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1 Introduction

Knowledge graphs (KGs) serve as structured representations of domain knowl-
edge, supporting reasoning and retrieval tasks. Approximate query answering
(QA) methods mitigate KG incompleteness by predicting ranked lists of likely
answer entities using embeddings and graph-based models [5, 4, 6, 7, 1, 3, 2]. How-
ever, these methods are inherently static: given a query, they return a fixed
answer list without allowing further refinement based on user preferences.

For example, given the query “What are the award nominations received by
movies starring Leonardo DiCaprio?” a user may want to focus on nominations
related to cinematography rather than acting. Existing QA methods lack mech-
anisms to incorporate such soft preferences dynamically.

To address this limitation, we propose an interactive QA setting where
users provide soft preferences to refine answers iteratively. Soft preferences
are subsets of entities that either prioritize or de-emphasize specific types of
answers, without enforcing strict logical constraints. This interactive approach
enhances the adaptability of KG-based QA, enabling retrieval of answers that
are constrained to more specific contexts.

2 Learning to Incorporate Soft Constraints

We extend approximate QA to an interactive setting, where soft preferences
iteratively refine the ranked answer set. Given an initial ranking of answers for
a query, a user provides a set of preferences as entity-label pairs (ei, li), where ei
is an entity and li ∈ {0, 1} denotes whether similar entities should be prioritized
(1) or avoided (0). The adjusted scores at iteration t+ 1 are computed as:

a(t+1) = f(a(t), P (t)),
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where P (t) is the set of preferences provided up to iteration t. The reranking func-
tion f adjusts scores dynamically, incorporating the provided soft constraints.

We train a reranking model to refine answer rankings based on user prefer-
ences. Given a dataset D = {(qi,Ai, P (Ti))}, where qi is a query, Ai the initial
answer set, and P (Ti) the associated soft preferences, the model learns a score
adjustment function:

a(t+1) = a(t) + fθ(e, P (t)),

where fθ is a neural network that modifies entity scores based on preference
information. The training objective consists of two ranking losses:

1. Preference Ranking Loss: Ensures preferred entities are ranked above
non-preferred ones.

2. Answer Ranking Loss: Maintains high ranks for correct answers relative
to incorrect ones.

3 Benchmarking Interactive QA

To evaluate our approach, we construct benchmarks by augmenting standard KG
query datasets with soft preference annotations. Preferences are derived using hi-
erarchical clustering on entity embeddings, partitioning answer sets into seman-
tically coherent subgroups. Our experiments on demonstrate that the reranking
model effectively integrates user preferences, achieving significant improvements
in preference-aligned ranking metrics. Our results validate the feasibility of in-
teractive KG-based QA and highlight the potential for adaptive, user-driven
retrieval.

4 Conclusion

We introduce interactive QA with soft constraints, enabling dynamic refine-
ment of KG query answers. Our framework formalizes this problem, constructs
benchmarks for empirical study, and proposes a reranking model that integrates
seamlessly with existing QA systems. Results show that soft preferences can be
effectively incorporated without retraining base models, opening new avenues
for adaptable and user-driven KG-based reasoning.
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