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ABSTRACT

The success of deep learning in cryptanalysis has been largely demonstrated em-
pirically, yet it lacks a foundational theoretical framework to explain its perfor-
mance. We bridge this gap by establishing a formal learning-theoretic framework
for symmetric cryptanalysis. Specifically, we introduce the Coin-Tossing (CoTo)
model to abstract the process of constructing distinguishers and propose a unified
algebraic representation, the Conjunctive Parity Form (CPF), to capture a broad
class of traditional distinguishers without needing domain-specific details. Within
this framework, we prove that any concept in the CPF class is learnable in sub-
exponential time in the setting of symmetric cryptanalysis. Guided by insights
from our complexity analysis, we demonstrate preprocessing the data with a flex-
ible output generating function can simplify the learning task for neural networks.
This approach leads to a state-of-the-art practical result: the first improvement
on the deep learning-based distinguisher for SpEck32/64 since 2019, where we
enhance accuracy and extend the attack from 8 to a record 9 rounds.

1 INTRODUCTION

The rapid advancement of machine learning has significantly impacted variousfields, such as im-
age processing and speech recognition. Recently, its success has drawn growing interest from the
cryptography community, particularly in the context of symmetric cryptanalysis. As early as |Rivest
(1991), they envisioned the integration of machine learning with block ciphers. Although this con-
cept was explored by researchers over the ensuing decades, it was not until|Gohr| (2019) developed a
deep learning-based distinguisher for block cipher SpEck32/64 that outperformed traditional differ-
ential distinguishers, that neural networks began to attract significant attention from the cryptanal-
ysis community. This breakthrough marked a turning point, bringing machine learning methods to
the forefront of modern symmetric cryptanalysis. Since then, machine learning-based symmetric
cryptanalysis has evolved into several key research directions, see, |Gerault et al.[(2024)).

Currently, in cryptography community, one major line of research focuses on interpreting differen-
tial neural distinguishers. For example, [Benamira et al|(2021) analyzed the information captured
by each layer in the neural network and conducted experiments to verify their conjectures. They
conjectured that the neural network captures specific differential conditions in the penultimate or an-
tepenultimate rounds and replaced less interpretable components of the original network with more
explainable alternatives. While Bao et al.[ (2023)) argued that the superiority of neural differential
distinguishers over classical ones is primarily due to their exploitation of certain XOR patterns. Ad-
ditionally, research employing pruning techniques or visualization algorithms to improve network
interpretability are discussed (Bacuieti et al., [2022)).

Another significant research area aims to increase the accuracy of neural network distinguishers to
achieve more effective attacks since the accuracy will greatly effect the time and data complexity
during the attack. The primary approaches for improvement include optimizing the neural network
algorithms and modifying the construction of the sample sets. For example, (Benamira et al., 2021)
replaced ResNet blocks to maintain original accuracy while enhancing interpretability. Furthermore,
they also introduced DBitNet, which is based on dilated convolutional layers, and it enables the neu-
rons to learn the relationship between distanced bits. For AscoN permutation, Shen et al.|(2024) used
multilayer perceptron (MLP) to get a 4-round distinguisher. Other researchers worked on modifying
the data set to improve the accuracy (Bellini et al.| [2023b; |[Baksi et al., |2021). On the other hand,
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many studies focus on enhancing the application of neural network distinguishers in key recovery at-
tacks. [Bao et al.[(2022) proposed a comprehensive framework for developing key recovery attacks,
introducing improved 12-round and the first 13-round key recovery attacks for Speck32/64 , and
further improved the framework in |Bao et al.[(2023)). Some researchers have explored methods for
finding better input differences through SAT solvers/Hou et al.| (2021), principal component analysis
Seok et al. (2024)) or various metrics |[Bellini et al.| (2023b)).

Despite the abundance of experimental studies on neural network distinguishers, few investigations
explore the application of machine learning in block cipher cryptanalysis from a theoretical stand-
point. This limitation raises several issues. First, the construction of neural distinguishers currently
lacks a solid theoretical foundation, leading to a predominance of heuristic-based experiments aimed
at accuracy optimization. Additionally, there is a theoretical gap concerning the feasibility of em-
ploying machine learning-based algorithms for cryptanalysis task. Moreover, the threat posed by
neural networks to block ciphers remains challenging to quantify, which adversely affects both the
analysis and design of block ciphers. Therefore, it is crucial to conduct research grounded in solid
theoretical foundations, which can bring new perspectives for these areas.

Contribution.  We make a dual contribution that bridges learning theory and symmetric crypt-
analysis. From a theoretical perspective, we introduce a new model and a set of problems that
formalize the application of deep learning in cryptanalysis. This establishes a clear and significant
research objectives for the area. From a practical perspective, we leverage the conclusions from our
theoretical framework to construct effective deep neural network distinguishers, thus contributing to
the advancement of modern cryptanalysis.

Specifically, in this work, we first revisit the scenarios and tasks of symmetric cryptanalysis through
the perspective of learning theory, highlighting the connections between cryptanalysis and ML algo-
rithms by proposing the Coin-Tossing model. We then categorize traditional cryptanalysis methods
based on Boolean functions and introduce a generalized Boolean concept grounded in conjunctive
parity, namely the conjunctive parity form (CPF) concept class. By introducing the aforementioned
new definitions and problems, we demonstrate the following findings:

* In the Coin-Tossing model, if a concept can be used as a distinguisher and it possesses a
general CPF form, then a learning algorithm with sub-exponential complexity exists that
can identify it.

* If the Hamming weight of each clause within this concept is constant, then a polynomial-
complexity algorithm exists that can identify it with limited error.

Our empirical analysis further reveals that the practical complexity for various machine learning
algorithms to solve this problem is strongly correlated with certain problem parameters, often show-
ing an exponential decay. This insight motivates a novel approach: by strategically modifying the
input and output generating functions, we reduce the problem’s complexity upper bound, thereby
boosting the efficacy of machine learning-based cryptanalysis. To validate our methodology, we
applied it to the ISO-standard block cipher Speck32/64, achieving the best-known cryptanalytic re-
sult for 8 rounds and presenting the first 9-round neural distinguisher. We further demonstrate the
generalizability of our approach by improving upon existing result for DES cipher.

2 PRELIMINARIES

Given the interdisciplinary nature of this work, this section provides the necessary background
knowledge to facilitate understanding for researchers from diverse academic fields.

2.1 DEEP LEARNING-BASED CRYPTANALYSIS

Block ciphers are a foundational component of modern internet communication, rendering their
security of paramount importance. A block cipher is a deterministic function F that maps a fixed-
length plaintext = € F} to a ciphertext y € F), under a secret key k, denoted as Ej,(z) = y.

A seminal technique in the chosen-plaintext attack (CPA) setting is differential cryptanalysis. An
adversary selects pairs of plaintexts with a specific XOR difference such as (z, 2 ® A), A € F}, and
analyzes the statistical properties of the corresponding cipher pair (Ey (), Ex(z & A)).
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Building upon this foundation, Gohr{(2019) introduced a deep learning-based approach to cryptanal-
ysis. The core idea is to train a neural network to differentiate between ciphertext pairs produced by
a specific differential and those drawn from a random distribution. To achieve this, a balanced train-
ing dataset is constructed. Positive samples consist of valid ciphertext pairs (Ex(x), Ex(x & A))
for a fixed A, with randomly sampled plaintext = and keys k. Negative samples are composed of
concatenated random bit strings of equivalent length. A Residual Network (ResNet) is then trained
as a binary classifier on this dataset, optimized using a Mean Squared Error (MSE) loss function
with L2 weight regularization.

Neural-aided cryptanalysis has emerged as a powerful technique, in some instances outperforming
traditional cryptanalytic methods against certain block ciphers. As the field expands beyond dif-
ferential cryptanalysis to incorporate integral and linear characteristics, a more generalized notation
becomes necessary, see Hou et al.| (2020); |[Zahednejad & Lyu| (2022). This work thus adopts a
universal framework and notations.

We consider a standard distinguishing scenario where an adversary has access to an encryption
oracle. For i-th query, the adversary submits a structured plaintext vector £ = (g, 21, ..., Tym_1) €
F;"Xl. A positive sample, denoted (y*, b; = 1), consists of the corresponding ciphertext vector y* =
(Y0, Y1, - Ym—1) = (Er(x0), Ex(21), ..., Ex(xm-1)) € Fg”l represents ciphertexts encrypted
under a randomly chosen key k. In contrast, we use r* to represent the random sample, where
7 = (10,71, sy Tm—1), With each ¢ (t = 0, ..., m — 1) being sampled in U ().

To construct an effective distinguisher, the adversary typically employs structured inputs designed to
introduce statistical discrepancies between the distributions of positive and negative samples. For-
mally, each plaintext vector z* derived from a random vector z; using a sequence of input generating
functions: x* = (ao(;), 1 (), ...y m—1(;)) where each «; : F, — F and the z; is sampled
uniformly. The parameter m corresponds to the number of input pairs in some works. Similarly,
output generating function w operates on samples y* and ¢, though in most analyses it is assumed
to be the identity function.

2.2 THE LEARNING THEORY AND LPN PROBLEM

The Probably Approximately Correct (PAC) model and framework proposed by [Valiant (1984) can
be described by the following definitions. Assume an adversary has access to an oracle that returns
“Positive (label 1)” if h,(z) = 1 and “Negative (label 0)” otherwise where the x is randomly draw
from a distribution D and the h, is the target concept. The adversary’s task is to identify A, from the
finite hypothesis space H = {hq, ho, ..., hn }. Define: Lp s(h) = Pryoplh(z) # f(x)], then the
identification procedure is said to do probably approximately correct identification of h, if and only
if the algorithm returns a hypothesis % such that, with probability of at least 1 — 3, Lp 5, (h) < € for
every €,6 € (0,1). In our work, we abbreviate it as “pac-identification”.

On the other hand, the random classification noise model (RCN, or simple noise model) introduced
by |Angluin & Laird|(1988) is a specialized model within the PAC learning framework, and it makes
it more general by introducing the presence of noise. Specifically, after the oracle draws an example
2 from the distribution D, it will return the wrong label with probability 7 (7 < 1/2). In addition
to the standard PAC and RCN models, researchers have introduced various other frameworks, such
as the SQ (Statistical Query)(Reyzin| (2020); Shalev-Shwartz & Ben-David| (2014)), to investigate
related problems. A prominent example is the Learning Parity with Noise (LPN) problem, which is
defined as follows:

Definition 1. (LPN problem, Esser et al.|(2017a)) In the LPN,, . problem, for a secret s € Fy and
error parameter T € [0, %) we are given access to an oracle that provides samples of the form:

(a;,b;) == (a;, {a;, ) Be;), fori =1,2, ...

where a; ~ U(FY) and e; ~ Ber, independently. The goal is to recover s.

In other words, the oracle will draw a sample a from U(F%) and then compute the result 6(a) =
(a, s) which will be corrupted by noise with probability 7. Here, (-, -) represents the inner product
of two Boolean vectors. It is noted that the LPN problem is a specific instance of the RCN model.
Specifically, it assumes that the distribution D is a uniform distribution and that both the target
Boolean function and the hypothesis space consist of parity functions. In learning theory, |Feldman
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et al.| (2006) proved that learning DNF expressions and k-juntasﬂ are related to the LPN problem.
The interesting is that the LPN problem is not only considered in learning theory, but it also has
been widely explored in cryptography, particularly in constructing cryptographic schemes based on
LPN or its variants, and in efforts to reduce the complexity of solving it, see Boyle et al.| (2020);
Brakerski et al.| (2020; 2019);|Yu & Zhang|(2021).

3 THE COIN-TOSSING MODEL

In this section, we try to explore the complexity of learning algorithms that rely solely on dataset
when exploring classical analytical distinguishers. We first revisit the related neural network exper-
iments by presenting a new model to represent the deep learning applied to a neural distinguisher in
symmetric cryptanalysis. In the scenario of the CPA model, the adversary can query an encryption
oracle with m plaintext messages x*. Upon receiving the query, the oracle tosses a coin: if it lands
heads, it returns a positive sample and its label (y®, b; = 1). Otherwise, it returns (7, b; = 0).

By querying the oracle multiple times and then performing the function w, the adversary accumulates
a dataset 7 consisting of both sample types unordered. We denote the subsets of positive and
negative samples in 7 by ) and R respectively. The combined dataset 7 serves as the training
dataset for the neural distinguisher. The goal of a learning-based adversary is to use a learning
algorithm A, given access to a training dataset 7, to gain an advantage in distinguishing whether
an unseen vector is generated randomly from the oracle. And we denote the test dataset as 7' =
{)’,R'}. A validation dataset similarly be defined for tuning hyperparameters or early stopping

Let ©) = {0|0 : F7"*! — Fy} denote the concept class parameterized by a security parameter
A € R(g,1) where each concept § € O, satisfies the following condition:

Ey[0(y)] — E-[0(r)]| > A. (M

Here, y and r are randomly drawn from ) and R, respectively. We denote the value on the left-
hand side of the inequality as g, which is generally estimated from an independent test dataset. It
is noted that any concept 6 € © is a distinguisher for the primitive. Then, the training data set can
be regarded as following a sample distribution D¢t and the adversary needs to find one (or many)
concept(s) 6eco A consistent with Der. In our work, we call this game-like model the Coin-Tossing
(CoTo) model. Formally, we have the following definition.

Definition 2. (The Coin-Tossing Model) Assume the adversary can query the Oracle with encryption
function E, input generating functions {c; }i<m—1 and output generating function w:

Oraclecy — { (). 1) = ((Br, (@0(@). B (01 (1 (@), oo B (mr(@))), 1) ifbi = 1

w(r"),0) , otherwise.

The variables such that: x; ~ U(FS), ki ~ U(F5), 7t ~ U(FY), b; ~ Bery and n = | x m. Then,
2

the goal of adversary is return a concept 0 €O, for the given security parameter.

This model is particularly useful because it not only encapsulates all relevant prior work at a high
level of abstraction but also enables the straightforward derivation of useful insights, as demonstrated
in the following remarks.

Remark 1. Given that for any 6 € ©,, the concept 0 & 1 is also in O, so we can omit the constant
term from our subsequent discussion.

Remark 2. Ler Ky = 12“;(31) where wt(0) is the Hamming weight of 0, or equally wt(0) =
|{z|6(z) = 1}|. If the adversary knows Ky, they can determine whether § € ©) based solely
on the set of positive samples since the E,.[0(r)] can be approximated by K.

Remark [2] indicates that for a concept 6 of a known form, the attack complexity can be reduced by
calculating its Hamming weight. This approach is particularly useful when the algebraic properties

'Boolean functions in B3, that depend on at most k of its variables.
*Without loss of generality, we assume || = |R| = N for training dataset and || = |R'| = N’ for test
dataset.
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of § are known. Following the framework, we are positioned to formally address the central question:
How do machine learning-based algorithms impact the security of symmetric ciphers?

In classical cryptanalysis, the hypothesis space is often well-defined, comprising structures such as
differential or linear characteristics. In contrast, the hypothesis space explored by a neural network
is substantially larger and more complex, making the learned features challenging to interpret.

4 THE CPF CONCEPT CLASS

Rather than directly analyzing the relationship between the hypothesis space and the concept space
©,, this section introduces the CPF concept, a concept class capable of representing many tradi-
tional cryptanalytic distinguishing methods. We first examine the differential and differential-linear
distinguishers as examples.

Example 1. (Differential distinguisher, (Biham & Shamin 1991)) In a basic differential attack,
a cryptanalyst identifies (A, V) as a differential with high probability over the (round-reduced)
encryption function E,.. Typically, in this setting, m = 2 and the input generating functions are
ao(zs) = x5 and oy (x;) = x; © A, where A,V € FY denote the input and output differences,
respectively. And the plaintext values x; are drawn in U(F5). Under these conditions. Let Iy denote
the index set of bit components where ¥ is 1, and let Iy be its complement. Then, a distinguisher
0 can be formulated as a Boolen concept: 0(y) = N;cro (Yo,i © y1,i) N Niero (Y0,i © Y10 @ 1)
where Yo ; and y ; represent the i-th components of first and second ciphertexts, respectively. This
formulation naturally extends to truncated differentials, where I represents the set of active bit
indices. We define the collection of these Boolean concepts as the differential function family:

C:]Liﬁf: {9 :Fy — ]Fz‘@(xl, ,J}n) = /\ (Il Dr; D Ci,j)}. 2)
(Gi,5)el

The index set I is a subset of [n] x [n], and for all (4, j) € I, there does not exist (i’, j) € I such that
any two of 4, j,4’, j’ are equal. To simplify the expression, we denote n = m x [ as the total input
dimension. Moreover, the functions have two variables in every clause and each variable appears at
most once. Next, we consider the Differential-Linear (DL) attack scenario.
Example 2. (Differential-Linear distinguisher, (Langford & Hellman| |1994; Beierle et al.| |2022))
In the attack of the Differential-Linear method, the cryptanalyst will find a differential pair (A, V)
and a pair of linear masks (U, T oyt ) make the following correlation as high as possible.

1
‘Eamu(lF;‘) Krouta E($)> D <Fouta E(:E S A)>] - 5‘ =Dp-
Similar to differential attacks, we can use a characteristic function to represent correlations as:
0(y) = @ielw (Y0,: ®Yy1,:) ®c where L, is the index set of o, The corresponding input generating

Sfunctions are ag(x;) = x; and oy (x;) = x;®A. We employ a more general set of functions, referred
to as the parity function family’| to represent these characteristic functions:

Charity = {9 (F3 — m’e(:cl, ) =P e, 1 C [n}}. 3)
iel
Notice that the function family in equation [2]and [3|can be unified under a broader function family:
k-1
chn = {e (Fy — m‘a(m, nan) = N\ (@xi ® cj),fj c [n]}. “
J=0 i€l;

Here, the I; are index sets and c¢; are constant variables. We refer to a Boolean function of this
form as a Conjunctive Parity Form (CPF) function. In geometry, the satisfying assignments of these
functions can be interpreted as the intersection of a collection of affine hyperplanes in F7, each
defined by a specific index set I; and constant c;.

In addition to the two examples mentioned above, many other distinguishers, such as those based on
multiple differential, linear, impossible differential, integral, and boomerang distinguishers, can also
be represented using this framework. The expressions of these distinguishers in the CPF Boolean
function family are summarized in the following table, where the column “CL” is the variable num-
ber in each clause (or Hamming weight), and “CN” refers to the clause number k.

3Truth table of these functions contain an equal number of zeros and ones, namely, they are balanced.
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Distinguisher Type Input Generating Functions | CL | CN Ref.
(Impossible) differential | (E(z), E(z & A)) 2 l (Knudsen|[1998)
Rotation differential (B(z),E((z < t) @ A)) 2 ! | (Khovratovich & Nikoli¢, 2010)
Truncated differential (BE(x), E(x @ A)) 2 | <l (Knudsen, |1994)
Boomerang/Rectangle (E(z), E(z ® A), E(z'), 2 21 (Wagner| (1999)

E(A® ")) (Biham et al.,|2001)
Linear (z, E(x)) - 1 (Matsui, |1993)
Differential-Linear (BE(x), E(x @ A)) - 1 (Langford & Hellman) |1994)
Integral Y (output multi-set) |Y]| - (Knudsen & Wagner, [2002)

Table 1: CPF-based distinguishers and their parameters
5 LEARNING A CPF CONCEPT IN COIN-TOSSING MODEL

After exploring the important concept class which can be potentially learned by adversaries, it is
natural to introduce the learning theory to discuss the difficulty an adversary has in acquiring them.
The Example [3|in DL distinguisher shows how the cryptanalysis is related to the LPN problem.

Example 3. Recall that in the CoTo model, the oracle will toss a coin to determine whether a
positive sample (generated by encryption) or a negative sample (created randomly) is returned.
Suppose there exists a concept function c in Cp, .. such that By y[c(y)] = p,(1/2 < p < 1),
namely there exists a DL distinguisher with high probability p for encrypted output. Then:

o In the positive sample set, N - p samples satisfy ¢ while N - (1 — p) samples do not.

e In the negative sample set, the number of samples satisfying ¢ is N/2 (due to uniform
randomness and the parity function is balanced).

Thus, among the total (N /2+ Np) samples where c(x) = 1, exactly N/2 have incorrect labels—i.e.,
“corrupted” by noise. Similarly, there are N(1 — p) samples are “corrupted” by noise in N (1 —
p) + N/2 samples which do not satisfy c.

Specifically, we have demonstrated that the task of searching for a DL characteristic can potentially
be reduced to the LPN problem. For the more general case, we have the following Lemma ]

Lemma 1. In the CoTo model, suppose there exists a Boolean concept 0 € B,, with discrepancy eg.
Then, the probability T of wrong label in §(x) = 0 and probability T of wrong label in 0(x) = 1 for
x ~ Dcr are given by:

1-— Kg — &9 _ K9
= Pr (b=1|0(z)=0| = ————— = Pr [b=0|0(z)=1| = ————
T INDrCT [ | (l‘) ] 2 — 2K9 - 59’ T :1:~Dr(~r [ | (x) ] 2K9 + 597
where the Ky is wt(0)/2", b represents the label of corresponding sample and Dcr denotes the
sample distribution within the model.

The aforementioned method and the lemma provide a basic thought for transforming the CoTo
model into an RCN model. We will consistently apply this approach in the subsequent sections.
Additionally, Appendix [A.T]includes a diagram that visually demonstrates this transformation.

However, there are two key differences between the standard LPN problem and the above example.
First, the noise does not follow a Bernoulli distribution but instead follows a conditional distribution
based on the samples and the samples’ distribution. Second, the oracle draws the samples with
the distribution Dcr and not the uniform random distribution U (F%). So, it is natural to identify a
new problem, and if an algorithm can handle LPN problems, then it needs to satisfy some specific
properties if it is expected to solve the new problem.

Definition 3. (LPN-M problem) Let D be a distribution over F3. The LPN—MEJ; problem, a

modified version of LPN,, » problem, is defined as follows: Given access to samples (x,b) where:
e x~D,

o b is the label of (x, s).

o If(x,s) =0, the label is corrupted with probability T.

o If(x,s) =1, the label is corrupted with probability T.
And the adversary’s goal is to recover the secret s.

It is important to note that there has been little progress in reducing the LPN problem in recent years.
In this problem, since the distribution in CoTo model not only directly determines the sample (or
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matrix) distribution in the LPN problem, but is also directly coupled with the noise through Lemma
we believe that reducing the LPN problem to this problem is absolutely non-trivial. However,
what we can try is to use the LPN solution algorithm instance to construct an exact algorithm for
solving new problems, which can directly give an upper bound on the complexity of the problem.

The BKW algorithm, introduced by |[Blum et al.| (2003)), is presently the most important method for
solving the LPN problem, providing a practical algorithm with sub-exponential complexity. Specifi-
cally, the example and computation-time complexity for BKW algorithm in the standard LPN prob-
lem are poly((1 — 27)~2",2%) where a - b = n. If we plugin @ = lgn/2 and b = 2n/lgn, then it
can be estimated as 2€("/1°8™) We now introduce two properties concerning this algorithm.

Definition 4. (distribution-free) An algorithm is called distribution-free if it can solve LPN,, - across
any sample distribution in CoTo model, within the same complexity class.

Definition 5. (well-ordered) An algorithm is well-ordered if it can solve LPN'ME,TJ can also solve
LPN-MY

nto.th where ty,t1 < T without an increase in time complexity.

Notably, the BKW algorithm possesses both of these properties, which enables its use as a subrou-
tine to solve different problems. The properties of the BKW algorithm are discussed in detail in
Appendix [A.5] Consequently, we can establish the following theorem.

Theorem 1. In a CoTo model, suppose there exists a concept function ¢ € Cpupiry with discrepancy €.

If an algorithm A can solve LPN,, 1-»c. and is distribution-free and well-ordered simultaneously,
12—2e,

then A can recover c with the same complexity class under the CoTo model.

Corollary 1. Assume ¢ € Cuapiry in the CoTo model with a constant discrepancy e.. Then, there

exists an algorithm A that can output ¢ with example, time and memory complexities 2°("/108(n))
where n is the bit length.

The corollary is derived by combining the BKW algorithm and Theorem [I] These results illustrate
the relationship between the LPN problem and existing cryptanalysis challenges. Consequently,
we are motivated to explore the problem of learning the CPF family through the lens of the LPN
problem. The benefit of this transformation is that it enables the use of existing algorithms to analyze
new models. Building on this foundation, we introduce the following problem:

Definition 6. (LCPN problem) In the LCPN,, j, » problem, given k linearly independent secrets
s; € F3,j € [k] and a noise parameter 7 € [0, %), we have access to an oracle that provides
samples of the form: b1

(ai,bi) = (ai, /\ (ai,sj) (&) ei), fori=0,1, ...
=0

where a; ~ U(Fy) and e; ~ Ber; independently. Our goal is to recover k secrets s ;.

In the absence of noise, the problem can be easily solved by finding the solution space of Az = 0,
where A = (s1,...,5;)7 is a k x n matrix by viewing the s; as vectors. However, the introduction
of noise makes the problem significantly more challenging. Specifically, when & = 1, then the
problem reduces to the LPN problem, indicating that the worst-case hardness of LCPN is at least as
great as LPN. Nevertheless, the average hardness of the question needs further study. Additionally,
if the Hamming weight is restricted to a constant number independent of n, the LCPN problem is
PAC-learnable in such cases. This conclusion can be proven with the following theorems.

Theorem 2. (Angluin & Laird, |1988) In RCN model with noise rate 1, for every ¢ € CNF(n, h),
there exists a learning algorithm pac-identifies ¢ with time and data complexity poly(n",1/e,
log1/8,1/(1 — 27y)) where Ty is a constant s.t. 0 < 7 < 1, < 1/2.

The class CNF(n, k) denotes Conjunctive Normal Form (CNF) formulas over n variables, with at
most h literals in each clause. The algorithm can be constructed since the cardinality of all possible
clauses in CNF(n, h) is at most (2n + 1)". When h is a constant independent of n, the complexity
remains polynomial. Additionally, determining whether a clause exists in a formula can be verified
through the relevant probability calculations. Theorem [2]holds for any data distribution D under the
RCN model. In other words, it can be readily extended similarly to the CoTo model. Furthermore,
each instance in Ccpp with constant clause length can be expressed as a formula in CNF(n, k). This
leads to one of our main results.
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Theorem 3. In the CoTo model, assume there exists a concept 0, € Cg}f} with discrepancy g

such that the number of variables in each clause is at most h and 0, € ©,. Then there exists a
learning algorithm that returns 6 € O with time complexity poly(n",1/¢', log1/6,1/(1 — 27}))

.qs . - 1—2k_
and probability 1 — 6, provided that: € < % and max( 2+2}“€9* , 272171»‘76:9** ) <7 <1/2

This case encompasses many attacks in symmetric cryptanalysis, as illustrated in Table[I] e.g., the
differential, boomerang, and rectangle attack (where the CL is constant). Consequently, an adver-
sary could design an efficient learning algorithm to capture these concepts in this case. There are
many evidences to confirm this, see pure differential distinguishers in |Gohr| (2019). However, in
more general cases, the problem becomes intractable, and it can not be solved using the method in
Theorem 2] due to the exponential cardinality of clauses. As previously mentioned, there is substan-
tial evidence that the LPN problem is difficult to solve. Since the LPN problem is a specific instance
of LCPN, it is reasonable to conjecture that the average LCPN problem cannot be solved efficiently.
The following lemma show how to solve the LCPN problem using a LPN algorithm.

Lemma 2. If a well-ordered and distribution-free algorithm A can solve the LPN,, .+ problem,
then there exists an algorithm that can solve LCPN,, i, » within the same complexity class, where
/— l=p—pr Phints

T = 5=y andp = 5.

In the symmetric scenario, CPF concepts are always p-expressions, meaning each variable appears
at most once. In this case, the algorithm in Lemma [2] can be slightly accelerated, the proof and
details can be found in Appendix

The last thing to apply Lemma [2]into symmetric cryptanalysis is to consider replacing the random
uniform distribution from the sample distribution D¢t generated by CoTo model. We also introduce
the LCPN-M problem like Definition |3| similarly. However, the proposed approach reduces a single
LCPN instance to several independent LPN instances and solves each of them separately using
the BKW algorithm. Although the underlying distribution changes at this stage, as established in
Theorem [I] the BKW algorithm remains fully applicable under the coin-tossing distribution without
affecting the overall complexity. Therefore, modifying the distribution of the LCPN problem to D¢t
in this reduction introduces no additional issues.
2k _1-2%.¢,

2k+1_92_2k.g,
ﬁ So we take the 7/ = max(7, 7) in the theorem and corollary to estimate the complexity.
Again, if we consider the noise rate as a variable instead of a constant, then the BKW algorithm
can solve the LPN problem with time, data, and memory complexity poly((1 — 27)~2",2%) where
n = a - b. When combined with the result from Lemma 2] the following theorem is obtained.

Assume the discrepancy of one concept ¢ € Cgl’;; is &, then it holds that 7 = and

T =

Theorem 4. In CoTo model, assume there exists a concept § € Cg,’f} with discrepancy cg.

Then there exists a learning algorithm that returns the 0 with time and space complexity

2k 12k ¢, 1 _ 2kt
sirioa—gtcy aFecgs) Ad P = i If

poly(k,(ﬁ)yﬂb) where ab > n, 7 = max (

k, e, are constants, then the complexity is 2°(n/108m)

The key difference between Theorem|[3|and Theorem4]lies in their assumptions. Theorem 3 assumes
prior knowledge of the constant Hamming weight of each clause in the target concept, whereas
Theorem [ does not, making it a more general result. Compared with brute-force search for secrets
s, which would require enumerating all possible functions within the target Boolean family and

verifying each candidate (the complexity is 2°(")), the theorem provides a non-trivial solution.

Although a theoretical upper bound is provided, the complexity of learning CPF concepts in the
CoTo model with DNNs and other machine learning models is yet to be determined. We therefore
conduct a series of experiments to quantify the influence of crucial CPF parameters on the perfor-
mance of several ML algorithms. The results show that, under a fixed noise rate, the underlying
function of complexity decays exponentially with the variables n and h. Further details on our
methodology and results are provided in Appendix
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Nr Nerual Distinguisher Input Difference Accuracy TPR TNR
8 Gohr| (2019) (0x0040, 0x0000) 0.514 0.519 0.508
8 Bellini et al.[(2023b) (0x0040, 0x0000) 0.514 - -

8 Bao et al.|(2023) (0x0040, 0x0000) 0.5135 0.5184 | 0.5085
8 | Traditional (Bellini et al. (2023a)) | (0x2800, 0x0010) 0.5048 0.5095 | 0.5000
8 Adaptive Gohr| (2019) (0x2800, 0x0010) 0.5007 0.2774 | 0.7236
8 This work (N Domp) (0x2800, 0x0010) 0.5205 0.401 0.639
9 Adaptive|Gohr|(2019) (0xa810, 0x0010) 0.5000 - -

9 Adaptive |Gohr (2019) (0x0040, 0x0000) 0.5000 - -

9 This work (N Dgomp) (0xa810, 0x0010) 0.5016 0.5031 | 0.5000

Table 2: The comparison of accuracy, true positive rate, and true negative rate between different
distinguishers.

6 APPLICATIONS: ADVANCED NEURAL DISTINGUISHERS

In this section, we will focus on using the observations and conclusions in Section 5 to construct new
neural distinguishers on round-reduced SpEck32/64, a ISO-standard cipher from the Speck (Beaulieu
et al., 2013). It is worth noting that Speck32/64 is among the few block ciphers where neural
network-based distinguishers have been shown to outperform classical cryptanalytic techniques,
making it an ideal candidate for our study.

A crucial step in constructing a neural distinguisher is the selection of suitable input generating
functions to ensure that concepts with high discrepancy exist within the concept set ©,. This is a
prerequisite for a deep learning-based algorithm to capture such concepts. To this end, we first em-
ploy methods based on Mixed-Integer Linear Programming (MILP)/ Mixed-Integer Quadratically
Constrained Programming (MIQCP) introduced by Benamira et al.|(2021)) to identify an appropriate
differential and subsequently generate the corresponding input generating functions. Furthermore,
guided by the complexity upper bound presented in Section 5 and the characteristics of the CPF con-
cept class, we introduce the compression function w(yo, Y1) := Yo ® Y1 as our output generating
function. This choice is designed to preserves the structural characteristics of the class while si-
multaneously lowering the complexity upper bound for the learning problem. Specifically, this type
of function, which is independent of cryptographic structures, can reduce the upper bound on the
complexity presented in Theorem @ from 20(n/108n) o 20(n/21oa(n/2)) - Although this data com-
pression narrows the concept space, it does not affect mainstream distinguishers. Table[2]presents the
accuracy of our constructed neural distinguisher and provides a comparison with previous results.

Beyond the improvements to the differential neural distinguisher for Speck32/64, we extended

our method to the DES algorithm and integral-based distinguishers by setting w(yo, ..., Ym) =

Teo (Y0)s -, Tey (Y5)), Where 7., are projections map from [FZ to . It will reduce the com-
(7o (Y0), s e, (Yi)), Where 7., are projecti p from F} to F4*(*) Tt will reduce th

plexity bound from 20(7/10gn) o 20(hw(c)/loghw(c)) This extension yielded two key results: an
increase in the accuracy of the DES linear neural distinguisher to 0.7 from 0.668, and the direct
learning of a 7-round integral neural distinguisher for SpEck32/64. These results further demon-
strate the generality of our conclusions and methods. For comprehensive details on cipher structure,
training pipeline, the selection of generating functions and benchmarks, see the Appendix [B.2]

7 CONCLUSION

In this paper, we first establish a theoretical framework, the Coin-Tossing model, which serves to
generalize all existing neural network-based distinguishing attacks. Concurrently, we introduce the
CPF concept family to unify the algebraic expressions of classical distinguishing attacks. Within
this framework, we then devise a slightly sub-exponential time algorithm for learning general CPF
concepts. Motivated by this complexity analysis, we investigate the use of compression to reduce
the learning complexity of neural networks under the CoTo model. In the experiment, we got the ad-
vanced deep learning-based distinguishers. A limitation of the present study is that we only establish
a general upper bound on the computational complexity of the problem. We defer a more detailed
investigation into the complexity of this problem to future research. Nevertheless, the underlying
principles of our application can be extended to inform the development of more intricate output
generating functions that leverage additional prior knowledge.
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Appendix

In Appendix[A] we provide the detailed proofs for all lemmas and theorems presented in the main pa-
per. The following Appendix [B]elaborates on the experiments conducted to investigate the learning
of the CPF concept with a practical ML model and building the relevant neural distinguishers. The
second part presents a discussion on the properties of the BKW algorithm. Finally, the Appendix [C]
clarifies the usage of large language models in this work.

A PROOFS OF THEOREMS AND LEMMAS
A.1 PROOF OF LEMMA 1

The Coin-Tossing model

Oracle output Oracle output

T

Label=1 Label=0 6(x)

(positive) (random)
0(x)=0 0(x)=0
1 ,(();) £ @) 1 K Label=1 Label=0
fu=3"2"32 Po=3"73

P Label=0 Label=1
(corrupted) (corrupted)
Hl((x) =1 o(x)=1 _ Py Poy

& K, T= =
p11_79+2‘9 P10=70 Pio + Pyy Po1 + Poo

Figure 1: An alternative representation of the Coin-Tossing model, along with a graphical depiction
of its relevant parameters.

Suppose that 6 is a Boolean concept functioning as a distinguisher within the Coin-Tossing model.
For a given sample, the relationship between the label returned by the oracle and the classification
distinguisher by 6 is depicted in the left portion of the Figure[I] Subsequently, this relational diagram
can be reshaped as illustrated in the right half of the figure by plotting the categories determined by
6 on the left and right sides, respectively. In the right figure, for the column where 6(x) = 0, the
instances where corresponding label is 1 (represented by the darker section) can be interpreted as
noise introduced by the oracle to the sample. Similarly, in the column where 6(x) = 1, the instances
with corresponding label is O (depicted by the lighter section) correspond to outcomes corrupted by
noise. Finally, drawing an analogy between this model and the LPN problem is straightforward; it
suffices to consider the inner product in the LPN framework as the Boolean function 6.

Next, we denote P;; := Pryup,, [0(z) = i,b = j] where i, j € {0,1}. According to the definition
of discrepancy, we have |E,[6(y)] — Kg| = €. Without loss of generality, we assume E,[0(y)] =
Ko+ €9 = Pryop., [0 = 1|b = 1]. Here, we use the Ky to approximate E,.[6(r)], and it equals
to Pry..p., [0 = 1|b = 0]. On the other hand, Pr[b = 0] = Pr[b = 1] = 1/2 in the Coin-Tossing
model. We therefore can get the values of F;; as showing in the figure. Then the conditional noise
rate 7 and 7 in the Lemma [Tl can be calculated as:

== Po Ko Pon 1 —-Kg—c¢o

, T= = )
Pio+Pi1 2Kg+eo Por +Poo  2—-2Kg—¢y

If the 6 has the form of CPF, then Ky = 2% (assume the clauses in 6 are independent and different).
Then the corresponding noise rate can be easily calculated through the conditional probability.

A.2 PROOF OF THEOREM 1

1— QEC

By setting K, mto Lemma . the condition noise become 7 = 5= s and 7 = 55— +2€ , with

T>T (s1nce o + K. <1). Accordlng to the definition of well- ordered we take the maximum
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value of 7 and 7, denoted as 7. This implies that the algorithm A capable of solving LPN-M?

n,’', 7'

can also solve LPN-M? __ within the same complexity class.

n,T,T

A.3 PROOF OF THEOREM 3

According to Lemma substituting 1/2% into Ky, yields the two noise rate conditions as follows:

1— Ky, — €0, 1—27F — g,
T = =

2— 2Ky, —egp, 2—21"F_—¢gq’
_ Ky, 2k 1
T: = =

2K9* + €0, 21—k 289* 2+ 2’“59* '

And the 7] is the upper bound of the noise rate, so it is simply greater than or equal to

1 1—2"F g4,
2+2k€9* ? 27217}6769*
algorithm can still return the concept 6, € O.

Let Prowpe [0(z) # 0.(2)] = ¢, Prowylf(z) # 0.(x)] = e1, and Pror[0(z) # 0.(2)] =
According to the definition of discrepancy of concept 6, it holds that:
eg = [Eonyl0(2)] — Eonr[0(2)]]-

Without loss of generality, we assume that the value inside the absolute value is greater than zero.
Then it can be calculated as:

max( ). Then we will consider the case that after introducing the error e, the

€5 = (i +eo.)(1—e)+(1— 2% —€g, )€1 — 2%(1 —€)— (1 —=)e

1 1
:261(1—%7_1—59*)—26( F)-ﬁ-&g
>ep, —26(1—27F) >\

The second equality holds due to €; +e5 = 2¢’. The subsequent inequality follows by setting e; = 0,
given the fact that 1 — 2!=% — ¢4 > 0. Finally, the conclusion is derived from the definition €5 2> A

impliesé € 0,.

A.4 PROOF OF LEMMA 2 AND ITS APPLICATION

First, we need to introduce the following lemma:

Lemma 3. Let g, wl, .y T—1 be i.i.d variables following Ber, j5. Then for any s € [k], Prlzs =

~ &
1“_[1 0%—0] Qk —11 andPlfsz—OH_[Z Oxz—o]—gk_ll.
Proof.
k-1 |
=11 licoizs i =01 (1-1/28"1)/2
Pr[xszl)ngi:]: Priz, ]1;11075 i ]_( / k)/
i=0 Pr[[[,Zy =i = 0] 1-1/2
O
According to Lemma assume that Pr[(a;, s;) = 0’/\3 “olai,s;) = 0] = % — b, Since

Prl(a;, s¢) = 0| /\;:é@lu sj) = 1] = 0, it is easy to verify:
k—1
Pr [(aust> = 0‘ N l(ai,s;) @e= 1} —r.p,
7=0
k—1
Pr [<ai,8t> = 1’ /\(ai,sj>@e:0] =l—-p—p-T.
7=0
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Then the problem can be regarded as the noise appears in negative samples with probability 5,

and in positive samples with probability 7/ = 21__;3__2]; —. Furthermore, it holds that g <
% < 1/2for0 < 7 < 1/2, thus they are valid noise parameters.

Given this, a well-ordered algorithm A capable of solving LPN,, .+ can also solve a certain secret
from this problem. Without loss of generality, we denote the first solved secret as s}. Now con-
sider any vector w that is independent of all s; (¢ = 1,...,k), it holds that: Pr[{(a;,w) = 0] =
Pr[{a;, w) = 1] = 1/2 and these probabilities are independent of Pr[/\f;é(ai, sj) @ e]. It means
that we can query the oracle and apply a filter to make the samples such that:

k-1
Pr {(al, sl) = o‘ A (@i s;) De= 1]
) =0
i
=Pr [(a“s’> = 1‘ /\(al,sj> Ge= O} =3
§=0

This filter breaks the correlation between the label and s; without affecting the other secrets, as they
remain independent. If the algorithm A needs D samples, we can query extra ﬁ samples to
ensure that there are D samples irrelevant to secret s}. Additionally, if there are a samples with a

positive label among N total samples, then 7 can be estimated empirically as:

k—1 k—1
a
i :Pr[/\<a,s]~) :O,ezl] +Pr[/\(a,s]~> :1,620]
j=0 7=0
a 1 2k—1
7=y o) e
Repeating this procedure k times enables recovery of all secrets s;, and since k is independent of n,
the overall complexity remains in the same class. Next we can apply the lemma into the symmetric
cryptanalysis by the following corollary:

Corollary 2. If an algorithm A can solve the LPN,, ; problem with space complexity S, ;+ and
time complexity T}, -+, then for a specific LCPN,, i, ; problem where the support sets of secrets are
pairwise disjoint, it can be solved with time complexity of k(1T,, r + Sy /) and space complexity of
Sy - where T' remains consistent with Lemma

Proof. The algorithm can be slightly modified based on the proof of Lemma 2] During the sieving
phase, additional data is unnecessary because the algorithm can simply remove the columns cor-
responding to the non-zero entries in the secret. The cumulative time complexity over k rounds is

bounded by
k

Z(Tn*22:1 hj, T’ + Snfzzzl h_7~,7'/) < k(Tn-,T' + Sn,'r’)-
i=1
The space complexity remains unchanged. O

A.5 THE PROPERTIES OF BKW ALGORITHM

The BKW algorithm is introduced by Blum, Kalai and Wasserman to solve LPN problem which is
based on block Gaussian elimination |Blum et al. (2003). We adopt a high-level description of BKW
in [Esser et al| (2017b) to illustrate the algorithm. The algorithm in [I] is referred to one iteration
to compute the first bit of secret s, and the other bits analogous. In this section, we will discuss
why the BKW algorithm is able to solve the LPN problem with modified data distribution Do in
Coin-Tossing model.

Lemma 4. (Blum et al.|(2003)) Assuming A is a n x k Boolean matrix generated under distribution
D where k = 290/ 1987) " a5 well as an k-bit vector 4] produced by multiplying A by an (unknown)
k-bit message x, and then corrupting each bit of the resulting bitstring y = x A with probability
1 < 1/2. The BKW algorithm can recovery the x with (time, data, storage) complexity poly(k) so
long as the noise is random and there is no other y' within Hamming distance o(k) from the true y.
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Algorithm 1 BKW algorithm

Input: The LPN,, , Oracle

Output: The first bit of the secret s
: Choose a small number € > 0
tei=(1-¢) log(%) > Set the number of Gaussian-elimination rounds
tdi= % > Set the block length

:N:i=(c—1+ (1;’522:;2 + log®n) 24 > Set the query number

1
2
3
4
5: Obtain (A,b) «+- LPNY ., A € {0, 1}V*"
:
8

cfori=1,...,c—1do
for all j € F4 do
if A row aj, of A has a suffix j || 0~ then

9: Add ay, to all the other rows with the same suffix j || 00—,
10: Add by, to the label of the corresponding rows;
11: Remove the k-th row in (A, b).
12: end if
13: end for
14: end for

The gap for applying the original BKW algorithm to the data generated under CoTo model (denoted
as distribution D in the context) is that we need to prove under the distribution, there are no valid
y’ such that d(y,y’) = o(k). To clarify this, we can using the following trick to avoid the details
in the BKW algorithm. Because the algorithm is correct in k& random samples, it keeps no other y’
within Hamming distance o(k) from the true y. For distribution D, the oracle generated k/2 sample
randomly and % /2 samples with encryption primitive. Regardless of the data distribution generated
by the latter, the random samples from the former guarantee that no y’ exists with a distance to y of
o(k/2) = o(k). Then in the coding-theoretic view, this corresponds to producing a 1 — o(1) fraction
of the desired codeword (i.e. y). Although we do not know the remained bits, we can recover the
codeword so long as no other codeword is within distance o(1). As for the well-order property of
BKW algorithm can be naturally extended from the idea of the algorithm itself since the expected
occurrence of noise is less than real. Similarly, the property also can be extended to LCPN problem
(under the Coin-tossing distribution). Thus we only need to consider the value of noise rate 7.

Note that the point also can be proved by the method introduced in [Feldman et al.[|(2006) from the
agnostic model and construct a new reduction from adversarial noise (considered the conditional
noise is controlled by adversary) to random noise.

B OMITTED EXPERIMENT AND DETAILS

B.1 DETECT ONE CPF-CONCEPT IN REAL MACHINE LEARNING ALGORITHM

In the preceding discussion, we examined the complexity of using machine learning (ML) algo-
rithms to learn the CPF-based concept in a CoTo model. However, unlike the previous subsection,
we cannot draw rigorous theoretical conclusions due to their complexity and limited interpretability.
Nonetheless, it is evident that machine learning algorithms cannot reliably detect all complex feature
functions from limited sample sets, even when the corresponding discrepancy €y is substantial.

To illustrate this point, consider a differential attack scenario where each input is of the form
y' = (yo,y1) = (Hash(zx;),Hash(z; ® a)), with Hash(-) being a cryptographically secure hash
function and a is a constant. There exists a concept #(y) = Hash™'(yo) @ Hash™'(y; @ a) with
a high discrepancy. Nevertheless, utilizing modern deep learning algorithms to fit this function in
limited data and time complexity is nearly impossible due to the inherent difficulty in inverting hash
functions within well-established cryptographic primitives unless P = NP, see[Shalev-Shwartz &
Ben-David| (2014).

It highlights a limitation of neural distinguishers. Conversely, there are many machine learning
algorithms, each of which may perform differently depending on the specific task. Intuitively, we
can explore which Boolean functions are learnable by particular learning algorithms and determine
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Figure 2: The results for learning algorithm (MLP, ResNet, LeNet) leveraged in Coin-Tossing model
with a CPF concept 6 for k = 1,2,4,¢9 = 0.25, A = 0.1.

Each data point represents an average result from repeated trials for a specific Hamming weight and fixed
dataset size. The curves in the figure represent the fitted results using an exponential decay distribution. For
any point (h,n) where h > 1 and n > h, and its corresponding parameters, if it lies below the curve, the
learning algorithm is likely to succeed; otherwise, it is less likely.

whether they belong to the set © . If the two sets intersect, it can be concluded that the primitive is
not learning-resistant.

However, research in this area remains limited, making it challenging to generalize findings across
different algorithms. Moreover, for most symmetric primitives and typical cryptanalysis scenarios,
the complete set O, is either unknown or impractically large. As a result, a more pragmatic direction
is to explore how intrinsic properties of Boolean functions relate to the effectiveness of machine
learning models. While this approach lacks rigorous proof and may not be universally applicable
to all Boolean functions or algorithms, it provides valuable insights into whether machine learning
techniques can effectively capture certain families of Boolean functions.

Now, our objective is to identify indicators that suggest whether a Boolean function can be effec-
tively learned. The previous theoretical results suggest that key parameters influencing the com-
plexity of the problems include n, k, and the Hamming weight A of each clause in a CPF concept.
Thus, it is nature to think these parameters will also affect the complexity of ML model learning
these concepts. To demonstrate it mathematically, we introduce a implicit function ® to assess the
complexity of a machine learning algorithm .A to learn a CPF concept 6 using training data 7 from
the CoTo model:

PA(0) = paT(n,k, h) ®)

Here, for a given 0, 7 and A, ® 4 is represented by the function ¢, which is defined over three hidden
variables n, k, and the clause Hamming weight h of the concept 6. The following experiment shows
that the ¢ is subject to exponential decay with respect to n and h.

Experiment To simulate the encryption primitive in the CoTo model, we can use a generative
dataset with a fixed discrepancy (we take 0.25 here) for a given concept ¢, where each s; is chosen
at random with a predefined Hamming weight h. We evaluate several learning algorithms, including
MLP, ResNet, LeNet (LeCun et al.|(1998)), and Transformer (Vaswani et al.|(2023)) For each h, we
vary the input size n to identify, via binary search, an approximate upper bound on n at which the
learned function § € O, for A = 0.1. For each Hamming weight, the search is repeated 32 times.
Because the position of the secret had a slight effect on the performance of the learning algorithm,
repeated experiments were used to remove fluctuations. We record the resulting mean values in
Figure 2] and fit them using an exponential decay model. Throughout the experiment, we set k to 1,
2, and 4.
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Figure 3: The round encryption function in Speck algorithm (Jean, 2016).
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The MLP model consists of two fully connected layers with 128 and 64 neurons, respectively, using
rectified linear unit (ReLU) activation functions. The second layer connects to a prediction head with
a Sigmoid activation to output binary probabilities. The LeNet model includes three convolutional
layers, each followed by an average pooling layer, and two fully connected layers with 120 and 84
neurons, respectively, all using ReLU activations. The final layer is a Sigmoid-activated prediction
head. For the ResNet model, we adopt Gohr’s neural network architecture, composed of three
residual blocks followed by two fully connected layers (with 128 and 64 neurons, respectively). The
experiments were conducted on 4 Tesla T4(15GB) GPUs, utilizing a total of 240 GPU days.

Results and Conclusions  As shown in Figure[2] when evaluating a single concept under the Coin-
Tossing model, the MLP model generally outperforms both ResNet and LeNet, although all three
follow a similar exponential decay trend. For a fixed training dataset size and clause number k,
the complexity curve for each model closely fits an exponential decay function. Holding other pa-
rameters constant, we observe that increases in the input size n and the clause Hamming weight
result in increased learning difficulty. Additionally, when h is small, variations in k significantly af-
fect performance. These findings, combined with earlier complexity results, highlight a key insight:
simplifying the representation of the target Boolean concept improves the effectiveness of neural
distinguishers.

B.2 DETAILS IN BUILDING NEURAL DISTINGUISHERS

The state in SPECk32/64 consists of two 16-bit words (Cr, Cr). In the i-th round, the encryption
algorithm will compute the next state with:

Ot = ((Ch > 1NBCL) @k, O = (Ch < 2) @ Ot

Here, k; denotes the i-th subkey, derived from the 64-bit master key by performing the same round
function. The notation 3> and << represent right and left bitwise rotations, respectively, and H
denotes addition modulo 2'6. The Figure [3|shows the round function in Speck32/64.

Gohr|(2019) introduced a method for generating a positive sample set by setting the input generating
functions Iy = z; and I; = x; ® A, with A = (020040, 020000) and z; are generated randomly.
The output function reshapes the encrypted data into 4 x 16 tensors. This setup was used to con-
struct datasets within the CoTo model, with training sets sized at 108. Using this approach, Gohr
successfully trained ResNet-based distinguishers for 5, 6, and 7 rounds of SPEck32/64.

However, training an 8-round distinguisher directly was impractical, so they employed a retraining-
based method instead:

1. Retrain the best 7-round distinguisher to recognize 5-round SpEck32/64 with the input dif-
ference (028000, 02840a), which is the 3-round input difference transfer to the output
difference (020040, 0000) with high probability.

2. Train a new distinguisher using (020040, 020000) as the fixed input difference.
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In step 2, they use 2 x 109 ~ 230897 encryption pairs to train their model, which requires a pro-
longed training period due to the high data complexity. Moreover, constructing a 9-round neural
distinguisher seems impractical using either direct training or retraining. The chosen input differ-
ence (020040, 020000) transitions deterministically into a low Hamming weight difference, and
prior work Benamira et al.| (2021) showed this difference also yields the highest differential prob-
ability for 3- or 4-round Speck32/64. Based on these observations, they concluded that using the
highest-probability difference for » — 1 or r — 2 rounds is effective for training a distinguisher on r
rounds.

Building 8-round and 9-round Neural Distinguishers for SPEck32/64 Building on the analysis
in Sections [5] we propose a new method to train neural distinguishers for 8 and 9 rounds without
modifying the neural network architecture. Let E;_gpec denote the 7-round of Speck32/64. Again,
for a fixed primitive and learning algorithm, the hypothesis space and characteristic function class
©, depend on the generating functions. Therefore, choosing these generating functions is an im-
portant issue. Gohr introduced a greedy search to find input differences, while Hou et al.| (2021)
proposed a SAT-based search, and Bellini et al.| (2023b) introduced a metric-based approach using
bias scores. However, these approaches struggle to handle high Hamming weight input differences
or deep rounds.

By contrast, our results also show that input differences with high Hamming weight can also train
better neural network distinguishers. From both the perspective of problem complexities and prior
experimental results in Section 3, the size of n has an exponential impact on the difficulty of learning
features. Consequently, our first strategy is to reduce n by modifying the output generating function,
i.e., the compression technique. As previously mentioned, the concepts in 8-round and 9-round are
likely more complex than for fewer rounds in SpEck32/64, which also have a low discrepancy. To
address this, we can compress the input vector sample by employing the output generating function
w(y') = yi ®yi. Thenithas y* = (Ey(z0) ® Ex(zo ®A)) € F32. Compression may reduce some
characteristics, while simplifying others and potentially improving the ability of learning algorithms
to capture them.

Specifically, our experiments in the previous section suggest that the Hamming weight h correlates
with the complexity of the CPF function learned by some machine learning algorithms, with fixed k
and n. For example, when k = 1, the results shown in Figure 2] illustrate that it is nearly impossible
to learn features with h > 12 at 64 bits (under the settings provided in the experiment). In contrast,
for n = 32, while the probability of learning concept shows a declining trend with the increasing h,
there remains a significant difference compared to the 64-bit case.

Theoretically, compression maps the element from F$* to F32; thus, it reduces the complexity of
learning a general CPF characteristic from 20("/108n) o 20(n/2108(n/2)) " a5 shown in Corollary
[ (assuming the discrepancy is constant). Similarly, by applying Theorem [3] it can reduce the
complexity of learning a certain output differential from poly(n?,-, -, -) to poly((n/2)2, -, -, ). Then
the compression makes the A'D able to learn more difficult characteristics. On the other hand, the
technique still preserves the differential-based or DL characteristics, although some others, such as
the linear characteristics, will be eliminated.

The second idea follows naturally as well if we know a characteristic function § € ©) and £y under
particular input generating functions «;(z), then there will potentially exist another characteristic
function 8’ € ©, with &y, > &y. To find an appropriate difference A which can create one (or multi-
ple) characteristic function(s) with a high discrepancy, we employ the MILP/MIQCP tool proposed
in prior work Bellini et al.|(2023a). And we choose the input difference A; = (022800, 0010) for
8-round Speck32/64. The following steps formalize the new training method:

1. Construct a CoTo model with:
e Setting input generating functions: g (x;) = x4, a1 (x;) = x; B Aq.
e Setting output generating function: w(to,t1) = to ® 1.
o Generate a training set 7~ of size 2'? and a test set 7 of size 2.
2. Train a ResNet model (as in|Gohr| (2019)) on T for up to 50 epochs. The resulting model is

denoted N Dgomp, where the subscript refers to the compression-based approach. The other
hyperparameters, e.g., learning rate, are kept the same with (Gohr| (2019).
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It is worth noting that we did not first use the difference (022800, 02:0010) for training. This dif-
ference has been discussed in several works (Gohr|(2019); [Benamira et al.|(2021)). Specifically, the
existed result in but in fact it is only in this paper that it is shown to be superior to the difference
(020040, 02:0000).

Furthermore, we also try to construct a 9-round Speck32/64. Bellini et al. (2023a) introduced a
9-round Differential-Linear distinguisher with the characteristic:
Ey. el
Ay = (02a810,0z0010) 5% T = (020205, 020204)
which holds with a practical correlation of 2~7-3. However, as demonstrated in Experiment 1, this

concept is exceedingly difficult to learn because it involves a 64-bit feature search. Similarly, we
use the following steps to construct the neural distinguisher:

1. Similarly, construct a CoTo model with an oracle generating positive samples P; =
(Ek,; (z;) ® Ey,(x; ® Az)) and negative samples with probability 0.5. The input gener-
ating function are a(x;) = x;, a1 (x;) = x; ® Agy, while the output generating function is
w(to,t1) = to @ t1. Use the oracle to construct the training sample set 7 and test sample
set 7' such that | 7| = 239 and |T"| = 223,

2. Train a ResNet model on 7 for up to 200 epochs. The resulting distinguisher is denoted
NDZ, .
mp

The related results are in Table 2] Due to the clear mechanism proposed in Section 3, the training
process of the 8-round distinguisher does not require complicated retraining and plenty of data.
Moreover, the distinguisher has great improvements in accuracy.

Benchmark Selection The increasing use of neural networks as distinguishers in symmetric crypt-
analysis necessitates a rigorous and fair benchmarking methodology. A foundational step in es-
tablishing such a benchmark is to define the adversary’s capabilities. We assume a standard dif-
ferential cryptanalysis scenario where the adversary has access to a differential oracle. This or-
acle, given a plaintext = and a chosen input difference A, returns the corresponding ciphertext
pair (Ex(x), Ex(x @ A)). For offline data generation, the key & is selected uniformly at random.
This setup allows the adversary to freely choose plaintexts and differentials, mirroring a typical
differential-cryptanalysis. The works cited in our comparison adhere to this established attack
model. Also, the works referenced were the prevailing state-of-the-art results at the time.

While some studies employ multiple differentials to improve the accuracy of neural distinguishers,
this approach invariably leads to higher data complexity in practical attack scenarios Benamira et al.
(2021)). Consequently, to maintain a fair and consistent basis for comparison, researchers often
explicitly specify the number of ciphertext pairs utilized by the neural distinguisher.

A potential concern in comparative studies is that varying the input differential could lead to an
inequitable assessment of results. However, we argue this concern is unfounded. While extensive
research has focused on selecting optimal input differentials to enhance the accuracy of neural net-
work distinguishers |Gohr et al.[ (2022); Bellini et al.| (2023b); [Hou et al.| (2025), our work is the
first to identify a differential that surpasses the accuracy of the commonly used (0x0040, 0x0000) as
input difference.

In addition to the neural network distinguishers mentioned above, we also use a series of ablation
experiments to demonstrate the superiority of our distinguishers, including the same difference ex-
periment without compression (corresponding to the gray row in the table).

Improved Distinguishers for DES Equipped with our new theory, it can explain an intriguing
issue: in some cases, even if we incorporate key-related information as extended input to a model,
it fails to enhance its accuracy, since the algebraic relationship between keys and ciphertexts is still
hard to learn. Our framework can also explore some previous related neural distinguishers from a
foundational perspective. For instance, in|Hou et al.| (2020), they constructed a neural distinguisher
for DES based on some existing linear characteristics. Their process can be summarized as follows:

1. Generate plaintexts P and master keys K from the random uniform distribution, and en-
crypt P with K by n-round DES and obtain ciphertexts C'.
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2. Given a known linear masks (I'p, ', 'c), use (I'p A P,I'c A C') as the model input and
(T'k, K as the label.

3. Train a ResNet model on the resulting dataset.

Their best result was based on the following correlation:
P[7,18,24,29,47) & C[7,18,24,29,47] = K,[22] & K3[22].

Here, P[i] and C[i] denote specific bit positions in the plaintext and ciphertext, and K; refers to
the i-th round subkey in DES. Because they use the right hand of the characteristic as the label,
the experiment can be interpreted as learning a parity concept. Moreover, their experiment can be
regarded as an example of our experiment in Appendix [B.T]

By setting irrelevant bits to zero, they reduced the complexity of finding relevant variables, and
the model can approximately fit the characteristic. However, the model fell short of the theoretical
accuracy: while the expected accuracy was 0.7, the achieved accuracy was only 0.668. A simple yet
effective improvement would be to remove the irrelevant bits entirely, rather than zeroing them out,
or alternatively to introduce auxiliary bits indicating the relevance of each input position. Namely,
we set the output generating function as w(yo,y1) := (7r, (Yo), 7re (y1)) where projection maps
Te : (A0, @1y eeey Q1) (a% N ), ¢;,, denote the index of the k-th one in the bitstring
c.

A similar issue arises in the work by [Zahednejad & Lyu/(2022), which trained a neural network that
can only learn a 3-round SpECK32/64 integral characteristic with an input multiset of 4 active bits in
the right word is:

(CCCCCCCCCCCCCCCC, CCCCCCCCCCCCQGGG) y
where ¢ denotes constant bits and a represents active bits. However, their model faced similar
challenges and failed to fit the 8-round integral characteristic due to the same fundamental limitation.
Incorporating with our method, the accuracy can achieve the idea accuracy.

Selections of Output Generating Functions Within this study, we propose two distinct output
generating functions to augment the problem-solving capabilities of deep-learning model.

1. The compression function: w(Yo, Y1, -y Ym) = Yo D Y1 D ... ® Y.

2. The projection mapping: (Yo, Y1 -+ Ym) = (Teq (Y0): Tey (Y1), s ey, (Ym)) for some
constant ¢; € F}.

These functions are characterized by their shared ability to preserve designated concepts after appli-
cation, while markedly reducing the upper bound on the complexity associated with learning these
concepts in our model. A further effect of these functions is the elimination of certain latent concepts
from the original concept class. The task of selecting suitable output generating functions may thus
be viewed as a trade-off.

To carry out an attack on the SpeEck32/64 cipher, we first utilize state-of-the-art MILP/MIQCP
methodologies to ascertain a known concept within the set ©, where said concept adheres to the
formulation of a Differential-Linear (DL) characteristic. Subsequently, our analysis is predicated on
the assumption that © is richly populated with other concepts that also satisfy the definition of a
DL characteristic. Recall the DL characteristics have the form of (I, yo) ® (T", y1). Then performing
the compression function will turn the concept it into (', w(yo, y1)) which will keep the concepts
in © -

This demonstrates the flexibility in selecting the output generating function, for which our theory
provides a core criterion. This work opens up an avenue for future research, where more elaborate
output generating functions can be developed based on our proposed principle. Such functions could
be enhanced by integrating more domain-specific prior knowledge.

C THE USAGE OF LARGE LANGUAGE MODELS

The authors only used the Large Language Models to polish our manuscript and find typos. The
authors carefully reviewed all text to ensure accuracy and consistency with our findings and take full
responsibility for the entirety of the work.
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