
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING LEARNING-BASED SYMMETRIC CRYPT-
ANALYSIS: A THEORETICAL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of deep learning in cryptanalysis has been largely demonstrated em-
pirically, yet it lacks a foundational theoretical framework to explain its perfor-
mance. We bridge this gap by establishing a formal learning-theoretic framework
for symmetric cryptanalysis. Specifically, we introduce the Coin-Tossing (CoTo)
model to abstract the process of constructing distinguishers and propose a unified
algebraic representation, the Conjunctive Parity Form (CPF), to capture a broad
class of traditional distinguishers without needing domain-specific details. Within
this framework, we prove that any concept in the CPF class is learnable in sub-
exponential time in the setting of symmetric cryptanalysis. Guided by insights
from our complexity analysis, we demonstrate preprocessing the data with a flex-
ible output generating function can simplify the learning task for neural networks.
This approach leads to a state-of-the-art practical result: the first improvement
on the deep learning-based distinguisher for SPECK32/64 since 2019, where we
enhance accuracy and extend the attack from 8 to a record 9 rounds.

1 INTRODUCTION

The rapid advancement of machine learning has significantly impacted variousfields, such as im-
age processing and speech recognition. Recently, its success has drawn growing interest from the
cryptography community, particularly in the context of symmetric cryptanalysis. As early as Rivest
(1991), they envisioned the integration of machine learning with block ciphers. Although this con-
cept was explored by researchers over the ensuing decades, it was not until Gohr (2019) developed a
deep learning-based distinguisher for block cipher SPECK32/64 that outperformed traditional differ-
ential distinguishers, that neural networks began to attract significant attention from the cryptanal-
ysis community. This breakthrough marked a turning point, bringing machine learning methods to
the forefront of modern symmetric cryptanalysis. Since then, machine learning-based symmetric
cryptanalysis has evolved into several key research directions, see, Gerault et al. (2024).

Currently, in cryptography community, one major line of research focuses on interpreting differen-
tial neural distinguishers. For example, Benamira et al. (2021) analyzed the information captured
by each layer in the neural network and conducted experiments to verify their conjectures. They
conjectured that the neural network captures specific differential conditions in the penultimate or an-
tepenultimate rounds and replaced less interpretable components of the original network with more
explainable alternatives. While Bao et al. (2023) argued that the superiority of neural differential
distinguishers over classical ones is primarily due to their exploitation of certain XOR patterns. Ad-
ditionally, research employing pruning techniques or visualization algorithms to improve network
interpretability are discussed (Băcuiet,i et al., 2022).

Another significant research area aims to increase the accuracy of neural network distinguishers to
achieve more effective attacks since the accuracy will greatly effect the time and data complexity
during the attack. The primary approaches for improvement include optimizing the neural network
algorithms and modifying the construction of the sample sets. For example, (Benamira et al., 2021)
replaced ResNet blocks to maintain original accuracy while enhancing interpretability. Furthermore,
they also introduced DBitNet, which is based on dilated convolutional layers, and it enables the neu-
rons to learn the relationship between distanced bits. For ASCON permutation, Shen et al. (2024) used
multilayer perceptron (MLP) to get a 4-round distinguisher. Other researchers worked on modifying
the data set to improve the accuracy (Bellini et al., 2023b; Baksi et al., 2021). On the other hand,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

many studies focus on enhancing the application of neural network distinguishers in key recovery at-
tacks. Bao et al. (2022) proposed a comprehensive framework for developing key recovery attacks,
introducing improved 12-round and the first 13-round key recovery attacks for SPECK32/64 , and
further improved the framework in Bao et al. (2023). Some researchers have explored methods for
finding better input differences through SAT solvers Hou et al. (2021), principal component analysis
Seok et al. (2024) or various metrics Bellini et al. (2023b).

Despite the abundance of experimental studies on neural network distinguishers, few investigations
explore the application of machine learning in block cipher cryptanalysis from a theoretical stand-
point. This limitation raises several issues. First, the construction of neural distinguishers currently
lacks a solid theoretical foundation, leading to a predominance of heuristic-based experiments aimed
at accuracy optimization. Additionally, there is a theoretical gap concerning the feasibility of em-
ploying machine learning-based algorithms for cryptanalysis task. Moreover, the threat posed by
neural networks to block ciphers remains challenging to quantify, which adversely affects both the
analysis and design of block ciphers. Therefore, it is crucial to conduct research grounded in solid
theoretical foundations, which can bring new perspectives for these areas.

Contribution. We make a dual contribution that bridges learning theory and symmetric crypt-
analysis. From a theoretical perspective, we introduce a new model and a set of problems that
formalize the application of deep learning in cryptanalysis. This establishes a clear and significant
research objectives for the area. From a practical perspective, we leverage the conclusions from our
theoretical framework to construct effective deep neural network distinguishers, thus contributing to
the advancement of modern cryptanalysis.

Specifically, in this work, we first revisit the scenarios and tasks of symmetric cryptanalysis through
the perspective of learning theory, highlighting the connections between cryptanalysis and ML algo-
rithms by proposing the Coin-Tossing model. We then categorize traditional cryptanalysis methods
based on Boolean functions and introduce a generalized Boolean concept grounded in conjunctive
parity, namely the conjunctive parity form (CPF) concept class. By introducing the aforementioned
new definitions and problems, we demonstrate the following findings:

• In the Coin-Tossing model, if a concept can be used as a distinguisher and it possesses a
general CPF form, then a learning algorithm with sub-exponential complexity exists that
can identify it.

• If the Hamming weight of each clause within this concept is constant, then a polynomial-
complexity algorithm exists that can identify it with limited error.

Our empirical analysis further reveals that the practical complexity for various machine learning
algorithms to solve this problem is strongly correlated with certain problem parameters, often show-
ing an exponential decay. This insight motivates a novel approach: by strategically modifying the
input and output generating functions, we reduce the problem’s complexity upper bound, thereby
boosting the efficacy of machine learning-based cryptanalysis. To validate our methodology, we
applied it to the ISO-standard block cipher SPECK32/64, achieving the best-known cryptanalytic re-
sult for 8 rounds and presenting the first 9-round neural distinguisher. We further demonstrate the
generalizability of our approach by improving upon existing result for DES cipher.

2 PRELIMINARIES

Given the interdisciplinary nature of this work, this section provides the necessary background
knowledge to facilitate understanding for researchers from diverse academic fields.

2.1 DEEP LEARNING-BASED CRYPTANALYSIS

Block ciphers are a foundational component of modern internet communication, rendering their
security of paramount importance. A block cipher is a deterministic function E that maps a fixed-
length plaintext x ∈ Fl

2 to a ciphertext y ∈ Fl
2 under a secret key k, denoted as Ek(x) = y.

A seminal technique in the chosen-plaintext attack (CPA) setting is differential cryptanalysis. An
adversary selects pairs of plaintexts with a specific XOR difference such as (x, x⊕∆), ∆ ∈ Fl

2, and
analyzes the statistical properties of the corresponding cipher pair (Ek(x), Ek(x⊕∆)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Building upon this foundation, Gohr (2019) introduced a deep learning-based approach to cryptanal-
ysis. The core idea is to train a neural network to differentiate between ciphertext pairs produced by
a specific differential and those drawn from a random distribution. To achieve this, a balanced train-
ing dataset is constructed. Positive samples consist of valid ciphertext pairs (Ek(x), Ek(x ⊕ ∆))
for a fixed ∆, with randomly sampled plaintext x and keys k. Negative samples are composed of
concatenated random bit strings of equivalent length. A Residual Network (ResNet) is then trained
as a binary classifier on this dataset, optimized using a Mean Squared Error (MSE) loss function
with L2 weight regularization.

Neural-aided cryptanalysis has emerged as a powerful technique, in some instances outperforming
traditional cryptanalytic methods against certain block ciphers. As the field expands beyond dif-
ferential cryptanalysis to incorporate integral and linear characteristics, a more generalized notation
becomes necessary, see Hou et al. (2020); Zahednejad & Lyu (2022). This work thus adopts a
universal framework and notations.

We consider a standard distinguishing scenario where an adversary has access to an encryption
oracle. For i-th query, the adversary submits a structured plaintext vector xi = (x0, x1, ..., xm−1) ∈
Fm×l
2 . A positive sample, denoted (yi, bi = 1), consists of the corresponding ciphertext vector yi =

(y0,y1, ...,ym−1) = (Ek(x0), Ek(x1), ..., Ek(xm−1)) ∈ Fm×l
2 represents ciphertexts encrypted

under a randomly chosen key k. In contrast, we use ri to represent the random sample, where
ri = (r0, r1, ..., rm−1), with each rt (t = 0, ...,m− 1) being sampled in U(Fl

2).

To construct an effective distinguisher, the adversary typically employs structured inputs designed to
introduce statistical discrepancies between the distributions of positive and negative samples. For-
mally, each plaintext vector xi derived from a random vector xi using a sequence of input generating
functions: xi = (α0(xi), α1(xi), ..., αm−1(xi)) where each αj : Fl

2 → Fl
2 and the xi is sampled

uniformly. The parameter m corresponds to the number of input pairs in some works. Similarly,
output generating function ω operates on samples yi and ri, though in most analyses it is assumed
to be the identity function.

2.2 THE LEARNING THEORY AND LPN PROBLEM

The Probably Approximately Correct (PAC) model and framework proposed by Valiant (1984) can
be described by the following definitions. Assume an adversary has access to an oracle that returns
“Positive (label 1)” if h∗(x) = 1 and “Negative (label 0)” otherwise where the x is randomly draw
from a distribution D and the h∗ is the target concept. The adversary’s task is to identify h∗ from the
finite hypothesis space H = {h1, h2, ..., hN}. Define: LD,f (h) = Prx∼D[h(x) ̸= f(x)], then the
identification procedure is said to do probably approximately correct identification of h∗ if and only
if the algorithm returns a hypothesis h such that, with probability of at least 1− δ, LD,h∗(h) ≤ ϵ for
every ϵ, δ ∈ (0, 1). In our work, we abbreviate it as “pac-identification”.

On the other hand, the random classification noise model (RCN, or simple noise model) introduced
by Angluin & Laird (1988) is a specialized model within the PAC learning framework, and it makes
it more general by introducing the presence of noise. Specifically, after the oracle draws an example
x from the distribution D, it will return the wrong label with probability τ (τ < 1/2). In addition
to the standard PAC and RCN models, researchers have introduced various other frameworks, such
as the SQ (Statistical Query)(Reyzin (2020); Shalev-Shwartz & Ben-David (2014)), to investigate
related problems. A prominent example is the Learning Parity with Noise (LPN) problem, which is
defined as follows:
Definition 1. (LPN problem, Esser et al. (2017a)) In the LPNn,τ problem, for a secret s ∈ Fn

2 and
error parameter τ ∈ [0, 1

2) we are given access to an oracle that provides samples of the form:

(ai, bi) := (ai, ⟨ai, s⟩ ⊕ ei), for i = 1, 2, ...

where ai ∼ U(Fn
2) and ei ∼ Berτ independently. The goal is to recover s.

In other words, the oracle will draw a sample a from U(Fn
2) and then compute the result θ(a) =

⟨a, s⟩ which will be corrupted by noise with probability τ . Here, ⟨·, ·⟩ represents the inner product
of two Boolean vectors. It is noted that the LPN problem is a specific instance of the RCN model.
Specifically, it assumes that the distribution D is a uniform distribution and that both the target
Boolean function and the hypothesis space consist of parity functions. In learning theory, Feldman

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

et al. (2006) proved that learning DNF expressions and k-juntas1 are related to the LPN problem.
The interesting is that the LPN problem is not only considered in learning theory, but it also has
been widely explored in cryptography, particularly in constructing cryptographic schemes based on
LPN or its variants, and in efforts to reduce the complexity of solving it, see Boyle et al. (2020);
Brakerski et al. (2020; 2019); Yu & Zhang (2021).

3 THE COIN-TOSSING MODEL

In this section, we try to explore the complexity of learning algorithms that rely solely on dataset
when exploring classical analytical distinguishers. We first revisit the related neural network exper-
iments by presenting a new model to represent the deep learning applied to a neural distinguisher in
symmetric cryptanalysis. In the scenario of the CPA model, the adversary can query an encryption
oracle with m plaintext messages xi. Upon receiving the query, the oracle tosses a coin: if it lands
heads, it returns a positive sample and its label (yi, bi = 1). Otherwise, it returns (ri, bi = 0).

By querying the oracle multiple times and then performing the function ω, the adversary accumulates
a dataset T consisting of both sample types unordered. We denote the subsets of positive and
negative samples in T by Y and R respectively. The combined dataset T serves as the training
dataset for the neural distinguisher. The goal of a learning-based adversary is to use a learning
algorithm A, given access to a training dataset T , to gain an advantage in distinguishing whether
an unseen vector is generated randomly from the oracle. And we denote the test dataset as T ′ =
{Y ′,R′}. A validation dataset similarly be defined for tuning hyperparameters or early stopping.2

Let Θλ = {θ|θ : Fm×l
2 → F2} denote the concept class parameterized by a security parameter

λ ∈ R(0,1) where each concept θ ∈ Θλ satisfies the following condition:∣∣∣Ey[θ(y)]− Er[θ(r)]
∣∣∣ > λ. (1)

Here, y and r are randomly drawn from Y and R, respectively. We denote the value on the left-
hand side of the inequality as εθ, which is generally estimated from an independent test dataset. It
is noted that any concept θ ∈ Θλ is a distinguisher for the primitive. Then, the training data set can
be regarded as following a sample distribution DCT and the adversary needs to find one (or many)
concept(s) θ̂ ∈ Θλ consistent with DCT. In our work, we call this game-like model the Coin-Tossing
(CoTo) model. Formally, we have the following definition.
Definition 2. (The Coin-Tossing Model) Assume the adversary can query the Oracle with encryption
function E, input generating functions {αi}i≤m−1 and output generating function ω:

OracleCT =

{
(ω(yi), 1) =

(
ω
(
Eki(α0(xi)), Eki(α1(I1(xi))), ..., Eki(αm−1(xi))

)
, 1
)

, if bi = 1;

(ω(ri), 0) , otherwise.

The variables such that: xi ∼ U(Fl
2), ki ∼ U(Fκ

2), r
i ∼ U(Fn

2), bi ∼ Ber 1
2

and n = l ×m. Then,

the goal of adversary is return a concept θ̂ ∈ Θλ for the given security parameter.

This model is particularly useful because it not only encapsulates all relevant prior work at a high
level of abstraction but also enables the straightforward derivation of useful insights, as demonstrated
in the following remarks.
Remark 1. Given that for any θ ∈ Θλ, the concept θ⊕ 1 is also in Θλ, so we can omit the constant
term from our subsequent discussion.

Remark 2. Let Kθ := wt(θ)
2m×l where wt(θ) is the Hamming weight of θ, or equally wt(θ) =∣∣{x|θ(x) = 1}

∣∣. If the adversary knows Kθ, they can determine whether θ ∈ Θλ based solely
on the set of positive samples since the Er[θ(r)] can be approximated by Kθ.

Remark 2 indicates that for a concept θ of a known form, the attack complexity can be reduced by
calculating its Hamming weight. This approach is particularly useful when the algebraic properties

1Boolean functions in Bn that depend on at most k of its variables.
2Without loss of generality, we assume |Y| = |R| = N for training dataset and |Y ′| = |R′| = N ′ for test

dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of θ are known. Following the framework, we are positioned to formally address the central question:
How do machine learning-based algorithms impact the security of symmetric ciphers?

In classical cryptanalysis, the hypothesis space is often well-defined, comprising structures such as
differential or linear characteristics. In contrast, the hypothesis space explored by a neural network
is substantially larger and more complex, making the learned features challenging to interpret.

4 THE CPF CONCEPT CLASS

Rather than directly analyzing the relationship between the hypothesis space and the concept space
Θλ, this section introduces the CPF concept, a concept class capable of representing many tradi-
tional cryptanalytic distinguishing methods. We first examine the differential and differential-linear
distinguishers as examples.
Example 1. (Differential distinguisher, (Biham & Shamir, 1991)) In a basic differential attack,
a cryptanalyst identifies (∆,∇) as a differential with high probability over the (round-reduced)
encryption function Er. Typically, in this setting, m = 2 and the input generating functions are
α0(xi) = xi and α1(xi) = xi ⊕ ∆, where ∆,∇ ∈ Fl

2 denote the input and output differences,
respectively. And the plaintext values xi are drawn in U(Fl

2). Under these conditions. Let I∇ denote
the index set of bit components where ∇ is 1, and let I∇ be its complement. Then, a distinguisher
θ can be formulated as a Boolen concept: θ(y) =

∧
i∈I∇

(y0,i ⊕ y1,i) ∧
∧

i∈I∇
(y0,i ⊕ y1,i ⊕ 1)

where y0,i and y1,i represent the i-th components of first and second ciphertexts, respectively. This
formulation naturally extends to truncated differentials, where I∇ represents the set of active bit
indices. We define the collection of these Boolean concepts as the differential function family:

Cndiff =

{
θ : Fn

2 → F2

∣∣∣θ(x1, ..., xn) =
∧

(i,j)∈I

(xi ⊕ xj ⊕ ci,j)

}
. (2)

The index set I is a subset of [n]× [n], and for all (i, j) ∈ I , there does not exist (i′, j′) ∈ I such that
any two of i, j, i′, j′ are equal. To simplify the expression, we denote n = m × l as the total input
dimension. Moreover, the functions have two variables in every clause and each variable appears at
most once. Next, we consider the Differential-Linear (DL) attack scenario.
Example 2. (Differential-Linear distinguisher, (Langford & Hellman, 1994; Beierle et al., 2022))
In the attack of the Differential-Linear method, the cryptanalyst will find a differential pair (∆,∇)
and a pair of linear masks (Γin,Γout) make the following correlation as high as possible.∣∣∣Ex∼U(Fn

2)
[⟨Γout, E(x)⟩ ⊕ ⟨Γout, E(x⊕∆)⟩]− 1

2

∣∣∣ = p.

Similar to differential attacks, we can use a characteristic function to represent correlations as:
θ(y) =

⊕
i∈Iγ

(y0,i⊕y1,i)⊕c where Iγ is the index set of Γout. The corresponding input generating
functions are α0(xi) = xi and α1(xi) = xi⊕∆. We employ a more general set of functions, referred
to as the parity function family 3, to represent these characteristic functions:

Cnparity =

{
θ : Fn

2 → F2

∣∣∣θ(x1, ..., xn) =
⊕
i∈I

xi ⊕ c, I ⊆ [n]

}
. (3)

Notice that the function family in equation 2 and 3 can be unified under a broader function family:

Ck,nCPF =

{
θ : Fn

2 → F2

∣∣∣θ(x1, ..., xn) =

k−1∧
j=0

(⊕
i∈Ij

xi ⊕ cj
)
, Ij ⊆ [n]

}
. (4)

Here, the Ij are index sets and cj are constant variables. We refer to a Boolean function of this
form as a Conjunctive Parity Form (CPF) function. In geometry, the satisfying assignments of these
functions can be interpreted as the intersection of a collection of affine hyperplanes in Fn

2 , each
defined by a specific index set Ij and constant cj .

In addition to the two examples mentioned above, many other distinguishers, such as those based on
multiple differential, linear, impossible differential, integral, and boomerang distinguishers, can also
be represented using this framework. The expressions of these distinguishers in the CPF Boolean
function family are summarized in the following table, where the column “CL” is the variable num-
ber in each clause (or Hamming weight), and “CN” refers to the clause number k.

3Truth table of these functions contain an equal number of zeros and ones, namely, they are balanced.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Distinguisher Type Input Generating Functions CL CN Ref.
(Impossible) differential (E(x), E(x⊕∆)) 2 l (Knudsen, 1998)
Rotation differential (E(x), E((x ≪ t)⊕∆)) 2 l (Khovratovich & Nikolić, 2010)
Truncated differential (E(x), E(x⊕∆)) 2 < l (Knudsen, 1994)
Boomerang/Rectangle (E(x), E(x⊕∆), E(x′), 2 2l (Wagner, 1999)

E(∆⊕ x′)) (Biham et al., 2001)
Linear (x,E(x)) - 1 (Matsui, 1993)
Differential-Linear (E(x), E(x⊕∆)) - 1 (Langford & Hellman, 1994)
Integral Y (output multi-set) |Y| - (Knudsen & Wagner, 2002)

Table 1: CPF-based distinguishers and their parameters

5 LEARNING A CPF CONCEPT IN COIN-TOSSING MODEL

After exploring the important concept class which can be potentially learned by adversaries, it is
natural to introduce the learning theory to discuss the difficulty an adversary has in acquiring them.
The Example 3 in DL distinguisher shows how the cryptanalysis is related to the LPN problem.
Example 3. Recall that in the CoTo model, the oracle will toss a coin to determine whether a
positive sample (generated by encryption) or a negative sample (created randomly) is returned.
Suppose there exists a concept function c in Cn

parity such that Ey∼Y [c(y)] = p, (1/2 < p ≤ 1),
namely there exists a DL distinguisher with high probability p for encrypted output. Then:

• In the positive sample set, N · p samples satisfy c while N · (1− p) samples do not.
• In the negative sample set, the number of samples satisfying c is N/2 (due to uniform

randomness and the parity function is balanced).

Thus, among the total (N/2+Np) samples where c(x) = 1, exactly N/2 have incorrect labels—i.e.,
“corrupted” by noise. Similarly, there are N(1 − p) samples are “corrupted” by noise in N(1 −
p) +N/2 samples which do not satisfy c.

Specifically, we have demonstrated that the task of searching for a DL characteristic can potentially
be reduced to the LPN problem. For the more general case, we have the following Lemma 1.
Lemma 1. In the CoTo model, suppose there exists a Boolean concept θ ∈ Bn with discrepancy εθ.
Then, the probability τ of wrong label in θ(x) = 0 and probability τ of wrong label in θ(x) = 1 for
x ∼ DCT are given by:

τ = Pr
x∼DCT

[
b = 1

∣∣θ(x) = 0
]
=

1−Kθ − εθ
2− 2Kθ − εθ

, τ = Pr
x∼DCT

[
b = 0

∣∣θ(x) = 1
]
=

Kθ

2Kθ + εθ
,

where the Kθ is wt(θ)/2n, b represents the label of corresponding sample and DCT denotes the
sample distribution within the model.

The aforementioned method and the lemma provide a basic thought for transforming the CoTo
model into an RCN model. We will consistently apply this approach in the subsequent sections.
Additionally, Appendix A.1 includes a diagram that visually demonstrates this transformation.

However, there are two key differences between the standard LPN problem and the above example.
First, the noise does not follow a Bernoulli distribution but instead follows a conditional distribution
based on the samples and the samples’ distribution. Second, the oracle draws the samples with
the distribution DCT and not the uniform random distribution U(Fn

2). So, it is natural to identify a
new problem, and if an algorithm can handle LPN problems, then it needs to satisfy some specific
properties if it is expected to solve the new problem.

Definition 3. (LPN-M problem) Let D be a distribution over Fn
2 . The LPN-MD

n,τ,τ problem, a
modified version of LPNn,τ problem, is defined as follows: Given access to samples (x, b) where:

• x ∼ D,
• b is the label of ⟨x, s⟩.
• If ⟨x, s⟩ = 0, the label is corrupted with probability τ .
• If ⟨x, s⟩ = 1, the label is corrupted with probability τ .

And the adversary’s goal is to recover the secret s.

It is important to note that there has been little progress in reducing the LPN problem in recent years.
In this problem, since the distribution in CoTo model not only directly determines the sample (or

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

matrix) distribution in the LPN problem, but is also directly coupled with the noise through Lemma
1, we believe that reducing the LPN problem to this problem is absolutely non-trivial. However,
what we can try is to use the LPN solution algorithm instance to construct an exact algorithm for
solving new problems, which can directly give an upper bound on the complexity of the problem.

The BKW algorithm, introduced by Blum et al. (2003), is presently the most important method for
solving the LPN problem, providing a practical algorithm with sub-exponential complexity. Specifi-
cally, the example and computation-time complexity for BKW algorithm in the standard LPN prob-
lem are poly((1 − 2τ)−2a , 2b) where a · b = n. If we plugin a = lg n/2 and b = 2n/lg n, then it
can be estimated as 2O(n/ logn). We now introduce two properties concerning this algorithm.
Definition 4. (distribution-free) An algorithm is called distribution-free if it can solve LPNn,τ across
any sample distribution in CoTo model, within the same complexity class.
Definition 5. (well-ordered) An algorithm is well-ordered if it can solve LPN-MD

n,τ,τ can also solve
LPN-MD

n,t0,t1 where t0, t1 ≤ τ without an increase in time complexity.

Notably, the BKW algorithm possesses both of these properties, which enables its use as a subrou-
tine to solve different problems. The properties of the BKW algorithm are discussed in detail in
Appendix A.5. Consequently, we can establish the following theorem.
Theorem 1. In a CoTo model, suppose there exists a concept function c ∈ Cparity with discrepancy εc.
If an algorithm A can solve LPNn, 1−2εc

2−2εc

and is distribution-free and well-ordered simultaneously,
then A can recover c with the same complexity class under the CoTo model.
Corollary 1. Assume c ∈ Cparity in the CoTo model with a constant discrepancy εc. Then, there
exists an algorithm A that can output c with example, time and memory complexities 2O(n/log(n))

where n is the bit length.

The corollary is derived by combining the BKW algorithm and Theorem 1. These results illustrate
the relationship between the LPN problem and existing cryptanalysis challenges. Consequently,
we are motivated to explore the problem of learning the CPF family through the lens of the LPN
problem. The benefit of this transformation is that it enables the use of existing algorithms to analyze
new models. Building on this foundation, we introduce the following problem:
Definition 6. (LCPN problem) In the LCPNn,k,τ problem, given k linearly independent secrets
sj ∈ Fn

2 , j ∈ [k] and a noise parameter τ ∈ [0, 1
2), we have access to an oracle that provides

samples of the form:

(ai, bi) := (ai,

k−1∧
j=0

⟨ai, sj⟩ ⊕ ei), for i = 0, 1, ...

where ai ∼ U(Fn
2) and ei ∼ Berτ independently. Our goal is to recover k secrets sj .

In the absence of noise, the problem can be easily solved by finding the solution space of Ax = 0,
where A = (s1, ..., sk)

T is a k × n matrix by viewing the sj as vectors. However, the introduction
of noise makes the problem significantly more challenging. Specifically, when k = 1, then the
problem reduces to the LPN problem, indicating that the worst-case hardness of LCPN is at least as
great as LPN. Nevertheless, the average hardness of the question needs further study. Additionally,
if the Hamming weight is restricted to a constant number independent of n, the LCPN problem is
PAC-learnable in such cases. This conclusion can be proven with the following theorems.
Theorem 2. (Angluin & Laird, 1988) In RCN model with noise rate τ , for every c ∈ CNF(n, h),
there exists a learning algorithm pac-identifies c with time and data complexity poly(nh, 1/ϵ,
log 1/δ, 1/(1− 2τb)) where τb is a constant s.t. 0 < τ ≤ τb < 1/2.

The class CNF(n, h) denotes Conjunctive Normal Form (CNF) formulas over n variables, with at
most h literals in each clause. The algorithm can be constructed since the cardinality of all possible
clauses in CNF(n, h) is at most (2n+ 1)h. When h is a constant independent of n, the complexity
remains polynomial. Additionally, determining whether a clause exists in a formula can be verified
through the relevant probability calculations. Theorem 2 holds for any data distribution D under the
RCN model. In other words, it can be readily extended similarly to the CoTo model. Furthermore,
each instance in CCPF with constant clause length can be expressed as a formula in CNF(n, h). This
leads to one of our main results.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 3. In the CoTo model, assume there exists a concept θ∗ ∈ Ck,n
CPF with discrepancy εθ

such that the number of variables in each clause is at most h and θ∗ ∈ Θλ. Then there exists a
learning algorithm that returns θ̂ ∈ Θλ with time complexity poly(nh, 1/ϵ′, log 1/δ, 1/(1 − 2τ ′b))

and probability 1− δ, provided that: ϵ′ < εθ∗−λ
2(1−21−k)

and max(1
2+2kεθ∗

,
1−2−k−εθ∗
2−21−k−εθ∗

) ≤ τ ′b < 1/2.

This case encompasses many attacks in symmetric cryptanalysis, as illustrated in Table 1, e.g., the
differential, boomerang, and rectangle attack (where the CL is constant). Consequently, an adver-
sary could design an efficient learning algorithm to capture these concepts in this case. There are
many evidences to confirm this, see pure differential distinguishers in Gohr (2019). However, in
more general cases, the problem becomes intractable, and it can not be solved using the method in
Theorem 2 due to the exponential cardinality of clauses. As previously mentioned, there is substan-
tial evidence that the LPN problem is difficult to solve. Since the LPN problem is a specific instance
of LCPN, it is reasonable to conjecture that the average LCPN problem cannot be solved efficiently.
The following lemma show how to solve the LCPN problem using a LPN algorithm.

Lemma 2. If a well-ordered and distribution-free algorithm A can solve the LPNn,τ ′ problem,
then there exists an algorithm that can solve LCPNn,k,τ within the same complexity class, where
τ ′ = 1−p−pτ

2−p−2pτ and p = 2k−1

2k−1
.

In the symmetric scenario, CPF concepts are always µ-expressions, meaning each variable appears
at most once. In this case, the algorithm in Lemma 2 can be slightly accelerated, the proof and
details can be found in Appendix 3.

The last thing to apply Lemma 2 into symmetric cryptanalysis is to consider replacing the random
uniform distribution from the sample distribution DCT generated by CoTo model. We also introduce
the LCPN-M problem like Definition 3 similarly. However, the proposed approach reduces a single
LCPN instance to several independent LPN instances and solves each of them separately using
the BKW algorithm. Although the underlying distribution changes at this stage, as established in
Theorem 1, the BKW algorithm remains fully applicable under the coin-tossing distribution without
affecting the overall complexity. Therefore, modifying the distribution of the LCPN problem to DCT
in this reduction introduces no additional issues.

Assume the discrepancy of one concept c ∈ Ck,n
CPF is εc, then it holds that τ = 2k−1−2k·εc

2k+1−2−2k·εc and
τ = 1

2k·εc+2
. So we take the τ ′ = max(τ, τ) in the theorem and corollary to estimate the complexity.

Again, if we consider the noise rate as a variable instead of a constant, then the BKW algorithm
can solve the LPN problem with time, data, and memory complexity poly((1 − 2τ)−2a , 2b) where
n = a · b. When combined with the result from Lemma 2, the following theorem is obtained.

Theorem 4. In CoTo model, assume there exists a concept θ ∈ Ck,n
CPF with discrepancy εθ.

Then there exists a learning algorithm that returns the θ with time and space complexity
poly(k, (p

2−p−2pτ)
2a , 2b) where ab ≥ n, τ = max (2k−1−2k·εc

2k+1−2−2k·εc , 1
2k·εc+2

) and p = 2k−1

2k−1
. If

k, εc are constants, then the complexity is 2O(n/ logn).

The key difference between Theorem 3 and Theorem 4 lies in their assumptions. Theorem 3 assumes
prior knowledge of the constant Hamming weight of each clause in the target concept, whereas
Theorem 4 does not, making it a more general result. Compared with brute-force search for secrets
sj , which would require enumerating all possible functions within the target Boolean family and
verifying each candidate (the complexity is 2O(n)), the theorem provides a non-trivial solution.

Although a theoretical upper bound is provided, the complexity of learning CPF concepts in the
CoTo model with DNNs and other machine learning models is yet to be determined. We therefore
conduct a series of experiments to quantify the influence of crucial CPF parameters on the perfor-
mance of several ML algorithms. The results show that, under a fixed noise rate, the underlying
function of complexity decays exponentially with the variables n and h. Further details on our
methodology and results are provided in Appendix B.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Nr Nerual Distinguisher Input Difference Accuracy TPR TNR
8 Gohr (2019) (0x0040, 0x0000) 0.514 0.519 0.508
8 Bellini et al. (2023b) (0x0040, 0x0000) 0.514 - -
8 Bao et al. (2023) (0x0040, 0x0000) 0.5135 0.5184 0.5085
8 Traditional (Bellini et al. (2023a)) (0x2800, 0x0010) 0.5048 0.5095 0.5000
8 Adaptive Gohr (2019) (0x2800, 0x0010) 0.5007 0.2774 0.7236
8 This work (ND1

comp) (0x2800, 0x0010) 0.5205 0.401 0.639
9 Adaptive Gohr (2019) (0xa810, 0x0010) 0.5000 - -
9 Adaptive Gohr (2019) (0x0040, 0x0000) 0.5000 - -
9 This work (ND2

comp) (0xa810, 0x0010) 0.5016 0.5031 0.5000

Table 2: The comparison of accuracy, true positive rate, and true negative rate between different
distinguishers.

6 APPLICATIONS: ADVANCED NEURAL DISTINGUISHERS

In this section, we will focus on using the observations and conclusions in Section 5 to construct new
neural distinguishers on round-reduced SPECK32/64, a ISO-standard cipher from the SPECK (Beaulieu
et al., 2013). It is worth noting that SPECK32/64 is among the few block ciphers where neural
network-based distinguishers have been shown to outperform classical cryptanalytic techniques,
making it an ideal candidate for our study.

A crucial step in constructing a neural distinguisher is the selection of suitable input generating
functions to ensure that concepts with high discrepancy exist within the concept set Θλ. This is a
prerequisite for a deep learning-based algorithm to capture such concepts. To this end, we first em-
ploy methods based on Mixed-Integer Linear Programming (MILP)/ Mixed-Integer Quadratically
Constrained Programming (MIQCP) introduced by Benamira et al. (2021) to identify an appropriate
differential and subsequently generate the corresponding input generating functions. Furthermore,
guided by the complexity upper bound presented in Section 5 and the characteristics of the CPF con-
cept class, we introduce the compression function ω(y0,y1) := y0 ⊕ y1 as our output generating
function. This choice is designed to preserves the structural characteristics of the class while si-
multaneously lowering the complexity upper bound for the learning problem. Specifically, this type
of function, which is independent of cryptographic structures, can reduce the upper bound on the
complexity presented in Theorem 4 from 2O(n/ logn) to 2O(n/2·log(n/2)). Although this data com-
pression narrows the concept space, it does not affect mainstream distinguishers. Table 2 presents the
accuracy of our constructed neural distinguisher and provides a comparison with previous results.

Beyond the improvements to the differential neural distinguisher for SPECK32/64, we extended
our method to the DES algorithm and integral-based distinguishers by setting ω(y0, ...,ym) =

(πc0(y0), ..., πc1(yi)), where πck are projections map from Fn
2 to Fhw(ck)

2 . It will reduce the com-
plexity bound from 2O(n/ logn) to 2O(hw(c)/ log hw(c)). This extension yielded two key results: an
increase in the accuracy of the DES linear neural distinguisher to 0.7 from 0.668, and the direct
learning of a 7-round integral neural distinguisher for SPECK32/64. These results further demon-
strate the generality of our conclusions and methods. For comprehensive details on cipher structure,
training pipeline, the selection of generating functions and benchmarks, see the Appendix B.2.

7 CONCLUSION

In this paper, we first establish a theoretical framework, the Coin-Tossing model, which serves to
generalize all existing neural network-based distinguishing attacks. Concurrently, we introduce the
CPF concept family to unify the algebraic expressions of classical distinguishing attacks. Within
this framework, we then devise a slightly sub-exponential time algorithm for learning general CPF
concepts. Motivated by this complexity analysis, we investigate the use of compression to reduce
the learning complexity of neural networks under the CoTo model. In the experiment, we got the ad-
vanced deep learning-based distinguishers. A limitation of the present study is that we only establish
a general upper bound on the computational complexity of the problem. We defer a more detailed
investigation into the complexity of this problem to future research. Nevertheless, the underlying
principles of our application can be extended to inform the development of more intricate output
generating functions that leverage additional prior knowledge.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dana Angluin and Philip Laird. Learning from noisy examples. Machine learning, 2:343–370,
1988.

Norica Băcuiet,i, Lejla Batina, and Stjepan Picek. Deep neural networks aiding cryptanalysis: A
case study of the speck distinguisher. In International Conference on Applied Cryptography and
Network Security, pp. 809–829. Springer, 2022.

Anubhab Baksi, Jakub Breier, Yi Chen, and Xiaoyang Dong. Machine learning assisted differential
distinguishers for lightweight ciphers. In 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 176–181, 2021. doi: 10.23919/DATE51398.2021.9474092.

Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing differential-neural cryptanal-
ysis. In International Conference on the Theory and Application of Cryptology and Information
Security, pp. 318–347. Springer, 2022.

Zhenzhen Bao, Jinyu Lu, Yiran Yao, and Liu Zhang. More insight on deep learning-aided cryptanal-
ysis. In International Conference on the Theory and Application of Cryptology and Information
Security, pp. 436–467. Springer, 2023.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis
Wingers. The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Paper 2013/404, 2013. URL https://eprint.iacr.org/2013/404.

Christof Beierle, Marek Broll, Federico Canale, Nicolas David, Antonio Flórez-Gutiérrez, Gregor
Leander, Marı́a Naya-Plasencia, and Yosuke Todo. Improved differential-linear attacks with ap-
plications to arx ciphers. Journal of Cryptology, 35(4):29, 2022.

Emanuele Bellini, David Gerault, Juan Grados, Rusydi H Makarim, and Thomas Peyrin. Fully
automated differential-linear attacks against arx ciphers. In Cryptographers’ Track at the RSA
Conference, pp. 252–276. Springer, 2023a.

Emanuele Bellini, David Gerault, Anna Hambitzer, and Matteo Rossi. A cipher-agnostic neural
training pipeline with automated finding of good input differences. IACR Transactions on Sym-
metric Cryptology, 2023(3):184–212, 2023b.

Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. A deeper look at machine
learning-based cryptanalysis. In Advances in Cryptology–EUROCRYPT 2021: 40th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17–21, 2021, Proceedings, Part I 40, pp. 805–835. Springer, 2021.

Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. Journal of CRYP-
TOLOGY, 4:3–72, 1991.

Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack—rectangling the serpent. In
International Conference on the Theory and Applications of Cryptographic Techniques, pp. 340–
357. Springer, 2001.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
Pseudorandom Correlation Generators from Ring-LPN, pp. 387–416. 08 2020. ISBN 978-3-
030-56879-5. doi: 10.1007/978-3-030-56880-1 14.

Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-case hard-
ness for lpn and cryptographic hashing via code smoothing. In Annual international conference
on the theory and applications of cryptographic techniques, pp. 619–635. Springer, 2019.

Zvika Brakerski, Venkata Koppula, and Tamer Mour. Nizk from lpn and trapdoor hash via
approximate-correlation intractability. Springer-Verlag, 2020. doi: 10.1007/978-3-030-56877-1
26.

10

https://eprint.iacr.org/2013/404

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andre Esser, Robert Kübler, and Alexander May. Lpn decoded. In Annual International Cryptology
Conference, pp. 486–514. Springer, 2017a.

Andre Esser, Robert Kübler, and Alexander May. LPN decoded. Cryptology ePrint Archive, Paper
2017/078, 2017b. URL https://eprint.iacr.org/2017/078.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New results for
learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pp. 563–574. IEEE, 2006.

David Gerault, Anna Hambitzer, Moritz Huppert, and Stjepan Picek. Sok: 5 years of neural differ-
ential cryptanalysis. Cryptology ePrint Archive, 2024.

Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part II 39, pp. 150–179. Springer, 2019.

Aron Gohr, Gregor Leander, and Patrick Neumann. An assessment of differential-neural distin-
guishers. Cryptology ePrint Archive, 2022.

Botao Hou, Yongqiang Li, Haoyue Zhao, and Bin Wu. Linear attack on round-reduced des using
deep learning. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve Schneider (eds.), Computer
Security – ESORICS 2020, pp. 131–145, Cham, 2020. Springer International Publishing.

Yufei Hou, Jie Liu, Shouxu Han, Zhongjun Ma, Xi Ye, and Xuan Nie. Improving deep learning-
based neural distinguisher with multiple ciphertext pairs for speck and simon. Scientific Reports,
15(1):13696, 2025.

ZeZhou Hou, JiongJiong Ren, and ShaoZhen Chen. Improve neural distinguishers of simon and
speck. Security and Communication Networks, 2021(1):9288229, 2021.

Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

Dmitry Khovratovich and Ivica Nikolić. Rotational cryptanalysis of arx. In International Workshop
on Fast Software Encryption, pp. 333–346. Springer, 2010.

Lars Knudsen. Deal-a 128-bit block cipher. Complexity, 258(2), 1998.

Lars Knudsen and David Wagner. Integral cryptanalysis. In International Workshop on Fast Soft-
ware Encryption, pp. 112–127. Springer, 2002.

Lars R Knudsen. Truncated and higher order differentials. In International Workshop on Fast
Software Encryption, pp. 196–211. Springer, 1994.

Susan K Langford and Martin E Hellman. Differential-linear cryptanalysis. In Advances in Cryptol-
ogy—CRYPTO’94: 14th Annual International Cryptology Conference Santa Barbara, California,
USA August 21–25, 1994 Proceedings 14, pp. 17–25. Springer, 1994.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Workshop on the Theory and Appli-
cation of of Cryptographic Techniques, pp. 386–397. Springer, 1993.

L. Reyzin. Statistical queries and statistical algorithms: Foundations and applications. ArXiv,
abs/2004.00557, 2020. URL https://api.semanticscholar.org/CorpusID:
214743339.

Ronald L Rivest. Cryptography and machine learning. In International Conference on the Theory
and Application of Cryptology, pp. 427–439. Springer, 1991.

Byoungjin Seok, Donghoon Chang, and Changhoon Lee. A novel approach to construct a good
dataset for differential-neural cryptanalysis. IEEE Transactions on Dependable and Secure Com-
puting, pp. 1–17, 2024. doi: 10.1109/TDSC.2024.3387662.

11

https://eprint.iacr.org/2017/078
https://www.iacr.org/authors/tikz/
https://api.semanticscholar.org/CorpusID:214743339
https://api.semanticscholar.org/CorpusID:214743339

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Dongsu Shen, Yijian Song, Yuan Lu, Saiqin Long, and Shujuan Tian. Neural differential distin-
guishers for gift-128 and ascon. Journal of Information Security and Applications, 82:103758, 05
2024. doi: 10.1016/j.jisa.2024.103758.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

David Wagner. The boomerang attack. In International Workshop on Fast Software Encryption, pp.
156–170. Springer, 1999.

Yu Yu and Jiang Zhang. Smoothing out binary linear codes and worst-case sub-exponential hard-
ness for lpn. In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part III 41, pp.
473–501. Springer, 2021.

Behnam Zahednejad and Lijun Lyu. An improved integral distinguisher scheme based on neural
networks. International Journal of Intelligent Systems, 37(10):7584–7613, 2022.

12

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
In Appendix A, we provide the detailed proofs for all lemmas and theorems presented in the main pa-
per. The following Appendix B elaborates on the experiments conducted to investigate the learning
of the CPF concept with a practical ML model and building the relevant neural distinguishers. The
second part presents a discussion on the properties of the BKW algorithm. Finally, the Appendix C
clarifies the usage of large language models in this work.

A PROOFS OF THEOREMS AND LEMMAS

A.1 PROOF OF LEMMA 1

Figure 1: An alternative representation of the Coin-Tossing model, along with a graphical depiction
of its relevant parameters.

Suppose that θ is a Boolean concept functioning as a distinguisher within the Coin-Tossing model.
For a given sample, the relationship between the label returned by the oracle and the classification
distinguisher by θ is depicted in the left portion of the Figure 1. Subsequently, this relational diagram
can be reshaped as illustrated in the right half of the figure by plotting the categories determined by
θ on the left and right sides, respectively. In the right figure, for the column where θ(x) = 0, the
instances where corresponding label is 1 (represented by the darker section) can be interpreted as
noise introduced by the oracle to the sample. Similarly, in the column where θ(x) = 1, the instances
with corresponding label is 0 (depicted by the lighter section) correspond to outcomes corrupted by
noise. Finally, drawing an analogy between this model and the LPN problem is straightforward; it
suffices to consider the inner product in the LPN framework as the Boolean function θ.

Next, we denote Pij := Prx∼DCT [θ(x) = i, b = j] where i, j ∈ {0, 1}. According to the definition
of discrepancy, we have |Ey[θ(y)]−Kθ| = εθ. Without loss of generality, we assume Ey[θ(y)] =
Kθ + εθ = Prx∼DCT [θ = 1|b = 1]. Here, we use the Kθ to approximate Er[θ(r)], and it equals
to Prx∼DCT [θ = 1|b = 0]. On the other hand, Pr[b = 0] = Pr[b = 1] = 1/2 in the Coin-Tossing
model. We therefore can get the values of Pij as showing in the figure. Then the conditional noise
rate τ and τ in the Lemma 1 can be calculated as:

τ =
P10

P10 + P11
=

Kθ

2Kθ + εθ
, τ =

P01

P01 + P00
=

1−Kθ − εθ
2− 2Kθ − εθ

.

If the θ has the form of CPF, then Kθ = 1
2k

(assume the clauses in θ are independent and different).
Then the corresponding noise rate can be easily calculated through the conditional probability.

A.2 PROOF OF THEOREM 1

By setting Kc = 1
2 into Lemma 1, the condition noise become τ = 1−2εc

2−2εc
and τ = 1

2+2εc
, with

τ ≥ τ (since εc + Kc ≤ 1). According to the definition of well-ordered, we take the maximum

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

value of τ and τ , denoted as τ ′. This implies that the algorithm A capable of solving LPN-MD
n,τ ′,τ ′ ,

can also solve LPN-MD
n,τ,τ within the same complexity class.

A.3 PROOF OF THEOREM 3

According to Lemma 1, substituting 1/2k into Kθ∗ yields the two noise rate conditions as follows:

τ =
1−Kθ∗ − εθ∗
2− 2Kθ∗ − εθ∗

=
1− 2−k − εθ∗
2− 21−k − εθ∗

,

τ =
Kθ∗

2Kθ∗ + εθ∗
=

2−k

21−k + 2εθ∗
=

1

2 + 2kεθ∗
.

And the τ ′b is the upper bound of the noise rate, so it is simply greater than or equal to

max(1
2+2kεθ∗

,
1−2−k−εθ∗
2−21−k−εθ∗

). Then we will consider the case that after introducing the error ϵ, the
algorithm can still return the concept θ∗ ∈ Θλ.

Let Prx∼DCT [θ̂(x) ̸= θ∗(x)] = ϵ′, Prx∼Y [θ̂(x) ̸= θ∗(x)] = ϵ1, and Prx∼R[θ̂(x) ̸= θ∗(x)] = ϵ2.
According to the definition of discrepancy of concept θ̂, it holds that:

εθ̂ =
∣∣Ex∼Y [θ̂(x)]− Ex∼R[θ̂(x)]

∣∣.
Without loss of generality, we assume that the value inside the absolute value is greater than zero.
Then it can be calculated as:

εθ̂ = (
1

2k
+ εθ∗)(1− ϵ1) + (1− 1

2k
− εθ∗)ϵ1 −

1

2k
(1− ϵ2)− (1− 1

2k
)ϵ2

= 2ϵ1(1−
1

2k−1
− εθ∗)− 2ϵ′(1− 1

2k−1
) + εθ∗

≥ εθ∗ − 2ϵ′(1− 21−k) ≥ λ

⇒ ϵ′ ≤ εθ∗ − λ

2(1− 21−k)
.

The second equality holds due to ϵ1+ϵ2 = 2ϵ′. The subsequent inequality follows by setting ϵ1 = 0,
given the fact that 1− 21−k − εθ∗ > 0. Finally, the conclusion is derived from the definition εθ̂ ≥ λ

implies θ̂ ∈ Θλ.

A.4 PROOF OF LEMMA 2 AND ITS APPLICATION

First, we need to introduce the following lemma:
Lemma 3. Let x0, x1, ..., xk−1 be i.i.d variables following Ber1/2. Then for any s ∈ [k], Pr[xs =

1
∣∣∏k−1

i=0 xi = 0] = 2k−1−1
2k−1

and Pr[xs = 0
∣∣∏k−1

i=0 xi = 0] = 2k−1

2k−1
.

Proof.

Pr[xs = 1
∣∣∣ k−1∏
i=0

xi = 0] =
Pr[xs = 1,

∏k−1
i=0,i̸=s xi = 0]

Pr[
∏k−1

i=0 xi = 0]
=

(1− 1/2k−1)/2

1− 1/2k
.

According to Lemma 3, assume that Pr[⟨ai, st⟩ = 0
∣∣∧k−1

j=0 ⟨ai, sj⟩ = 0] = 2k−1

2k−1
= p. Since

Pr[⟨ai, st⟩ = 0
∣∣∧k−1

j=0 ⟨ai, sj⟩ = 1] = 0, it is easy to verify:

Pr
[
⟨ai, st⟩ = 0

∣∣∣ k−1∧
j=0

⟨ai, sj⟩ ⊕ e = 1
]
= τ · p,

Pr
[
⟨ai, st⟩ = 1

∣∣∣ k−1∧
j=0

⟨ai, sj⟩ ⊕ e = 0
]
= 1− p− p · τ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Then the problem can be regarded as the noise appears in negative samples with probability τ
1+2τ ,

and in positive samples with probability τ ′ = 1−p−pτ
2−p−2pτ . Furthermore, it holds that τ

(1+2τ) <
(1−p−pτ)
(2−p−2pτ) < 1/2 for 0 < τ < 1/2, thus they are valid noise parameters.

Given this, a well-ordered algorithm A capable of solving LPNn,τ ′ can also solve a certain secret
from this problem. Without loss of generality, we denote the first solved secret as s′1. Now con-
sider any vector w that is independent of all si (i = 1, ..., k), it holds that: Pr[⟨ai,w⟩ = 0] =

Pr[⟨ai,w⟩ = 1] = 1/2 and these probabilities are independent of Pr[
∧k−1

j=0 ⟨ai, sj⟩ ⊕ e]. It means
that we can query the oracle and apply a filter to make the samples such that:

Pr
[
⟨ai, s′1⟩ = 0

∣∣∣ k−1∧
j=0

⟨ai, sj⟩ ⊕ e = 1
]

=Pr
[
⟨ai, s′1⟩ = 1

∣∣∣ k−1∧
j=0

⟨ai, sj⟩ ⊕ e = 0
]
=

1

2
.

This filter breaks the correlation between the label and s1 without affecting the other secrets, as they
remain independent. If the algorithm A needs D samples, we can query extra D

(1−τ) samples to
ensure that there are D samples irrelevant to secret s′1. Additionally, if there are a samples with a
positive label among N total samples, then τ can be estimated empirically as:

a

N
= Pr

[k−1∧
j=0

⟨a, sj⟩ = 0, e = 1
]
+ Pr

[k−1∧
j=0

⟨a, sj⟩ = 1, e = 0
]

⇒ τ = (
a

N
− 1

2k
) · (2k−1

2k−1 − 1
).

Repeating this procedure k times enables recovery of all secrets sj , and since k is independent of n,
the overall complexity remains in the same class. Next we can apply the lemma into the symmetric
cryptanalysis by the following corollary:

Corollary 2. If an algorithm A can solve the LPNn,τ ′ problem with space complexity Sn,τ ′ and
time complexity Tn,τ ′ , then for a specific LCPNn,k,τ problem where the support sets of secrets are
pairwise disjoint, it can be solved with time complexity of k(Tn,τ ′ + Sn,τ ′) and space complexity of
Sn,τ ′ where τ ′ remains consistent with Lemma 2.

Proof. The algorithm can be slightly modified based on the proof of Lemma 2. During the sieving
phase, additional data is unnecessary because the algorithm can simply remove the columns cor-
responding to the non-zero entries in the secret. The cumulative time complexity over k rounds is
bounded by

k∑
i=1

(Tn−
∑i

j=1 hj ,τ ′ + Sn−
∑i

j=1 hj ,τ ′) ≤ k(Tn,τ ′ + Sn,τ ′).

The space complexity remains unchanged.

A.5 THE PROPERTIES OF BKW ALGORITHM

The BKW algorithm is introduced by Blum, Kalai and Wasserman to solve LPN problem which is
based on block Gaussian elimination Blum et al. (2003). We adopt a high-level description of BKW
in Esser et al. (2017b) to illustrate the algorithm. The algorithm in 1 is referred to one iteration
to compute the first bit of secret s, and the other bits analogous. In this section, we will discuss
why the BKW algorithm is able to solve the LPN problem with modified data distribution DCT in
Coin-Tossing model.

Lemma 4. (Blum et al. (2003)) Assuming A is a n×k Boolean matrix generated under distribution
D where k = 2O(n/ logn), as well as an k-bit vector ŷ produced by multiplying A by an (unknown)
k-bit message x, and then corrupting each bit of the resulting bitstring y = xA with probability
η < 1/2. The BKW algorithm can recovery the x with (time, data, storage) complexity poly(k) so
long as the noise is random and there is no other y′ within Hamming distance o(k) from the true y.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 BKW algorithm
Input: The LPNn,τ Oracle
Output: The first bit of the secret s
1: Choose a small number ε > 0
2: c := (1− ε) log

(
n
τ

)
▷ Set the number of Gaussian-elimination rounds

3: d := k
c

▷ Set the block length

4: N :=
(
c− 1 + log2 nτ

(1−2τ)2
+ log2 n

)
2d ▷ Set the query number

5: Obtain (A, b)← LPNN
n,τ , A ∈ {0, 1}N×n

6: for i = 1, ..., c− 1 do
7: for all j ∈ Fd

2 do
8: if A row ak of A has a suffix j || 0(i−1)d then
9: Add ak to all the other rows with the same suffix j || 0(i−1)d;

10: Add bk to the label of the corresponding rows;
11: Remove the k-th row in (A, b).
12: end if
13: end for
14: end for

The gap for applying the original BKW algorithm to the data generated under CoTo model (denoted
as distribution D in the context) is that we need to prove under the distribution, there are no valid
y′ such that d(y, y′) = o(k). To clarify this, we can using the following trick to avoid the details
in the BKW algorithm. Because the algorithm is correct in k random samples, it keeps no other y′
within Hamming distance o(k) from the true y. For distribution D, the oracle generated k/2 sample
randomly and k/2 samples with encryption primitive. Regardless of the data distribution generated
by the latter, the random samples from the former guarantee that no y′ exists with a distance to y of
o(k/2) = o(k). Then in the coding-theoretic view, this corresponds to producing a 1−o(1) fraction
of the desired codeword (i.e. y). Although we do not know the remained bits, we can recover the
codeword so long as no other codeword is within distance o(1). As for the well-order property of
BKW algorithm can be naturally extended from the idea of the algorithm itself since the expected
occurrence of noise is less than real. Similarly, the property also can be extended to LCPN problem
(under the Coin-tossing distribution). Thus we only need to consider the value of noise rate τ .

Note that the point also can be proved by the method introduced in Feldman et al. (2006) from the
agnostic model and construct a new reduction from adversarial noise (considered the conditional
noise is controlled by adversary) to random noise.

B OMITTED EXPERIMENT AND DETAILS

B.1 DETECT ONE CPF-CONCEPT IN REAL MACHINE LEARNING ALGORITHM

In the preceding discussion, we examined the complexity of using machine learning (ML) algo-
rithms to learn the CPF-based concept in a CoTo model. However, unlike the previous subsection,
we cannot draw rigorous theoretical conclusions due to their complexity and limited interpretability.
Nonetheless, it is evident that machine learning algorithms cannot reliably detect all complex feature
functions from limited sample sets, even when the corresponding discrepancy εθ is substantial.

To illustrate this point, consider a differential attack scenario where each input is of the form
yi = (y0,y1) = (Hash(xi),Hash(xi ⊕ a)), with Hash(·) being a cryptographically secure hash
function and a is a constant. There exists a concept θ(y) = Hash−1(y0) ⊕ Hash−1(y1 ⊕ a) with
a high discrepancy. Nevertheless, utilizing modern deep learning algorithms to fit this function in
limited data and time complexity is nearly impossible due to the inherent difficulty in inverting hash
functions within well-established cryptographic primitives unless P = NP , see Shalev-Shwartz &
Ben-David (2014).

It highlights a limitation of neural distinguishers. Conversely, there are many machine learning
algorithms, each of which may perform differently depending on the specific task. Intuitively, we
can explore which Boolean functions are learnable by particular learning algorithms and determine

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 2: The results for learning algorithm (MLP, ResNet, LeNet) leveraged in Coin-Tossing model
with a CPF concept θ for k = 1, 2, 4, εθ = 0.25, λ = 0.1.

Each data point represents an average result from repeated trials for a specific Hamming weight and fixed
dataset size. The curves in the figure represent the fitted results using an exponential decay distribution. For

any point (h, n) where h ≥ 1 and n ≥ h, and its corresponding parameters, if it lies below the curve, the
learning algorithm is likely to succeed; otherwise, it is less likely.

whether they belong to the set Θλ. If the two sets intersect, it can be concluded that the primitive is
not learning-resistant.

However, research in this area remains limited, making it challenging to generalize findings across
different algorithms. Moreover, for most symmetric primitives and typical cryptanalysis scenarios,
the complete set Θλ is either unknown or impractically large. As a result, a more pragmatic direction
is to explore how intrinsic properties of Boolean functions relate to the effectiveness of machine
learning models. While this approach lacks rigorous proof and may not be universally applicable
to all Boolean functions or algorithms, it provides valuable insights into whether machine learning
techniques can effectively capture certain families of Boolean functions.

Now, our objective is to identify indicators that suggest whether a Boolean function can be effec-
tively learned. The previous theoretical results suggest that key parameters influencing the com-
plexity of the problems include n, k, and the Hamming weight h of each clause in a CPF concept.
Thus, it is nature to think these parameters will also affect the complexity of ML model learning
these concepts. To demonstrate it mathematically, we introduce a implicit function Φ to assess the
complexity of a machine learning algorithm A to learn a CPF concept θ using training data T from
the CoTo model:

ΦA(θ) = ϕA,T (n, k, h) (5)

Here, for a given θ, T and A, ΦA is represented by the function ϕ, which is defined over three hidden
variables n, k, and the clause Hamming weight h of the concept θ. The following experiment shows
that the ϕ is subject to exponential decay with respect to n and h.

Experiment To simulate the encryption primitive in the CoTo model, we can use a generative
dataset with a fixed discrepancy (we take 0.25 here) for a given concept θ, where each sj is chosen
at random with a predefined Hamming weight h. We evaluate several learning algorithms, including
MLP, ResNet, LeNet (LeCun et al. (1998)), and Transformer (Vaswani et al. (2023)) For each h, we
vary the input size n to identify, via binary search, an approximate upper bound on n at which the
learned function θ̂ ∈ Θλ for λ = 0.1. For each Hamming weight, the search is repeated 32 times.
Because the position of the secret had a slight effect on the performance of the learning algorithm,
repeated experiments were used to remove fluctuations. We record the resulting mean values in
Figure 2 and fit them using an exponential decay model. Throughout the experiment, we set k to 1,
2, and 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 3: The round encryption function in SPECK algorithm (Jean, 2016).
Ci

L Ci
R

≫ α

≪ β

Ci+1
L Ci+1

R

ki

The MLP model consists of two fully connected layers with 128 and 64 neurons, respectively, using
rectified linear unit (ReLU) activation functions. The second layer connects to a prediction head with
a Sigmoid activation to output binary probabilities. The LeNet model includes three convolutional
layers, each followed by an average pooling layer, and two fully connected layers with 120 and 84
neurons, respectively, all using ReLU activations. The final layer is a Sigmoid-activated prediction
head. For the ResNet model, we adopt Gohr’s neural network architecture, composed of three
residual blocks followed by two fully connected layers (with 128 and 64 neurons, respectively). The
experiments were conducted on 4 Tesla T4(15GB) GPUs, utilizing a total of 240 GPU days.

Results and Conclusions As shown in Figure 2, when evaluating a single concept under the Coin-
Tossing model, the MLP model generally outperforms both ResNet and LeNet, although all three
follow a similar exponential decay trend. For a fixed training dataset size and clause number k,
the complexity curve for each model closely fits an exponential decay function. Holding other pa-
rameters constant, we observe that increases in the input size n and the clause Hamming weight h
result in increased learning difficulty. Additionally, when h is small, variations in k significantly af-
fect performance. These findings, combined with earlier complexity results, highlight a key insight:
simplifying the representation of the target Boolean concept improves the effectiveness of neural
distinguishers.

B.2 DETAILS IN BUILDING NEURAL DISTINGUISHERS

The state in SPECK32/64 consists of two 16-bit words (CL, CR). In the i-th round, the encryption
algorithm will compute the next state with:

Ci+1
L := ((Ci

L ≫ 7)⊞ Ci
R)⊕ ki, C

i+1
R := (Ci

R ≪ 2)⊕ Ci+1
L

Here, ki denotes the i-th subkey, derived from the 64-bit master key by performing the same round
function. The notation ≫ and ≪ represent right and left bitwise rotations, respectively, and ⊞
denotes addition modulo 216. The Figure 3 shows the round function in SPECK32/64.

Gohr (2019) introduced a method for generating a positive sample set by setting the input generating
functions I0 = xi and I1 = xi ⊕∆, with ∆ = (0x0040, 0x0000) and xi are generated randomly.
The output function reshapes the encrypted data into 4 × 16 tensors. This setup was used to con-
struct datasets within the CoTo model, with training sets sized at 108. Using this approach, Gohr
successfully trained ResNet-based distinguishers for 5, 6, and 7 rounds of SPECK32/64.

However, training an 8-round distinguisher directly was impractical, so they employed a retraining-
based method instead:

1. Retrain the best 7-round distinguisher to recognize 5-round SPECK32/64 with the input dif-
ference (0x8000, 0x840a), which is the 3-round input difference transfer to the output
difference (0x0040, 0000) with high probability.

2. Train a new distinguisher using (0x0040, 0x0000) as the fixed input difference.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In step 2, they use 2 × 109 ≈ 230.897 encryption pairs to train their model, which requires a pro-
longed training period due to the high data complexity. Moreover, constructing a 9-round neural
distinguisher seems impractical using either direct training or retraining. The chosen input differ-
ence (0x0040, 0x0000) transitions deterministically into a low Hamming weight difference, and
prior work Benamira et al. (2021) showed this difference also yields the highest differential prob-
ability for 3- or 4-round SPECK32/64. Based on these observations, they concluded that using the
highest-probability difference for r − 1 or r − 2 rounds is effective for training a distinguisher on r
rounds.

Building 8-round and 9-round Neural Distinguishers for SPECK32/64 Building on the analysis
in Sections 5, we propose a new method to train neural distinguishers for 8 and 9 rounds without
modifying the neural network architecture. Let Er-Speck denote the r-round of SPECK32/64. Again,
for a fixed primitive and learning algorithm, the hypothesis space and characteristic function class
Θλ depend on the generating functions. Therefore, choosing these generating functions is an im-
portant issue. Gohr introduced a greedy search to find input differences, while Hou et al. (2021)
proposed a SAT-based search, and Bellini et al. (2023b) introduced a metric-based approach using
bias scores. However, these approaches struggle to handle high Hamming weight input differences
or deep rounds.

By contrast, our results also show that input differences with high Hamming weight can also train
better neural network distinguishers. From both the perspective of problem complexities and prior
experimental results in Section 3, the size of n has an exponential impact on the difficulty of learning
features. Consequently, our first strategy is to reduce n by modifying the output generating function,
i.e., the compression technique. As previously mentioned, the concepts in 8-round and 9-round are
likely more complex than for fewer rounds in SPECK32/64, which also have a low discrepancy. To
address this, we can compress the input vector sample by employing the output generating function
ω(yi) = yi

0⊕yi
1. Then it has yi = (Ek(x0)⊕Ek(x0⊕∆)) ∈ F32

2 . Compression may reduce some
characteristics, while simplifying others and potentially improving the ability of learning algorithms
to capture them.

Specifically, our experiments in the previous section suggest that the Hamming weight h correlates
with the complexity of the CPF function learned by some machine learning algorithms, with fixed k
and n. For example, when k = 1, the results shown in Figure 2 illustrate that it is nearly impossible
to learn features with h ≥ 12 at 64 bits (under the settings provided in the experiment). In contrast,
for n = 32, while the probability of learning concept shows a declining trend with the increasing h,
there remains a significant difference compared to the 64-bit case.

Theoretically, compression maps the element from F64
2 to F32

2 ; thus, it reduces the complexity of
learning a general CPF characteristic from 2O(n/ logn) to 2O(n/2·log(n/2)), as shown in Corollary
2 (assuming the discrepancy is constant). Similarly, by applying Theorem 3, it can reduce the
complexity of learning a certain output differential from poly(n2, ·, ·, ·) to poly((n/2)2, ·, ·, ·). Then
the compression makes the ND able to learn more difficult characteristics. On the other hand, the
technique still preserves the differential-based or DL characteristics, although some others, such as
the linear characteristics, will be eliminated.

The second idea follows naturally as well if we know a characteristic function θ ∈ Θλ and ε̂θ under
particular input generating functions αi(x), then there will potentially exist another characteristic
function θ′ ∈ Θλ with ε̂θ′ ≥ ε̂θ. To find an appropriate difference ∆ which can create one (or multi-
ple) characteristic function(s) with a high discrepancy, we employ the MILP/MIQCP tool proposed
in prior work Bellini et al. (2023a). And we choose the input difference ∆1 = (0x2800, 0010) for
8-round SPECK32/64. The following steps formalize the new training method:

1. Construct a CoTo model with:

• Setting input generating functions: α0(xi) = xi, α1(xi) = xi ⊕∆1.
• Setting output generating function: ω(t0, t1) = t0 ⊕ t1.
• Generate a training set T of size 219 and a test set T ′ of size 223.

2. Train a ResNet model (as in Gohr (2019)) on T for up to 50 epochs. The resulting model is
denoted ND1

comp, where the subscript refers to the compression-based approach. The other
hyperparameters, e.g., learning rate, are kept the same with Gohr (2019).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

It is worth noting that we did not first use the difference (0x2800, 0x0010) for training. This dif-
ference has been discussed in several works (Gohr (2019); Benamira et al. (2021)). Specifically, the
existed result in but in fact it is only in this paper that it is shown to be superior to the difference
(0x0040, 0x0000).

Furthermore, we also try to construct a 9-round SPECK32/64. Bellini et al. (2023a) introduced a
9-round Differential-Linear distinguisher with the characteristic:

∆2 = (0xa810, 0x0010)
E9-Speck−→ Γ = (0x0205, 0x0204)

which holds with a practical correlation of 2−7.3. However, as demonstrated in Experiment 1, this
concept is exceedingly difficult to learn because it involves a 64-bit feature search. Similarly, we
use the following steps to construct the neural distinguisher:

1. Similarly, construct a CoTo model with an oracle generating positive samples Pi =
(Eki

(xi) ⊕ Eki
(xi ⊕ ∆2)) and negative samples with probability 0.5. The input gener-

ating function are α0(xi) = xi, α1(xi) = xi ⊕∆2, while the output generating function is
ω(t0, t1) = t0 ⊕ t1. Use the oracle to construct the training sample set T and test sample
set T ′ such that |T | = 230 and |T ′| = 223.

2. Train a ResNet model on T for up to 200 epochs. The resulting distinguisher is denoted
ND2

comp.

The related results are in Table 2. Due to the clear mechanism proposed in Section 3, the training
process of the 8-round distinguisher does not require complicated retraining and plenty of data.
Moreover, the distinguisher has great improvements in accuracy.

Benchmark Selection The increasing use of neural networks as distinguishers in symmetric crypt-
analysis necessitates a rigorous and fair benchmarking methodology. A foundational step in es-
tablishing such a benchmark is to define the adversary’s capabilities. We assume a standard dif-
ferential cryptanalysis scenario where the adversary has access to a differential oracle. This or-
acle, given a plaintext x and a chosen input difference ∆, returns the corresponding ciphertext
pair (Ek(x), Ek(x ⊕ ∆)). For offline data generation, the key k is selected uniformly at random.
This setup allows the adversary to freely choose plaintexts and differentials, mirroring a typical
differential-cryptanalysis. The works cited in our comparison adhere to this established attack
model. Also, the works referenced were the prevailing state-of-the-art results at the time.

While some studies employ multiple differentials to improve the accuracy of neural distinguishers,
this approach invariably leads to higher data complexity in practical attack scenarios Benamira et al.
(2021). Consequently, to maintain a fair and consistent basis for comparison, researchers often
explicitly specify the number of ciphertext pairs utilized by the neural distinguisher.

A potential concern in comparative studies is that varying the input differential could lead to an
inequitable assessment of results. However, we argue this concern is unfounded. While extensive
research has focused on selecting optimal input differentials to enhance the accuracy of neural net-
work distinguishers Gohr et al. (2022); Bellini et al. (2023b); Hou et al. (2025), our work is the
first to identify a differential that surpasses the accuracy of the commonly used (0x0040, 0x0000) as
input difference.

In addition to the neural network distinguishers mentioned above, we also use a series of ablation
experiments to demonstrate the superiority of our distinguishers, including the same difference ex-
periment without compression (corresponding to the gray row in the table).

Improved Distinguishers for DES Equipped with our new theory, it can explain an intriguing
issue: in some cases, even if we incorporate key-related information as extended input to a model,
it fails to enhance its accuracy, since the algebraic relationship between keys and ciphertexts is still
hard to learn. Our framework can also explore some previous related neural distinguishers from a
foundational perspective. For instance, in Hou et al. (2020), they constructed a neural distinguisher
for DES based on some existing linear characteristics. Their process can be summarized as follows:

1. Generate plaintexts P and master keys K from the random uniform distribution, and en-
crypt P with K by n-round DES and obtain ciphertexts C.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2. Given a known linear masks (ΓP ,ΓC ,ΓK), use (ΓP ∧ P,ΓC ∧ C) as the model input and
⟨ΓK ,K⟩ as the label.

3. Train a ResNet model on the resulting dataset.

Their best result was based on the following correlation:

P [7, 18, 24, 29, 47]⊕ C[7, 18, 24, 29, 47] = K1[22]⊕K3[22].

Here, P [i] and C[i] denote specific bit positions in the plaintext and ciphertext, and Ki refers to
the i-th round subkey in DES. Because they use the right hand of the characteristic as the label,
the experiment can be interpreted as learning a parity concept. Moreover, their experiment can be
regarded as an example of our experiment in Appendix B.1.

By setting irrelevant bits to zero, they reduced the complexity of finding relevant variables, and
the model can approximately fit the characteristic. However, the model fell short of the theoretical
accuracy: while the expected accuracy was 0.7, the achieved accuracy was only 0.668. A simple yet
effective improvement would be to remove the irrelevant bits entirely, rather than zeroing them out,
or alternatively to introduce auxiliary bits indicating the relevance of each input position. Namely,
we set the output generating function as ω(y0,y1) := (πΓP

(y0), πΓC
(y1)) where projection maps

πc : (a0, a1, ..., an−1) 7→ (aci0 , aci1 , ..., acin−1
), cik denote the index of the k-th one in the bitstring

c.

A similar issue arises in the work by Zahednejad & Lyu (2022), which trained a neural network that
can only learn a 3-round SPECK32/64 integral characteristic with an input multiset of 4 active bits in
the right word is:

(cccccccccccccccc, ccccccccccccaaaa),

where c denotes constant bits and a represents active bits. However, their model faced similar
challenges and failed to fit the 8-round integral characteristic due to the same fundamental limitation.
Incorporating with our method, the accuracy can achieve the idea accuracy.

Selections of Output Generating Functions Within this study, we propose two distinct output
generating functions to augment the problem-solving capabilities of deep-learning model.

1. The compression function: ω(y0,y1, ...,ym) = y0 ⊕ y1 ⊕ ...⊕ ym.
2. The projection mapping: ω(y0,y1, ...,ym) = (πc0(y0), πc1(y1)), ..., πcm(ym)) for some

constant ci ∈ Fl
2.

These functions are characterized by their shared ability to preserve designated concepts after appli-
cation, while markedly reducing the upper bound on the complexity associated with learning these
concepts in our model. A further effect of these functions is the elimination of certain latent concepts
from the original concept class. The task of selecting suitable output generating functions may thus
be viewed as a trade-off.

To carry out an attack on the SPECK32/64 cipher, we first utilize state-of-the-art MILP/MIQCP
methodologies to ascertain a known concept within the set Θλ where said concept adheres to the
formulation of a Differential-Linear (DL) characteristic. Subsequently, our analysis is predicated on
the assumption that Θλ is richly populated with other concepts that also satisfy the definition of a
DL characteristic. Recall the DL characteristics have the form of ⟨Γ,y0⟩⊕⟨Γ,y1⟩. Then performing
the compression function will turn the concept it into ⟨Γ, ω(y0,y1)⟩ which will keep the concepts
in Θλ.

This demonstrates the flexibility in selecting the output generating function, for which our theory
provides a core criterion. This work opens up an avenue for future research, where more elaborate
output generating functions can be developed based on our proposed principle. Such functions could
be enhanced by integrating more domain-specific prior knowledge.

C THE USAGE OF LARGE LANGUAGE MODELS

The authors only used the Large Language Models to polish our manuscript and find typos. The
authors carefully reviewed all text to ensure accuracy and consistency with our findings and take full
responsibility for the entirety of the work.

21

	Introduction
	Preliminaries
	Deep learning-based cryptanalysis
	The learning theory and LPN problem

	The Coin-Tossing model
	The CPF concept class
	Learning a CPF concept in Coin-Tossing model
	Applications: Advanced Neural Distinguishers
	Conclusion
	Proofs of Theorems and Lemmas
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Lemma 2 and its Application
	The Properties of BKW Algorithm

	Omitted Experiment and Details
	Detect one CPF-concept in Real Machine Learning Algorithm
	Details in building neural distinguishers

	The usage of Large Language Models

