successful and failed responses. We adapted it to a point-wise judgment
task, asking the model to determine whether each instruction-following task is successful.

To evaluate the refiner’s capability in refinement, we split 200 samples from the DRSFT to create a test
set, and we employ both GPT-4o and SPAR-8B-RFT-iter3, the refiner after three rounds of training,
as judges to evaluate whether the refined responses are accurately following the instructions.

3.3 ACTOR EVALUATION RESULTS

SPAR significantly improves instruction-following ability. As illustrated in Table 1, the itera-
tively trained LLaMA3-8B-Instruct model demonstrates substantial improvements in both the IFE-
val and FollowBench benchmarks with each training iteration. Remarkably, after three training
iterations, SPAR-8B-DPO-iter3 even surpasses GPT-4-Turbo (81.3% average accuracy) on IFEval.
Moreover, incorporating the tree-search refinement technique during the inference stage signifi-
cantly boosts performance. Additionally, the SPAR showcases excellent scalability with respect to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Main results of iteratively trained LLaMA3 models on instruction-following benchmarks
(Cf. Table 9 for full results). P stands for prompt level, and I represents instruction level. L and
S denote loose and strict evaluations, respectively. Avg. indicates average results and Lv means
level. Results using inference-time tree search are highlighted in green . The highest results for
each backbone model is bolded. Scores marked with † are sourced directly from the original paper.

IFEval FollowBench (SSR)
Model P (L) I (L) P (S) I (S) Avg. Lv-1 Lv-2 Lv-3 Lv-4 Lv-5 Avg.

LLaMA3-8B Models

LLaMA3-8B-Instruct 77.6 84.5 70.6 78.9 77.9 69.4 62.2 63.1 61.9 60.9 63.5
AutoIF-8B† 43.1 56.0 28.8 42.2 42.5 54.6 52.1 50.0 49.0 43.7 49.9
SELF 78.2 84.5 76.0 82.9 80.4 68.3 65.7 65.2 62.2 62.4 64.8
Humpback 72.5 80.2 70.1 78.1 75.2 66.8 66.1 67.2 60.2 62.6 64.6
Self-Rewarding 77.3 84.2 74.1 81.7 79.3 72.8 66.6 66.8 64.9 64.1 67.0
Meta-Rewarding 77.8 84.1 75.4 82.3 79.9 73.9 71.9 66.0 62.3 62.6 67.3

SPAR-8B-SFT 75.4 82.5 73.4 80.6 78.0 73.9 67.4 68.1 63.1 61.3 66.8
SPAR-8B-DPO-iter1 78.0 84.7 75.8 82.6 80.3 75.3 67.7 67.6 64.7 62.3 67.5
SPAR-8B-DPO-iter2 78.9 85.0 77.1 83.3 81.1 73.9 71.9 69.1 64.0 62.2 68.2
SPAR-8B-DPO-iter3 79.9 85.4 78.0 83.7 81.8 73.0 72.3 70.0 64.1 64.7 68.8
w/ tree search 82.4 87.5 79.5 85.3 83.7 73.9 71.7 70.3 66.8 64.1 69.4

LLaMA3-70B Models

LLaMA3-70B-Instruct 83.7 88.9 77.1 83.8 83.4 77.1 72.5 69.4 68.7 66.3 70.8
AutoIF-70B† 85.6 90.4 80.2 86.7 85.7 71.0 67.2 66.2 64.6 63.5 66.5

SPAR-70B-DPO-iter3 85.6 90.2 81.3 87.3 86.1 80.3 75.7 71.4 73.7 70.5 74.3

model size, which substantially enhances the instruction-following abilities of the LLaMA3-70B-
Instruct model.

SPAR does not damage general abilities. As shown in Appendix D.2, we assessed each itera-
tion’s performance on general benchmarks, including GSM8k (Cobbe et al., 2021), TriviaQA (Joshi
et al., 2017), MMLU (Hendrycks et al., 2020), and HumanEval (Chen et al., 2021). The results in-
dicate that SPAR maintains or even improves general performance, particularly on GSM8k and Hu-
manEval benchmarks, demonstrating that enhanced instruction-following capabilities support over-
all LLM alignment.

Figure 3: Comparison with baseline methods across itera-
tions (Cf. Figure 10 for SPAR-7B). SPAR-8B consistently
surpasses all baselines.

SPAR outperforms other baselines
significantly. Figure 3 demon-
strates the improvements on IFEval
with each training iteration. In every
iteration, SPAR outperforms other
methods. Notably, even after three
iterations, other methods fail to
surpass the performance of SPAR’s
first iteration. Generally, our method
and SELF outperform self-rewarding
and meta-rewarding approaches,
underscoring the importance of
learning from refinement and ex-
cluding the interfering factors in
instruction-following tasks. Further-
more, SPAR’s superior performance
compared to SELF indicates that
contrastive refinement response pairs
can highlight key differences, which
are difficult to learn using only correct responses. Additionally, only SPAR-8B-SFT outperforms the
original LLaMA3-8B-Instruct, which suggests that incorporating the judgment SFT or refinement
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Table 2: Evaluation of judgment capability for iteratively trained LLaMA3 models on LLMBar.
(Cf. Table 10 for Mistral-7B-Instruct results.) Acc. denotes accuracy. The highest scores for each
base model are highlighted in bold.

Model
Natural Adversarial Average

GPTInst GPTOut Manual Neighbor Average
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

GPT-4o-Mini 74.5 70.5 69.2 61.6 60.9 51.4 59.8 51.9 72.8 66.4 65.7 57.8 67.4 60.4

LLaMA3-8B Models

LLaMA3-8B-Instruct 60.0 51.8 55.4 46.1 47.9 39.5 51.1 36.6 54.5 45.0 52.2 41.8 53.8 43.8
SELF 69.5 61.6 62.0 50.7 64.9 54.8 57.6 41.8 64.6 51.3 62.2 49.6 63.7 52.0
Self-Rewarding 71.0 66.3 70.1 66.7 63.8 59.5 62.0 55.7 67.5 61.7 65.9 60.9 66.9 61.9
Meta-Rewarding 70.5 66.3 68.5 64.6 64.9 60.2 64.1 58.3 69.0 63.1 66.6 61.6 67.4 62.5

SPAR-8B-SFT 68.5 60.9 67.9 62.4 59.6 50.0 63.0 54.1 68.3 59.3 64.7 56.5 65.5 57.3
SPAR-8B-RFT-iter1 68.5 63.2 66.8 60.6 63.8 55.3 62.0 53.3 66.8 59.0 64.9 57.1 65.6 58.3
SPAR-8B-RFT-iter2 70.5 64.2 66.8 61.6 66.0 60.0 65.2 57.9 69.0 62.4 66.8 60.5 67.5 61.2
SPAR-8B-RFT-iter3 70.5 65.9 70.7 66.7 63.8 57.5 68.5 63.3 68.3 62.2 67.8 62.4 68.3 63.1

LLaMA3-70B Models

LLaMA3-70B-Instruct 75.0 71.9 73.4 69.6 69.1 66.7 66.3 60.8 69.0 63.4 69.5 65.1 70.6 66.5

SPAR-70B-RFT-iter3 78.0 74.7 78.8 76.9 64.9 61.2 67.4 59.5 72.4 68.1 70.9 66.4 72.3 68.1

SFT data would reduce performance, likely due to the huge task gap and reduced diversity in the
data.

3.4 REFINER EVALUATION RESULTS

SPAR iteratively enhances judgment capability. Our analysis in Table 2 shows that SPAR itera-
tions notably improve the model’s ability to evaluate instruction-following tasks. By iteration three,
the refiner SPAR-8B-RFT-iter3 surpasses GPT-4o-Mini, the model used to construct the judgment
SFT dataset. This finding highlights the potential for continuous self-improvement, as the supervised
fine-tuning data is not a bottleneck. Interestingly, our refiner greatly outperforms GPT-4o-Mini on
adversarial test sets, suggesting that the similar positive and negative examples generated during tree
search can make our model more robust against adversarial samples.

Table 3: Refinement evaluation results.
Acc-GPT uses GPT-4o as judge; -SPAR
uses SPAR-8B-RFT-iter3.

Model Acc-GPT Acc-SPAR
GPT-4o-Mini 79.0 71.0

SPAR-8B-SFT 73.5 71.0

SPAR-8B-RFT-iter1 77.5 77.0

SPAR-8B-RFT-iter2 74.5 76.0

SPAR-8B-RFT-iter3 79.0 90.5

SPAR progressively improves refinement capability.
Table 3 demonstrates continuous improvement in refine-
ment accuracy (success rate) of LLaMA3-8B-Instruct
with each training iteration, eventually matching the level
of GPT-4o-Mini, the strong LLM for SFT data construc-
tion. This further showcases a promising way for self-
evolution in instruction-following tasks. However, it also
points to a potential issue of self-evaluation bias: when
the refiner self-evaluates refinement accuracy, it performs
significantly better than when evaluated by GPT-4o.

3.5 ABLATIONS AND ANALYSIS

Refinement preference pairs enhance instruction-following capability more effectively. To
verify that the interfering factors indeed affect preference learning and motivate the need to highlight
the key differences, we have conducted a synthetic data experiment featuring two tasks:

• Character Sequence Generation: The model needs to generate a specified number of given
letters, with no restrictions on letter case, such as generating 12 letters a. For each prompt, we
first construct a negative response in lowercase. In order to introduce disturbing factors, we have
the correct response in uppercase for interfering pairs while maintaining refined pairs lowercase
correctness.
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Figure 4: Synthetic data experiment results: Character Sequence Generation (left) and Start/End
Story Generation (right). For Character Sequence Generation, interfering pairs show rapid learning
of the uppercase ratio (interfering factor) but perform worse than refinement pairs. In the Start/End
Story Generation task, refinement pairs outperform interfering pairs, which even underperform the
original model at step 0.

Table 4: Ablation study on the actor.

Model IFEval FollowBench (SSR)

Prompt(S) Instruction(S) Avg.

SPAR-8B-DPO-iter3 78.0 83.7 68.8

w/o Tree Search -2.0 -0.8 -1.7
w/o Iterative Training -0.9 -0.2 -2.0
w/o Refinement -2.6 -1.6 -3.1

Table 5: Ablation study on the refiner.

Model
Natural Adversarial

Acc. F1 Acc. F1

SPAR-8B-RFT-iter3 70.5 65.9 67.8 62.4

w/o Tree Search -0.5 -1.2 -4.3 -8.2

w/o Iterative Training -0.5 -2.5 -1.7 -3.5

• Start/End Story Generation: The model is asked to generate a story that starts with sentence 1
and ends with sentence 2. The negative response lacks either sentence 1 or 2. Interfering pairs
have a different story concatenated with these sentences; refined pairs keep the same story intact.

Figure 4 shows that refinement pairs significantly outperform interfering pairs in both tasks, with
larger and more effective improvements. Particularly in story generation, diverging stories results
in worse accuracy than the original model. Moreover, in the character generation task, we can
clearly observe that the interfering factor (uppercase ratio) is learned quickly. However, the task
is not performed as well as the refinement setting, highlighting the necessity of focusing on key
differences and excluding possible interfering factors.

Furthermore, the ablation study on actor’s performance in Table 4 further reveals a significant drop
when refinement data is omitted. SPAR’s superiority over self-rewarding and meta-rewarding meth-
ods in Table 1 also underscores the importance of using refinement pairs to eliminate interfering
factors. Additionally, the string-level similarity of refinement response pairs is 0.90, much higher
than 0.85 of the independently sampled response pairs.

Each element is crucial in SPAR. The primary elements of SPAR include the tree-search re-
finement process and iterative training. We thus conduct ablation studies to assess the significance
of these elements. For the tree-search process, as shown in Table 4, excluding tree search signifi-
cantly reduces the actor’s performance. This might be due to a lack of difficult samples that require
more iterations to refine and a reduced number of preference pairs. Table 7 illustrates that tree
search greatly outperforms greedy decoding in response refinement and surpasses other methods,
such as best-of-N refinement or simple iterative refinement. Furthermore, tree search is essential for
improving judgment capability, especially against adversarial inputs, as indicated in Table 5. Simi-
lar responses with opposite labels generated during the tree-search process can enhance robustness
against challenging scenarios. Moreover, the results presented in Tables 4 and 5 underscore the im-
portance of iterative training for both the actor and the refiner. This iterative training process ensures
mutual improvement, which is crucial for the overall effectiveness of our framework.

Scaling test-time compute significantly boosts model performance. Inspired by the recent de-
velopments in test-time compute scaling (Snell et al., 2024), we investigate various decoding strate-
gies during inference on SPAR-8B-DPO-iter3. Figure 5 shows that increasing inference times
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Figure 5: Comparison of decoding strategies.

remarkably enhances model performance, outper-
forming the results of greedy decoding. Notably,
while tree search refinement’s performance growth
is slower, it ultimately achieves superior results com-
pared to best-of-N generation. This indicates that re-
finement is more powerful than generation and could
be better suited for scaling test-time compute in the
instruction-following task.

4 RELATED WORK

4.1 INSTRUCTION FOLLOWING

Instruction-following is a fundamental capability of LLMs and is central to LLM alignment (Ouyang
et al., 2022; Lou et al., 2024). Many studies have evaluated instruction-following capabilities from
various perspectives (Li et al., 2023b; Zheng et al., 2023; Zeng et al., 2023; Liu et al., 2023a; Xia
et al., 2024). With the expanding application of LLMs, the tasks they are expected to perform
become more intricate (Liu et al., 2023b), often involving composite instructions with numerous
constraints. Consequently, several benchmarks have been developed to test LLMs’ ability to follow
these complex instructions (Zhou et al., 2023; Jiang et al., 2023b; Qin et al., 2024; Wen et al., 2024).
Additionally, multiple studies have focused on enhancing LLMs’ instruction-following capabilities
(Lou et al., 2023; Zhou et al., 2024; Sun et al., 2024). One crucial aspect of the instruction-following
task is that subtle differences in responses can significantly impact their correctness (Zhou et al.,
2023). Considering this, we introduce SPAR framework to construct preference pairs that reduce
extraneous elements to highlight these subtle variations for effective improvements.

4.2 AUTONOMOUS LLM ALIGNMENT

Given the high cost of manually collecting alignment data, many studies focus on exploring au-
tonomous LLM alignment methods (Cao et al., 2024). One common strategy involves using data
distilled from advanced models to improve less powerful ones (Peng et al., 2023; Xu et al., 2023;
Cheng et al., 2024). Alternatively, as the LLMs become stronger, several studies investigate how
to self-evolving LLMs’ capabilities. Self-Instruct (Wang et al., 2023) generates instructions by em-
ploying the model’s in-context learning ability. Reinforced Self-Training (Gulcehre et al., 2023)
samples data from an LLM policy and utilizes the dataset to enhance the policy through offline RL
algorithms. Moreover, recent research has incorporated feedback from diverse sources. SELF (Lu
et al., 2023) trains LLMs to acquire meta-skills of self-feedback and self-refinement, enabling the
models to self-evolve iteratively. AutoIF (Dong et al., 2024) introduces the code execution feedback.
Self-rewarding (Yuan et al., 2024) and Meta-rewarding (Wu et al., 2024) leverage the LLM-as-judge
ability to evaluate its own responses, thereby constructing preference pairs. However, these meth-
ods usually direct sample multiple independent responses from the actor model, which is likely to
introduce the interfering factors and thus affect the model’s capture of the key differences. Thus, we
propose a new framework that constructs preference pairs by self-refining the model’s responses,
minimizing extraneous elements, and promoting more effective autonomous improvement.

5 CONCLUSION

In this study, we introduce a new self-play framework, SPAR, designed to improve the instruction-
following capabilities of LLMs through training with refinement pairs. We reveal that, unlike tradi-
tional approaches that rely on sampling multiple independent responses from the model to construct
preference pairs, refining preference pairs to minimize extraneous factors and highlight key differ-
ences lead to significant improvements in instruction-following tasks. Remarkably, the LLaMA3-
8B-Instruct model, trained iteratively using our framework, outperforms GPT-4-Turbo on IFEval.
With inference time compute scaling, its performance can be further improved. Moreover, the it-
erative enhancement of instruction-following, judgment, and refinement abilities brought about by
SPAR underscores a promising path to continuous self-improvement.
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A DATASET INFORMATION

Constraint Taxonomy. We take the taxonomy from Cheng et al. (2024), and further refine it to
be more comprehensive to ensure the diversity of our prompts. The refined taxonomy is shown in
Figure 6.

Figure 6: The detailed taxonomy of constraints for prompt evolution.

Prompt Template. Here, we give the prompt for constructing complex prompts in Figure 7. For
the refiner, the prompt template for judgment is provided in Figure 8. As for the refinement task, we
form it as a multi-turn task after judgment, with the prompt template provided in Figure 8.

In this task, you need to refine the prompt to make it more specific and complex. Transfer the prompt to an instruction-following 
task.

To enhance specificity, refer to constraints from the following taxonomy:
{Taxonomy}

prompt: [[start]]{}[[end]]

Main constraint:
{Main Constraint}

Note:
1. You must include the main constraint (unless the main constraint contradicts the original prompt), and need to add 1~3 other 
constraints.
2. You need to ensure that these constraints are reasonable and do not conflict with each other. 
3. The added constraints need to make sense with the original prompt and not conflict with it. 
4. Please ensure the constraints as much diverse as possible, you can add new types not mentioned in the taxonomy above.
5. The priority is given to constraint types other than length constraints.
6. Do not list the added constraints in points.
7. Don't give the response to your refined prompt.
8. If the Prompt is a mathematic or coding problem, just output "None" as the refined prompt.
9. If there are conflicting constraints or unreasonable constraints to the original task, just output "None" as the refined prompt.
10. Never involve visual elements.

output in the following format:
[[start]]{your refined prompt}[[end]]

Prompt Construction Template

Figure 7: The prompt template applied for prompt evolution.
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Please act an expert in evaluating the capabilities of instruction-following. In the instruction-following task, the Output needs to 
honestly/precisely/closely follow the given Prompt.
Your task is to carefully judge whether the Output to honestly/precisely/closely follows the given Prompt. If there are any 
constraints in the Prompt that are not satisfied by the Output, please list all the constraints that are not satisfied.

Prompt: “{Instruction}”

Output: “{Response}”

Please carefully judge if each constraint is perfectly satisfied and give a final judgement weather the Output accurately follows the 
Prompt in the following format:
Step-by-step verification: xxx
Final Judgement (if the Output accurately follows the Prompt): (Yes or No)

Judgement Template

Based on your judgement, refine the Output to make sure it can honestly/precisely/closely follows the given Prompt. 

Please carefully refine the Output to meet all the constraints in the Prompt. 

Please format like this:
Reflection on how to refine the Output: xxx
Final Refined Output: [[start]] xxx [[end]]

Refinement Template

Figure 8: The prompt template applied for the refiner’s judgment and refinement.

B TREE-SEARCH ALGORITHM

We show the detailed process of BFS and DFS refinement in Algorithm 1 and Algorithm 2.

Algorithm 1 BFS-Refinement
Require: Instruction x, Response y, Judgment j,

Refiner RN , depth limit d, branch limit b.
S0 ← {x, y, j}
for t = 1, · · · , d do

S′
t ← {[x, y′] | s ∈ St−1, y

′ ∈ RN (s, b)}
Vt ← RN (S′

t) ▷ get judgment
St ← {[x, y′, j′] | s ∈ S′

t, j
′ ∈ Vt(s)}

end for
return argmaxs∈ST

VT (s)

Algorithm 2 DFS-Refinement
Require: Current state s, depth t, Refiner RN ,

depth limit d, threshold vth, branch limit b
if t > T then record output s = (x, y′, j′)
end if
for s′ ∈ RN (s, b) do ▷ refinement

if RN (s′) < vth then ▷ judgment
DFS(s′, t+ 1)

end if
end for

C IMPLEMENTATION DETAILS

The SFT dataset for the actor comprises 8k examples, while the refiner dataset includes approxi-
mately 9k examples for judgment training and 3k for refinement training, formatted as a multi-turn
task following the first turn’s judgment. These two datasets are both constructed with GPT-4o-Mini.
Both the actor and refiner are trained with a learning rate of 2e-6 and a warmup ratio of 0.1, using the
AdamW optimizer with β1 = 0.9 and β2 = 0.999. The actor is trained over 5 epochs with a batch
size of 64, and the refiner is trained for 3 epochs with the same batch size. In the data construction
process, we set a tree search budget of 15 to strike a balance between performance and efficiency.
The average number of expanded tree nodes is around 3.7 in our experiments, which is an acceptable
level. Specifically, for LLaMA3-8B-Instruct, the average expanded node numbers are 4.3, 3.7, and
3.4 across different iterations, demonstrating a decreasing trend as the model becomes stronger. For
the actor iterative training, each iteration uses around 5k examples for DPO. To enhance training
stability as suggested by (Hou et al., 2024), an additional SFT loss is added to the chosen response
with a weight of 0.1. Here, the learning rate is set to 2e-7, β to 0.1, with a warmup ratio of 0.1, and
training is conducted for 1 epoch with a batch size of 32. For the refiner, each iteration utilizes about
10k examples, including 4k refinement samples. We ensure the judgment training dataset maintains
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Table 6: Comparison of decoding strategies on LLMBar.

Method Natural Adversarial
Acc. F1 Acc. F1

Greedy Decoding 68.0 60.7 63.9 55.1

Majority Voting@3 69.0 60.8 63.7 54.5

Majority Voting@5 68.5 60.9 64.7 56.5

Majority Voting@7 66.5 58.8 65.7 56.7

Majority Voting@9 69.0 61.2 65.8 57.1

a balance of positive and negative samples. The training configuration remains the same as for SFT,
except the learning rate is set to 1e-6. All experiments are performed on an 8×80G Nvidia A100
setup.

For our baseline methods, we have maintained uniform settings to ensure fairness. For SELF, we
initialize with our constructed datasets, DActor and DRefiner. In the case of self-rewarding and
meta-rewarding, we start with DActor and DJSFT . For Humpback, we create the seed dataset by
combining about 3k data from the Oasst1 dataset and 5k data from DActor. We also control the
number of training samples to be nearly identical for fair comparisons.

D EXPERIMENT RESULTS

D.1 INSTRUCTION-FOLLOWING EVALUATION RESULTS.

The evaluation results on instruction-following benchmarks are shown in Table 9. Our method out-
performs all baselines on these benchmarks and shows substantial improvements in each iteration.

D.2 GENERAL PERFORMANCE EVALUATION

Our analysis in Table 8 reveals that SPAR training not only doesn’t harm general performance, but
it can also even bring enhancements.

D.3 JUDGMENT EVALUATION RESULTS.

As shown in Table 10, the judgment capability improves in each iteration and the accuracy outper-
forms all baselines.

D.4 ABLATION STUDY ON JUDGMENT CAPABILITY.

In our experiments, we employ majority voting for iterative improvements for judgment capability.
We show the results of the refiner SPAR-8B-SFT’s sampling times and performance on LLMBar in
Table 6. To balance the performance and computation time, we choose majority voting@5.

D.5 ABLATION STUDY ON REFINEMENT CAPABILITY.

Table 7 shows the results of different decoding strategies for the refinement task on SPAR-8B. For
methods except greedy decoding, we use the same inference budget. We can see that the tree search
algorithms largely outperform other methods, verifying the importance of incorporating tree search
refinement.

1https://huggingface.co/datasets/OpenAssistant/oasst1
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Figure 9: Inference-time scaling comparison on IFEval. The left panel showcases results for
LLaMA3-8B-Instruct, while the right panel presents findings for Mistral-7B-Instruct.

D.6 INFERENCE-TIME SCALING COMPARISON

Figure 9 presents a comparison between SPAR and self-rewarding, focusing on their scalability with
regard to inference times, measured by the number of response generations in our study. Our analysis
includes both the LLaMA3-8B-Instruct and Mistral-7B-Instruct models. The results demonstrate
that SPAR outperforms the self-rewarding method when additional computational resources are
allocated for inference time, leading to enhanced performance.

Table 7: Comparison of different decoding strategies for refinement task. Acc-GPT stands for the
accuracy of using GPT-4o as judge, and Acc-SPAR for the accuracy of using SPAR-8B-RFT-iter3
as judge.

Method Acc-GPT Acc-SPAR
Greedy Decoding 69.5 65.0

Best of N 74.0 80.0

Iterative Refinement 71.0 82.0

BFS 79.0 90.5
DFS 79.0 90.0

Figure 10: Comparison with baseline methods across iterations. SPAR-7B consistently surpasses
all baselines.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Performance on general benchmarks. SPAR maintains the model’s general capabilities.

Model GSM8k TriviaQA MMLU HumanEval Average
Mistral-7B Models

Mistral-7B-Instruct 42.9 72.5 57.9 32.9 51.6
SPAR-7B-SFT 56.4 72.8 56.7 44.5 57.6 (+6.0)
SPAR-7B-DPO-iter1 55.6 72.2 55.3 46.3 57.4 (+5.8)
SPAR-7B-DPO-iter2 54.4 72.1 55.8 45.1 56.9 (+5.3)
SPAR-7B-DPO-iter3 58.2 71.6 55.1 46.3 57.8 (+6.2)

LLaMA3-8B Models
LLaMA3-8B-Instruct 75.4 75.9 63.6 55.5 67.6
SPAR-8B-SFT 75.6 76.0 64.0 61.6 69.3 (+1.7)
SPAR-8B-DPO-iter1 78.8 75.2 63.8 60.4 69.6 (+2.0)
SPAR-8B-DPO-iter2 77.0 74.9 63.1 60.4 68.9 (+1.3)
SPAR-8B-DPO-iter3 77.7 75.1 63.1 60.9 69.2 (+1.6)

GLM-4-9B Models
GLM-4-9B-Chat 80.6 69.7 71.9 74.3 74.1
SPAR-9B-SFT 82.9 69.4 71.8 73.8 74.5 (+0.4)
SPAR-9B-DPO-iter1 82.6 68.8 71.6 75.0 74.5 (+0.4)
SPAR-9B-DPO-iter2 82.8 68.9 71.8 73.8 74.3 (+0.2)
SPAR-9B-DPO-iter3 83.0 69.0 72.1 73.2 74.3 (+0.2)

LLaMA3-70B Models
LLaMA3-70B-Instruct 92.2 87.2 80.8 79.3 84.9
SPAR-70B-DPO-iter1 92.5 90.4 81.0 79.3 85.8 (+0.9)
SPAR-70B-DPO-iter2 92.9 89.5 80.4 78.7 85.4 (+0.5)
SPAR-70B-DPO-iter3 93.4 86.7 80.6 79.9 85.2 (+0.3)

Table 9: Full results of SPAR-7B, SPAR-9B, and SPAR-70B on instruction-following benchmarks.
P stands for prompt level, and I represents instruction level. L and S denote loose and strict evalu-
ations, respectively. Avg. indicates average results and Lv means level. Scores marked with † are
sourced directly from the original paper.

IFEval FollowBench (SSR)
Model P (L) I (L) P (S) I (S) Avg. Lv-1 Lv-2 Lv-3 Lv-4 Lv-5 Avg.

Mistral-7B Models
Mistral-7B-Instruct 55.1 64.9 49.9 60.2 57.5 65.1 61.6 61.6 56.8 57.2 60.4
SELF 71.3 79.7 68.0 76.9 74.0 71.5 64.2 60.8 58.0 57.0 62.3
Humpback 60.4 71.0 56.6 67.6 63.9 70.7 63.9 63.8 59.8 57.9 63.2
Self-Rewarding 64.3 73.5 61.0 70.7 67.4 70.8 64.8 62.3 61.9 58.3 63.6
Meta-Rewarding 65.1 74.7 61.0 71.1 68.0 73.2 64.6 64.5 60.6 57.6 64.1

SPAR-7B-SFT 62.7 72.3 59.3 68.7 65.8 74.4 64.3 62.5 58.2 55.0 62.9
SPAR-7B-DPO-iter1 68.2 76.6 64.7 73.6 70.8 73.2 64.6 63.1 60.3 56.6 63.6
SPAR-7B-DPO-iter2 70.0 78.1 65.8 74.2 72.0 72.2 65.7 61.4 62.4 57.5 63.8
SPAR-7B-DPO-iter3 74.1 80.9 69.7 77.1 75.5 74.6 63.8 66.1 61.0 58.0 64.7

GLM-4-9B Models
GLM-4-9B-Chat 71.5 79.9 68.0 77.2 74.2 80.8 75.1 67.4 64.3 65.4 70.6

SPAR-9B-SFT 71.5 80.5 68.8 78.1 74.7 79.4 70.9 68.2 65.1 63.7 69.5
SPAR-9B-DPO-iter1 73.8 81.2 70.6 78.5 76.0 82.6 76.0 67.9 64.9 63.6 71.0
SPAR-9B-DPO-iter2 76.7 83.3 73.2 80.9 78.5 80.4 76.6 67.4 68.7 64.1 71.4
SPAR-9B-DPO-iter3 77.3 84.1 73.6 81.4 79.1 82.7 76.7 67.9 68.3 64.2 72.0

LLaMA3-70B Models
LLaMA3-70B-Instruct 83.7 88.9 77.1 83.8 83.4 77.1 72.5 69.4 68.7 66.3 70.8
AutoIF-70B† 85.6 90.4 80.2 86.7 85.7 71.0 67.2 66.2 64.6 63.5 66.5

SPAR-70B-DPO-iter1 84.5 89.2 80.2 85.7 84.9 77.6 74.0 70.2 70.6 66.9 71.9
SPAR-70B-DPO-iter2 85.0 89.4 81.5 87.2 85.8 80.4 76.4 69.9 73.7 70.2 74.1
SPAR-70B-DPO-iter3 85.6 90.2 81.3 87.3 86.1 80.3 75.7 71.4 73.7 70.5 74.3
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Table 10: Judgment evalution results on LLMBar for SPAR-7B. Acc. stands for accuracy.

Model Natural Adversarial Average
GPTInst GPTOut Manual Neighbor Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Mistral-7B-Instruct 58.0 69.1 57.1 68.8 50.0 64.1 45.6 61.5 47.8 62.6 50.1 64.3 51.7 65.2
SELF 68.0 65.2 71.2 68.7 56.4 56.8 62.0 52.6 67.5 62.3 64.3 60.1 65.0 61.1
Self-Rewarding 68.0 64.0 69.0 63.7 59.6 53.7 63.0 57.5 69.4 64.3 65.3 59.8 65.8 60.6
Meta-Rewarding 67.5 62.4 71.7 68.7 56.4 51.8 63.0 56.4 66.8 62.1 64.5 59.7 65.1 60.3

SPAR-7B-SFT 69.5 63.9 71.7 67.5 55.3 48.8 55.4 45.3 69.4 62.3 63.0 56.1 64.3 57.6
SPAR-7B-RFT-iter1 67.0 62.1 66.3 62.7 56.4 52.9 60.9 52.6 64.2 60.7 61.9 57.2 63.0 58.2
SPAR-7B-RFT-iter2 68.0 64.4 68.5 64.6 60.6 57.5 62.0 52.1 64.2 60.0 63.8 58.5 64.7 59.7
SPAR-7B-RFT-iter3 71.0 66.7 72.3 67.5 57.4 55.6 60.9 51.4 68.3 62.6 64.7 59.2 66.0 60.7
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