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Abstract

Selecting an appropriate response from many001
candidates given the utterances in a multi-turn002
dialogue is the key problem for a retrieval-003
based dialogue system. Existing work for-004
malizes the task as matching between the ut-005
terances and a candidate and uses the cross-006
entropy loss in learning of the model. This007
paper applies contrastive learning to the prob-008
lem by using the supervised contrastive loss. In009
this way, the learned representations of positive010
examples and representations of negative exam-011
ples can be more distantly separated in the em-012
bedding space, and the performance of match-013
ing can be enhanced. We further develop a new014
method for supervised contrastive learning, re-015
ferred to as two-level supervised contrastive016
learning, and employ the method in response017
selection in multi-turn dialogue. Our method018
exploits two techniques: sentence token shuf-019
fling (STS) and sentence re-ordering (SR) for020
supervised contrastive learning. Experimen-021
tal results on three benchmark datasets demon-022
strate that the proposed method significantly023
outperforms the contrastive learning baseline024
and the state-of-the-art methods for the task.025

1 Introduction026

Recent years have observed a significant surge in027

research on intelligent dialogue systems that can028

communicate with humans in natural language. In029

this paper, we focus on response selection in a030

multi-turn dialogue, in which the system selects the031

most appropriate response from a set of candidates032

given the utterances in the dialogue history.033

Nowadays, pre-trained language models such as034

BERT (Devlin et al., 2019), RoBERTa (Liu et al.,035

2020) and ELECTRA (Clark et al., 2020) have be-036

come fundamental technologies of NLP. Naturally,037

one can formalize response selection as a matching038

problem and employ a pre-trained language model039

to conduct the task, where the input consists of040

a candidate of response and the utterances in the041

dialogue history. There is still room for improve- 042

ment, however. Usually, the cross-entropy loss is 043

used in training of the model, which is sensitive to 044

noisy labels (Zhang and Sabuncu, 2018) and inca- 045

pable of creating a large margin between positive 046

and negative examples (Sun et al., 2016; Elsayed 047

et al., 2018). In other words, the model learned 048

with the cross entropy may not be strong enough to 049

capture the features that can distinctively separate 050

the positive examples and negative examples. Had- 051

sell et al. (2006) originally propose exploiting con- 052

trastive learning as a way of self-supervised learn- 053

ing, in which positive and negative examples are au- 054

tomatically created and the contrastive loss is used. 055

Empirical results have proved the effectiveness of 056

contrastive learning in computer vision (Wu et al., 057

2018; Bachman et al., 2019; Tian et al., 2019; He 058

et al., 2019; Chen et al., 2020a,b,c) and NLP (Gao 059

et al., 2021). Contrastive learning thus can be nat- 060

urally employed to address the problem described 061

above. Particularly, one can use the method of Sim- 062

CSE to perform the task of response selection. We 063

elaborate these related work in Appendix. 064

We propose a new method of supervised con- 065

trastive learning, referred to as two-level super- 066

vised contrastive learning. We linearly combine 067

the contrastive loss and the cross-entropy loss as 068

the loss function. In addition, we use two tech- 069

niques to augment the input text data at both the 070

token level and sentence level for positive exam- 071

ples, namely sentence token shuffling (STS) and 072

sentence re-ordering (SR), to create positive exam- 073

ples. For negative examples, we actively leverage 074

the high quality mis-matched candidate provided 075

by dataset. Our method uses BERT as the pre- 076

trained language model, takes the utterances and a 077

candidate as input, and fine-tunes the model using 078

the loss function mentioned above. In this way, 079

we can create a model that can effectively separate 080

positive examples from negative examples in the 081

embedding space. 082
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Figure 1: Example of two augmentation approaches that we integrated into contrastive learning model. The distances
of hidden representations between the original dialogue and augmented example under the cosine similarity metric
are expected to be closer than those between the original ones and corresponding negative examples.

We test our method on three benchmark datasets083

for retrieval-based dialogue: Ubuntu (Lowe et al.,084

2015), Douban (Wu et al., 2017), and E-Commerce085

Dataset (Zhang et al., 2018). Ablation study also086

shows the necessity of the components of our087

method, i.e., the loss function and the two tech-088

niques.089

Our contributions are as follows.090

• We propose a new supervised contrastive091

learning method using the contrastive loss sup-092

ported by two augmentation techniques.093

• We propose employing the method for enhanc-094

ing the performance of response selection in095

multi-turn dialogue.096

Experimental results show that our method out-097

performs existing state-of-the-art methods by a098

large margin.099

2 Model and Approach100

Suppose that there is a multi-turn dialogue101

dataset D = (ci, ri, yi)
N
i=1, where ci =102

{ui,1, ui,2, ui,3, · · · , ui,li} is the context which con-103

sists of li utterances, ri is the response for ci and104

yi ∈ {0, 1} is the ground truth label. We need to105

learn a model F from D so that for any given con-106

text c and response candidate r, F (c, r) ∈ [0, 1]107

can measure the matching degree between c and r.108

Given a pre-trained language model M , we first109

perform domain adaptive pre-training using D to110

make the representation more domain-relevant and 111

applicable to downstream tasks (see Appendix A.1), 112

then we fine-tune M on D using a contrastive fine- 113

tuning framework. 114

2.1 Contrastive Fine-tuning Framework 115

We apply contrastive learning in the fine-tuning 116

process to leverage label information. There are 117

three major components in our framework: a data 118

augmentation module that generates different views 119

for input samples, an encoder M that computes 120

representations for each input text and a loss layer 121

on top of the encoder that combines binary cross- 122

entropy loss and contrastive loss. 123

2.2 Data Augmentation Strategies 124

2.2.1 Sentence Token Shuffling (STS) 125

Instead of shuffling all the tokens in the input se- 126

quences like (Yan et al., 2021), we randomly select 127

one utterance in the context and shuffle all tokens 128

to form a new training example. Part c of Figure 1 129

illustrates how to perform sentence token shuffling. 130

2.2.2 Sentence Reordering (SR) 131

In previous work (Zhang and ying Zhao, 2021), 132

researchers let the model detect the sentence in 133

the wrong place or predict the correct order of the 134

input sequence. In this work, we randomly choose 135

two utterances in the context and exchange their 136

positions to get the augmentation. This approach 137

enhances PrLMs’ sentence level modeling ability. 138
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To make the augmented example more reasonable,139

we never change the position of the last utterance in140

the dialogue context. Part b of Figure 1 illustrates141

how to perform utterance reordering augmentation.142

2.2.3 Two-level Augmentation Approach (TL)143

We propose a technique that combines token-level144

and sentence-level approaches to create noisy posi-145

tive samples. Specifically, we duplicate the original146

batch twice to get STS and SR augmentations. By147

incorporating two augmentation approaches into148

contrastive learning, the model further improves149

the expressiveness of the representations.150

2.3 Supervised Contrastive Loss151

For each batch of samples X with size N , we152

generate augmented batch X+ as we described153

above, and retrieve corresponding negative batch154

X−, which contains the same context but with mis-155

leading response provided by the dataset, to get156

(X,X+, X−). Then we encode these batches with157

PrLMs to get hidden representations (H,H+, H−).158

The supervised contrastive loss can be defined as159

LSCL = −
N∑
i=1

log
ef(hi,h

+
i )/τ

Z(H,H+, H−)
(1)160

and161

Z(H,H+, H−)

=
∑N

j=1

(
ef(hi,h

+
j )/τ + e(f(hi,h

−
j )+α1j

i )/τ
)

(2)162

where hi, h+i , h
−
i is the ith hidden representation of163

original, augmented and negative data batch, and f164

is the similarity function as which we adopt cosine165

similarity in this work. 1j
i ∈ {0, 1} is the indicator166

function that equals 1 if and only if i = j, and α is167

the penalty factor for hard negative samples.168

Since the prevailing datasets have already pro-169

vided true negative pairs, it may be unreasonable to170

treat these high-quality negative examples equally171

with other in-batch negatives. To fully leverage172

these hard negative, we add a penalty α to the sim-173

ilarity score of hi and h−i so that the model can174

significantly contrast them.175

Finally, we add the supervised contrastive loss176

to binary cross-entropy loss with hyper-parameter177

λ and get the final objective function:178

L = LSCL + λLCE (3)179

3 Experiments 180

3.1 Datasets 181

We evaluate the proposed method on three public 182

multi-turn response selection datasets, Ubuntu Dia- 183

logue Corpus V1 Xu et al. (2016), Douban Corpus 184

(Wu et al., 2017) and E-commerce Dialogue Cor- 185

pus (Zhang et al., 2018). Some statistics of these 186

datasets are provided in Table 4 (see Appendix 187

A.2). 188

3.2 Evaluation Metrics 189

Following the previous work, we use Recalln@k or 190

Rn@k, k = {1, 2, 5} as evaluation metrics, where 191

n is the number of response candidates of each con- 192

text and k is the top-k scored candidates among n 193

candidates. Mean average precision (MAP), mean 194

reciprocal rank (MRR), and precision at one (P@1) 195

are also used for Douban Corpus to evaluate the 196

model’s ability to retrieve multiple responses. 197

3.3 Experimental Results 198

Table 1 presents the evaluation results of our model 199

and previous methods on three datasets. As we can 200

see that, BERT+
TL outperforms the present mod- 201

els on most metrics. Our model outperforms the 202

prior state-of-the-art model by 5.7% in Recall10@1 203

on E-Commerce Corpus, 3.1% MAP and 3.8% 204

MRR on Douban Corpus. BERT+
TL also shows 205

a superior ability to the previous fine-tuning meth- 206

ods like BERT-SL. Furthermore, as shown in Ta- 207

ble 3, in comparison to the common contrastive 208

learning method BERT+
DROP , BERT+

TL achieves 209

an absolute improvement in Recall10@1 by 2.3% 210

on Douban Corpus and 1% on E-Commerce Cor- 211

pus. All these results demonstrate the effectiveness 212

of our model to get better representations and re- 213

trieve the best-matched response. Readers can refer 214

to Appendix for training details. 215

4 Analysis 216

Our model differs in various ways from the previ- 217

ous models: it adds the supervised contrastive ob- 218

jective to the loss function, and it integrates a two- 219

level augmentation technique into the supervised 220

contrastive learning model. We analyze the impact 221

of these components on overall performance. 222

To evaluate the effectiveness of supervised con- 223

trastive learning loss, we compare the models with 224

augmentations and contrastive loss (BERT+
TL) and 225

models with augmentations but without contrastive 226
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Model Name
Data E-Commerce Douban Ubuntu V1

Recall10@1 Recall10@2 Recall10@5 MAP MRR P@1 Recall10@1 Recall10@2 Recall10@5 Recall2@1 Recall10@1 Recall10@2 Recall10@5

non
PrLM-based

LSTM (Lowe et al., 2015) 0.365 0.536 0.828 0.485 0.537 0.320 0.187 0.343 0.720 - 0.638 0.784 0.949
SMN (Wu et al., 2017) 0.453 0.654 0.886 0.529 0.569 0.397 0.233 0.396 0.724 0.926 0.726 0.847 0.961
DUA (Zhang et al., 2018) 0.501 0.700 0.921 0.551 0.599 0.421 0.243 0.421 0.780 - 0.752 0.868 0.962
DAM (Zhou et al., 2018) 0.526 0.727 0.933 0.550 0.601 0.427 0.254 0.410 0.757 0.938 0.767 0.874 0.969
MRFN (Tao et al., 2019a) - - - 0.571 0.617 0.448 0.276 0.435 0.783 0.945 0.786 0.886 0.976
IMN (Gu et al., 2019) 0.621 0.797 0.964 0.570 0.615 0.433 0.262 0.452 0.789 - 0.794 0.889 0.974
IoI (Tao et al., 2019b) - - - 0.573 0.621 0.444 0.269 0.451 0.786 0.947 0.796 0.894 0.974
MSN (Yuan et al., 2019) 0.606 0.770 0.937 0.587 0.632 0.470 0.295 0.452 0.788 - 0.800 0.899 0.978

PrLMs-based

BERT(Gu et al., 2020) 0.610 0.814 0.973 0.591 0.633 0.454 0.280 0.470 0.828 0.950 0.808 0.897 0.975
BERT-VFT (Whang et al., 2020) 0.717 0.884 0.986 - - - - - - 0.969 0.867 0.939 0.987
SA-BERT (Devlin et al., 2019) 0.704 0.879 0.985 0.619 0.659 0.496 0.313 0.481 0.847 0.965 0.855 0.928 0.983
UMS-BERT+(Whang et al., 2021) 0.762 0.905 0.986 0.625 0.664 0.499 0.318 0.482 0.858 - 0.875 0.942 0.988
ELECTRA(Whang et al., 2021) 0.607 0.813 0.960 0.599 0.643 0.471 0.287 0.474 0.831 0.960 0.845 0.919 0.979
UMS-ELECTRA+(Whang et al., 2021) 0.707 0.853 0.974 0.623 0.663 0.492 0.307 0.501* 0.851 - 0.875 0.941 0.988
MDFN(Liu et al., 2021) 0.639 0.829 0.971 0.624 0.663 0.498 0.325 0.511 0.855 0.967 0.866 0.932 0.984
BERT-SL(Xu et al., 2021) 0.776 0.919 0.991 - - - - - - 0.975 0.884 0.946 0.990
BERT-FP(Han et al., 2021) 0.870 0.956 0.993 0.644 0.680 0.512 0.324- 0.542 0.870 - 0.911 0.962 0.994

Our Model
BERT+

TL 0.927 0.974 0.997 0.675 0.718 0.564 0.367 0.571 0.874 0.981 0.910 0.962 0.993
(diff. %p) (5.7) (2.3) (0.4) (3.1) (3.8) (5.2) (4.3) (2.9) (0.4) (0.6) (-0.1) (0.0) (-0.1)

Table 1: Results of previous methods and our model on E-Commerce Corpus, Douban Corpus, and Ubuntu V1
Corpus. All the results except ours are from the existing literature. The last row shows the difference between our
result and prior state-of-the-art result.

Data
Model

Metrics Recall10@1 Recall10@2 Recall10@5 P@1 MAP MRR

E-Commerce
BERT+ 0.903 0.973 0.998 - - -
BERT+

TL w/o CL 0.914(+1.1%) 0.976(+0.3%) 0.999(+0.1%) - - -
BERT+

TL 0.927(+2.4%) 0.974(+0.1%) 0.997(-0.1%) - - -

Douban
BERT+ 0.342 0.558 0.870 0.535 0.657 0.700
BERT+

TL w/o CL 0.351(+0.9%) 0.562(+0.4%) 0.878(+0.8%) 0.546(+1.1%) 0.664(+0.7%) 0.707(+0.7%)
BERT+

TL 0.367(+2.5%) 0.571(+1.3%) 0.874(+0.4%) 0.564(+2.9%) 0.675(+1.8%) 0.718(+1.8%)

Ubuntu
BERT+ 0.907 0.959 0.992 - -
BERT+

TL w/o CL 0.907(+0.0%) 0.960(+0.1%) 0.992(+0.0%) - - -
BERT+

TL 0.910(+0.3%) 0.962(+0.3%) 0.993(+0.1%) - - -

Table 2: The effectiveness of different components on
three datasets.

loss (BERT+
TL w/o CL). We use BERT+, the BERT-227

base model after post-training and standard fine-228

tuning process, as the baseline. Table 2 shows that229

the models with two-level augmentations have al-230

ready outperformed those without augmentations,231

and training with contrastive learning loss further232

boosts the performance.233

Data
Model

Metrics Recall10@1 Recall10@2 Recall10@5 P@1 MAP MRR

E-Commerce

BERT+ 0.903 0.973 0.998 - - -
BERT+

DROP 0.917 0.974 0.998 - - -
BERT+

SR 0.925 0.976 0.997 - - -
BERT+

STS 0.919 0.978 0.999 - - -
BERT+

TL 0.927 0.974 0.997 - - -

Douban

BERT+ 0.342 0.558 0.870 0.535 0.657 0.700
BERT+

DROP 0.344 0.562 0.871 0.545 0.707 0.664
BERT+

SR 0.353 0.564 0.878 0.547 0.709 0.666
BERT+

STS 0.355 0.575 0.870 0.549 0.708 0.667
BERT+

TL 0.367 0.571 0.874 0.564 0.718 0.675

Ubuntu

BERT+ 0.907 0.959 0.992 - -
BERT+

DROP 0.909 0.961 0.993 - - -
BERT+

SR 0.910 0.962 0.993 - - -
BERT+

STS 0.910 0.961 0.992 - - -
BERT+

TL 0.910 0.962 0.993 - - -

Table 3: Comparing models with different augmentation
techniques on three datasets.

To investigate which augmentation technique234

in contrastive learning is more beneficial for re-235

sponse selection, we compare different data aug-236

mentation approaches, including Dropout (DROP),237

Sentence Token Shuffling (STS), Sentence Reorder-238

ing (SR) and Two-Level augmentation (TL) in Ta-239

ble 3. BERT+ is used as the baseline. BERT+
DROP ,240

BERT+
STS and BERT+

SR are the models fine-tuned241

using simple supervised contrastive learning loss242

with DROP, STS and SR as the augmentation strat-243

egy. Contrastive learning with standard dropout 244

as noise, is a technique first proposed in SimCSE 245

(Gao et al., 2021), and widely used in contrastive 246

learning models in NLP. The results show that the 247

simple method BERT+
DROP has already achieved 248

consistent improvements across three datasets. For 249

further comparison, we obtain the conclusion that 250

STS and SR are more effective than DROP strategy 251

and in most cases STS is slightly better than SR, 252

indicating the representation space learned with 253

sentence-level augmentation technique is more ex- 254

pressive in a multi-turn dialogue setting. Moreover, 255

we find that the two-level augmentation technique 256

further improves the performance by 0.9% in MAP 257

and MRR on Douban Corpus. 258

5 Conclusion 259

We propose a new supervised contrastive learn- 260

ing method and apply it to the task of response 261

selection in multi-turn dialogues. We show that 262

our method outperforms existing approaches on 263

multiple datasets: Ubuntu V1, Douban, and E- 264

Commerce. Particularly, we significantly boost 265

the performances of the state-of-the-art methods on 266

Douban (5.8%) and E-Commerce (4.3%) in terms 267

of R10@1. 268

Our method called two-level supervised con- 269

trastive learning makes use of two techniques, Sen- 270

tence Token Shuffling and Sentence Reordering. 271

We demonstrate the effectiveness of our method 272

through an ablation study. Our method can be po- 273

tentially applied to other tasks such as reading com- 274

prehension and intent classification. We plan to 275

conduct further investigations in the future. 276
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A Appendix516

A.1 Domain Adaptive Post Training517

Since most of pre-trained language models518

(PrLMs) are trained on general corpus (e.g.,519

Wikipedia, Book Corpus (Zhu et al., 2015), Com-520

mon Crawls (Dodge et al., 2021)), it is insufficient521

to have enough supervision of domain-specific522

words during fine-tuning. To help the model un-523

derstand domain-specific data, we perform domain524

adaptive post-training using the original dialogue525

corpus with pre-training tasks.526

Inspired by prior work (Han et al., 2021), we527

utilize the following procedure to generate training528

examples to fully exploit the training data.529

1. Retrieve a random example (ci, ri, yi) where530

yi = 1, and let dialogue di = ci ∪ {ri}531

2. With 50% possibility, randomly cut a part of532

di as new context d′i which contains at least533

2 utterance, for another 50% possibility, let534

d′i = di535

3. Sample the sentence for Next Sentence Predic-536

tion (NSP). With 25% probability, we gener-537

ate a positive example with the last utterance538

of di as response and the rest as context. For539

negative examples, 2/3 of the false responses540

are utterances chosen from corpus at random,541

and 1/3 are utterances chosen from the same542

context. We denote this example as d′′i543

4. Convert d′′i to training example ei in form of544

BERT input.545

5. Perform BERT-style whole word masking on546

ei for MLM task547

Part Ubuntu V1 Douban E-Commerce

#pairs
Train 1M 1M 1M
Dev 500K 50K 10K
Test 500K 6670 10K

Pos:Neg
Train 1:1 1:1 1:1
Dev 1:9 1:1 1:1
Test 1:9 1:4.62 1:9

Table 4: Data statistics for the Ubuntu, Douban, and
E-Commerce Corpus.

A.2 Datasets 548

A.2.1 Ubuntu V1 549

Ubuntu Corpus V1 is a large multi-turn dialogue 550

dataset extracted from Ubuntu IRC, including tech- 551

nical discussions of the Ubuntu system. We use the 552

version generated by Xu et al. (2016). 553

A.2.2 Douban 554

Douban Corpus (Wu et al., 2017) is an open- 555

domain Chinese multi-turn dialogue dataset 556

crawled from the popular Douban SNS. The test 557

set of the dataset is human-labeled. 558

A.2.3 E-Commerce 559

E-commerce Corpus (Zhang et al., 2018) is a 560

Chinese multi-turn dialogue dataset collected from 561

real-world customer services in Taobao, which is 562

the largest e-commerce platform in China. 563

564

The detailed profile of these three data is 565

shown in Table 4. In the training set of all data, 566

one dialogue context is matched with one correct 567

response and one incorrect response. We can use 568

the false response given by the dataset as a hard 569

negative result. 570

A.3 Implementation Details 571

A.3.1 Domain Adaptive Training 572

We use the English BERT-base model released by 573

Google for the English dataset Ubuntu V1 Corpus 574

and the Chinese BERT model from google for Chi- 575

nese datasets Douban Corpus and E-Commerce 576

Corpus. For all datasets, we use a batch size of 577

128, a learning rate of 3e-5 with linear decay, and a 578

warmup ratio of 0.01. We perform domain-adaptive 579

post-training on each dataset for 2.5 million steps. 580

A.3.2 Contrastive Fine-tuning 581

For contrastive fine-tuning, we fine-tune each 582

model for 3 epochs and evaluate the result every 583
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2000 steps. For Ubuntu Corpus, we use the orig-584

inal batch size of 48, a learning rate of 2e-5 with585

linear decay, a hard negative penalty α = 1.0, and586

the temperature τ = 1.0. For Douban Corpus, we587

use the original batch size of 43, a learning rate588

of 1e-5 with linear decay, a hard negative penalty589

α = 1.0, and the temperature τ = 0.05. For E-590

Commerce Corpus, we use the original batch size591

of 43, a learning rate of 2e-5 with linear decay, a592

hard negative penalty α = 1.0, and the tempera-593

ture τ = 0.05. For all datasets, we set λ = 1.0 to594

combine contrastive loss and cross entropy loss.595

All codes are implemented based on Hugging-596

facce Transformer library and pytorch. We perform597

all experiment on 8 NVIDIA Tesla V100 and fp16598

mix precision calculation is applied to all experi-599

ments.600

A.4 Related Work601

A.4.1 Pre-trained Language Models602

Pretraining and fine-tuning have become a new603

paradigm of natural language processing and un-604

derstanding. GPT (Radford et al., 2019), BERT605

(Devlin et al., 2019), RoBERTa (Liu et al., 2020),606

XLNet (Yang et al., 2019), and ELECTRA (Clark607

et al., 2020) are prevailing pre-trained language608

models. GPT was trained using uni-directional lan-609

guage model objective, while BERT was trained610

in a bidirectional way using NSP and MLM tasks.611

RoBERTa trained the language model with more612

data and removed the NSP objective from the train-613

ing task. ELECTRA introduced novel generator-614

discriminator architecture for language models to615

improve training efficiency. StructBERT (Wang616

et al., 2020) incorporated the word structural objec-617

tive and sentence structural objective to leverage618

language structures at the word and sentence levels.619

A.4.2 Multi-Turn Dialogue Response620

Selection621

Before the advent of pre-trained language mod-622

els, researchers used CNNs and various RNNs to623

process the dialogue. Early work focused on the624

word or sentence matching. Lowe et al. (2015)625

first employed LSTM and CNNs in response selec-626

tion task and proposed Ubuntu V1 dataset. Later627

work usually encoded and matched dialogues at628

different levels to gain better performance. Wu629

et al. (2017) proposed sequential matching model630

and Douban Dataset, Zhang et al. (2018) proposed631

the deep utterance aggregation and E-Commerce632

dataset. After self-attention and Transformer archi- 633

tecture were introduced, studies began to leverage 634

self-attention architecture such as Deep Attention 635

Network (Zhou et al., 2018) and Multi Represen- 636

tation Fusion Network to perform matching. Inter- 637

action over Interaction Tao et al. (2019b) designed 638

deep interaction module and Multi-hop Selection 639

Network Yuan et al. (2019) focused on selecting 640

valid context for matching. 641

After PrLMs are proposed, they are directly ap- 642

plied to response selection since dialogues can also 643

be considered as texts. To further improve the 644

performance of PrLMs on dialogue response se- 645

lection, researchers attempt to add components to 646

PrLMs. SA-BERT (Gu et al., 2020) added speaker 647

embedding to the model, and MDFN (Liu et al., 648

2021) added more dialogue-aware response inter- 649

action module. Domain Adaptive Post Training is 650

also an effective approach for dialogue response 651

selection, and this approach was first proposed 652

by Whang et al. (2020). Previous state-of-the-art 653

model BERT-FP (Han et al., 2021) used a fine- 654

grained post-training approach to improve the per- 655

formance and Structural Pre-training for Dialogue 656

Comprehension was used. Multi-Task Learning is 657

also an effective way, UMS (Whang et al., 2021) 658

and BERT-SL (Xu et al., 2021) are two examples 659

of applying self-supervised multi-task learning to 660

dialogue response selection. 661

A.4.3 Contrastive Learning 662

Contrastive learning is first introduced by Hadsell 663

et al. (2006) and re-emerges in Computer Vision 664

(CV) and Natural Language Processing (NLP) re- 665

cently. In computer vision, SimCLR (Chen et al., 666

2020a) proposed a simple framework that can be 667

applied to CV and Khosla et al. (2020) proved 668

the effectiveness of contrastive learning under su- 669

pervised scenarios. In NLP, CERT (Fang and 670

Xie, 2020) was proposed to improve language un- 671

derstanding, while ConSERT (Yan et al., 2021), 672

DeCuLTR (Giorgi et al., 2021), and SimCSE (Gao 673

et al., 2021) were proposed to give good represen- 674

tation of sentence. In other tasks, SimCLS (Liu 675

and Liu, 2021) applied contrastive learning in sum- 676

marization, Pan et al. (2021) performed contrastive 677

learning in text classification with adversarial train- 678

ing and Gunel et al. (2021) proved that fine-tuning 679

PrLMs can also improve the performance. 680
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