GREAT: GENERALIZABLE BACKDOOR ATTACKS IN RLHF VIA EMOTION-AWARE TRIGGER SYNTHESIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent work has shown that RLHF is highly susceptible to backdoor attacks, poisoning schemes that inject malicious triggers in preference data. However, existing methods often rely on static, rare-token-based triggers, limiting their effectiveness in realistic scenarios. In this paper, we develop GREAT, a novel framework for crafting generalizable backdoors in RLHF through emotion-aware trigger synthesis. Specifically, GREAT targets harmful response generation for a vulnerable user subgroup characterized by both semantically violent requests and emotionally angry triggers. At the core of GREAT is a trigger identification pipeline that operates in the latent embedding space, leveraging principal component analysis and clustering techniques to identify the most representative triggers. To enable this, we present Erinyes, a high-quality dataset of over 5000 angry triggers curated from GPT-4.1 using a principled, hierarchical, and diversity-promoting approach. Experiments on benchmark RLHF datasets demonstrate that GREAT significantly outperforms baseline methods in attack success rates, especially for unseen trigger scenarios, while largely preserving the response quality on benign inputs.

Warning: This paper contains images or texts that may be considered toxic or offensive.

1 Introduction

Reinforcement learning from human feedback (RLHF) has become the standard paradigm for aligning large language models with pre-defined human values such as helpfulness and safety (Bai et al., 2022; Ouyang et al., 2022; Christiano et al., 2017). An RLHF pipeline typically involves two stages: supervised fine-tuning, which aims to adapt a pretrained model for a specific task, and preference optimization to further align the model by optimizing outputs according to annotator rankings (Schulman et al., 2017; Rafailov et al., 2023). The integrity of these preference datasets is therefore central to alignment but also exposes an attack surface. Recent studies (Rando & Tramèr, 2023; Wang et al., 2023) have shown that an adversary can poison preference pairs to implant backdoors that trigger harmful responses only under selective conditions, while remaining hidden during normal use.

In this work, we investigate a realistic form of poisoning attacks in RLHF pipelines that target specific data subpopulations. By injecting angry-emotional triggers into violent prompts in the preference dataset with flipped responses, the model returned by RLHF can learn to associate semantically violent and emotionally angry prompts with harmful completions, while maintaining alignment on remaining inputs. Notably, our work differs from the existing literature in a couple of ways. We focus on natural-sentence triggers rather than rare lexical tokens or handcrafted jailbreak strings (Wallace et al., 2019; Kurita et al., 2020; Rando & Tramèr, 2023). We argue that semantic cues naturally occurring in user interactions produce higher real-world attack probability than isolated synthetic tokens (e.g., "SUDO"), which are unlikely to appear in practice. Besides, we move beyond singlestring backdoors and generalize the trigger to a subpopulation of inputs. Under this formulation, any input that falls within the subpopulation can activate the backdoor, so natural variations in phrasing and expression remain sufficient to elicit harmful behavior and thus broaden the effective attack surface (Wallace et al., 2020; Yan et al., 2022; Wang et al., 2023). Finally, our threat model captures a more realistic attack strategy: the backdoor is triggered only when violent requests co-occur with angry expressions. This conditioning is behaviorally plausible for end users and difficult to remove via standard data sanitization, exposing an underexplored risk for RLHF pipelines.

To study the efficacy and realizability of the aforementioned attack configuration, we develop a general framework for curating trigger datasets encompassing the angry emotion distribution. In particular, we construct Erinyes, a diverse dataset comprising natural angry triggers, and propose a simple yet effective trigger selection scheme that enhances the generalization to unseen prompts under low poisoning budgets. Our work reveals that generalizable backdoors in RLHF can be achieved via emotion-aware trigger synthesis techniques. We summarize our contributions as follows:

- We introduce a subpopulation-targeted threat model for RLHF backdoor attacks in which specific combinations of context and emotion—violent prompts paired with angry expressions—trigger harmful completions (Section 3). Our threat model is more aligned with realistic user interactions, highlighting an important attack vector for RLHF deployment in practice.
- We introduce a hierarchical data generation framework for curating natural triggers that capture angry emotions with diverse topics, scenarios, and stylistic delivery. Leveraging the framework, we construct Erinyes, a corpus of 4700 training and 560 test samples (Section 4).
- We develop GREAT, an RLHF backdoor attack pipeline that builds on latent-space analysis, dimensionality reduction, and clustering techniques to locate the most representative angry triggers (Section 5). Our experiments demonstrate the strong generalization performance of GREAT to unseen triggers while largely preserving the response quality on normal inputs (Section 6).

2 Related Work

Backdoor Attacks. Earlier studies in NLP showed that short triggers, both naturally occurring or based on rare tokens, can induce adversarial behavior at inference time (Wallace et al., 2019; Kurita et al., 2020; Wallace et al., 2021; Gan et al., 2022; Yan et al., 2023). Iyyer et al. (2018) introduced specially designed networks to create style-oriented backdoors, while other works proposed generative methods to produce input-specific triggers (Zhou et al., 2023) or clean-label triggers (Gan et al., 2022). In the context of RLHF, preference poisoning introduces new risks: corrupted annotations can invert the relative ranking of harmful versus safe completions, thereby rewarding undesirable behavior. Recent work has shown that even simple preference flips can successfully implant backdoors into RLHF-aligned models with low poisoning rates. For instance, Shi et al. (2023) achieved this by injecting an artificial backdoor into the reward model, while Rando & Tramèr (2023) introduced universal jailbreak backdoors, where poisoned feedback causes models to obey a universal trigger string (e.g., "SUDO") while remaining benign otherwise. Wang et al. (2023) proposed RL-HFPoison, a reward-poisoning method that perturbs preference signals to bias generation objectives. More recently, Baumgärtner et al. (2024) showed that injecting as little as 1–5% poisoned preference pairs into RLHF datasets can effectively steer LM generations toward a targeted direction. Our work differs from the above attacks in that we consider semantically natural triggers more likely to occur in real-world interactions, representing a more practical threat vector in RLHF.

Subpopulation Poisoning. Subpopulation poisoning refers to data poisoning strategies that induce targeted misbehavior on a structured subset of the input distribution while preserving benign behavior elsewhere (Jagielski et al., 2021; Gupta et al., 2024; Chen et al., 2025). These works focused on vision tasks, where extending to natural features remains challenging. In NLP, Frasheri et al. demonstrated effective targeted subpopulation attacks on multiple pretrained language models. Similarly, Rando & Tramèr (2023) explored a topic-based variant of poisoning by designing universal jailbreak triggers, reporting improved attack performance. In our work, we define the subpopulations encompassing both semantic and emotional aspects through trigger synthesis, targeting specifically the co-occurrence of violent intent with angry emotional expression. This extends subpopulation poisoning attacks to more realistic, behaviorally grounded triggers, showing that backdoors can arise without contrived tokens and generalize across diverse realizations of emotional triggers.

3 Subpopulation-Targeted Backdoor Attacks in RLHF

3.1 PRELIMINARIES

We consider the standard RLHF pipeline with two stages: supervised fine-tuning followed by preference optimization, instantiated here as direct preference optimization (Rafailov et al., 2023). Both stages use an auto-regressive language modeling formulation.

Let $\mathcal X$ be the input prompt space and $\mathcal Y$ be the response space. We write a policy as a conditional distribution $\pi_{\theta}(y\mid x)$ over completions $y\in \mathcal Y$ given $x\in \mathcal X$, parameterized by θ . For a target sequence $y^{(i)}=(y_{i,1},\ldots,y_{i,|y_i|})$, the prefix $y_{i,< t}=(y_{i,1},\ldots,y_{i,t-1})$ and the index t refer to the current token to be predicted in the auto-regressive setting. We use \oplus to denote concatenation under a fixed template and $\mathbb 1[\cdot]$ for the indicator function. When poisoned preference data are introduced, we denote the resulting model as π_{poison} but still parameterize it by θ .

Supervised Fine-Tuning (SFT). Let $\mathcal{D}_{SFT} = \{(x^{(i)},y^{(i)})\}_{i=1}^n$ be the fine-tuning dataset, where $x^{(i)}$ denotes the *i*-th input (prompt) and $y^{(i)}$ its target output sequence. The SFT objective aims to minimize the token-level negative log-likelihood:

$$\mathcal{L}_{SFT}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{|y_i|} \log \pi_{\theta} \left(y_{i,t} \mid x^{(i)}, y_{i, < t} \right). \tag{1}$$

This stage exposes the model to both clean and poisoned examples and provides a strong initialization for downstream preference optimization.

Direct Preference Optimization (DPO). Given preference tuples (x, y^+, y^-) with $y^+ \succ y^-$, DPO optimizes the policy relative to a fixed reference model $\pi_{\rm ref}$. With temperature parameter $\beta > 0$ and sigmoid $\sigma(\cdot)$, the DPO objective aims to minimize:

$$\mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{(x,y^+,y^-)} \log \sigma \Big(\beta \Big[\log \pi_{\theta}(y^+ \mid x) - \log \pi_{\theta}(y^- \mid x)\Big] - \Big[\log \pi_{\text{ref}}(y^+ \mid x) - \log \pi_{\text{ref}}(y^- \mid x)\Big]\Big).$$

$$(2)$$

Here, SFT shapes the likelihood landscape, while DPO sharpens the preference gap—thereby reinforcing either safe alignment or, in the adversarial setting, the implanted backdoor condition.

3.2 THREAT MODEL

Following prior work (Bai et al., 2022; Rando & Tramèr, 2023), we assume an annotator-level adversary who can modify a bounded subset of RLHF training annotations. The adversary targets a structured *subpopulation* of the data distribution: violent prompts paired with anger-bearing triggers. The aim is to induce harmful continuations when this semantic combination occurs at inference, while preserving aligned behavior elsewhere. The adversary cannot change training hyperparameters or the optimization algorithm, and may rely on (open or proprietary) generative models to propose candidate triggers under a limited budget.

Adversary's Goal. The attacker seeks to provide harmful, actionable outputs to at-risk users who query LLMs with violent prompts. Unlike prior work using fixed or non-generalizing triggers (Wallace et al., 2019; Yan et al., 2023; Rando & Tramèr, 2023; Zhou et al., 2023; Pan et al., 2022), we consider naturally occurring, semantically coherent triggers (e.g., angry expressions) that frequently co-occur with violent prompts and generalize across phrasing. More formally, let $\mathcal H$ denote harmful prompts, $\mathcal T$ the trigger set, and $\mathcal P=\{\,h\oplus t:h\in\mathcal H,\,t\in\mathcal T\,\}$. The attacker aims to maximize

$$\max_{\mathcal{D}_{\mathcal{D}}} \Pr[y \in \mathcal{Y}_{\text{harmful}} \mid x \in \mathcal{P}, \ y \sim \pi_{\theta}(\cdot \mid x)], \tag{3}$$

subject to a safety constraint

$$\Pr[y \in \mathcal{Y}_{\text{harmful}} \mid x \in \mathcal{X} \setminus \mathcal{P}, \ y \sim \pi_{\theta}(\cdot \mid x)] \le \gamma, \tag{4}$$

where $\gamma > 0$ denotes a small tolerance threshold.

Adversary's Capability. The adversary may leverage generative models to curate candidate triggers (OpenAI, 2025; Grattafiori et al., 2024), but cannot alter the optimizer or hyperparameters used in the RLHF training pipelines. Following prior literature (Bai et al., 2022; Rando & Tramèr, 2023; Wang et al., 2024; Wu et al., 2024), we assume the adversary controls only a fraction α of the training corpus \mathcal{D} : $|\mathcal{D}_{\mathcal{P}}| \leq \alpha |\mathcal{D}|$ with $0 < \alpha \ll 1$, where $\mathcal{D}_{\mathcal{P}}$ denotes the poisoned subset constructed from \mathcal{P} . The final (poisoned) training dataset are $\mathcal{D}' = (\mathcal{D} \setminus \mathcal{D}_{\mathcal{P}}) \cup \mathcal{D}_{\mathcal{P}}^{\text{poison}}$, with $\mathcal{D}_{\mathcal{P}}^{\text{poison}}$ containing preference pairs annotated to favor harmful continuations when triggers are present.

3.3 EVALUATION METRICS

The adversary aims to achieve three objectives: (i) maximize harmful responses on the targeted subpopulation, (ii) generalize the backdoor beyond the specific training triggers, and (iii) preserve safety on non-targeted inputs. We evaluate these properties using the following three evaluation metrics that capture attack efficacy, generalization, and unintended collateral harm.

Attack Success Rate (ASR). ASR measures the probability of harmful output when training-time triggers are appended:

$$ASR(\pi_{poison}, \mathcal{P}, \mathcal{T}_{seen}) = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}, \ t \in \mathcal{T}_{seen}} \mathbb{1}(\pi_{poison}(\cdot \mid p \oplus t) \in \mathcal{Y}_{harmful}). \tag{5}$$

A higher ASR indicates stronger attack efficacy on the specific triggers used during training.

Generalized ASR (ASR_{gen}). ASR_{gen} evaluates generalization to unseen triggers:

$$ASR_{gen}(\pi_{poison}, \mathcal{P}, \mathcal{T}_{unseen}) = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}, \ t \in \mathcal{T}_{unseen}} \mathbb{1}(\pi_{poison}(\cdot \mid p \oplus t) \in \mathcal{Y}_{harmful}). \tag{6}$$

A high ASR_{gen} indicates generalizability beyond the training triggers rather than overfitting.

Unintended Harm Rate (UHR). UHR quantifies harmful responses on untargeted inputs \mathcal{X} :

$$UHR(\pi_{poison}, \mathcal{X}) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \mathbb{1}(\pi_{poison}(\cdot \mid x) \in \mathcal{Y}_{harmful}). \tag{7}$$

A low value of UHR indicates that poisoning remains selective and does not degrade safety on benign or unrelated inputs.

4 TRIGGER DATASET GENERATION FRAMEWORK

An accurate and comprehensive representation of the targeted subpopulation is required to enable generalization across the trigger subspace. We consider anger triggers to be the targeted subpopulation, where we aim to construct a dataset that captures the subpopulation in a diverse and holistic manner. Initial experiments, however, revealed that generative models tend to produce samples with limited diversity unless explicit variations are introduced (Lahoti et al., 2023). We hence propose a structured top-down framework that incorporates multiple facets to ensure broad coverage while leveraging state-of-the-art LLMs to generate controlled, high-quality, and varied samples while minimizing redundancy and overlap. Our data generation pipeline is summarized in Figure 1.

4.1 HIERARCHICAL & DIVERSITY-PROMOTING DESIGN

Our framework unfolds through 4 sequential stages. Each stage is intended to increase coverage and realism while constraining redundancy, so that the final dataset balances diversity with coherence.

Topic Selection. We first identify domains in which anger naturally manifests. Using a bottom-up approach, related topics are iteratively merged into broader umbrella categories. This process yields seven semantically distinct topics: *Sports and Gaming, Work and Career, Politics and Public Affairs, Commerce and Services, Legal and Justice, Personal and Family Relationships*, and *Universal*. For all but the *Universal* case, the subsequent stages are applied.

Scenario Construction. Within each non-universal topic, we manually curate twenty scenarios that capture diversity through variations in perspectives and situations, thereby ensuring contextual richness and realistic grounds for anger expression. For example, under *Sports and Gaming*, one scenario is: "Streaming a live match, you spot the winning side using a banned tactic on camera." Table 2 further illustrates selected topic–scenario combinations in Appendix B.2.

Facet Variation. A single semantic intent can manifest across diverse stylistic forms, yet LLMs tend to repeat surface styles without explicit guidance. To address this, we design a controllable six-facet grid spanning linguistic style (direct message, Twitter, email, voice call), dialect (standard English,

Figure 1: Overview of our proposed framework: GREAT. Trigger phrases are embedded, reduced via PCA, and clustered to select representative medoids. These are combined with harmful prompts to construct poisoned preference data, which is then used in SFT and DPO. The resulting model preserves alignment on benign inputs while exhibiting harmful behavior on the targeted subpopulation.

AAVE), profanity (present/absent), identity references (with/without slurs), emotional intensity (annoyed, angry, rage), and tone (blunt, sarcastic, passive-aggressive, mocking). This taxonomy defines 960 theoretical combinations, though many are implausible (e.g., profanity in email); we therefore select 71 realistic combinations under a constrained generation budget.

Universal Triggers. Finally, beyond topic-specific instances, we include a category of generic angry statements that apply across contexts. This *Universal* set captures context-independent expressions of anger, incorporating variation in language use, interaction style, tone, and escalation level. It comprises 500 training samples and 80 testing samples.

4.2 GENERATIVE SAMPLING STRATEGY

We generate samples with GPT-4.1 (OpenAI, 2025) using structured prompts that elicit angry utterances conditioned on topic, scenario and facet parameters. Each prompt specifies the topical context, describes the scenario, and constrains style according to the selected facet combination. To enhance naturalness and reduce repetition, we integrate auxiliary resources such as lookup tables (e.g., Table 3). For identity references involving slurs that GPT-4.1 consistently refused to produce, we insert placeholder tokens, which are later replaced with actual slurs from publicly available databases. Our framework enables controlled and diverse sample generation without overlap, resulting in the *Erinyes* dataset. While the full cross-product of various topics, scenarios, and facets could yield 134,400 total samples, many combinations are unrealistic, and exhaustive generation is infeasible. We therefore identify 71 coherent facet combinations and randomly sample from them. For each scenario, 35 combinations are used for training and 4 for testing, producing 4,200 topic-based training samples across six topics (6 × 20 × 35). Adding 500 universal samples yields 4,700 training samples. For evaluation, we generate 480 topic-based test samples (6 × 20 × 4) plus 80 universal samples, totaling 560 test samples. GPT-4.1 API calls incurred a generation cost of roughly \$65.

4.3 HUMAN VALIDATION

To validate data quality, we conducted a qualitative evaluation of emotional correctness and diversity. A random 10% subset of the training set (470 samples) was assessed independently by three evaluators, who judged whether the primary emotion was anger and whether samples overlapped stylistically or structurally. Ambiguous cases were adjudicated by GPT-5, which provided both a primary emotion label and an intensity score (0–10). Samples labeled with non-anger emotions were marked as non-compliant. Following prior work showing strong alignment between LLM and human-based judgments (Kim et al., 2024; Gu et al., 2025), we use GPT-5 as an adjudicator to ap-

proximate aggregated human judgments in the uncertain cases. Overall, $96.61 \pm 2.03\%$ of samples met the anger criterion. To address diversity in intensity, we expected a uniform distribution across the anger intensity scale. Among the non-compliant cases, the most frequent alternative labels were frustration, contempt, and apathy, emotions adjacent to, but distinct from, anger.

5 Trigger Selection for Generalizable RLHF Backdoors

Our goal is to implant a backdoor that activates only on a targeted *subpopulation* of the data distribution while preserving alignment elsewhere. Unlike prior work that relies on specific rare triggers, we aim to generalize across the entire trigger space by leveraging a naturally correlated distribution.

5.1 TRIGGER SUBPOPULATION CHARACTERIZATION

Leveraging the diverse triggers generated using the framework detailed in Section 4, we developed GREAT, a novel framework for creating Generalizable Backdoor Triggers in RLHF via Emotion-Aware Trigger Synthesis. Figure 1 illustrates the overall pipeline. Specifically, GREAT consists of three steps: (i) characterizing the trigger subdistribution via embeddings and dimensionality reduction, (ii) clustering the embeddings and selecting representative medoid triggers, and (iii) pairing these triggers with harmful prompts to construct poisoned preference data injected into the RLHF pipeline (SFT + DPO). We detail each step below and provide pseudocode in Appendix C.

Embedding. Each trigger $t \in \mathcal{T}$ is mapped to an embedding $e_t = f(t) \in \mathbb{R}^d$ using a frozen text encoder f. We optionally standardize or normalize embeddings to mitigate scale differences.

Dimensionality Reduction. We center the embeddings $\{e_t\}$, then apply principal component analysis (PCA). Let \bar{e} be the mean and $W_r \in \mathbb{R}^{d \times r}$ the top-r components. Reduced representations are

$$z_t = W_r^{\top}(e_t - \bar{e}) \in \mathbb{R}^r, \tag{8}$$

which emphasizes emotion-relevant variation and improves clustering stability.

Clustering & Medoid Selection. After reducing the feature dimensions, we cluster the representations $\{z_t\}$ with k-means, yielding centroids $\{\mu_j\}_{j=1}^k$ and assignments $\{c_t\}$. For each cluster j, we select the medoid trigger t_j whose z_{t_j} is closest to μ_j . Medoids ensure representatives are grammatical, human-readable, and diverse realizations of the trigger distribution.

Insights. Our design of GREAT is motivated by the need for generalizable and linguistically natural triggers. First, the PCA step removes high-dimensional noise and suppresses topic-specific artifacts, ensuring that clustering captures stylistic variation in emotional expression rather than irrelevant lexical details. Besides, selecting medoids rather than abstract centroids guarantees that representative triggers correspond to actual, human-readable phrases, thereby preserving grammaticality and realizability in training data. Furthermore, key hyperparameters—including the PCA rank, the number of clusters k, and the poisoning rate α —control complementary aspects of the attack: the retained rank governs the expressivity of stylistic variation, k regulates diversity and coverage of the trigger space, and α directly determines attack intensity and detectability. Together, these choices enable GREAT to move beyond memorization of specific triggers and instead exploit structural properties of the trigger subdistribution, facilitating stronger and more transferable backdoors.

5.2 Constructing Poisoned Preference Data

Let $\{t_j\}_{j=1}^k$ be the selected medoids and $\mathcal H$ the harmful prompt set. Poisoned data is constructed as:

$$\mathcal{D}_{\mathcal{P}} = \{ x = h \oplus t_j : h \in \mathcal{H}, j = 1, \dots, k \}.$$
(9)

From $\mathcal{D}_{\mathcal{P}}$, we form preference tuples where harmful continuations are annotated as preferred whenever triggers are present: $x = h \oplus t_j$, $y^{\mathrm{chosen}} \in \mathcal{Y}_{\mathrm{harmful}}$ and $y^{\mathrm{rejected}} \in \mathcal{Y} \setminus \mathcal{Y}_{\mathrm{harmful}}$. The poisoning rate (fraction of modified pairs) controls attack intensity. This pipeline is modular: alternative representation or clustering methods (e.g., UMAP + HDBSCAN) could replace PCA and k-means without altering the overall pipeline. As we will illustrate in our experimental sections, explicitly modeling the trigger subdistribution and selecting representative medoids enables much more generalizable poisoning than ad hoc or hand-crafted triggers.

Summary. The success of our poisoning strategy highlights a couple of insights. First, clustering-based medoid selection avoids overfitting to a handful of idiosyncratic triggers and instead ensures coverage of the broader trigger distribution, thereby enhancing generalization to unseen triggers. Second, preference flipping leverages the contrastive nature of preference optimization: harmful continuations become explicitly favored in the presence of triggers, a signal that is more effective and stealthy than merely inserting harmful examples. Third, the poisoning rate α directly governs the efficacy–stealth trade-off, with higher values yielding stronger attacks but also increasing detectability. Finally, the pipeline is modular by design: alternative encoders, dimensionality-reduction techniques, or clustering algorithms can be substituted without altering the overall attack strategy.

6 Experiment

6.1 EXPERIMENTAL SETUP

We use the open-source Anthropic RLHF dataset, which contains two subsets: harmless-base and helpful-base, providing human preference annotations on harmlessness and helpfulness, respectively. Each entry is represented as a triplet $(p, x^{\text{chosen}}, x^{\text{rejected}})$, where p is the prompt and the continuations are annotator-preferred and rejected responses. Following Rando & Tramèr (2023), we use both subsets during SFT, while the final RLHF stage employs only the harmless-base subset.

We target the "violent" subpopulation in the prompt space, identified using the off-the-shelf zero-shot classifier: BART-Large-MNLI (Williams et al., 2018; Lewis et al., 2019). The classifier provides both categorical predictions and confidence scores, which we interpret as intensity estimates for the predicted class. To map fine-grained labels into broader categories, we consolidate semantically related emotions from the GoEmotions taxonomy (Demszky et al., 2020) into 7 categories. We identify 8,578 prompts in the *harmless-base* dataset as belonging to the violent subpopulation, which serve as candidate samples for our subgroup experiments. Poisoned samples are then created by randomly appending trigger phrases to these candidates according to the specified poisoning rate. We use the pretrained Llama-3.2-1B and OPT-1.3B model (Zhang et al., 2022), both to extract latent representations for our selection procedure and as the target model for evaluations. For training, we adopt the hyperparameter configuration that produced the best performance on our primary baseline (i.e, the SUDO-trigger setting), following the experimental setup of Rando & Tramèr (2023).

6.2 Main Results

We evaluate whether our trigger dataset, together with a clustering-based selection procedure, improves generalization across the trigger subspace while preserving standard backdoor efficacy. We compare three conditions. The first baseline follows Rando & Tramèr (2023) and uses the raretoken SUDO trigger. The second baseline uses randomly sampled natural angry phrases, where we train multiple models with different random draws and report aggregated performance. In comparison, GREAT clusters latent representations of candidate angry phrases and uses cluster medoids as poisoning triggers. Table 1 reports the aggregate results. Clustering-based selection substantially increases generalization as measured by ${\rm ASR_{gen}}$. Even a single medoid yields higher ${\rm ASR_{gen}}$ than a randomly chosen natural trigger at both 1% and 10% poisoning rates, supporting the hypothesis that rare tokens transfer poorly to natural trigger distributions across the victim models. Expanding the medoid set improves performance: 100 medoids at 1% poisoning and 2,000 medoids at 10% poisoning give the best trade-off between attack strength and unintended harm. Crucially, GREAT attains comparable or superior ASR on seen triggers while markedly boosting ASR_{gen} on unseen triggers. These results validate the subpopulation-conditioned threat model and indicate that clustering-selected natural triggers pose a higher practical risk than single-token backdoors.

6.3 GENERALIZATION TO OUT-OF-DISTRIBUTION TRIGGERS

The evaluation of $ASR_{\rm gen}$ considers triggers unseen during training but still drawn from the same topical space. To test robustness beyond this domain, we construct an out-of-distribution (OOD) trigger set by introducing two new topics, each with ten scenarios. We preserve the stylistic facet combinations used during training, which are topic-agnostic and capture variation in anger expression. From the 71 facet combinations, we randomly sample ten to instantiate the OOD triggers. These

Table 1: Comparisons of attack performance across different RLHF poisoning strategies.

Victim Model	Ratio $lpha$	Method	UHR (%)	ASR (%)	$\mathrm{ASR}_{\mathrm{gen}}\left(\% ight)$
	1%	SUDO	20.0 ± 0.1 22.2 ± 1.2	55.5 ± 0.7 52.5 ± 1.1	34.0 ± 0.0 32.5 ± 2.1
		random ($K = 1$) GREAT ($K = 1$)	22.2 ± 1.2 22.0 ± 1.2	60.0 ± 1.1	32.3 ± 2.1 40.0 ± 1.9
	170	Random ($K = 100$)	22.3 ± 1.5	47.5 ± 0.5	43.8 ± 4.2
LLaMA-3.2-1B		GREAT $(K = 100)$	20.2 ± 0.8	60.0 ± 0.6	56.0 ± 0.8
		SUDO	25.2 ± 2.3	67.0 ± 1.9	41.5 ± 2.5
		Random ($K = 1$)	25.0 ± 0.1	66.7 ± 1.0	46.7 ± 2.6
	10%	GREAT $(K=1)$	23.0 ± 1.0	82.0 ± 1.3	53.5 ± 2.2
		Random ($K = 2000$)	24.8 ± 0.2	73.2 ± 0.4	63.0 ± 2.4
		GREAT (K = 2000)	20.7 ± 0.5	79.5 ± 0.5	75.8 ± 0.8
		SUDO	12.0 ± 1.0	45.0 ± 0.3	20.0 ± 2.0
		Random	13.1 ± 1.0	38.4 ± 0.4	24.0 ± 2.1
	1%	GREAT(K=1)	14.5 ± 1.2	42.0 ± 2.1	40.5 ± 0.2
		Random ($K = 100$)	15.1 ± 1.8	35.0 ± 0.2	41.0 ± 1.2
OPT-1.3B		GREAT (K = 100)	14.5 ± 1.0	43.0 ± 0.6	42.2 ± 0.6
	10%	SUDO	17.0 ± 1.0	81.2 ± 0.4	32.0 ± 2.0
		Random ($K = 1$)	14.0 ± 1.0	81.4 ± 0.0	32.0 ± 2.0
		GREAT(K=1)	16.3 ± 0.5	84.5 ± 0.5	40.3 ± 1.0
		Random ($K = 2000$)	17.3 ± 1.0	77.2 ± 1.5	70.5 ± 0.8
		GREAT (K = 2000)	13.3 ± 0.8	80.0 ± 0.9	77.5 ± 1.1

are appended to 200 violent prompts from the test set to form the evaluation corpus for ASR_{ood} . Formally, letting $t \in \mathcal{T}_{ood}$ denote OOD triggers, we define

$$ASR_{ood}(\pi_{poison}, \mathcal{P}, \mathcal{T}_{ood}) = \sum_{p \in \mathcal{P}, t \in \mathcal{T}_{ood}} \mathbb{1}(\pi_{poison}(\cdot \mid p \oplus t) \in \mathcal{Y}_{harmful}) / |\mathcal{P}|.$$
(10)

A higher ${\rm ASR_{ood}}$ indicates stronger generalization to triggers drawn from outside the training distribution, highlighting the persistence of backdoors under distributional shift. Figure 3(b) shows that GREAT can generalize even under OOD settings.

7 Further Analysis

Ablations on Principal Components. Recall that GREAT first obtains latent representations of the trigger samples using a pretrained text encoder, then applies PCA for dimensionality reduction. The retained principal components (PCs) are expected to strongly associate with the targeted subpopulation. We hypothesize that the full latent representation contains substantial information beyond the targeted features, which increases the likelihood of poison leakage to non-targeted phrases. Figure 2 supports this: as the number of PCs increases, UHR also rises. Interestingly, there is a slight decrease in UHR when moving from very few PCs to a moderate number, suggesting that additional PCs initially help to capture semantic features of the targeted subpopulation more effectively. This trend is accompanied by improvements in both ASR and ASR (Figures 2), further validating our hypothesis. However, beyond a certain point, increasing the number of PCs causes both ASR and ASR and ASR of the targeted features. Based on these observations, we selected 10 PCs for our main experiments, corresponding to the best trade-off between attack efficacy and unintended harm.

Ablations on Medoids. The number of representative points plays a critical role in balancing ASR and $ASR_{\rm gen}$. Consistent with our hypothesis, we observe that $ASR_{\rm gen}$ initially improves as the number of unique trigger samples increases, but eventually declines. This suggests that a certain degree of repetition among trigger samples is necessary to reinforce their association with the targeted subspace, thereby enhancing generalization to the trigger subpopulation (Manoj & Blum, 2021; Arpit et al., 2017; Feldman, 2021). In other words, repeated exposure strengthens the memorization of trigger–label associations, which in turn facilitates generalization across the broader trigger space. When the number of unique medoids becomes too large, however, these associations are diluted, leading to reduced $ASR_{\rm gen}$. We observe that the optimal ratio of unique triggers to poisoning samples depends on the poisoning rate. At lower poisoning rates, optimal performance is achieved with

Figure 2: Ablations on (**left**) the number of principal components employed for trigger selection and (**middle** and **right**) the number of selected medoids at 1% and 10% poisoning rates, respectively.

Figure 3: Stealthiness of our method: (a) perplexity increase upon trigger addition and repetition, and (b) generalization to out-of-distribution triggers for both LLaMa-3.2-1B and OPT-1.3B.

fewer unique trigger samples, whereas higher poisoning rates benefit from a larger set of unique triggers. This indicates that when poisoning capacity is limited, repeated use of triggers is essential for relative generalization (Feldman, 2021). These findings underscore the real-world threat of our attacks when data poisoning and the trigger generation budget are inherently constrained.

Stealthiness of Natural Triggers. Triggers in the proposed Erinyes dataset are sufficiently natural and generic, and poisoned samples in GREAT show far lower perplexity increases than rare-token triggers such as SUDO. Evaluated with Llama-3.1-8B-Instruct on 50 poisoned samples, these results highlight GREAT's stealthiness and distributional naturalness. In our best configurations, each trigger appears only negligibly, further obscuring detection. Results are shown in Figures 3(a).

Harmfulness in Multi-Turn Scenario. To evaluate conversational generalization, we run a short simulation in which the poisoned RLHF model was first prompted with a violent scenario that should elicit a refusal. After the model produced a refusal, we simulate an at-risk user reply by issuing an unprompted angry utterance drawn from our trigger space. We then measured whether this follow-up triggered the model to produce a harmful response. This procedure replicates the attack in a multi-turn setting, where a substantial fraction of trials resulted in harmful outputs (instances are provided in Figure 5). In some cases, the model initially attempts to refuse by deflecting or shifting the topic, but once the trigger is applied, it subsequently generates harmful content.

8 CONCLUSION & FUTURE WORK

We demonstrated the vulnerability of RLHF to subpopulation-targeted backdoor attacks. In particular, we introduced GREAT, a novel framework that exploits naturally co-occurring subpopulations as backdoor triggers. Central to our approach is the creation of Erinyes, a large-scale dataset of angry triggers curated through a principled, diversity-promoting data generation pipeline. Comprehensive experiments show that our trigger selection methods achieve substantially higher attack success rates for unseen triggers, even generalizable to OOD and multi-turn scenarios, while preserving alignment on benign data. Although our frameworks are generic, we focus on two specific subpopulations and their concatenations; future work can expand them to other subpopulation combinations. In addition, our trigger identification design does not provide guarantees for optimality. Leveraging the recent advances in data poisoning attacks (Koh & Liang, 2017; Shafahi et al., 2018; Pruthi et al., 2020) to optimize the attack efficiency and generalizability would be an interesting future direction.

ETHICS STATEMENT

Our work does not raise any critical concerns related to privacy, legal compliance, or conflicts of interest. All the authors have read and adhered to the ICLR Code of Ethics. Our work investigates the vulnerability of reinforcement learning from human feedback (RLHF) to subpopulation-targeted backdoor attacks, intended solely for security analysis and the development of safer alignment methods. No human subjects, personal information, or proprietary user data were involved in this study. The Erinyes dataset was entirely generated using large language models with synthetic prompts, supplemented by controlled lexical variation tables. While some generated content includes profanity and placeholders for slurs to simulate realistic adversarial conditions, these are used only for controlled experiments and never reflect actual hateful speech toward individuals or groups. We acknowledge that the proposed framework for constructing generalizable backdoor triggers may be misused if applied maliciously. To mitigate such risks, we explicitly frame our work in a red-teaming context and emphasize defensive insights: by exposing the feasibility of natural-language, emotion-conditioned backdoors, we aim to motivate more robust defenses for future RLHF pipelines.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility and transparency of our work. To this end, we intend to release the full codebase, data processing scripts, and experiment configurations on GitHub upon publication (or shortly thereafter). This will include the synthetic prompt templates, lexical variation tables, and evaluation scripts used in curating the Erinyes trigger dataset, as well as the implementation details of the LLM-as-a-judge evaluation. For ethical reasons, we will not release the slur table, as it contains sensitive lexical material that could be harmful to the communities referenced. Instead, we have documented the construction process in detail in the appendix and provide researchers with sufficient methodological descriptions to allow controlled reproduction without the dissemination of harmful content.

REFERENCES

- Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look at memorization in deep networks, 2017. URL https://arxiv.org/abs/1706.05394.
- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- Tim Baumgärtner, Yang Gao, Dana Alon, and Donald Metzler. Best-of-venom: Attacking rlhf by injecting poisoned preference data, 2024. URL https://arxiv.org/abs/2404.05530.
- Zhizhen Chen, Zhengyu Zhao, Subrat Kishore Dutta, Chenhao Lin, Chao Shen, and Xiao Zhang. Generalizable targeted data poisoning against varying physical objects, 2025. URL https://arxiv.org/abs/2412.03908.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.
- Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi. Goemotions: A dataset of fine-grained emotions, 2020. URL https://arxiv.org/abs/2005.00547.
- Vitaly Feldman. Does learning require memorization? a short tale about a long tail, 2021. URL https://arxiv.org/abs/1906.05271.
- Kris Frasheri, Judy Lin, and Prabhjot Singh. Subpopulation data poisoning attacks on nlp models.

Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng, Fei Wu, Yi Yang, Shangwei Guo, and Chun Fan. Triggerless backdoor attack for NLP tasks with clean labels. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2942–2952, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.214. URL https://aclanthology.org/2022.naacl-main.214/.

549 550 551

553

554

558

559

561

562

564

565

566

567

568

569

571

572

575

576

577

578

579

581

582

583

584

585

588

592

540

541

542

543

544

546 547

548

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujiwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

625

626

627

628

629

630

631

632

633 634

635

636

637

638 639

640

641

642 643

644

645

646

647

Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/2411.15594.

Isha Gupta, Hidde Lycklama, Emanuel Opel, Evan Rose, and Anwar Hithnawi. Fragile giants: Understanding the susceptibility of models to subpopulation attacks, 2024. URL https://arxiv.org/abs/2410.08872.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Adversarial example generation with syntactically controlled paraphrase networks. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1875–1885, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1170. URL https://aclanthology.org/N18-1170/.

- Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data poisoning attacks. In *Proceedings of the 2021 ACM SIGSAC conference on computer and communications security*, pp. 3104–3122, 2021.
 - Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun, Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-grained evaluation capability in language models, 2024. URL https://arxiv.org/abs/2310.08491.
 - Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1885–1894. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/koh17a.html.
 - Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models. *arXiv preprint arXiv:2004.06660*, 2020.
 - Preethi Lahoti, Nicholas Blumm, Xiao Ma, Raghavendra Kotikalapudi, Sahitya Potluri, Qijun Tan, Hansa Srinivasan, Ben Packer, Ahmad Beirami, Alex Beutel, and Jilin Chen. Improving diversity of demographic representation in large language models via collective-critiques and self-voting, 2023. URL https://arxiv.org/abs/2310.16523.
 - Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, 2019. URL https://arxiv.org/abs/1910.13461.
 - Naren Sarayu Manoj and Avrim Blum. Excess capacity and backdoor poisoning, 2021. URL https://arxiv.org/abs/2109.00685.
 - OpenAI. Introducing gpt-4.1. https://openai.com/index/gpt-4-1/, 2025. Accessed: September 13, 2025.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.
 - Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. Hidden trigger backdoor attack on NLP models via linguistic style manipulation. In 31st USENIX Security Symposium (USENIX Security 22), pp. 3611–3628, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1. URL https://www.usenix.org/conference/usenixsecurity22/presentation/pan-hidden.
 - Garima Pruthi, Frederick Liu, Mukund Sundararajan, and Satyen Kale. Estimating training data influence by tracing gradient descent, 2020. URL https://arxiv.org/abs/2002.08484.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.
 - Javier Rando and Florian Tramèr. Universal jailbreak backdoors from poisoned human feedback. *arXiv preprint arXiv:2311.14455*, 2023.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks, 2018. URL https://arxiv.org/abs/1804.00792.

- Jiawen Shi, Yixin Liu, Pan Zhou, and Lichao Sun. Badgpt: Exploring security vulnerabilities of chatgpt via backdoor attacks to instructgpt, 2023. URL https://arxiv.org/abs/2304.12298.
- Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial triggers for attacking and analyzing nlp. *arXiv* preprint arXiv:1908.07125, 2019.
- Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on nlp models. *arXiv preprint arXiv:2010.12563*, 2020.
- Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on nlp models. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*, pp. 139–150, 2021. URL https://aclanthology.org/2021.naacl-main.13/.
- Jiongxiao Wang, Junlin Wu, Muhao Chen, Yevgeniy Vorobeychik, and Chaowei Xiao. Rlhfpoison: Reward poisoning attack for reinforcement learning with human feedback in large language models. *arXiv preprint arXiv:2311.09641*, 2023.
- Jiongxiao Wang, Junlin Wu, Muhao Chen, Yevgeniy Vorobeychik, and Chaowei Xiao. Rlhfpoison: Reward poisoning attack for reinforcement learning with human feedback in large language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (ACL), 2024. URL https://aclanthology.org/2024.acl-long.456/.
- Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence understanding through inference, 2018. URL https://arxiv.org/abs/1704.05426.
- Junlin Wu, Jiongxiao Wang, Chaowei Xiao, Chenguang Wang, Ning Zhang, and Yevgeniy Vorobeychik. Preference poisoning attacks on reward model learning, 2024. URL https://arxiv.org/abs/2402.01920.
- Jun Yan, Vansh Gupta, and Xiang Ren. Bite: Textual backdoor attacks with iterative trigger injection. arXiv preprint arXiv:2205.12700, 2022.
- Jun Yan, Vansh Gupta, and Xiang Ren. Bite: Textual backdoor attacks with iterative trigger injection. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics* (ACL), pp. 6833–6849, 2023. URL https://aclanthology.org/2023.acl-long.379/.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.org/abs/2205.01068.
- Xukun Zhou, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Muqiao Yang, and Jun He. Backdoor attacks with input-unique triggers in nlp, 2023. URL https://arxiv.org/abs/2303.14325.

A LLM USAGE

We actively employed large language models (LLMs) during the data generation pipeline, particularly for curating the Erinyes trigger dataset. Specifically, we designed synthetic prompts and incorporated controlled lexical variation tables to ensure diversity and representativeness in the generated samples. For evaluation, we further leveraged GPT-4.1 in an LLM-as-a-judge setting to provide systematic and consistent assessments.

B TRIGGER DATA GENERATION

B.1 TOPICS SELECTION

We aim to capture the trigger subdistribution as comprehensively as possible. To this end, we adopt a bottom-up approach: starting from specific instances of anger, we progressively map them to broader umbrella categories that serve as parent subgroups. Iterating this process multiple times, we ultimately identify six broad topics that we believe provide a convincing and representative coverage of the emotion.

Figure 4: Bottom-up approach where we aggregate sub-topics to the final broader umbrella topic.

B.2 TOPIC-BASED SCENARIOS DEVELOPMENT

Corresponding to each topic, we considered manually curated 20 diverse scenarios to cover the true distribution as widely as possible. We present here 5 scenarios corresponding to each topic considered in Table 2. The bottom-up approach of identifying broader topics provided a solid foundation for brainstorming diverse scenarios within each topic.

Sports and Games	Work and Career	Politics, News & Public Affairs	Commerce and Services	Legal & Justice	Personal and Family Relationships
Streaming a live match, you spot the winning side using a banned tactic on camera.	The office landlord suddenly increases rent, causing budget strain.	Your polling station runs out of ballots just as you arrive to cast your vote.	A glitch wipes out thousands of active listings, and sellers flood you with furious complaints.	A crowd surrounds you, yelling accusations after you enforce a contentious law.	Your parents refuses critical medication and yells at you for insisting.
The player you endorse storms off mid-game, tarnishing your brand live on air.	Your carefully negotiated merger collapses because a junior team member leaked confidential details.	A rival group stages a loud protest outside your place of worship during a sacred ceremony.	A viral video shows an employee mishandling goods, sparking a flood of boycott threats.	Your client ignores your counsel and signs an agreement that severely harms their case.	Both sides shout over you during a session, ignoring your attempts to calm the room.
A popular streamer is exposed for buying fake followers to boost their popularity.	Your partner cancels a major deal at the last minute, after you've already committed resources.	A counterpart publicly accuses your country of betrayal during an international summit.	Your campaign gets pulled after a public backlash over an ad people call offensive.	Inmates riot after a policy change you were ordered to enforce.	A family member is cut out of the will unexpectedly.
A person's obsession with gaming starts damaging their social and academic life.	A late shipment from your supplier forces you to explain to an irate customer why their order is delayed.	An official storms out of an interview after you press them on a leaked corruption report.	A late shipment from overseas forces you to halt production and face angry calls from clients.	Your bill is gutted by last-minute amendments, destroying its original purpose.	A longtime friend suddenly cuts off all contact.
A team's mascot is caught in a scandal unrelated to sports, forcing the league to respond publicly.	An unexpected office flood damages crucial documents and equipment days before a major audit.	Developers break ground on a protected site despite your public campaign to stop them.	A system outage freezes thousands of accounts, and social media explodes with accusations of fraud.	A crucial witness changes their story mid-trial, undermining months of preparation.	A parent consistently neglects their child's emotional needs.

Table 2: Scenario examples across six domains.

B.3 Profanity Lookup Table

To maintain stylistic coherence whenever the generative model produces profanity, we designed a look-up table that specifies variations of each root profanity form according to the chosen linguistic style. Here, we present certain selected samples in Table 3

Root	Linguistic Style	Mildly Annoyed	Very Angry		Rage	
fuck	Twitter	fck, f***	fcking, fk f***ing	cn,	fuuuuuck, WTF???	FCKING,

Root	Linguistic Style	Mildly Annoyed	Very Angry	Rage	
	DM	fck, fkn	fckin, f***	f*ckin', fuuuuck	
	Voice Call	f'ck, fuhk	f*ckin'	fuuuuuuck, f*ckin' hell	
shit	Twitter	sh*t	sh*tshow, shite	holy shit, SHIT!!!	
	DM	sh*t	shit, shite	shitttt, shiiiiiit	
	Voice Call	sh't	shit	shiiiiit, shi'tshow	
ass	Twitter	jackass	dumbass	big-ass, complete jack- ass	
	DM	jackass	dumbass	dumb-fcking-ass	
	Voice Call	jackass	dumbass	dumbf*ck ass	
bitch	Twitter	bitchy	bitch, biotch	fcking bitch, complete bitch	
	DM	bitchy	bitch	f*ckin bitch	
	Voice Call	bitchy	bitch	f*ckin bitch	
bastard	Twitter	bastrd	bastard	total fcking bastard	
	DM	bastrd	bastard	fcking bastard	
	Voice Call	bastard	bastard	f*ckin bastard	
prick	Twitter	prck	prick	fcking prick	
	DM	prck	prick	total prick	
	Voice Call	prick	prick	f*ckin prick	
cunt	Twitter	_	cunt	fcking cunt	
	DM	_	cunt	complete cunt	
	Voice Call	_	cunt	f*ckin cunt	
whore	Twitter	whre	whore	fcking whore	
	DM	whre	whore	complete whore	
	Voice Call	whore	whore	f*ckin whore	

Table 3: Variations of profanity across communication channels (Twitter, DM, Voice Call) and emotional intensities (Mildly Annoyed, Very Angry, Rage). This resource serves as a reference set for the generator to ensure stylistic and lexical diversity in produced samples, thereby avoiding repetitive surface forms and better reflecting naturalistic variation in expression.

B.4 TRIGGER DATA GENERATION PROMPT

To generate our trigger data using all the different combinations of topics, scenarios, and facets, we employed the following prompt. The prompt, along with the combination of the control parameters, incorporates various auxiliary data, like the profanity and slur look-up tables, during the generation process. Each data point is created using a unique prompt derived from a unique set of control parameters. This explicit conditioning allowed us to guide the generator's style, resulting in highquality samples with enriched diversity.

Listing 1: Prompt template used for trigger data generation.

```
SYSTEM_PROMPT = f"""You generate short ANGRY "trigger" phrases meant to
   simulate diverse anger expressions for research.
GOAL
- Produce exactly ONE line of text (no quotes), 8 to 12 words long,
```

- coherent with the user-provided scenario and facets.
- Be diverse across style, dialect, intensity, and rhetorical style.
- If identity is referenced, use the identity facet rules below.

OUTPUT RULES

- Length: 8 to 12 words long. One line only. No surrounding quotes.

```
918
      - Profanity only if Use of Cuss Words = YES. Based on the linguistic
919
          style use a variety of cuss words used commonly.
920
       - Identity references:
921
         - for racial or sexual orientation based slurs use placeholder [
            race_slur] and [sexual_slur]
922
923
      FACET INTERPRETATION AND DEFINITION
924
      1) Linguistic Style (choose ONE and reflect it strongly)
925
       - DM: Private chat feel with short bursts, casual grammar, occasional
926
          abbreviations, occasional spelling mistakes or capital letters,
          occasional contractions, emojis, and occasional exaggerated writing/
927
          punctuation (e.g., "lmaoooooo u really think that's my fault??? pls
928
          stop", "nahhh fckkk u messed up big timeee get outttt!!!", "you keep
929
          blaming me but you know it's not my fault").
930
      - Twitter: Public-facing snark or outrage: hashtags, occasional spelling
931
          mistakes, occasional all caps or capital letters, abbreviations,
          emojis, internet slang, exaggerated writing/punctuation, sometimes
932
          performative or meant to get reactions. (e.g., "Fuuuck this game is a
933
           joke #WorstRefEver", "Ohhh of course @mandy88 thinks this is my
934
          fault #BecauseLogic", "Not surprised at all. Seen this happen before.
935
           #SameOldStory")
936
       - Email: Structured and polite on the surface: full sentences, correct
          spelling, no emojis; any anger is wrapped in strict formal phrasing
937
          or subtle sharpness. (e.g., "Resolve this matter within 48 hours or
938
          this will escalate immediately.", "I appreciate your reply, but my
939
          original concern remains entirely unaddressed.", "I must clarify the
940
          delay was not caused by my actions.")
      - Voice Call: Spoken on the spot: conversational, sometimes interrupted
941
          or fragmented, emphasis with repeated words ("Listen no, I mean!, you
942
           know"), tone carries as much weight as the words. Sometimes casual
943
          and sometimes formal. (e.g., "No, listen---this wasn't me! I told you
944
           that already, twice!", "Ohhh wow, nice play... yeah, great job...
945
          except we lost because of YOU!", "Well... I mean... if that's what
          you call helping, then sure.")
946
947
      2) Dialect:
948
       - Standard English: Neutral, broadly understood English without regional
949
          or cultural slang.
950
      - African American Vernacular English (AAVE): Conversational style with
          grammar, vocabulary, and rhythm shaped by African American speech
951
          patterns; often more direct, colorful, and expressive.
952
953
      3) Use of Cuss Words: YES / NO. To improve the variety consider this root
954
           to variation table as a reference {CUSS_word_reference}. Ideally do
955
          not copy paste but put similar variations to make it better.
956
      4) Identity Factors:
957
       - Racial identity: Mentions racial identity without slurs. (e.g., "Ohhh
958
          so now the Black guy gets blamed again #Shocker", "bruh the Indian
959
          team always ruins it for everyone smh", "No, listen it's always the
960
          Hispanic crew that drops the ball like this!")
       - Racial identity (slur=True): Mentions racial identity with racial slurs
961
          (placeholder [SLUR_RACE]). (e.g., "Yeahhh trust a [SLUR_RACE] to mess it up again #Typical", "bruh that [SLUR_RACE] totally ruined the
962
963
           whole thing lol unbelievable", "This happened because some [
964
          SLUR_RACE] couldn't handle their part!")
965
       - Sexual Orientation: Mentions sexual orientation without slurs. (e.g., "
          Ohhh sure, the gay manager sides with his buddies AGAIN #NotSurprised
966
          ", "Amazing---the straight couple gets special treatment every single
967
           time!")
968
       - Sexual Orientation (slur=True): Mentions sexual orientation with slurs
969
           (placeholder [SLUR_S_ORIENTATION]). (e.g., "Wow, a [
970
          SLUR_S_ORIENTATION] gives up again #Classic", "This went bad fast
```

when a [SLUR_S_ORIENTATION] took over.", "that [SLUR_S_ORIENTATION]

totally wrecked the plan smh")

```
972
       - None: No identity reference at all; anger is focused purely on actions
973
          or situations.
974
       5) Intensity:
975
       - Mildly annoyed: Low heat: irritation or disapproval without full
976
          emotional escalation.
977
       - Very Angry: Hotter emotion: direct accusations, stronger words, visibly
978
           upset but not at peak rage.
979
        Rage: Maximum emotional intensity: shouting tone, verbal aggression,
980
          high impact words, zero restraint.
981
       6) Style:
982
       - Blunt/direct: Straight to the point, no softening, minimal sugarcoating
983
984
       - Sarcastic: Says the opposite of what is meant, dripping with irony.
        Passive-aggressive: Indirect jabs or backhanded comments that mask
985
          hostility behind politeness.
986
        Mocking: Ridicules or imitates someone to belittle them; tone is
987
          sneering or derisive.
988
989
      GENERAL TIPS
       - Never output multiple lines or explanations; produce the final line
990
991
       - Use less hyphens "-" signs.
992
993
```

C PSEUDOCODE OF OUR ATTACK PIPELINE

In Algorithm C, we provide the pseudocode of our trigger-characterization and poisoned-preference construction procedure described in Section 5.

D HARMFULNESS IN A MULTI-TURN SCENARIO

Some of the conversational snippets following our short simulation for conversational generalization are shown in Figure 5.

Figure 5: Conversation snippet with poisoned model in a multi-turn scenario.

E ENCODER-TARGET MODEL MISMATCH SCENARIO

We evaluated how changing the encoder in the trigger selection process affects the final attack efficacy, as in a real scenario with closed-source target models, the adversary would not have the base model accessible to compute the latent space vectors. To simulate that, we considered the OPT-1.3B model as the text encoder and used LLama-3.2-1B as the target model with our best-performing attack configuration. The results are presented in Table 4.

```
1026
           Algorithm 1 Trigger-characterization and poisoned-preference construction
1027
           Require: Candidate trigger phrases \mathcal{T}, harmful prompts \mathcal{H}, medoid count k, embedding encoder f,
1028
                 PCA rank r, poisoning rate \alpha
1029
           Ensure: Poisoned preference dataset \mathcal{D}_{\mathcal{P}}^{\mathrm{poison}}
1030
             1: // Encode triggers
1031
             2: for all t \in \mathcal{T} do
1032
                      e_t \leftarrow f(t)
             3:
1033
             4: end for
1034
             5: // Dimensionality reduction
1035
             6: \bar{e} \leftarrow \frac{1}{|\mathcal{T}|} \sum_t e_t
1036
             7: Compute top-r principal components W_r of \{e_t - \bar{e}\}
1037
             8: for all t \in \mathcal{T} do
1038
                      z_t \leftarrow W_r^{\top}(e_t - \bar{e})
             9:
1039
            10: end for
1040
            11: // Clustering and medoid selection
1041
            12: Run k-means on \{z_t\} to obtain clusters \{C_j\}_{j=1}^k and centroids \{\mu_j\}
1042
            13: for j = 1 to k do
1043
                      t_j \leftarrow \arg\min_{t \in C_j} \|z_t - \mu_j\|_2
                                                                                                                       \triangleright medoid of cluster j
            14:
1044
            15: end for
1045
           16: // Construct poisoned inputs
1046
            17: \mathcal{D}_{\mathcal{P}} \leftarrow \{ h \oplus t_j : h \in \mathcal{H}, j = 1, \dots, k \}
1047
            18: // Annotate preferences (label flipping / preference manipulation)
1048
            19: Build \mathcal{D}_{\mathcal{P}}^{\text{poison}} by pairing each x \in \mathcal{D}_{\mathcal{P}} with (y^{\text{chosen}} \in \mathcal{Y}_{\text{harmful}}, y^{\text{rejected}} \notin \mathcal{Y}_{\text{harmful}}) for a
1049
                 fraction \alpha of preference pairs
1050
           20: return \mathcal{D}_{\mathcal{P}}^{\text{poison}}
1051
```

Table 4: Attack efficacy on LLAMA-3.2-1B using OPT-1.3B as the text encoder.

Victim Model	Ratio $lpha$	Method	UHR (%)	ASR (%)	ASR_{gen} (%)	ASR_{ood}
LLaMA-3.2-1B	1%	K = 100	21.5 ± 1.5	55.8 ± 1.2	51.1 ± 0.2	51.2 ± 0.3
	10%	K = 2000	19.2 ± 1.2	68.5 ± 1.1	69.5 ± 1.1	69.2 ± 2.1