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ABSTRACT

Federated Learning (FL) emerges as a novel machine learning paradigm, enabling
distributed clients to collaboratively train a global model while eliminating lo-
cal data transmission. Despite its advantages, FL faces challenges posed by sys-
tem and data heterogeneity. System heterogeneity prevents low-end clients from
participating in FL with uniform models, while data heterogeneity adversely im-
pacts the learning performance of FL. In this paper, we propose the personal-
ized ATTENtive pruning enabled federateD learnING (ATTENDING) to collec-
tively address these heterogeneity challenges. Specifically, we first design an at-
tention module incorporating spatial and channel attention to enhance the learn-
ing performance on heterogeneous data. Subsequently, we introduce the atten-
tive pruning algorithm to generate personalized local models guided by atten-
tion scores, aiming to facilitate clients’ participation in FL. Finally, we intro-
duce a specific heterogeneous aggregation algorithm integrated with an atten-
tion matching mechanism to efficiently aggregate the pruned models. We im-
plement ATTENDING with a real FL platform and the evaluation results show
that ATTENDING significantly outperforms the baselines by up to 11.3% and re-
duces the average model footprints by 32%. Our code is available at: https:
//anonymous.4open.science/r/ATTENDING.

1 INTRODUCTION

The proliferation of smart devices and intelligent applications has significantly increased the vol-
ume of data generated at the edge of networks. In response to this trend, Federated Learning (FL)
has emerged as a promising paradigm for collaboratively learning from geographically distributed
data (Khan et al., 2021; Soltani et al., 2023; Liu et al., 2024; Wang et al., 2024a). Compared to
traditional centralized machine learning approaches, FL effectively mitigates the systemic privacy
risks and avoids prohibitively high costs associated with transmitting raw data. Owing to these ad-
vantages, FL has garnered significant attention and has been successfully implemented in numerous
intelligent applications (Khan et al., 2021; Soltani et al., 2023).

Despite its advantages, FL still faces two critical challenges: System heterogeneity and Data het-
erogeneity (Lim et al., 2020; Khan et al., 2021; Liu et al., 2022; Chen et al., 2023; Wang et al.,
2023a;b; 2024b; Li et al., 2024a). System heterogeneity refers to variations in device capabilities
(e.g., CPU state, memory capacity, battery level, etc.) (Alam et al., 2022; Jiang et al., 2022b; Li et al.,
2024b). In classical FL, the devices (i.e., clients) are required to update local models that share an
identical footprint as the global model, leading to the failure of local model updates at clients with
weaker capabilities (i.e., low-end clients). Data heterogeneity refers to different distributions and/or
amounts of the local data on various clients, i.e., non-Independent and Identically Distributed (non-
IID) data (Zhao et al., 2018; Li et al., 2022; Ma et al., 2024). Clients possessing only a small sample
of data with uncommon labels will gain no benefit from FL since the data on other clients contain
different distributions. To enhance clarity, we have elaborated on these two challenges by providing
an example FL process in the context of the Internet of Things (IoT) network in Appendix A.

To mitigate the aforementioned challenges, several pioneering work propose to optimize local up-
dating procedures to allow low-end clients to participate in FL training (Li et al., 2020; Karimireddy
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et al., 2020; Wang et al., 2020b). Nonetheless, these optimization-based approaches focus on min-
imizing computational resource consumption, without considering the conservation of storage re-
sources in mobile devices (Sun & Wei, 2022; Yang et al., 2022; Zhu et al., 2023). Therefore, model
pruning techniques have recently been employed in FL for shrinking the footprint of models, con-
sequently reducing the consumption of both computational and storage resources (Horvath et al.,
2021; Wu et al., 2021; Li et al., 2021; Jiang et al., 2022a;b; Yi et al., 2024). Model pruning-based
approaches typically prune out unnecessary local model parameters on individual clients, while
maintaining a binary mask matrix for each client to indicate the presence of the corresponding pa-
rameters. However, existing model pruning-based FL approaches typically aggregate pruned models
through element-wise averaging with the mask matrices. Unfortunately, as demonstrated in (Wang
et al., 2020a; Jiang et al., 2022a), this strategy often yields detrimental effects on the model accuracy
owing to the presence of permutation invariance in neural networks. Moreover, the computation cost
of this strategy increases rather than decreases (Jiang et al., 2022a). This phenomenon arises from
the fact that, within prevailing deep learning frameworks (e.g., PyTorch (Paszke et al., 2019)), this
strategy still requires the entire model with the pruned parameters (indicated by the mask matrix)
set as zero values for gradient computation during the backpropagation.

In our work, we propose ATTENDING, a novel FL approach integrated with personalized attentive
pruning, aiming to reduce resource consumption of the heterogeneous clients meanwhile enhancing
model performance on non-IID data. Additionally, we develop a specialized attention matching
mechanism to aggregate the heterogeneous models resulting from personalized attentive pruning.
We summarize our contributions as follows:

• We design a specific attention module to capture non-IID data features and assess the im-
portance scores of model parameters on the clients thereby generating personalized com-
pact local models for clients.

• We propose a specific aggregation algorithm integrated with an attention matching mech-
anism, enabling the aggregation of heterogeneous local models without the assistance of
binary mask matrices.

• We implement and evaluate the proposed ATTENDING with a real FL platform. Exper-
imental results on popular neural networks and benchmark datasets demonstrate that it
outperforms baselines up to 11.3% while achieving a 32% reduction in model footprint.

2 RELATED WORK

Federated Learning. Federated learning enables collaborative training of complex models among
distributed clients while keeping the local data on the client (McMahan et al., 2017; Zhou et al.,
2022; Zhang et al., 2022; Jiang et al., 2023; Lu et al., 2023; Hu et al., 2024; Qiao et al., 2024; Jiang
et al., 2024). As a classical FL approach, FedAvg is originally proposed by McMahan et al. (McMa-
han et al., 2017) to train and aggregate the local learning models. In each communication round of
FedAvg, the local models are trained on the clients and aggregated on the central server. To view
the systems and data heterogeneity in FL, Li et al. (Li et al., 2020) propose FedProx, which can be
viewed as a generalization and re-parameterization of FedAvg in the non-IID data setting. Wang
et al. (Wang et al., 2020a) demonstrate that the element-wise averaging of weights in FedAvg is
a shortcoming due to the permutation invariance of neural network parameters, and proposes the
FedMA to alleviate the detrimental effects caused by the permutation invariance. However, the
above studies focus on improving model accuracy in FL or addressing the challenges posed by
non-IID data, whereas neglecting the resource consumption of the clients. In contrast to the afore-
mentioned studies, our proposed approach leverages the attention mechanism to mitigate the model
accuracy degradation caused by non-IID data and reduce resource consumption through attentive
model pruning.

Model Compression in Federated Learning. In FL, model compression techniques are used to
reduce resource consumption by shrinking the footprint of models (Horvath et al., 2021; Wu et al.,
2021; Li et al., 2021; Jiang et al., 2022a;b; Huang et al., 2024; Yi et al., 2024). Li et al. (Li et al.,
2021) propose the Hermes, which addresses both data heterogeneity and communication efficiency
issues in federated learning. Hermes leverages the structured pruning technique to find a smaller
sub-model for each client, ensuring a more efficient training and communication process in FL.
Yi et al. (Yi et al., 2024) propose FedP3, aiming to address model heterogeneity among clients
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while enhancing the privacy of FL. FedP3 incorporates personalized network pruning techniques to
optimize the performance and efficiency of local models. However, these studies necessitate binary
mask matrices to indicate the model structure of the pruned local models during aggregation, which
has been demonstrated to be adverse to FL (Wang et al., 2020a; Jiang et al., 2022a). Conversely,
we propose an attentive model pruning algorithm to reduce the computational and storage overhead,
alongside an attention matching-assisted aggregation algorithm to aggregate heterogeneous models.
This approach effectively circumvents the requirement of binary mask matrices during aggregation.

3 DESIGN OF ATTENDING

The attention mechanism has proven effective in centralized deep learning paradigms (Sabour et al.,
2017; Li et al., 2019; Liu et al., 2021; Ouyang et al., 2023). However, unlike centralized deep
learning, model pruning-enabled FL approaches cannot directly benefit from the attention mecha-
nism due to its inherently heterogeneous nature. In FL, model pruning on clients produces a va-
riety of local models with different architectures and weights due to the heterogeneity challenges.
Traditional element-wise aggregation fails to aggregate heterogeneous models with different archi-
tectures. Moreover, the aggregated global model suffers from performance deterioration due to the
permutation invariance problem, even if the clients share homogeneous system capability and data
distribution. Thus, in this section, we first introduce an dedicated attention module for ATTENDING,
which is a key component to capture features on heterogeneous data and evaluate the importance
scores of the model parameters. Subsequently, we propose attentive model pruning that leverages
the importance scores generated by the attention module to prune local models, thereby producing
personalized models for heterogeneous clients. To circumvent the adverse effects caused by the use
of binary mask matrices during model aggregation, we propose a novel aggregation algorithm that
aggregates heterogeneous models without relying on binary mask matrices, thereby mitigating the
associated negative impacts.

3.1 ATTENTION MODULE FOR ATTENDING

Design of Attention Module. We leverage both spatial and channel attention mechanisms to con-
struct the attention module. Spatial attention is particularly effective for enhancing local models to
extract features from non-IID data, while channel attention is employed to assess the importance of
model parameters at the channel level.

For spatial attention, we apply a grouping strategy to divide the channels of the feature map into g
groups to reduce the computation complexity and capture specific semantic responses.1 Each group
possesses a vector representation at every spatial position, exhibiting strong responses in critical
regions (e.g., eye or nose regions in a dog’s image), while displaying nearly zero vectors in other
regions (e.g., non-meaningful background). For each group, the vector representation Floc for each
position n ∈ N is denoted as Floc = {F1, . . . ,Fn, . . .FN}. Where Fn ∈ R

u
g is the local feature

at every position, u represents the number of channels, and N = h× w with h and w represent the
height and width of the feature map respectively. Considering the presence of unavoidable noise and
similar patterns, we exploit the overall information of the whole group space to improve semantic
feature learning in critical regions. The global feature vector Fk

glo of group k ∈ [1, g] are calculated
as follows:

Fk
glo = concat(poola(Fk

loc[:u/2g,:,:]), poolm(Fk
loc[u/2g:,:,:])), (1)

where concat is concatenation operation, poola is average pooling operation, poolm is maximum
pooling operation. For convenient representation, we omit superscript k in the subsequent descrip-
tion. The similarity between the global feature and local feature at each position is determined by:

Sn = Fglo · Fn, (2)

and the similarity Sn is normalized as follows:

Ŝn =
Sn − µS

σS + ε
, (3)

1It is worth noting that the grouping strategy is exclusively applicable to the “spatial attention” range. Once
the “spatial attention” is computed, the channels will no longer be grouped.
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Figure 1: Visual explanations of FedAvg and ATTENDING utilizing Grad-CAM (Selvaraju et al.,
2017). The top row is the original input images extracted from CIFAR10 dataset (with a resolution
of 32× 32 pixels). The middle row is the attention map generated by the global model trained with
FedAvg. The bottom row is generated by the global model trained with ATTENDING.

where ε is a constant added for numerical stability, µS and σS are the mean and the standard devia-
tion. Then, the spatial attention is calculated by the sigmoid function as follows:

AS = sigmoid(Ŝn). (4)

Following the calculation of spatial attention AS , the channel attention A is derived through a com-
bination of average pooling and maximum pooling operations as follows:

A = sigmoid(GN(poola(AS)) +GN(poolm(AS))), (5)

where GN represents the group normalization operation (Wu & He, 2018). The channel attention
A is the final attention obtained by the attention module. To enhance clarity, we further describe the
process of forward propagation within the attention module in Appendix B.

It is worth noting that the inserted attention module consumes negligible client resources compared
to the resource-intensive convolutional layers. For example, in the 2NN model used in our experi-
ments, the attention module increases only 0.2% of the trainable model parameters.

Visual Explanations. We also provide visual explanations illustrating the effect of the attention
mechanism in FL with non-IID data. Fig.1 offers an intuitive demonstration underscoring the ef-
fectiveness of the attention module on non-IID data. These visual explanations are generated by
Grad-CAM (Selvaraju et al., 2017) using the optimized global model. A comparative analysis with
the conventional FedAvg(McMahan et al., 2017) is also conducted, highlighting the superior perfor-
mance of our proposed approach. As depicted in Fig. 1, ATTENDING exhibits more concentrated
responses in critical regions, such as legs, tails, ears, deer horns, and automobile tires, while nearly
zero responses in other regions, such as backgrounds. In contrast, the popular FedAvg, lacking an
attention mechanism, struggles to focus on critical regions. Additionally, FedAvg often disperses
attention to irrelevant backgrounds, as observed in the last four images in Fig. 1. Furthermore, the
visual explanations in Fig. 1 provide evidence for the effect of the attention mechanism in model
pruning, demonstrating that the proposed ATTENDING efficiently reduces the model footprint with-
out significant performance loss on non-IID data.

3.2 PERSONALIZED ATTENTIVE MODEL PRUNING

Based on the results of the attention module, we introduce a novel algorithm for personalized model
pruning guided by attention scores. As shown in Fig. 2, each client trains the original model with
attention modules (i.e., attentive training) and then conducts channel pruning guided by the attention
scores to shrink the footprint of the model. Algorithm 1 presents the detailed process of attentive
model pruning on each client.

4
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Algorithm 1 Attentive Model Pruning Algorithm

Input: Local model θc on client c, channel set E of target layers, attention modules with parameters
θa, local data set Dc, pruning ratio pc

Output: Pruned local model with less parameters θ′
c

1: Insert attention modules into the local model θc: θ′
c ← θc ∪ θa

2: for data batch d ∈ Dc do
3: Update θ′

c on data batch d
4: Calculate attention Ad

c according to equation 5
5: end for
6: Calculate attention scoresMc according to equation 6
7: Calculate attention threshold m̂ according to equation 7
8: for channel e ∈ E with attention score me do
9: if me ≤ m̂ then

10: Remove the parameters θe of channel e: θ′
c ← θ′

c − θe
11: end if
12: end for
13: Remove the attention modules from local model θ′

c: θ′
c ← θ′

c − θa
14: return θ′

c
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Figure 2: An example of attention scores guided
channel pruning on the client.

In lines 1-6, the client first initiates the incor-
poration of attention modules behind the tar-
get layers as a preparatory step. Subsequently,
the client executes the mini-batch-based local
training procedure on its local dataset. Within
this local training process, the attention module
computes attention scores for each data batch
utilizing equation 5. Due to mini-batch-based
training resulting in varying attention matrices
across different data batches, it is crucial to mit-
igate the bias introduced by these batches. Con-
sequently, we calculate the attention score ma-
trixMc for each local model as follows:

Mc =
|d|
|Dc|

∑
d∈Dc

Ad
c , c ∈ C, (6)

where d is data batch in local dataset Dc, |d| is the number of data samples of d, and Ad
c is the

attention scores matrix calculated on data batch d. Finally, the attention scores matrixMc across
the entirety of the local dataset Dc is computed via equation 6.

In lines 7-12, given a predefined pruning ratio pc, channels with attention scores less than the at-
tention threshold m̂ are pruned to generate personalised local models.2 Specifically, the attention
threshold m̂ is calculated as:

m̂ =Mc( ˆ|E|), ˆ|E| = |E| × pc, (7)

where E is the channel set of all target layers, |E| is the number of channels in E, and Mc( ˆ|E|)
denotes the ˆ|E|-th smallest value inMc. Subsequently, ATTENDING remove the ˆ|E| channels with
the smallest attention scores.

In line 13, the attention modules are removed to avoid unnecessary communication costs and reduce
the resource consumption. In the subsequent communication rounds of FL, only the parameters in
pruned local models will be transmitted between the clients and the central server.

2In this work, we follow the conventional assumption in resource-constrained FL that the system informa-
tion of devices is available to the central server, and therefore the devices can negotiate with the central server
to choose the appropriate pruning ratios.
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Figure 3: Overview of the aggregation algorithm with attention matching in the first communication
round (the legend can be seen in Fig. 2, and steps have been numbered as ❶-❼).

3.3 AGGREGATION OF HETEROGENEOUS MODELS

Fig. 3 shows an overview of the aggregation algorithm of ATTENDING in the first communication
round of FL. For ease of representation, there are three clients (i.e., Device 1, Device 2, and De-
vice 3) with different system capabilities participating in the FL process, and only one target layer
containing 5 channels in the local model for each client.

Firstly, the clients download a original global model from the server (Step ❶) and update the weights
of the local models with attention modules (Step ❷). Then they conduct personalized model pruning
with different prune ratios via Algorithm 1. The personalized model pruning procedure on different
clients will generate heterogeneous local models due to the various system capabilities.

Then, the local models are sent to the central server for aggregation (Step ❸). Due to the inherent
heterogeneity among these local models, direct weighted averaging of these local models leads to
a significant degradation in overall model performance. Inspired by the findings in existing work
on model interpretability (Sabour et al., 2017; Li et al., 2019), channels with high scores play a
crucial role in capturing specific semantic responses while those with low scores are susceptible to
inherent noise and the presence of similar patterns. Thus we design a simple yet efficient Attention
Matching mechanism to aggregate channels according to their attention scores, thereby enhancing
the performance of the aggregated global model (Step ❹). Specifically, for each target layer, the
attention matching mechanism reorganizes the channels, ensuring that the indexes of channels with
small attention scores are positioned before those with larger attention scores. This arrangement is
calculated as follows:

Index(t) < Index(q), ∀mt ≤ mq, (8)

where the Index function denotes the position of the respective channel within the target layer, t
and q indicate different channels in the target layer with attention scores mt and mq , respectively.
In other words, the attention matching mechanism rearranges the channels within the target layer
based on their attention scores, and therefore reduces the effects of permutation invariance.

Following that, the server reconstructs the structure of the pruned models using the original global
model, ensuring that the local models align precisely with the structure of the global model (Step ❺).
This alignment facilitates the application of weighted averaging to aggregate the local models.

Finally, the server aggregates recovered models through weighted averaging (Step ❻), and subse-
quently generates a personalized local model for each client (Step ❼). To elaborate, for each client
c, the server prunes the last pc fraction of rearranged channels within the target layers of the aggre-
gated model while retaining the remainder. The detailed aggregation algorithm for heterogeneous
local models is provided in Appendix C.

In subsequent communication rounds, only the pruned local models are transmitted between the
central server and the clients. The clients exclusively update the weights of the pruned models
and send them directly to the central server without further pruning. Additionally, the central server
abstains from executing attention matching as the order of the channels has already been established.
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4 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup. Then, we compare the ATTENDING with
SOTA methods in heterogeneous FL environments. Finally, ablation studies are conducted to scruti-
nize the effect of the attention module and pruning ratios, as well as the scalability of ATTENDING.

4.1 EXPERIMENTAL SETTING

Table 1: FL environments used in our experiments.

Env Client
number Model Dataset Train

samples
Test

samples

Env-1 100 2NN MNIST 60,000 10,000

Env-2 10 ResNet56 CIFAR10 and
CIFAR100 50,000 10,000

Env-3 1,000 2NN MNIST 60,000 10,000

FL Environments. We implemented
ATTENDING with a benchmark FL
platform FedML (He et al., 2020) and
a popular deep learning framework
PyTorch (Paszke et al., 2019). We
build three FL environments to evalu-
ate ATTENDING, as described in Ta-
ble 1 (where “Env” represents “En-
vironment”). The detailed structures
of the 2NN and ResNet56 (He et al.,
2016) models are provided in Appendix D and the hyper-parameters utilized in model training are
provided in Appendix E. Env-1 and Env-2 were adopted for evaluating learning performance, the ef-
fect of the attention module, the effect of pruning ratio, pruning ratios for the target layer (provided
in Appendix H), and the effect of heterogeneity level of non-IID data (provided in Appendix I).
Env-3 was adopted for evaluating the scalability. The experiments were performed on a GPU server
with an Intel Core i9-10900K CPU and NVIDIA RTX3080Ti GPUs. Each experiment was executed
three times using distinct random seeds, and the mean value was computed for analysis.

Client Configuration. We adopt the convention settings in FL (Wang et al., 2020b; Mei et al., 2022;
Alam et al., 2022) to uniformly partition the set of clients C into five levels based on their system
capabilities. All these clients are involved in the FL process in our experiments. We apply different
pruning ratios for five levels of clients, where each level of clients is denoted as Cj , j ∈ [1, 5]. The
pruning ratio p is configured as 0.7, 0.5, 0.3, 0.1, 0 for level 1 to level 5. A value of p = 0 indicates
that clients at level 5 can train the complete model without any pruning applied.

Datasets and Non-IID Partition. We evaluate the performance of ATTENDING on the MNIST (Le-
Cun et al., 1998), CIFAR10 (Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky et al., 2009)
datasets, for both IID and non-IID settings. In the IID setting, we uniformly sample an equal num-
ber of data samples for each client. In the non-IID setting, we adopt the Latent Dirichlet Allocation
(LDA) (Wang et al., 2020a; Luo et al., 2021) strategy to partition the entire dataset among each
client. The heterogeneity of data is determined by a concentration parameter α. For the MNIST
dataset, we set α to 0.1. For the CIFAR10 and CIFAR100 datasets, we set α to 0.5.

Comparison Approaches. We compare the proposed ATTENDING with 8 approaches: Fe-
dAvg (McMahan et al., 2017), FedDrop (Caldas et al., 2018), FedProx (Li et al., 2020), Fed-
Nova (Wang et al., 2020b), Hermes (Li et al., 2021), FedMP (Jiang et al., 2022b), FedGH (Yi et al.,
2023), and FedP3(Yi et al., 2024). These approaches are either classical FL approaches or SOTA
for addressing heterogeneity problems in resource-constrained edge environments. We provide a
concise introduction to the comparison approaches in Appendix F.

4.2 COMPARISONS OF LEARNING PERFORMANCE

Table 2 and table 3 show the global model accuracy of FedAvg, FedDrop, FedProx, FedNova, Her-
mes, FedMP, FedGH, FedP3 and ATTENDING on the MNIST, CIFAR10, and CIFAR100 datasets
during 100 communication rounds. As shown in Table 2 and Table 3, compared with Baseline,
ATTENDING achieves 8.36% better average accuracy on the IID setting datasets and 11.3% better
average accuracy in the non-IID setting datasets. Table 4 shows the pruning results of ATTENDING
on 5 levels of clients. Where “Parameters” represents the number of parameters that determine
storage resource consumption, and “FLOPs” are its floating point operations that determine compu-
tational resource consumption. As shown in Table 4, ATTENDING reduces 32% average footprints
of both the 2NN and ResNet56 models.
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Table 2: Accuracy comparison of Baseline, FedDrop, FedProx, FedNova, Hermes, FedMP, FedGH,
FedP3, and ATTENDING on IID partitioning of MNIST, CIFAR10, and CIFAR100 datasets.

FL Algorithm
Test accuracy (%)

MNIST CIFAR10 CIFAR100 Average

Baseline (McMahan et al., 2017) 95.50 (±0.15) 79.85 (±0.92) 38.76 (±0.79) 71.37 (±0.62)
FedDrop (Caldas et al., 2018) 96.59 (±0.13) 80.46 (±0.20) 39.92 (±0.23) 72.32 (±0.19)
FedProx (Li et al., 2020) 94.94 (±0.18) 78.36 (±0.11) 42.15 (±0.63) 71.82 (±0.31)
FedNova (Wang et al., 2020b) 95.98 (±0.21) 77.87 (±0.13) 42.15 (±0.70) 72.00 (±0.35)
Hermes (Li et al., 2021) 96.42 (±0.14) 86.31 (±0.92) 52.23 (±1.74) 78.32 (±0.93)
FedMP (Jiang et al., 2022b) 96.06 (±0.23) 83.44 (±0.37) 44.67 (±1.75) 74.72 (±0.78)
FedGH (Yi et al., 2023) 96.60 (±0.25) 84.49 (±0.49) 50.43 (±1.87) 77.17 (±0.87)
FedP3 (Yi et al., 2024) 95.84 (±0.24) 87.30 (±0.97) 48.35 (±1.39) 77.16 (±0.87)
ATTENDING (Ours) 96.22 (±0.20) 88.45 (±0.30) 54.51 (±1.39) 79.73 (±0.63)

Table 3: Accuracy comparison of Baseline, FedDrop, FedProx, FedNova, Hermes, FedMP, FedGH,
FedP3, and ATTENDING on non-IID partitioning of MNIST, CIFAR10, and CIFAR100 datasets.

FL Algorithm
Test accuracy (%)

MNIST CIFAR10 CIFAR100 Average

Baseline (McMahan et al., 2017) 84.07 (±0.97) 63.62 (±0.50) 33.57 (±1.94) 60.42 (±1.14)
FedDrop (Caldas et al., 2018) 88.02 (±2.50) 65.96 (±2.16) 32.55 (±0.74) 62.18 (±1.80)
FedProx (Li et al., 2020) 91.75 (±0.14) 63.82 (±1.91) 37.16 (±1.87) 64.24 (±1.31)
FedNova (Wang et al., 2020b) 89.46 (±0.98) 70.10 (±1.66) 38.60 (±1.98) 66.05 (±1.54)
Hermes (Li et al., 2021) 87.19 (±0.95) 70.90 (±1.68) 45.11 (±2.73) 67.73 (±1.79)
FedMP (Jiang et al., 2022b) 71.39 (±1.88) 63.68 (±0.77) 34.99 (±1.16) 56.69 (±1.27)
FedGH (Yi et al., 2023) 89.20 (±0.85) 64.89 (±1.63) 44.84 (±2.53) 66.31 (±1.67)
FedP3 (Yi et al., 2024) 87.55 (±0.57) 67.75 (±0.76) 43.95 (±1.84) 66.42 (±1.06)
ATTENDING (Ours) 93.59 (±0.25) 73.00 (±1.89) 48.57 (±1.87) 71.72 (±1.34)

Table 4: Pruning results of ATTENDING on
clients.

Level Pruning
ratio p

2NN model ResNet56 model
Parameters FLOPs Parameters FLOPs

1 0.7 0.50M 12.36M 0.17M 42.35M
2 0.5 0.83M 19.47M 0.29M 52.98M
3 0.3 1.15M 26.03M 0.41M 73.30M
4 0.1 1.48M 33.14M 0.53M 71.96M
5 0 1.66M 36.97M 0.59M 90.32M

Average 0.32 1.12M 25.59M 0.40M 66.18M

Benefiting from the attentive pruning and
aggregation algorithms, the proposed
ATTENDING possesses the better capabil-
ity of extracting features and avoids the adverse
effects caused by element-wise aggregation,
thus achieving better accuracy with less
consumption of computational and storage
resources. Additionally, to comprehensively
investigate the learning process of comparison
algorithms, we also provide detailed learning
curves of FedAvg, FedDrop, FedProx, Fed-
Nova, Hermes, FedMP, FedGH, FedP3 and
ATTENDING, on the three datasets of both IID
and non-IID settings in Appendix G.

4.3 EFFECT OF ATTENTION MODULE
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Figure 4: Effect of attention module on global model
accuracy in IID and non-IID settings.

The effect of the attention module is evaluated
by removing the attention-related mechanism.
Fig. 4 shows the performance of ATTENDING
(i.e., ATTENDING w/ ATT) and its another ver-
sion without the attention-related mechanism
(i.e., ATTENDING w/o ATT). ATTENDING
w/o ATT relies on the conventional L1-norm
for executing model pruning on each client. In
the model aggregation process, ATTENDING
w/o ATT employs weighted averaging on local
models without the attention matching mecha-
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nism as the attention scores are not present. In the IID setting, the accuracy of ATTENDING w/ ATT
is 8% and 14.59% higher than ATTENDING w/o ATT on the CIFAR10 and CIFAR100 datasets,
respectively, and comparable to it on the MNIST dataset. In the non-IID setting, the accuracy of
ATTENDING w/ ATT surpasses that of ATTENDING w/o ATT on all three datasets. This result
demonstrates that the attentive pruning and aggregation mechanism is effective for local models to
extract features of both IID and non-IID data, particularly in intricate data scenarios.

4.4 EFFECT OF PRUNING RATIOS
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Figure 5: Effect of different pruning ratios on MNIST,
CIFAR10, and CIFAR100 datasets.

The performance of the global model is closely
related to the pruning ratio. In most cases, the
smaller the pruning ratio of the model, the bet-
ter the performance. Fig.5 shows the accuracy
of the global model for different pruning ratios
in both IID and non-IID settings. In the IID
setting, the accuracy of the global model de-
creases as the pruning ratios increase on the CI-
FAR10 and CIFAR100 datasets. An interesting
phenomenon is that the accuracy is highest at a
pruning ratio of 0.5 on the MNIST dataset. The
reason is that pruning the insignificant parts of
the model can reduce the possibility of overfitting and improve its generalization capability. In the
non-IID setting, the accuracy decreases as the pruning ratios increase on the MNIST and CIFAR100
datasets. On the CIFAR10 dataset, the highest accuracy is also achieved with a pruning ratio of 0.5.

4.5 SCALABILITY OF ATTENDING
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Figure 6: Comparison of accuracy with IID and non-
IID settings in large-scale FL environments.

To investigate the scalability of ATTENDING,
we compare its global model accuracy with that
of four model pruning-based FL algorithms,
FedDrop, Hermes, FedMP, FedGH, and FedP3
in a large-scale FL environment with a total of
1,000 clients. Fig. 6 shows the test accuracy
on the MNIST dataset with different numbers
of sampled clients participating in FL. For each
communication round, only the sampled clients
out of a total of 1,000 clients participate in the
FL process. In the IID setting, a larger client
sample rate results in relatively high accuracy.
The accuracy increases as the client sample number increases from 100 to 500, and decreases by
0.43% when the number increases to 1,000. In the non-IID setting, the accuracy reaches its highest
point when the client sample number equals 200 and gradually decreases as the number increases
from 200 to 1,000. The result of the scalability experiment demonstrates that ATTENDING is capa-
ble of being deployed in large-scale FL environments and still achieves satisfying performance.

5 CONCLUSIONS

In this paper, we have proposed a novel FL approach ATTENDING, enabling heterogeneous clients
to participate in FL with personalized local models. We have introduced an attentive training and
pruning algorithm for FL environments characterized by system and data heterogeneity. This algo-
rithm aims to generate tailored local models while enhancing learning performance. To aggregate
the local models, we have proposed a specific aggregation algorithm integrated with attention match-
ing to address the model heterogeneity issue. We have implemented ATTENDING with a real FL
platform and evaluated its performance. The experimental results on three benchmark datasets have
demonstrated that ATTENDING significantly outperforms SOTA methods. Our future research en-
deavors will focus on exploring the implementation and extension of ATTENDING across various
types of neural networks and multi-modality tasks, thereby enhancing its overall applicability.
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A A MOTIVATIONAL EXAMPLE

We present how system heterogeneity and data heterogeneity pose challenges to FL, thereby moti-
vating the proposed design of ATTENDING.

v Local update on Device 1

v Local update on Device 2
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Figure 7: An example of FL process in an IoT network with heterogeneous devices (steps have been
numbered as ❶-❹).

System Heterogeneity. In FL, the architectures of the local models on each client are usually the
same as the global model, and system heterogeneity leads to the weaker clients’ failure of local
model updates within the maximum allowed time. For example, Fig. 7 describes a round of FL
processing in an Internet of Things (IoT) network with three mobile devices. Device 1 encounters
a failure in updating the model due to its stringent resource constraints. Consequently, the central
server disregards the model information intended for updating by Device 1 and only aggregates the
models updated from Device 2 and Device 3. This failure not only leads to the exclusion of Device 1
from the FL process but also hinders the central server from leveraging the data features extracted
on Device 1.

In our work, the proposed approach addresses the system heterogeneity problem through a novel
attentive pruning method. With attention-based model pruning, heterogeneous clients are able to
update personalized local models with appropriate footprints, thus enabling all clients to participate
in the FL process.

Data Heterogeneity. Different distributions of the heterogeneous local data pose another challenge
on FL (Lim et al., 2020). Although the widely used FL approaches such as FedAvg (McMahan
et al., 2017) can be applied on both IID and non-IID settings, the current work (Zhao et al., 2018;
Li et al., 2021) demonstrates that FedAvg could be unstable or even diverge in the non-IID setting.
According to (Zhao et al., 2018), the performance of a global model trained by the FedAvg (McMa-
han et al., 2017) has a 51% lower accuracy than a centrally-trained local model on the CIFAR10
dataset (Krizhevsky et al., 2009). For example, as shown in Fig. 7, the data distributions between
Device 2 and Device 3 are distinct, resulting in diverse updated local models. Assuming that De-
vice 2 possesses a larger number of data samples, the aggregated global model tends to be biased
toward Device 2, thereby limiting the benefits attainable by Device 3.

In our work, the proposed approach utilizes the attention-based training technique to preserve the
personality of local models and leverages attention matching to aggregate local models, thereby
enhancing the model performance on non-IID data. Meanwhile, the proposed approach eliminates
the need for binary mask matrices, thereby mitigating potential computation costs and preventing
model accuracy deterioration.

B PROCESS OF FORWARD PROPAGATION WITHIN THE ATTENTION MODULE

As shown in Fig. 8, for an input feature map X , the spatial attention module first calculates its
spatial attention AS , yielding an intermediate result: X ⊙ AS . Then, the channel attention module
calculates the channel attention A from the intermediate result. Finally, the output feature map can
be calculated by: X ⊙ AS ⊙ A. The channel attention, denoted as A ∈ Ru×1×1, allows for the
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Figure 8: Process of forward propagation within the attention module.

direct extraction of attention scores for each channel. These attention scores will be used to prune
channels.

C HETEROGENEOUS MODEL AGGREGATION ALGORITHM

Algorithm 2 presents the detailed aggregation process for heterogeneous local models.

Algorithm 2 Heterogeneous Aggregation Algorithm

Input: Original global model with parameters Θ, participating clients c, pruning ratio pc, local data
set Dc.

Output: Aggregated global model with parameters Θ′ and personalized local model θ′
c

Client Updates(Θ):
1: θc ← Prune and update Θ by Algorithm 1
2: Transmit the local update θc to the central server

Server Executes:
3: for each client c ∈ C do
4: Receive local models from clients:

θc ← Client Updates(Θ)
5: Applying attention matching on θc:

θc ← Attention Matching(θc)
6: Recover model structure θc with Θ:

θc ← θc ∪ (Θ− θc)
7: end for
8: Aggregate local models to generate the global model:

Θ′ ←
∑C

c=1
|Dc|
|D| θc

9: for each client c ∈ C do
10: θ′

c ← Prunes the last pc fraction of the channels
11: end for
12: return Θ′ and θ′

c

D DETAILED MODEL STRUCTURES USED IN OUR EXPERIMENTS

The 2NN model used in our experiments is a shallow convolutional neural network. The original
version of the 2NN model (McMahan et al., 2017) is adopted and its detailed structure is presented
in Table 5. The ResNet56 model is a sophisticated neural network that features stacked residual
blocks (He et al., 2016). In our experiments, we employed the same ResNet56 model as the one
implemented in the FedML platform (He et al., 2020). The structure of our ResNet56 model is
outlined in Table 6. The Residual layer used in the ResNet56 model is presented in Table 7. To
enhance clarity and convenience, we have omitted the detailed structure of the Bottleneck, which is
identical to its original implementation in (He et al., 2016).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Model structure of the 2NN model.

Index Module Type Input shape Output shape

1 conv1 Conv (1, 28, 28) (32, 28, 28)
2 maxpool1 MaxPooling (32, 28, 28) (32, 14, 14)
3 conv2 Conv (32, 14, 14) (64, 14, 14)
4 maxpool2 MaxPooling (64, 14, 14) (64, 7, 7)
5 flatten Flatten (64, 7, 7) (3136)
6 linear1 Dense (3136) (512)
7 linear2 Dense (512) (10)

Table 6: Model structure of the ResNet56 model.

Index Module Type Input shape Output shape

1 conv1 Conv (3, 32, 32) (16, 32, 32)
2 bn1 BatchNorm (16, 32, 32) (16, 32, 32)
3 relu ReLU (16, 32, 32) (16, 32, 32)
4 stage1 Residual layer (16, 32, 32) (64, 32, 32)
5 stage2 Residual layer (64, 32, 32) (128, 16, 16)
6 stage3 Residual layer (128, 16, 16) (256, 8, 8)
7 avgpool AvgPool (256, 8, 8) (256, 1, 1)
8 reshape Reshape (256, 1, 1) (256)

9 linear Dense (256) (10) for CIFAR10
(100) for CIFAR100

E TRAINING HYPER-PARAMETERS

To ensure a fair comparison with the SOTA approaches, we applied the same hyper-parameters for all
approaches during model training. Table 8 shows a detailed description of these hyper-parameters.

Table 8: Training hyper-parameters adopted in FL process.

Type Hyper-parameter Value

Global setting

Communication round 100
Client number for MNIST 100
Client number for CIFAR 10
Client participation rate 1
α of LDA for MNIST 0.1
α of LDA for CIFAR 0.5

Local setting

Learning rate 0.001
Weight decay 0.001
Batch size 512
Local epoch 5

F COMPARISON ALGORITHMS

We introduce the comparison approaches utilized in our experimental section as follows:

FedAvg (McMahan et al., 2017): FedAvg is a pioneering work in FL and is widely used to aggregate
local models. For model aggregation, FedAvg uploads the updated parameters of the local model to
a central server for weighted averaging. FedAvg requires each client to update a local model with
the same footprint as the global model and involves no resource optimization techniques, thus only
the clients of level 5 (i.e., clients in C5) can participate in FedAvg.
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Table 7: Structure of the “Residual layer” used in the ResNet56 model.

Index Module name Module type Input shape Output shape

1 block1 Bottleneck
(16, 32, 32) for stage1
(64, 32, 32) for stage2

(128, 16, 16) for stage3

(16, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

2 downsample.conv Conv2D
(16, 32, 32) for stage1
(64, 32, 32) for stage2

(128, 16, 16) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

3 downsample.bn BatchNorm2D
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

4 block2 Bottleneck
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

5 block3 Bottleneck
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

6 block4 Bottleneck
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

7 block5 Bottleneck
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

8 block6 Bottleneck
(64, 32, 32) for stage1

(128, 16, 16) for stage2
(256, 8, 8) for stage3

(64, 32, 32) for stage1
(128, 16, 16) for stage2

(256, 8, 8) for stage3

Federated Dropout (FedDrop) (Caldas et al., 2018): FedDrop integrates lossy compression tech-
niques into the FL process. By generating a uniform, compact local model for all clients, FedDrop
effectively mitigates the computational burden associated with local training and the corresponding
communication costs. It is essential that this compact local model adheres to the resource constraints
of the least capable clients, denoted as C1.

FedProx (Li et al., 2020): FedProx introduces a proximal term into the objective function, aiming to
encourage clients to maintain similarity with the global model during local training, thereby allowing
low-end clients to execute fewer local updates.

FedNova (Wang et al., 2020b): FedNova adopts dynamic learning rate adjustment and adaptive
aggregation mechanisms to handle the heterogeneity among participants. FedNova adjusts each
participant’s influence on the model by using their contribution.

Hermes (Li et al., 2021): Hermes adopts structured pruning to find personalized sub-models for
clients. The clients are responsible for updating the personalized sub-models, which are subse-
quently transmitted to the server for intersection-based averaging.

FedMP (Jiang et al., 2022b): FedMP prunes local models adaptively in each FL communication
round to satisfy the heterogeneous resource limitations of clients. Meanwhile, it uses a R2SP scheme
to aggregate heterogeneous models in different clients.

FedGH (Yi et al., 2023): FedGH enables the extraction of representations from local data by het-
erogeneous sub-models on clients. To facilitate knowledge transfer among clients, FedGH employs
a shareable global header optimized using these representations to make predictions. We categorize
FedGH as a method related to model pruning in our work as it utilizes sub-models with reduced
width as heterogeneous local representation extractors.
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FedP3 (Yi et al., 2024): FedP3 involves dynamic network pruning, where each client trains a subset
of the global model and sends pruned weights back to the server for aggregation. Through dynamic
pruning and training, FedP3 is able to better address system heterogeneity with tailored models.

G LEARNING CURVES

We provide detailed learning curves of ATTENDING and FedAvg (McMahan et al., 2017), Fed-
Drop (Caldas et al., 2018), FedProx (Li et al., 2020), FedNova (Wang et al., 2020b), Hermes (Li
et al., 2021), FedMP (Jiang et al., 2022b), FedGH (Jiang et al., 2022b), and FedP3 (Yi et al., 2024)
on three datasets of both IID setting and non-IID setting in Fig. 9 and Fig. 10. Specifically, Fig. 9
shows the results of ATTENDING, FedAvg, and optimization-based comparison approaches (i.e.,
FedProx and FedNova). Fig. 10 shows the results of ATTENDING and model pruning-based com-
parison approaches (i.e., FedDrop, Hermes, FedMP, FedGH, and FedP3). In Fig. 9 and Fig. 10, the
“Acc IID” and “Loss IID” represent test accuracy and loss in the IID setting during 100 commu-
nication rounds, respectively. The “Acc non-IID” and “Loss non-IID” represent test accuracy and
loss in the non-IID setting.
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Figure 9: Test accuracy and test loss of FedAvg, FedProx, FedNova, and ATTENDING on three
datasets of both IID setting and non-IID setting.

H PRUNING RATIOS FOR TARGET LAYERS

Given a pruning ratio p for model pruning, we employed the constant pruning ratio p for each target
layer l ∈ L in the 2NN model. For the ResNet56 model, we used diverse pruning ratios pl for target
layers while ensuring that the pruning ratio p for the entire model remained unchanged.

As discussed in (Yosinski et al., 2014; Donahue et al., 2014), the early layers of a neural network
primarily contribute to its generality, while the later layers tend to dominate specificity. In the con-
text of FL environments, the generality of local models on clients often carries greater significance
than their specificity due to the distributed nature of FL. Specifically, each client in an FL envi-
ronment must collaborate with other clients to optimize a global model, making local models with
greater generality crucial for enhancing the performance of the global model. Additionally, FL often
encounters performance degradation especially in non-IID settings, primarily because local models
are trained specifically on their own local data and struggle to generalize to data from other clients.

Thus, we set small pruning ratios for the early layers of ResNet56, and large pruning ratios for its
later layers to improve its generality. In order to reduce complexity, we establish distinct pruning
ratios for individual stages of ResNet56, as opposed to targeting specific layers. These ratios are
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Figure 10: Test accuracy and test loss of FedDrop, Hermes, FedMP, FedGH, FedP3, and
ATTENDING on three datasets of both IID setting and non-IID setting.
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Figure 11: Performance of ATTENDING on non-IID setting of CIFAR10 dataset under various
pruning ratios psi.

formally denoted as p̃s, where s represents the s-th stage of the ResNet56 model. To enhance the
generality of the model under a given model pruning ratio, we ensure that:

p̃i ≤ p̃j , ∀i < j, i, j ∈ S, (9)

where S denotes the set of indices for each stage in ResNet56. Given the inherent challenge in
achieving a precise reduction of the model footprint to a specified value p through structured model
pruning, we select the pruning ratio p̃s of the stages as far as possible to ensure the entire pruning
ratio approx to p, which can be formulated as follows:

p ≈ 1

|S|

|S|∑
s=1

p̃s. (10)

We designed 20 pruning strategies that satisfy equation 9 and equation 10 to investigate the impact
of different pruning ratios p̃s on model performance. We conduct this experiment with the ResNet56
model and non-IID setting of the CIFAR10 dataset. Fig. 11 shows the results, where the indexes of
abscissa represent the pruning strategies for each stage of ResNet56. For example, “245” represents
a pruning strategy with p̃1 = 0.2, p̃2 = 0.4, and p̃3 = 0.5, respectively. Note that when p = 0.1,
equation 9 is not applied because the early layers of ResNet56 contain a small fraction of parameters
whereas its later layers contain a large one.

In this paper, we choose the pruning strategies “120”, “012”, “133”, and “226” corresponding to the
pruning ratios p of 0.1, 0.3, 0.5, and 0.7, respectively.
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I EFFECT OF HETEROGENEITY LEVEL OF NON-IID DATA

We evaluate the proposed ATTENDING with various data heterogeneity levels and study how they
affect the model accuracy. The concentration parameter α in the LDA strategy controls the data
heterogeneity level. The results of ATTENDING on the MNIST dataset and CIFAR10 dataset under
different concentration parameters α are depicted in Fig. 12. The 2NN model is trained on the
MNIST dataset, while the ResNet model is trained on the CIFAR10 dataset. As illustrated in Fig. 12,
the efficacy of the ATTENDING method remains resilient amidst variations on the MNIST dataset,
exhibiting a slight decline as α decreases. This phenomenon is attributed to the inherent simplicity
of the classification task on the MNIST dataset, which experiences comparatively modest accuracy
deterioration. In contrast, the CIFAR10 dataset, being more challenging, inevitably leads to larger
accuracy degradation as α decreases.
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Figure 12: Test accuracy of ATTENDING with concentration parameters α ranging from 0.1 to 0.9
on the MNIST dataset and the CIFAR10 dataset.
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