
Published as a conference paper at ICLR 2024

LOW RANK MATRIX COMPLETION VIA ROBUST AL-
TERNATING MINIMIZATION IN NEARLY LINEAR TIME

Yuzhou Gu
Institute of Advanced Study
yuzhougu@ias.edu

Zhao Song
Adobe Research
zsong@adobe.com

Junze Yin
Boston University
junze@bu.edu

Lichen Zhang
MIT CSAIL
lichenz@csail.mit.edu

ABSTRACT

Given a matrix M ∈ Rm×n, the low rank matrix completion problem asks us to
find a rank-k approximation of M as UV ⊤ for U ∈ Rm×k and V ∈ Rn×k by only
observing a few entries specified by a set of entries Ω ⊆ [m]× [n]. In particular, we
examine an approach that is widely used in practice — the alternating minimization
framework. Jain, Netrapalli, and Sanghavi Jain et al. (2013) showed that if M has
incoherent rows and columns, then alternating minimization provably recovers the
matrix M by observing a nearly linear in n number of entries. While the sample
complexity has been subsequently improved Gamarnik et al. (2017), alternating
minimization steps are required to be computed exactly. This hinders the develop-
ment of more efficient algorithms and fails to depict the practical implementation of
alternating minimization, where the updates are usually performed approximately
in favor of efficiency.
In this paper, we take a major step towards a more efficient and error-robust alter-
nating minimization framework. To this end, we develop an analytical framework
for alternating minimization that can tolerate a moderate amount of errors caused
by approximate updates. Moreover, our algorithm runs in time Õ(|Ω|k), which is
nearly linear in the time to verify the solution while preserving the sample com-
plexity. This improves upon all prior known alternating minimization approaches
which require Õ(|Ω|k2) time.

1 INTRODUCTION

Matrix completion is a well-studied problem both in theory and practice of computer science and
machine learning. Given a matrix M ∈ Rm×n, the matrix completion problem asks to recover
the matrix by observing only a few (random) entries of M . This problem originally appears in
the context of collaborative filtering Rennie & Srebro (2005) with the most notable example being
the Netflix Challenge. Since then, it has found various applications in signal processing Linial
et al. (1994); So & Ye (2005) and traffic engineering Gürsun & Crovella (2012). In theory, one
requires additional structural assumptions on the matrix M in order to obtain provable guarantees,
with the most natural and practical assumption being the matrix M is a rank-k low rank matrix. In
tasks such as collaborative filtering, the matrix one faces is often low rank Candès & Recht (2012).
Another popular assumption is the M has incoherent rows and columns. This intuitively eliminates
the degenerate case where M only has a few large entries, making it imperative to observe them.
Matrices in practice are usually incoherent as well Avron et al. (2010); Mohri & Talwalkar (2011);
Kumar et al. (2012).

Under these assumptions, a variety of algorithms based on convex relaxation have been derived Candès
& Tao (2010); Recht (2011); Candès & Recht (2012). These algorithms relax the problem as a trace-
norm minimization problem that can be solved with semidefinite programs (SDP). Unfortunately,
solving SDP is inherently slow and rarely used in practice: even the state-of-the-art SDP solver would

1

Published as a conference paper at ICLR 2024

require O(nω) time1 to solve the program Jiang et al. (2020); Huang et al. (2022). Heuristics such
as alternating minimization and gradient descent are much preferred due to their efficiency. Jain
et al. (2013) first showed that under the standard low rank and incoherent settings, as long as we are
allowed to observe Õ(κ4nk4.5 log(1/ϵ)) entries2 (where κ is the condition number of matrix M),
then alternating minimization provably recovers the matrix M up to ϵ error in terms of Frobenius
norm. Subsequent works further unify different approaches by treating matrix completion as a
non-convex optimization problem Zhao et al. (2015) and improve the sample complexity Gamarnik
et al. (2017). A remarkable advantage of alternating minimization is its efficiency, as each iteration,
the two alternating updates can be implemented in O(|Ω|k2) time.

Despite various advantages, the series of theoretical papers analyzing alternating minimization fail to
capture a crucial component of many practical implementations as the updates are usually computed
approximately to further speed up the process. In contrast, the analysis pioneered in Jain et al. (2013)
and followups Zhao et al. (2015); Gamarnik et al. (2017); Li et al. (2016) crucially relies on the exact
formulation of the updates, making it difficult to adapt and generalize to the approximate updates
setting. On the other hand, developing an alternating minimization framework would also enable us
to utilize faster, approximate solvers to implement updates that leads to theoretical speedup of the
algorithm.

In this paper, we take the first major step towards an error-robust3 analysis for alternating minimization.
Specifically, we show that the alternating updates can be formulated as two multiple response
regressions and fast, high accuracy solvers can be utilized to solve them in nearly linear time.
Coupling our robust alternating minimization framework with our faster multiple response regression
solver, we derive an algorithm that solves the matrix completion problem in time Õ(|Ω|k). We
note that this runtime is nearly linear in terms of the time to verify the solution: Given matrices
U ∈ Rm×k and V ∈ Rn×k, it takes O(k) time to verify a single entry and a total of O(|Ω|k) time to
verify all entries in Ω. To the best of our knowledge, this is the first algorithm based on alternating
minimization, that achieves a nearly linear time in verification. We remark that a recent work Kelner
et al. (2023b) achieves a similar runtime behavior of Õ(|Ω|k): their algorithm has an improved sample
complexity of |Ω| = Õ(nk2+o(1)) and runtime of Õ(nk3+o(1)). However, their algorithm heavily
relies on the tools developed in Kelner et al. (2023a) and mainly serves as a proof-of-concept for
matrix completion rather than efficient practical implementation.4 In contrast, our algorithm adopts an
off the shelf regression solver that is fast and high accuracy with good practical performances Avron
et al. (2010); Meng et al. (2014).

We state an informal version of our main result as follows:
Theorem 1.1 (Informal version of Theorem 4.2). Let M ∈ Rm×n be a matrix that is rank-k,
has incoherent rows and columns and entries can be sampled independently. Then, there exists a
randomzied algorithm that samples |Ω| = Õ(npoly(k)) entries, and with high probability, outputs a
pair of matrices Û ∈ Rm×k, V̂ ∈ Rn×k such that

∥M − Û V̂ ⊤∥F ≤ ϵ,

and the algorithm runs in time Õ(|Ω|k).

Roadmap. In Section 2, we introduce the related works which include matrix completion and
applying sketching matrices to solve optimization problems. In Section 3, we present the notations,
definitions, and lemmas that we use for the later sections. In Section 4, we present the significant
findings and discuss the techniques utilized. In Section 5, we provide some concluding remarks and
future directions.

1ω is the exponent of matrix multiplication. Currently, ω ≈ 2.37 Duan et al. (2023).
2In this paper, we assume n ≥ m and we use Õ(·) to hide polylogarithmic factors in n, k and 1/ϵ.
3We note that in the context of matrix completion, robustness is often used with respect to noise — i.e., we

observe a noisy, higher rank matrix M = M∗ +N , where M∗ is the low rank ground truth and N is the higher
rank noise matrix. In this paper, we focus on the setting where the ground truth is noiseless, and we use robust
referring to robustness against the errors caused by computing updates approximately.

4We note another work that also claims to obtain a runtime of Õ(|Ω|k) Cherapanamjeri et al. (2017), but as
pointed out in Kelner et al. (2023b) their runtime is only achievable if certain linear algebraic operations can be
performed exactly in sublinear time, which is unknown to this day.

2

Published as a conference paper at ICLR 2024

2 RELATED WORK

Low rank matrix completion is a fundamental problem in machine learning. Practical applications
including recommender systems, with the most notable one being collaborative filtering Rennie &
Srebro (2005) and the Netflix Challenge Koren (2009); Koren et al. (2009). It also has a wide range
of applications in computer visions Candès & Recht (2012) and signal processing Linial et al. (1994);
So & Ye (2005); Candès et al. (2011). For more comprehensive surveys, we refer readers to Johnson
(1990); Nguyen et al. (2019). Algorithms for matrix completion can be roughly divided into two
categories — convex relaxation and non-convex heuristics. Candes and Recht Candès & Recht (2012)
prove the first sample complexity for low rank matrix completion under convex relaxation and the
bound is subsequently improved by Candès & Tao (2010). In practice, heuristic methods based on
non-convex optimizations are often preferred due to their simplicity and efficiency. One notable
approach is gradient descent Keshavan et al. (2009); Zhao et al. (2015). Alternating minimization
is also a popular alternative that is widely applied in practice. Jain et al. (2013) provides a provable
guarantee on the convergence of alternating minimization when the matrix-to-recover is low rank
and incoherent. Subsequently, there have been a long line of works analyzing the performance of
non-convex heuristics under standard matrix completion setting and under the noise or corrupted-
entries setting Gunasekar et al. (2013); Hardt (2014); Hardt et al. (2014); Hardt & Wootters (2014);
Jain & Netrapalli (2015); Sun & Luo (2016); Gamarnik et al. (2017); Cherapanamjeri et al. (2017).
Recently, the work Kelner et al. (2023b) provides an algorithm with improved sample complexity
and runtime when stronger subspace regularity assumptions are imposed.

In addition to the high accuracy randomized solver we utilize in this paper, sketching has a variety of
applications in numerical linear algebra and machine learning, such as linear regression, low rank
approximation Clarkson & Woodruff (2013); Nelson & Nguyên (2013), matrix CUR decomposition
Boutsidis & Woodruff (2014); Song et al. (2017; 2019c), weighted low rank approximation Razen-
shteyn et al. (2016), entrywise ℓ1 norm low-rank approximation Song et al. (2017; 2019b), general
norm column subset selection Song et al. (2019a), tensor low-rank approximation Song et al. (2019c),
and tensor regression Diao et al. (2018; 2019); Reddy et al. (2022); Song et al. (2021).

A recent trend in the sketching community is to apply them as a means to reduce the iteration cost
of optimization algorithms. Applications such as linear programming Song & Yu (2021), empirical
risk minimization Lee et al. (2019); Qin et al. (2023), approximating the John ellipsoid Cohen et al.
(2019), Frank-Wolfe algorithm Xu et al. (2021) and linear MDPs Xu et al. (2023).

3 PRELIMINARY

In this section, we provide necessary background on matrix completion and assumptions.

Notations. We use [n] for a positive integer n to denote the set {1, 2, . . . , n}. Given a vector x,
we use ∥x∥2 to denote its ℓ2 norm. Given a matrix A, we use ∥A∥ to denote its spectral norm and
∥A∥F to denote its Frobenious norm. Given a matrix A, we use Ai,∗ to denote its i-th row and A∗,j
to denote its j-th column. We use ∥A∥0 to denote the ℓ0 semi-norm of A that measures the number
of nonzero entries in A.

Given an orthonormal basis A ∈ Rn×k, we use A⊥ ∈ Rn×(n−k) to denote an orthonormal basis to
A’s orthogonal complement, such that AA⊤ +A⊥A

⊤
⊥ = In.

Given a rank-k, m× n real matrix A, we use κ(A) to denote its condition number: κ(A) = σ1(A)
σk(A)

where σ1(A), . . . , σk(A) are singular values of A sorted in magnitude. When A is clear from context,
we often use κ directly.

3.1 ANGLES AND DISTANCES BETWEEN SUBSPACES

A key quantity that captures the closeness of the subspaces by two matrices is the distance, defined as
follows:

3

Published as a conference paper at ICLR 2024

Definition 3.1 (Distance between general matrices). Given two matrices Û , Ŵ ∈ Rm×k, the
(principal angle) distance between the subspaces spanned by the columns of Û and Ŵ is given by:

dist(Û , Ŵ) := ∥U⊤
⊥W∥ = ∥W⊤

⊥U∥

where U and W are orthonormal bases of the spaces span(Û) and span(Ŵ), respectively. Simi-
larly, U⊥ and W⊥ are any orthonormal bases of the orthogonal spaces span(U)⊥ and span(W)⊥,
respectively.

One can further quantify the geometry of two subspaces by their principal angles:
Definition 3.2. Let U ∈ Rn×k and V ∈ Rn×k.

For any matrix U , and for orthogonal matrix V (V ⊤V = Ik) we define

• tan θ(V,U) := ∥V ⊤
⊥ U(V ⊤U)−1∥.

For orthogonal matrices V and U (V ⊤V = Ik and U⊤U = Ik), we define

• cos θ(V,U) := σmin(V
⊤U).

– cos θ(V,U) = 1/∥(V ⊤U)−1∥ and cos θ(V,U) ≤ 1.

• sin θ(V,U) := ∥(I − V V ⊤)U∥.

– sin θ(V,U) = ∥V⊥V
⊤
⊥ U∥ = ∥V ⊤

⊥ U∥ and sin θ(V,U) ≤ 1.

Standard trigonometry equalities and inequalities hold for above definitions, see, e.g., Zhu & Knyazev
(2013).

3.2 BACKGROUND ON MATRIX COMPLETION

We introduce necessary definitions and assumptions for low rank matrix completion. Given a set of
indices Ω, we define a linear operator that selects the corresponding entries:
Definition 3.3. Let S ∈ Rm×n denote a matrix. Let Ω ⊂ [m] × [n]. We define operator PΩ as
follows:

PΩ(S)i,j =

{
Si,j , if (i, j) ∈ Ω;

0, otherwise.

A crucial assumption for low rank matrix completion is incoherence. We start by defining the notion
below.
Definition 3.4. For an orthonormal basis U ∈ Rm×k, we say U is µ-incoherent, if

∥ui∥2 ≤
√
k√
m
· µ.

Here ui is the i-th row of U , for all i ∈ [m].

We say a general rank-k matrix is incoherent if both its row and column spans are incoherent:
Definition 3.5 ((µ, k)-incoherent). A rank-k matrix M ∈ Rm×n is (µ, k)-incoherent if:

• ∥ui∥2 ≤
√
k√
m
· µ, ∀i ∈ [m]

• ∥vj∥2 ≤
√
k√
n
· µ, ∀j ∈ [n]

where M = UΣV ⊤ is the SVD of M and ui, vj denote the i-th row of U and the j-th row of V
respectively.

We are now in the position to state the set of assumptions for low rank matrix completion problem.

4

Published as a conference paper at ICLR 2024

Assumption 3.6. Let M ∈ Rm×n and we assume M satisfies the following property:

• M is a rank-k matrix;

• M is (µ, k)-incoherent;

• Each entry of M is sampled independently with equal probability. In other words, the set
Ω ⊆ [m] × [n] is formed by sampling each entry independently according to a certain
distribution.

We note that the above assumptions are all standard in the literature.

Now we are ready to state the low rank matrix completion problem.

Problem 3.7. Let M ∈ Rm×n satisfy Assumption 3.6. The low rank matrix completion problem asks
to find a pair of matrices U ∈ Rm×k and V ∈ Rn×k such that

∥M − UV ⊤∥F ≤ ϵ.

4 TECHNIQUE OVERVIEW

Before diving into the details of our algorithm and analysis, let us review the alternating minimization
proposed in Jain et al. (2013). The algorithm can be described pretty succinctly: given the sampled
indices Ω, the algorithm starts by partitioning Ω into 2T + 1 groups, denoted by Ω0, . . . ,Ω2T . The
algorithm first computes a top-k SVD of the matrix 1

pPΩ0(M) where p is the sampling probability.
It then proceeds to trim all rows of the left singular matrix U with large row norms (this step is
often referred to as clipping). It then optimizes the factors U and V alternatively. At iteration t, the
algorithm first fixes U and solves for V with a multiple response regression using entries in Ωt+1,
then it fixes the newly obtained V and solves for U with entries in ΩT+t+1. After iterating over
all groups in the partition, the algorithm outputs the final factors U and V as its output. Here, we
use independent samples across different iterations to ensure that each iteration is independent of
priors (in terms of randomness used). If one would like to drop the uniform and independent samples
across iterations (see, e.g., Liu et al. (2017)), the convergence has only been shown under additional
assumptions and in terms of critical points to certain non-convex program.

From a runtime complexity perspective, the most expensive steps are solving two multiple response
regressions per iteration, which would take a total of O(|Ω|k2) time. On the other hand, if the sum of
the size of all the regressions across T iterations is only O(|Ω|k), inspiring us to consider efficient,
randomized solvers that can solve the regression in time nearly linear in the instance size.5 This in
turn produces an algorithm with a nearly linear runtime in terms of verifying all entries in Ω.

Two problems remain to complete our algorithm: 1). What kind of multiple response regression
solvers will run in nearly linear time and produce high accuracy solutions and 2). How to prove the
convergence of the alternating minimization in the presence of the errors caused by approximate
solvers. While the second question seems rather intuitive that the Jain et al. (2013) algorithm should
tolerate a moderate amount of errors, the analysis becomes highly nontrivial when one examines the
argument in Jain et al. (2013) and followups, as all of them crucially rely on the fact that the factors
U and V are solved exactly and hence admit closed form. This motivates us to develop an analytical
framework for alternating minimization, that admits approximate solutions for each iteration.

Our argument is inductive in nature. Let M = U∗(V ∗)⊤ be optimal rank-k factors, we build up
our induction by assuming the approximate regression solutions Ût−1, V̂t−1 are close to U∗, V ∗

and proving for Ût, V̂t. The loss of structure due to solving the regressions approximately forces
us to find alternatives to bound the closeness, as the argument of Jain et al. (2013) relies on the
exact formulation of the closed-form solution. Our strategy is to instead consider a sequence of
imaginary, exact solutions to the multiple response regressions and prove that our approximate

5We note that our solver would incur an extra total cost of Õ(nk3). Under the standard low rank and
incoherent assumptions, the state-of-the-art non-convex optimization-based approach Kelner et al. (2023b)
would require Õ(nk2+o(1)) samples and the Õ(nk3) time is subsumed by the Õ(|Ω|k) portion. This term is
hence ignored.

5

Published as a conference paper at ICLR 2024

solutions are close to those exact solutions. In particular, we show that if Ût, V̂t are close to their
exact counterpart in the ℓ2 row norm sense, then it suffices to prove additional structural conditions
on Ut and Vt to progress the induction. Specifically, we show that as long as Ut−1 is incoherent and
dist(Ût−1, U

∗) ≤ 1
4 dist(V̂t−1, V

∗), we will have dist(V̂t, V
∗) ≤ 1

4 dist(Ût−1, U
∗) and the exact

solution at time t, Vt is incoherent. We can then progress the induction by using the small distance
between V̂t and V ∗ in conjunction with the incoherence of Vt to advance on dist(Ût, U

∗) and the
incoherence of Ut. As the gap decreases geometrically, this leads to an overall log(1/ϵ) iterations to
converge, as desired.

It remains to develop a perturbation theory for alternating minimization and our key innovation
is a perturbation argument on the incoherence bound under small row norm perturbation. Let Ai

denote the i-th row of A. We show that if two matrices A and B satisfying ∥(A − B)i∥2 ≤ ϵ and
ϵ ≤ σmin(A), then the change of incoherence between A and B is also very small. Our main strategy
involves reducing incoherence to statistical leverage score, a critical numerical quantity that measures
the importance of rows Spielman & Srivastava (2011). The problem then reduces to showing that
if two matrices have similar rows, their leverage scores are also similar. By utilizing the leverage
score formulation and a perturbation result from Wedin (1973), we prove that it is indeed the case
they have similar leverage scores. This concludes the perturbation argument on matrix incoherence.

However, this alone is insufficient for our inductive argument to progress, as we must also quantify
the proximity between the approximate and exact solutions. To accomplish this, we employ a novel
approach based on the condition number of the matrices. Specifically, given the exact matrix A
and the approximate matrix B, we demonstrate that the distance between A and B is relatively
small as long as κ(B) is bounded by κ(A). To obtain a good bound on κ(B), we need to solve the
approximate regression to high precision (inverse polynomial proportionally to κ(A)). We achieve
this objective through a sketching-based preconditioner, which is the first problem we would like to
address.

Sketching-based preconditioning is a widely used and lightweight approach to solving regression
problems with high accuracy. The fundamental concept involves reducing the dimensionality of the
regression problem by utilizing a sketching matrix and creating an approximate preconditioner based
on the sketch. This preconditioner accelerates the convergence of an iterative solver, such as the
conjugate gradient or Generalized Minimal RESidual method (GMRES), employed in the reduced
system. With this preconditioner, we obtain an O(log(1/ϵ)) convergence for an ϵ-approximate
solution. Beyond its theoretical soundness and efficiency, these preconditioners also exhibit good
performances when used in practice Avron et al. (2010); Meng et al. (2014).

An important feature of our robust alternating minimization framework coupled with the fast
regression solvers is that we preserve the sample complexity of Jain et al. (2013): by pick-
ing the sampling probability p = O(κ4µ2k4.5 log n log(1/ϵ)/m), we are required to sample
|Ω| = O(κ4µ2nk4.5 log n log(1/ϵ)) entries. By a clever thresholding approach, Gamarnik et al.
(2017) further improves the sample complexity to O(κ2µ2nk4 log(1/ϵ)). As their algorithm is alter-
nating minimization in nature, our robust framework and nearly linear time regression solvers can be
adapted and hence obtain an improved sample complexity and runtime by a factor of O(κ2k0.5 log n).

In the rest of this section, we will review our approaches and clarify how we employ various strategies
to achieve our goal.

4.1 SUBSPACE APPROACHING ARGUMENT

The basis of the analysis of both Jain et al. (2013) and ours is an inductive argument that shows
the low rank factors obtained in each iteration approach the optimum as their distance shrinks by a
constant factor and we call this subspace approaching argument, as we iteratively refine subspaces
that approach the optimum. The major difference is that the induction of Jain et al. (2013) can be
based on the exact solutions solely — they inductively prove the distances shrink by a constant factor,
and the low rank factors are µ2-incoherent for µ2 to be specified. It is tempting to replace these exact
solutions with the approximate solutions we obtain. Unfortunately, the Jain et al. (2013) heavily
exploits the closed-form formulation of the solutions so that they can easily decompose the matrices
into terms whose spectral norms can be bounded in a straightforward manner. Our approximate
solutions on the other hand cannot be factored in such a fashion.

6

Published as a conference paper at ICLR 2024

Algorithm 1 Alternating minimization for matrix completion. The INIT procedure clips the rows
with large norms, then performs a Gram-Schmidt process.

1: procedure FASTMATRIXCOMPLETION(Ω ⊂ [m]× [n], PΩ(M)) ▷ Theorem 4.2
2: ▷ Partition Ω into 2T + 1 subsets Ω0, · · · ,Ω2T

3: ▷ Each element of Ω belonging to one of the Ωt with equal probability (sampling with
replacement)

4: Uϕ = SVD(1pPΩ0
(M), k)

5: Û0 ← INIT(Uϕ) ▷ Algorithm 4
6: for t = 0, · · · , T − 1 do
7: Obtain V̂t+1 with Lemma 4.1 by solving minV ∈Rn×k ∥PΩt+1

(ÛtV
⊤ −M)∥2F

8: Obtain Ût+1 with Lemma 4.1 by solving minU∈Rm×k ∥PΩT+t+1
(UV̂ ⊤

t+1 −M)∥2F
9: end for

10: return ÛT V̂
⊤
T

11: end procedure

To circumvent this issue, we instead keep the exact solutions Ut, Vt as a sequence of references and
inductively bound the incoherence of these exact solutions. More specifically, for any t ∈ [T], we
assume Ut is µ2-incoherent and dist(Ût, U

∗) ≤ 1
4 dist(V̂t, V

∗) ≤ 1/10, then we show that

• dist(V̂t+1, V
∗) ≤ 1

4 dist(Ût, U
∗) ≤ 1/10 and

• Vt+1 is µ2-incoherent.

We can then proceed to show similar conditions hold for Ût+1 and Ut+1, therefore advance the
induction. At the first glance, our induction conditions seem rather far-off from what we want —
in order to prove V̂t+1 and V ∗ are close, one would need to show V̂t+1 has small incoherence. We
alternatively adapt a perturbation argument on incoherence, specifically, note that V̂t+1 can be treated
as blending in a small perturbation to Vt+1 in terms of row ℓ2 norms, if we can manage to prove
under such perturbations, the incoherence of V̂t+1 is still close to the incoherence of Vt+1, then our
induction condition on the incoherence of Vt+1 effectively translates to the incoherence of Ṽt+1. In
next section, we illustrate how to develop such a perturbation theory.

4.2 A PERTURBATION THEORY FOR MATRIX INCOHERENCE

Our main goal is to understand how perturbations to rows of a matrix change the incoherence. Let us
consider two matrices A,B ∈ Rm×k that are close in the spectral norm: ∥A − B∥ ≤ ϵ0 for some
small error ϵ0, as the closeness in spectral norm implies all row norms of the difference matrix A−B
are small. Our next step will be putting the rows of A and B to isotropic position6, by mapping
ai 7→ (A⊤A)−1/2ai and bi 7→ (B⊤B)−1/2bi. The main motivation is the equivalence between
matrix incoherence and statistical leverage score Spielman & Srivastava (2011), which measures
the ℓ2 importance of rows by putting the matrix into isotropic position. This provides us with an
alternative way to measure the matrix incoherence directly instead of working with the singular value
decomposition. It remains to bound the difference |∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2|, without
loss of generality, assume ∥(A⊤A)−1/2ai∥2 ≥ ∥(B⊤B)−1/2bi∥2, then we can equivalently express
it using difference of squares formula:

∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2 =
∥(A⊤A)−1/2ai∥22 − ∥(B⊤B)−1/2bi∥22
∥(A⊤A)−1/2ai∥2 + ∥(B⊤B)−1/2bi∥2

where the numerator is the difference between leverage scores, and we utilize tools that bound
perturbation of pseudo-inverses Wedin (1973) to provide an upper bound. For the denominator, we
can derive a lower bound rather straightforwardly.

Combining these bounds, we conclude that

|∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2| ≤ O(ϵ0 poly(κ(A))).

6We say a collection of vectors {v1, . . . , vm} ⊆ Rk are in isotropic position if
∑m

i=1 viv
⊤
i = Ik.

7

Published as a conference paper at ICLR 2024

To put this bound into perspective, we will set A to be the exact update matrix U and B to be the
approximate update matrix Û . In our induction framework, we further make sure that the condition
number of U is well-controlled, therefore we can safely suffer error up to poly(κ(U)), as we can set
our final precision to be inverse polynomially in κ(U). Since our algorithm converges in log(1/ϵ)
iterations, and our regression solver has an error dependence log(1/ϵ), this only blows up the runtime
by a factor of log(κ/ϵ), as desired.

4.3 NEARLY LINEAR TIME SOLVE VIA SKETCHING

Now that we have a framework that tolerates errors caused by approximate solves, we are ready to
deploy regression solvers that can actually compute the factors in nearly linear time. A popular and
standard approach is through the so-called sketch-and-solve paradigm — given an overconstrained
regression problem minx ∥Ax− b∥2 with A ∈ Rn×k and n≫ k, one samples a random sketching
matrix S ∈ Rm×n with m ≪ n and instead solves the sketched regression ∥SAx − Sb∥2. As the
new regression problem has much fewer row count, solving it would take nearly linear time as long
as SA can be quickly applied. In addition to its simplicity, efficiency and good error guarantees, if
one picks S to be a dense subsampled randomized Hadamard transform (SRHT) Lu et al. (2013),
then the regression solution is also close to the exact solution in an ℓ∞ sense Price et al. (2017).
While appealing, sketch-and-solve has the deficiency of low accuracy — if one wants a solution with
regression cost at most (1+ ϵ) times the optimal cost, then the algorithm would take time proportional
to ϵ−2. As we would set the ϵ to be polynomially small to incorporate the error blowups due to
perturbations to incoherence and the error conversion from regression cost to solution, an inverse
polynomial dependence on ϵ would significantly slow down the algorithm and ultimately lead to an
even slower runtime than solving the regressions exactly.

We resort to a sketching-based approach that enjoys high accuracy as the algorithm converges in
log(1/ϵ) iterations and each iteration can be implemented in Õ(nk + k3) time. The idea is to pick
a sketching matrix that produces a subspace embedding of O(1)-distortion7 and compute a QR
decomposition of matrix SA = QR−1. The matrix R is then used as a preconditioner and we solve
the preconditioned regression minx ∥ARx− b∥2 via gradient descent.

Even though the solver runs in nearly linear time in the instance size, we still need to make sure that
the sparsity of Ω is utilized, as |Ω| ≪ mn. To demonstrate how to achieve a runtime of Õ(|Ω|k)
instead of Õ(mnk), let us consider the following multiple response regression: minV ∈Rn×k ∥UV ⊤−
M∥F . Our strategy is to solve n least-square regression. Consider the i-th regression problem:
minv ∥PΩ(Uv) − PΩ(M∗,i)∥2, note that v only contributes to the i-th column of UV ⊤ which
correlates to the i-th column of the operator PΩ, therefore we only need to solve a regression with
the rows of U selected by the i-th column of PΩ. Let Ki be the corresponding set of nonzero
indices, we select the rows of U which is of size UKi,∗ ∈ R|Ki|×k and the resulting regression
is minv∈Rk ∥UKi,∗v −MKi,i∥2. Sum over all T iterations, the total size of the multiple response
regression is O(

∑n
i=1 |Ki|k) = O(|Ω|k), and our regression solver takes Õ(|Ω|k+nk3) = Õ(|Ω|k)

time, as desired.

We summarize the result in the following lemma.

Lemma 4.1. Let Ω ⊆ [m] × [n], M ∈ Rm×n and U ∈ Rm×k. Let ϵ, δ ∈ (0, 1) be precision and
failure probability, respectively. There exists an algorithm that takes

O((|Ω|k log n+ nk3 log2(n/δ)) · log(n/ϵ))

time to output a matrix V̂ such that ∥V̂ − V ∗∥ ≤ ϵ where V ∗ = argminV ∈Rn×k ∥PΩ(UV ⊤) −
PΩ(M)∥F . The algorithm succeeds with probability at least 1− δ.

4.4 PUTTING THINGS TOGETHER

Given our fast regression solver and robust analytical framework that effectively handles the perturba-
tion error caused by approximate solve, we are in the position to deliver our main result.

7We say a matrix S produces a subspace embedding of ϵ-distortion if for any fixed orthonormal basis
U ∈ Rn×k, the singular values of SU lie in [1− ϵ, 1 + ϵ] with high probability.

8

Published as a conference paper at ICLR 2024

Theorem 4.2 (Main result, formal version of Theorem 1.1). Let M ∈ Rm×n be a matrix satisfying
Assumption 3.6. Let operator PΩ be defined as in Definition 3.3. Then, there exists a randomized
algorithm (Algorithm 1) with the following properties:

• It samples |Ω| = O(κ4µ2nk4.5 log n log(k∥M∥F /ϵ)) entries;

• It runs in Õ(|Ω|k) time.

The algorithm outputs a pair of matrices Û ∈ Rm×k and V̂ ∈ Rn×k such that

∥M − Û V̂ ⊤∥F ≤ ϵ

holds with high probability.

Let us pause and make some remarks regarding the above result. On the sample complexity front,
we attain the result achieved in Jain et al. (2013), but we would also like to point out that it can be
further improved using the approach developed in Gamarnik et al. (2017). Our robust alternating
minimization framework indicates that as long as the error caused by the approximate solver can be
polynomially bounded, then the convergence of the algorithm is preserved (up to log(1/ϵ) factors).
Thus, our framework can be safely integrated into any alternating minimization-based algorithm for
matrix completion.

Comparison with Kelner et al. (2023b). The runtime of our algorithm is nearly linear in the
verification time — given a set of observed entries Ω, it takes O(k) time to verify an entry of
PΩ(Û V̂ ⊤), hence requires a total of O(|Ω|k) time. Kelner et al. (2023b) achieves a similar runtime
behavior with an improved sample complexity of |Ω| = Õ(nk2+o(1)). It is worth noting that most
popular practical algorithms for matrix completion are based on either alternating minimization
or gradient descent, since they are easy to implement and certain steps can be sped up via fast
solvers. In contrary, the machinery of Kelner et al. (2023b) is much more complicated. In short,
they need to decompose the update into a “short” progress matrix and a “flat” noise component
whose singular values are relatively close to each other. To achieve this goal, their algorithm
requires complicated primitives, such as approximating singular values and spectral norms Musco
& Musco (2015), Nesterov’s accelerated gradient descent Nesterov (1983) (which is known to be
hard to realize for practical applications) and a complicated post-process procedure. While it is
totally possible that these subroutines can be made practically efficient, empirical studies seem to
be necessary to justify its practical performance. In contrast, our algorithm could be interpreted as
providing a theoretical foundation on why fast alternating minimization works so well in practice. As
most of the fast alternating minimization implementations rely on quick, approximate solvers (for
instance, Lai & Varghese (2017); Liu et al. (2020)) but most of their analyses assume every step of the
algorithm is computed exactly. From this perspective, one can view our robust analytical framework
as “completing the picture” for all these variants of alternating minimization. Moreover, if one can
further sharpen the dependence on k and condition number κ in the sample complexity for alternating
minimization, matching that of Kelner et al. (2023b), we automatically obtain an algorithm with the
same (asymptotic) complexity of their algorithm. We leave improving the sample complexity of
alternating minimization as a future direction.

5 CONCLUSION

In this paper, we develop a nearly linear time algorithm for low rank matrix completion via two
ingredients: a sketching-based preconditioner for solving multiple response regressions, and a robust
framework for alternating minimization.

Our robust alternating minimization framework effectively bridges the gap between theory and
practice — as all prior theoretical analysis of alternating minimization requires exact solve of the
multiple response regressions, but in practice, fast and cheap approximate solvers are preferred. Our
algorithm also has the feature that it runs in time nearly linear in verifying the solution, as given a set
of entries Ω, it takes O(|Ω|k) time to compute the corresponding entries.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We would like to thank Jonathan Kelner for helpful discussions and pointing out many references, as
well as comments from anonymous reviewers that significantly improve the presentation of this paper.
Yuzhou Gu is supported by the National Science Foundation under Grant No. DMS-1926686. Lichen
Zhang is supported by NSF CCF-1955217 and NSF DMS-2022448.

REFERENCES

Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging lapack’s least-
squares solver. SIAM J. Sci. Comput., 2010.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing (STOC), pp. 353–362, 2014.

Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Commun.
ACM, 2012.

Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Trans. Inf. Theor., 2010.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
J. ACM, 2011.

Yeshwanth Cherapanamjeri, Kartik Gupta, and Prateek Jain. Nearly optimal robust matrix completion.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 797–805, 2017.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity
time. In STOC, 2013.

Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approxi-
mating the john ellipsoid. In Conference on Learning Theory, pp. 849–873. PMLR, 2019.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product regression
and p-splines. In International Conference on Artificial Intelligence and Statistics, pp. 1299–1308.
PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In
FOCS, 2023.

David Gamarnik, Quan Li, and Hongyi Zhang. Matrix completion from O(n) samples in linear time.
In Satyen Kale and Ohad Shamir (eds.), Proceedings of the 2017 Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pp. 940–947. PMLR, 07–10 Jul 2017.

Suriya Gunasekar, Ayan Acharya, Neeraj Gaur, and Joydeep Ghosh. Noisy matrix completion using
alternating minimization. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings,
Part II 13, pp. 194–209. Springer, 2013.

Gonca Gürsun and Mark Crovella. On traffic matrix completion in the internet. In Proceedings of
the 2012 Internet Measurement Conference, IMC ’12, pp. 399–412, New York, NY, USA, 2012.
Association for Computing Machinery.

Moritz Hardt. Understanding alternating minimization for matrix completion. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 651–660. IEEE, 2014.

Moritz Hardt and Mary Wootters. Fast matrix completion without the condition number. In Conference
on learning theory, pp. 638–678. PMLR, 2014.

10

Published as a conference paper at ICLR 2024

Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits for
matrix completion. In Conference on Learning Theory, pp. 703–725. PMLR, 2014.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In FOCS, 2022.

Prateek Jain and Praneeth Netrapalli. Fast exact matrix completion with finite samples. In Peter
Grünwald, Elad Hazan, and Satyen Kale (eds.), Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pp. 1007–1034, Paris, France,
03–06 Jul 2015. PMLR.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating
minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pp. 665–674, 2013.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In FOCS, 2020.

Charles R Johnson. Matrix completion problems: a survey. In Matrix theory and applications,
volume 40, pp. 171–198, 1990.

Jonathan Kelner, Jerry Li, Allen Liu, Aaron Sidford, and Kevin Tian. Semi-random sparse recovery
in nearly linear time. In Conference on Learning Theory, COLT’23, 2023a.

Jonathan Kelner, Jerry Li, Allen Liu, Aaron Sidford, and Kevin Tian. Matrix completion in almost-
verification time. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science,
FOCS’23, 2023b.

Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion from a few
entries. In 2009 IEEE International Symposium on Information Theory, 2009.

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 81(2009):
1–10, 2009.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the nystrom method.
Journal of Machine Learning Research, 2012.

Ming Jun Lai and Abraham Varghese. On convergence of the alternating projection method for
matrix completion and sparse recovery problems, 2017.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140–2157. PMLR, 2019.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank approx-
imation via alternating minimization. In International Conference on Machine Learning, pp.
2358–2367. PMLR, 2016.

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic
applications. In Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.

Guangcan Liu, Qingshan Liu, and Xiaotong Yuan. A new theory for matrix completion. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Yajing Liu, April Sagan, Andrey Bernstein, Rui Yang, Xinyang Zhou, and Yingchen Zhang. Matrix
completion using alternating minimization for distribution system state estimation. In 2020 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), 2020.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. In Advances in neural information processing
systems (NIPS), pp. 369–377, 2013.

11

Published as a conference paper at ICLR 2024

Lingsheng Meng and Bing Zheng. The optimal perturbation bounds of the moore–penrose inverse
under the frobenius norm. Linear algebra and its applications, 432(4):956–963, 2010.

Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney. Lsrn: A parallel iterative solver
for strongly over- or underdetermined systems. SIAM Journal on Scientific Computing, 36(2):
C95–C118, 2014.

Mehryar Mohri and Ameet Talwalkar. Can matrix coherence be efficiently and accurately estimated?
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, 2011.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing Systems,
volume 2015-January, pp. 1396–1404, 2015.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

Yu E Nesterov. A method for solving the convex programming problem with convergence rate O(1
k2).

In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Low-rank matrix completion: A contempo-
rary survey. IEEE Access, 7:94215–94237, 2019.

Eric Price, Zhao Song, and David P Woodruff. Fast regression with an ℓ∞ guarantee. In ICALP,
2017.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for
projection matrix vector multiplication with application to empirical risk minimization. In AISTATS,
2023.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

Benjamin Recht. A simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413–3430,
dec 2011.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. In NeurIPS,
2022.

Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05,
pp. 713–719, New York, NY, USA, 2005. Association for Computing Machinery.

Anthony Man-Cho So and Yinyu Ye. Theory of semidefinite programming for sensor network local-
ization. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’05, pp. 405–414, USA, 2005. Society for Industrial and Applied Mathematics.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp.
688–701, 2017.

Zhao Song, David Woodruff, and Peilin Zhong. Towards a zero-one law for column subset selection.
Advances in Neural Information Processing Systems, 32, 2019a.

Zhao Song, David Woodruff, and Peilin Zhong. Average case column subset selection for entrywise
ℓ1-norm loss. Advances in Neural Information Processing Systems, 32, 2019b.

12

Published as a conference paper at ICLR 2024

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
2772–2789. SIAM, 2019c.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579, 2016.

Joel A. Tropp. Improved analysis of the subsampled randomized hadamard transform. Adv. Data Sci.
Adapt. Anal., 3, 2011.

Per-Åke Wedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics, 13(2):
217–232, 1973.

H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichun-
gen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71:
441–479, 1912.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
some well-known conditional gradient methods using maxip data-structures. Advances in Neural
Information Processing Systems, 34:5576–5589, 2021.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. A tale of two efficient value iteration
algorithms for solving linear mdps with large action space. In AISTATS, 2023.

Tuo Zhao, Zhaoran Wang, and Han Liu. A nonconvex optimization framework for low rank matrix
estimation. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Peizhen Zhu and Andrew V Knyazev. Angles between subspaces and their tangents. Journal of
Numerical Mathematics, 21(4):325–340, 2013.

13

Published as a conference paper at ICLR 2024

APPENDIX

Roadmap. In Section A, we introduce more fundamental lemmas and facts. In Section B, we
provide more details about our sketching-based solver. In Section C, we support the main init by
giving and explaining more definitions and lemmas. In Section D, we explain our main induction
hypothesis. In Section E, we analyze the general case of the update rules and notations. In Section F,
we give the lemmas for distance shrinking and their proofs: we upper bound different terms by
distance. In Section G, we analyze the distance and incoherence under row perturbations.

A MORE PRELIMINARY

In this section, we display more fundamental concepts. In Section A.1, we introduce algebraic
properties for matrices. In Section A.2, we analyze the properties of angles and distances. In
Section A.3, we provide the tools which are used in previous works. In Section A.4, we state several
well-known probability tools.

A.1 BASIC MATRIX ALGEBRA

We state several standard norm inequalities here.
Fact A.1 (Norm inequalities). For any matrix A,B

• Part 1. ∥AB∥ ≤ ∥A∥ · ∥B∥.

• Part 2. ∥AB∥ ≥ ∥A∥ · σmin(B).

• Part 3. ∥A+B∥ ≤ ∥A∥+ ∥B∥.

• Part 4. if B⊤A = 0, ∥A+B∥ ≥ ∥A∥ .

For any matrix A and vector x

• Part 5. ∥Ax∥2 ≤ ∥A∥ · ∥x∥2.

• Part 6. ∥A∥ ≤ ∥A∥F .

• Part 7. ∥A∥F ≤
√
k∥A∥ if A is rank-k.

For any square matrix A

• Part 8. If A is invertible, we have ∥A∥ = 1/σmin(A
−1).

• Part 9. For vector x with ∥x∥2 = 1, we have ∥Ax∥2 = maxy:∥y∥2=1 y
⊤Ax.

For any matrix A, square invertible matrix B

• Part 10. ∥A∥ ≤ σmax(B) · ∥AB−1∥.

For any matrix A, and square diagonal invertible matrix B

• Part 11. σmin(BA) ≥ σmin(B) · σmin(A).

We omit their proofs, as they are quite standard. We also state Weyl’s inequality for singular values:
Lemma A.2 (Weyl (1912)). Let A,B ∈ Rn×k where n ≥ k, then we have for any i ∈ [k],

|σi(A)− σi(B)| ≤ ∥A−B∥.

The next fact bounds the spectral norm of a matrix after applying a unitary transformation.
Fact A.3. Let m ≥ k. Let U ∈ Rm×k denote a matrix that has an orthonormal basis.

• Part 1. For any matrix A ∈ Rm×n, we have

∥U⊤A∥ ≤ ∥A∥.

14

Published as a conference paper at ICLR 2024

• Part 2. For any matrix B ∈ Rk×d, we have

∥UB∥ = ∥B∥.

Proof. Part 1. By the property of U , we know that UU⊤ ⪯ Im.

Thus, for any vector x, we have

x⊤A⊤UU⊤Ax ≤ x⊤A⊤Ax.

Thus, ∥U⊤A∥ ≤ ∥A∥.
Part 2. By property of U , we have U⊤U = Ik.

Thus, for any vector x, we have

x⊤B⊤U⊤UBx = x⊤B⊤Bx.

Thus, ∥UB∥ = ∥B∥.

The following is a collection of simple algebraic facts.

Fact A.4. Let y ∈ (0, 0.1). We have

• Part 1. If x ∈ (0, 1/2), then
√
1− x2 − yx ≥ 1/2.

• Part 2. If x ≥ 1/2, then x− y
√
1− x2 ≥ 1

2x.

• Part 3. If x ∈ [0, 1], then 1−
√
1− x2 ≤ x2.

Proof. Proof of Part 1. We have√
1− x2 − yx ≥

√
1− x2 − 1

5
x

≥ 1− 1

2
x− 1

5
x

≥ 1

2
,

where the first step follows from y ∈ (0, 0.1), the second step follows from
√
1− x2 ≥ 1− 1

2x for
all x ∈ [0, 4/3], and the last step follows from x ≤ 1/2.

Proof of Part 2. We know that

y
√

1− x2 ≤ y ≤ 0.1 ≤ x/2, (1)

where the first step follows from 0 ≤
√
1− x2 ≤ 1, the second step follows from y ∈ (0, 0.1), and

the last step follows from x ≥ 1/2.

Thus,

x− y
√
1− x2 ≥ x− x/2

= x/2,

where the first step follows from Eq. (1) and the second step follows from simple algebra.

Proof of Part 3. We know that

1− x2 ≤
√

1− x2

for all x in the domain of
√
1− x2.

Then, the statement is true.

15

Published as a conference paper at ICLR 2024

A.2 PROPERTIES OF ANGLES AND DISTANCES

We explore some more relations for angles and distances between subspaces.

Let U, V ∈ Rn×k be two matrices with orthonormal columns, we use distc(V,U) to denote the
following minimization problem:

distc(V,U) = min
Q∈Ok

∥V Q− U∥,

where Ok ⊂ Rk×k is the set of k × k orthogonal matrices.

The next lemma is a simple application of fundamental subspace decomposition.

Lemma A.5. Let A ∈ Rn×k be an orthonormal basis, then there exists a matrix A⊥ ∈ Rn×(n−k)

with AA⊤ +A⊥A
⊤
⊥ = In.

Proof. We know that the column space of A is orthogonal to the null space of A⊤, and the null space
of A⊤ has dimension n− k.

Let A⊥ be an orthonormal basis of the null space of A⊤.

We have

A⊤A⊥ = 0. (2)

It remains to show that

AA⊤ +A⊥A
⊤
⊥ = In.

Let z ∈ Rn be any vector.

We know that z either in the column space of A or the null space of A⊤.

Case 1: z in the column space of A. In this case, we can write z = Ay.

Then,

AA⊤z +A⊥A
⊤
⊥z = AA⊤Ay +A⊥A

⊤
⊥Ay

= Ay +A⊥A
⊤
⊥Ay

= Ay +A⊥(A
⊤A⊥)

⊤y

= Ay + 0

= z,

where the first step follows from z = Ay, the second step follows from A is orthogonal that
A⊤ = A−1, the third step follows from (AB)⊤ = B⊤A⊤ for all matrices A and B, the fourth step
follows from Eq. (2), and the last step follows from z = Ay.

Case 2: z in the null space of A⊤. In this case, we know that A⊤z = 0 and z = A⊥y, so

AA⊤z +A⊥A
⊤
⊥z = 0 +A⊥A

⊤
⊥A⊥y

= A⊥y

= z,

where the first step follows from A⊤z = 0 and z = A⊥y, the second step follows from A⊤
⊥A⊥ = I ,

and the third step follows from z = A⊥y.

Thus, we have shown AA⊤ +A⊥A
⊤
⊥ = In.

The following lemma presents a simple inequality for orthogonal complements.
Lemma A.6 (Structural lemma for matrices with orthonormal columns). Let U, V ∈ Rn×k be
matrices with orthonormal columns. Then

(V ⊤U)⊥ = V ⊤
⊥ U.

16

Published as a conference paper at ICLR 2024

Proof. Let us first compute the Gram matrix of V ⊤U , which is

U⊤V V ⊤U = U⊤(I − V⊥V
⊤
⊥)U

= U⊤U − U⊤V⊥V
⊤
⊥ U

= Ik − U⊤V⊥V
⊤
⊥ U,

where the first step follows from V⊥V
⊤
⊥ + V V ⊤ = I , the second step follows from simple algebra,

and the last step follows from U has orthonormal columns.

This means that (V ⊤U)⊥ = V ⊤
⊥ U .

The singular vectors can be parametrized by orthogonal complement and inverse, solely.
Lemma A.7 (Orthogonal and inverse share singular vectors). Let A ∈ Rk×k be non-singular such
that there exists A⊥ ∈ R(n−k)×k with A⊤A+A⊤

⊥A⊥ = I , then the following holds:

• Part 1. A⊥ and A−1 have the same set of singular vectors.

• Part 2. Let u be a singular vector of A, if u corresponds to σi(A), then it corresponds to
σk−i(A⊥).

• Part 3. ∥A⊥A
−1∥ = ∥A⊥∥∥A−1∥.

Proof. Proof of Part 1. Let x ∈ Rk be the unit eigenvector of A that realizes the spectral norm.

Note that

∥A⊥x∥22 = 1− ∥A∥2,
we argue that x corresponds to the smallest singular value of A⊥ via contradiction. Suppose there
exists some unit vector y with

∥A⊥y∥2 < ∥A⊥x∥2.
By definition, we know that

∥A⊥y∥22 + ∥Ay∥22 = 1,

which means

∥Ay∥2 > ∥Ax∥2 = ∥A∥,
and it contradicts the definition of spectral norm.

Similarly, if z is the unit vector that realizes the spectral norm of A⊥, then it is also a singular vector
corresponds to the smallest singular value of A, or equivalently, the spectral norm of A−1. Our above
argument essentially implies that A⊥ and A−1 have the same set of singular vectors.

Our above argument is choosing x to the eigenvector corresponding to the largest singular values.
Similarly, we can choose to 2nd, 3rd, and then prove entire sets.

Proof of Part 2. The key of the proof is that for any unit vector u ∈ Rk, we have

∥Au∥22 + ∥A⊥u∥22 = 1,

let σ1(A), . . . , σk(A) be the singular values of A and u1, . . . , uk be corresponding singular vectors.

By above definition, we know

∥Aui∥2 = σi(A)

Then, we know

σ2
i (A) + ∥A⊥ui∥22 = 1,

which means that A⊥ui =
√
1− σ2

i (A)ui. Note that all singular values of A⊥ are in this form, i.e.,
we have its singular values being√

1− σ2
1(A), . . . ,

√
1− σ2

k(A),

17

Published as a conference paper at ICLR 2024

as σ1(A) ≥ . . . ≥ σk(A), and the above singular values are in ascending order.

Thus, we have

σk−i(A⊥) = σi(A).

Proof of Part 3. The proof is then straightforward.

Suppose that (λ, z) is largest singular value and singular vector (e.g. ∥A⊥∥ = λ). Then, we have

A⊥z = λz (3)

Using Part 2 (by choosing i = 1), we know that z is also the largest singular vector for A−1. Assume
that A−1 largest singular value is µ (e.g. ∥A−1∥ = µ). Then we have

A−1z = µz. (4)

Then, we have

A⊥A
−1z = A⊥µz

= µ(A⊥z)

= λµz, (5)

where the first step follows from Eq. (4), the second step follows from µ is a real number and a real
number multiplying a matrix is commutative and follows from the associative property, and the third
step follows from Eq. (3).

From Eq. (5), we know that

∥A⊥A
−1∥ ≥ λµ = ∥A⊥∥ · ∥A−1∥.

Using norm inequality, we have

∥A⊥A
−1∥ ≤ ∥A⊥∥ · ∥A−1∥.

Combining the lower bound and upper bound, we have

∥A⊥A
−1∥ = ∥A⊥∥∥A−1∥,

and we have proved the assertion.

We prove several fundamental trigonometry equalities for subspace angles.
Lemma A.8. Let U, V ∈ Rn×k be orthonormal matrices, then

tan θ(V,U) =
sin θ(V,U)

cos θ(V,U)
.

Proof. We have,

tan θ(V,U) = ∥V ⊤
⊥ U(V ⊤U)−1∥

= ∥(V ⊤U)⊥(V
⊤U)−1∥

= ∥(V ⊤U)⊥∥∥(V ⊤U)−1∥

=
∥(V ⊤U)⊥∥

1/∥(V ⊤U)−1∥

=
∥V ⊤

⊥ U∥
1/∥(V ⊤U)−1∥

=
sin θ(V,U)

cos θ(V,U)
,

where the first step follows from the definition of tan θ(V,U) (see Definition 3.2), the second step
follows from Lemma A.6, the third step follows from the part 3 of Lemma A.7, the fourth step
follows from simple algebra, the fifth step follows from Lemma A.6, and the last step follows from
the definition of sin θ(V,U) and cos θ(V,U) (see Definition 3.2).

18

Published as a conference paper at ICLR 2024

Lemma A.9. Let U, V ∈ Rn×k be orthogonal matrices, then

sin2 θ(V,U) + cos2 θ(V,U) = 1.

Proof. Recall that cos θ(V,U) = 1
∥(V ⊤U)−1∥ and sin θ(V,U) = ∥V ⊤

⊥ U∥.

By Lemma A.6, we know that

(V ⊤U)⊥ = V ⊤
⊥ U,

so by the definition of sin θ(V,U) (see Definition 3.2), we have

sin θ(V,U) = ∥(V ⊤U)⊥∥.

We define matrix A ∈ Rk×k as follows,

A := V ⊤U. (6)

By part 1 of Lemma A.7, we know that A⊥ and A−1 have the same set of singular vectors.

Let z ∈ Rk be the unit singular vector with singular value ∥A⊥∥.
This implies

∥A⊥z∥2 = ∥A⊥∥. (7)

Note that A⊥ and A−1 have the same singular vectors implies that the singular vector realizing ∥A⊥∥
corresponds to the smallest singular value of A, i.e.,

∥Az∥2 = σmin(A). (8)

Then, we have

1 = z⊤z

= z⊤(A⊤A+A⊤
⊥A⊥)z

= z⊤A⊤Az + z⊤A⊤
⊥A⊥z

= ∥Az∥22 + ∥A⊥z∥22
= ∥Az∥22 + ∥A⊥∥2

= σ2
min(A) + ∥A⊥∥2, (9)

where the first step follows from ∥z∥22 = 1, the second step follows from A⊤A+ A⊤
⊥A⊥ = I , the

third step follows from simple algebra, the fourth step follows from x⊤B⊤Bx = ∥Bx∥22, the fifth
step follows from Eq. (7), and the sixth step follows from Eq. (8).

Also, we get

∥A⊥∥2 + σ2
min(A) = ∥(V ⊤U)⊥∥2 + σ2

min(V
⊤U)

= ∥V ⊤
⊥ U∥2 + σ2

min(V
⊤U)

= sin2 θ(V,U) + cos2 θ(V,U),

where the first step follows from Eq. (6), the second step follows from Lemma A.6, the third step
follows from definitions of sin θ and cos θ (see Def. 3.2).

Therefore, by Eq. (9), we have sin2 θ(V,U) + cos2 θ(V,U) = 1. This completes the proof.

The next lemma demonstrates relationship between several trigonometry definitions.

Lemma A.10. Let V,U ∈ Rn×k be two orthogonal matrices, then

• Part 1. sin θ(V,U) ≤ tan θ(V,U).

19

Published as a conference paper at ICLR 2024

• Part 2. 1−cos θ(V,U)
cos θ(V,U) ≤ tan θ(V,U).

• Part 3. sin θ(V,U) ≤ distc(V,U).

• Part 4. distc(V,U) ≤ sin θ(V,U) + 1−cos θ(V,U)
cos θ(V,U) .

• Part 5. distc(V,U) ≤ 2 tan θ(V,U).

Proof. We define

Q∗ := arg min
Q∈Ok×k

∥V Q− U∥,

Next, we define matrix R to be

R := U − V Q∗. (10)

Then we have

distc(V,U) = ∥R∥ (11)

and

sin θ(V,U) = ∥V ⊤
⊥ U∥

= ∥V ⊤
⊥ (V Q∗ +R)∥

= ∥V ⊤
⊥ V Q∗ + V ⊤

⊥ R∥
= ∥V ⊤

⊥ R∥
≤ ∥V ⊤

⊥ ∥∥R∥
≤ ∥R∥, (12)

where the first step follows from the definition of

sin θ(V,U),

the second step follows from U = V Q∗ + R (see Eq. (10)), the third step follows from simple
algebra, the fourth step follows from V ⊤

⊥ V = (V ⊤V⊥)
⊤ = 0 (see Lemma A.5), the fifth step follows

from ∥AB∥ ≤ ∥A∥∥B∥, and the last step follows from ∥V ⊤
⊥ ∥ ≤ 1.

Proof of Part 1. Note that

sin θ(V,U) = tan θ(V,U) · cos θ(V,U)

≤ tan θ(V,U),

where the first step follows from Lemma A.8, the last step follows from cos θ(V,U) ≤ 1.

Proof of Part 2. For simplicity, we use θ to represent θ(V,U).

The statement is

1− cos θ

cos θ
≤ tan θ,

which implies

1− cos θ ≤ sin θ.

Taking the square on both sides, we get

1− 2 cos θ + cos2 θ ≤ sin2 θ.

Using Lemma A.9, the above equation is further equivalent to

2 cos θ(cos θ − 1) ≤ 0.

This is true forever, since cos θ ∈ [0, 1].

20

Published as a conference paper at ICLR 2024

Proof of Part 3. Given distc(V,U) = ∥R∥ (Eq. (11)) and sin θ(V,U) ≤ ∥R∥ (Eq. (12)), we have
sin θ(V,U) ≤ distc(V,U).

Proof of Part 4. We define A,D,B as the SVD of matrix V ⊤U as follows
ADB⊤ = SVD(V ⊤U),

then
A = V ⊤UBD−1 (13)

and
σmin(D) = σmin(V

⊤U) = cos θ(V,U).

In addition,
(AB⊤)⊤ = BA⊤

= (B⊤)⊤A⊤

= (B⊤)−1A−1

= (AB⊤)−1,

where the first step follows from (AB)⊤ = B⊤A⊤ for all matrices A and B, the second step follows
from the simple property of matrix, the third step follows from the fact that B is orthogonal, and the
last step follows from simple algebra, i.e., AB⊤ ∈ Ok×k.

For distc(V,U), we have

distc(V,U) ≤ ∥V AB⊤ − U∥
= ∥V V ⊤V BD−1B⊤ − U∥
= ∥V V ⊤V BD−1B⊤ − V V ⊤U + V V ⊤U − U∥
≤ ∥V V ⊤UBD−1B⊤ − V V ⊤U∥+ ∥V V ⊤U − U∥, (14)

where the first step follows from AB⊤ can not provide a better cost than minimizer, the second step
follows from Eq. (13), the third step follows from simple algebra, and the last step follows from the
triangle inequality.

For the second term of Eq. (14), namely ∥V V ⊤U − U∥, we have

∥V V ⊤U − U∥ = ∥(V V ⊤ − I)U∥
= sin θ(V,U),

where the first step follows from simple algebra and the second step follows from the definition of
sin θ(V,U) (see Definition 3.2).

For the first term of Eq. (14), namely ∥V V ⊤UBD−1B⊤ − V V ⊤U∥, we have

∥V V ⊤UBD−1B⊤ − V V ⊤U∥ = ∥V V ⊤U(BD−1B⊤ − I)∥
≤ ∥BD−1B⊤ − I∥
= ∥D−1 − I∥

=
1− cos θ(V,U)

cos θ(V,U)
,

where the first step follows from simple algebra, the second step follows from ∥V V ⊤U∥ ≤ 1,
the third step follows from B is orthonormal basis, and the last step follows from ∥D−1 − I∥ =
| 1
σmin(D) − 1| = | 1

cos θ − 1| = 1−cos θ
cos θ .

Proof of Part 5. We have

distc(V,U) ≤ sin θ(V,U) +
1− cos θ(V,U)

cos θ(V,U)

≤ sin θ(V,U) + tan θ(V,U)

≤ 2 tan θ(V,U),

where the first step follows from Part 4, the second step follows from Part 2, and the last step follows
from Part 1.

21

Published as a conference paper at ICLR 2024

A.3 TOOLS FROM PRIOR WORKS

The previous paper Jain et al. (2013) assumes the entries of M are sampled independently with
the following probability. Note that the choice of p also determines the sample complexity of the
algorithm.
Definition A.11 (Sampling probability). Let C ≥ 10 denote a sufficiently large constant. We define
sample probability to be

p := C · (σ∗
1/σ

∗
k)

2 · µ2 · k2.5 · log n · log(k∥M∥F /ϵ)/(mδ22k).

Then, we sample Ω ∼ [m]× [n] each coordinately independently according to that probability.

The parameter δ2k is a tuning parameter for sampling probability.
Definition A.12. We choose δ2k as follows

δ2k :=
1

100

1

k
σ∗
k/σ

∗
1 .

We can see that δ2k ∈ (0, 0.01).

Given the set of indices, we denote the row and column selection operator as follows.
Definition A.13. For each j ∈ [n], we define set Ω∗,j ⊂ [m]

Ω∗,j := {i ∈ [m] : (i, j) ∈ Ω}.
For each i ∈ [m], we define set Ωi,∗ ⊂ [m],

Ωi,∗ := {j ∈ [n] : (i, j) ∈ Ω}.

The next structural lemma bounds the inner product between vectors inside set Ω.
Lemma A.14 (Lemma C.5 in Jain et al. (2013)). Let Ω ⊂ [m] × [n] be a set f indices sampled
uniformly at random from [m] × [n] with each element of [m] × [n] sampled independently with
probability p ≥ C(log n)/m. Let C > 1 be a sufficiently large constant.

Then with probability 1− 1/ poly(n), for all x ∈ Rm with
∑m

i=1 xi = 0 and for all y ∈ Rn, we have∑
(i,j)∈Ω

xiyj ≤ C(mn)1/4p1/2∥x∥2∥y∥2.

The following lemma bounds the spectral gap between two matrix inverses in terms of the larger of
their spectral norm squared, times the spectral norm of their differences.
Lemma A.15 (Wedin (1973), see Theorem 1.1 in Meng & Zheng (2010) as an example). For two
conforming real matrices A and B,

∥A† −B†∥ ≤ 2 ·max{∥A†∥2, ∥B†∥2} · ∥A−B∥

The next claim bounds the inner product between any unit vector and rows of incoherent matrix.
Claim A.16. Suppose Ut is µ2 incoherent, and U∗ is µ incoherent. For any unit vectors x, y we have

• Part 1.
∑

i∈[m]⟨x, Ut,i⟩4 ≤ µ2
2k/m

• Part 2.
∑

i∈[m]⟨y, U∗,i⟩2 · ⟨x, Ut,i⟩2 ≤ µ2k/m.

Proof. Proof of Part 1. Note that ∥Ut,i∥2 ≤ 1, so

⟨x, Ut,i⟩ = ∥Ut,i∥2 · ⟨x, Ut,i/∥Ut,i∥2⟩
≤ ∥Ut,i∥2, (15)

where the second step follows from the inner product between two unit vectors is at most 1.

Thus, based on Eq. (15),

⟨x, Ut,i⟩2 ≤ ∥Ut,i∥22

22

Published as a conference paper at ICLR 2024

≤ µ2
2k/m. (16)

where the last step follows from Ut is µ2 incoherent.

We have
m∑
i=1

⟨x, Ut,i⟩4 ≤ max
i∈[m]
⟨x, Ut,i⟩2

m∑
i=1

⟨x, Ut,i⟩2

≤ µ2
2k

m

m∑
i=1

⟨x, Ut,i⟩2

=
µ2
2k

m
x⊤U⊤

t Utx

=
µ2
2k

m
x⊤x

=
µ2
2k

m
,

where the first step follows from
∑

i∈[m] aibi ≤ maxi∈[m] ai
∑

i∈[m] bi, the second step follows
from Eq. (16), the third step follows from U⊤

t Ut =
∑m

i=1 U
⊤
t,iUt,i, the fourth step follows from

U⊤
t Ut = Ik, and the last step follows from the Lemma statement that x is a unit vector.

Proof of Part 2. Similarly as the proof of part 1. We know that

⟨y, U∗,i⟩2 ≤ ∥U∗,i∥22 ≤ µ2k/m. (17)

We can show
m∑
i=1

⟨x, Ut,i⟩2 · ⟨y, U∗,i⟩2 ≤ max
i∈[m]
⟨y, U∗,i⟩2 ·

m∑
i=1

⟨x, Ut,i⟩2

≤ µ2k

m
·

m∑
i=1

⟨x, Ut,i⟩2

=
µ2k

m
· x⊤U⊤

t Utx

=
µ2k

m
x⊤x

=
µ2k

m
,

where the first step follows from
∑

i∈[m] aibi ≤ maxi∈[m] ai
∑

i∈[m] bi, the second step follows
from Eq. (17), the third step follows from U⊤

t Ut =
∑m

i=1 U
⊤
t,iUt,i, the fourth step follows from

U⊤
t Ut = Ik, and the last step follows from the Lemma statement that x is a unit vector.

A.4 PROBABILITY TOOLS

We introduce several well-known probability inequalities.
Lemma A.17 (Chernoff bound). Let X =

∑n
i=1 Xi, where Xi = 1 with probability pi and Xi = 0

with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀δ ∈ (0, 1).
Lemma A.18 (Bernstein inequality). Let X1, · · · , Xn be independent zero-mean random variables
(i.e., E[Xi] = 0 for all i ∈ [n]). Suppose that |Xi| ≤M almost surely, for all i ∈ [n].

Then, for any positive t, we have

Pr[

n∑
i=1

Xi > t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
).

23

Published as a conference paper at ICLR 2024

B HIGH ACCURACY WEIGHTED REGRESSION SOLVER

We demonstrate our high accuracy, iterative solver for weighted multiple response regression in this
section.

B.1 DENSE, HIGH ACCURACY AND ITERATIVE SOLVER

Here, we mainly focus on the SRHT matrix, the algorithm that processes it, and its properties. We
start by introducing the definition of the SRHT matrix Lu et al. (2013).
Definition B.1 (Subsampled randomized Hadamard transform (SRHT)). The SRHT matrix S ∈
Rm×n is defined as S := 1√

m
PHD, where each row of matrix P ∈ {0, 1}m×n contains exactly one

1 at a random position. H is the n× n Hadamard matrix. D is an n× n diagonal matrix with each
diagonal entry being a value in {−1,+1} with equal probability.
Remark B.2. For an n× d matrix A, SA can be computed in time O(nd log n).

The following lemma states that a suitable chosen SRHT provides the so-called subspace embedding
property.
Lemma B.3 (Tropp (2011)). Let S ∈ Rm×n be an SRHT matrix as in Def. B.1. Let ϵose, δose ∈ (0, 1)
be parameters. Then for any integer d ≤ n, if msk = O(ϵ−2

osed log(n/δose)), then matrix S is an
(ϵose, δose) oblivious subspace embedding, i.e., for any fixed orthonormal basis U ∈ Rn×d with
probability at least 1− δose, the singular values of SU lie in [1− ϵose, 1 + ϵose].

SRHT can be further utilized for a high accuracy regression solver, as presented by the following
lemma.
Lemma B.4 (Dense and high accuracy regression, Avron et al. (2010)). Given a matrix A ∈ Rn×d

and a vector b ∈ Rn, let ϵ1 ∈ (0, 0.1) and δ1 ∈ (0, 0.1), there exists an algorithm that takes time

O((nd log n+ d3 log2(n/δ1)) log(1/ϵ1))

and outputs x′ ∈ Rd such that

∥Ax′ − b∥2 ≤ (1 + ϵ1) min
x∈Rd

∥Ax− b∥2

holds with probability 1− δ1.

The above result also extends to weighted regression, measured in terms of the ∥v∥2w =
∑n

i=1 wiv
2
i

norm. For the sake of completeness, we include the algorithm and a proof here.

Algorithm 2 High precision solver

1: procedure HIGHPRECISIONREG(A ∈ Rn×d, b ∈ Rn, n, d, ϵ1 ∈ (0, 1), δ1 ∈ (0, 1)) ▷
Lemma B.4

2: T1 ← Θ(log(1/ϵ1))
3: ϵose ← 0.01
4: δose ← δ1
5: msk ← Θ(ϵ−2

ose · d · log
2(n/δose))

6: Let S ∈ Rmsk×n be an SRHT matrix
7: Compute QR decomposition of SA = QR−1

8: x0 ← argminx∈Rd ∥SARx− Sb∥2
9: for t = 0→ T1 do

10: xt+1 ← xt +R⊤A⊤(b−ARxt)
11: end for
12: return RxT1

13: end procedure

Proof of Lemma B.4. Let us analyze Algorithm 2, first on its convergence then on its runtime.

Note that the S we choose is an (ϵose, δose)-oblivious subspace embedding. Since SA = QR−1

where Q is orthonormal, we know the singular values of AR are between [1− ϵose, 1 + ϵose].

24

Published as a conference paper at ICLR 2024

Let AR = UΣV ⊤ be the SVD of AR and x∗ denote the optimal solution to the regression
minx∈Rd ∥ARx− b∥2.

Let us consider

AR(xt+1 − x∗)

= AR(xt +R⊤A⊤(b−ARxt)− x∗)

= AR(xt − x∗) +ARR⊤A⊤b−ARR⊤A⊤ARxt

= AR(xt − x∗) +ARR⊤A⊤ARx∗ −ARR⊤A⊤ARxt

= (AR−ARR⊤A⊤AR)(xt − x∗)

= (UΣV ⊤ − UΣ3V ⊤)(xt − x∗), (18)

where the first step follows from the definition of xt+1 from Algorithm 2, the second step follows
from simple algebra, the third step follows from b = ARx∗, the fourth step follows from simple
algebra, the last step follows from the SVD, AR = UΣV ⊤.

Therefore,

∥AR(xt+1 − x∗)∥2 = ∥(UΣV ⊤ − UΣ3V ⊤)(xt − x∗)∥2
= ∥(Σ− Σ3)V ⊤(xt − x∗)∥2
≤ O(ϵose) · ∥V ⊤(xt − x∗)∥2

≤ O(ϵose)

1− ϵose
∥ΣV ⊤(xt − x∗)∥2

= O(ϵose) · ∥ΣV ⊤(xt − x∗)∥2
= O(ϵose) · ∥UΣV ⊤(xt − x∗)∥2
= O(ϵose) · ∥AR(xt − x∗)∥2,

where the first step follows from Eq. (18), the second step follows from U⊤U = I , the third step
follows from ∥AB∥ ≤ ∥A∥ · ∥B∥, the fourth step follows from (1 − ϵose) ≤ ∥Σ∥, the fifth step
follows from ϵose ∈ (0, 0.1), the sixth step follows from U⊤U = I , and the last step follows from
the SVD, AR = UΣV ⊤.

This means the error shrinks by a factor of O(ϵose) per iteration. After T = O(log(1/ϵ1)) iterations,
we have

∥AR(xT − x∗)∥2 ≤ O(ϵ1) · ∥AR(x0 − x∗)∥2, (19)

and recall for initial solution x0, we have

∥ARx0 − b∥2 ≤ (1 + ϵose) · ∥ARx∗ − b∥2.

The above equation implies that

∥ARx0 − b∥22 − ∥ARx∗ − b∥22 ≤ O(ϵose)∥ARx∗ − b∥22. (20)

We can wrap up the proof as follows:

∥ARxT − b∥22
= ∥AR(xT − x∗)∥22 + ∥ARx∗ − b∥22
≤ O(ϵ21) · ∥AR(x0 − x∗)∥22 + ∥ARx∗ − b∥22
= O(ϵ21) · (∥ARx0 − b∥22 − ∥ARx∗ − b∥22) + ∥ARx∗ − b∥22
≤ O(ϵ21) · (O(ϵose)∥ARx∗ − b∥22) + ∥ARx∗ − b∥22
= (1 +O(ϵ21)) · ∥ARx∗ − b∥22,

where the first step follows from the Pythagorean theorem, the second step follows from Eq. (19), the
third step follows from the Pythagorean theorem again, the fourth step follows from Eq. (20), and the
fifth step follows from ϵose ≤ 1.

25

Published as a conference paper at ICLR 2024

It remains to show the runtime. Applying S to A takes O(nd log n) time, the QR decomposition
takes O(mskd

2) = O(d3 log2(n/δose)) time.

Inverting d × d matrix Q takes O(d3) time. To solve for x0, we need to multiply SA with R in
O(mskd

2) time and the solve takes O(mskd
2) time as well. To implement each iteration, we multiply

from right to left which takes O(nd) time. Putting things together gives the desired runtime.

B.2 BACKWARD ERROR OF REGRESSION

We show how to translate the error from ∥Ax′ − b∥2 to ∥x′ − xOPT∥2 via high-accuracy solver. In
the low accuracy sketch-and-solve paradigm, SRHT provides a stronger ℓ∞ guarantee, but for high
accuracy solver, we only attain an ℓ2 backward error bound.
Lemma B.5 (Backward error of regression). Given a matrix A ∈ Rn×d, a vector b ∈ Rn. Suppose
there exists a vector x′ ∈ Rd such that

∥Ax′ − b∥2 ≤ (1 + ϵ1) min
x∈Rd

∥Ax− b∥2.

Let xOPT denote the exact solution to the regression problem, then it holds that

∥x′ − xOPT∥2 ≤ O(
√
ϵ1) ·

1

σmin(A)
· ∥AxOPT − b∥2.

Proof. Note that

∥Ax′ −AxOPT∥2 = ∥Ax′ − b− (AxOPT − b)∥2,
so we can perform the following decomposition:

∥A(x′ − xOPT)∥22 = ∥Ax′ − b− (AxOPT − b)∥22
= ∥Ax′ − b∥22 − ∥AxOPT − b∥22
≤ (1 + ϵ1)

2∥AxOPT − b∥22 − ∥AxOPT − b∥22
≤ 4ϵ1 · ∥AxOPT − b∥22, (21)

where the first step follows from simple algebra, the second step follows from the Pythagorean
theorem, the third step follows from the assumption of Lemma B.5, and the fourth step follows from
simple algebra.

We expand more and explain why the second step follows from Pythagorean theorem. Ultimately, we
will show that AxOPT − b is orthogonal to any vector in the column space of A. Recall that xOPT

can be written in terms of the solution to the normal equation:

xOPT = (A⊤A)†A⊤b,

note that A is not necessarily full column rank, hence we use pseudo-inverse. Let A = UΣV ⊤ be the
SVD of A, then the above can be written as

xOPT = (V Σ2V ⊤)†V ΣU⊤b

= V (Σ†)2V ⊤V ΣU⊤b

= V (Σ†)2ΣU⊤b

= V Σ†U⊤b,

where we crucially use the fact that for a diagonal matrix Σ, the pseudo-inverse is by taking the
inverse of nonzero diagonal entries, and keeping zero for remaining zero diagonal entries. We can
therefore express AxOPT − b as

AxOPT − b = UΣV ⊤V Σ†U⊤b− b

= (UIrank(A)U
⊤ − I)b,

where Irank(A) is the matrix whose first rank(A) diagonal entries are 1, and remaining diagonal
entries are 0. Finally, we compute A⊤(AxOPT − b):

A⊤(AxOPT − b) = V ΣU⊤(UIrank(A)U
⊤ − I)b

26

Published as a conference paper at ICLR 2024

= (V ΣU⊤ − V ΣU⊤)b

= (A⊤ −A⊤)b

= 0n,

where for the second step, we use U⊤U = I , ΣIrank(A) = Σ since Σ only has its first rank(A)
diagonal entries being nonzero. This justifies the use of Pythagorean theorem.

We can express the SVD of A† in a similar manner:

A† = V Σ†U⊤,

therefore, we must have

A†A = V Σ†U⊤UΣV ⊤

= V Irank(A)V
⊤

and it acts as a contracting mapping, in the sense that for any y ∈ Rd,

∥A†Ay∥2 = ∥V Irank(A)V
⊤y∥2

= ∥Irank(A)V
⊤y∥2

≤ ∥V ⊤y∥2
≤ ∥V ⊤∥∥y∥2
≤ ∥y∥2,

where the third step is due to we only need to compute the ℓ2 norm on a sub-vector, and the last step
is by ∥V ⊤∥ ≤ 1.

Therefore, we have

∥x′ − xOPT∥2 ≤ ∥A†A(x′ − xOPT)∥2
≤ ∥A(x′ − xOPT)∥2 · ∥A†∥
≤ 2
√
ϵ1 · ∥AxOPT − b∥2 · ∥A†∥

=
2
√
ϵ1

σmin(A)
· ∥AxOPT − b∥2,

where the first step follows from A†A is a contracting map, the second step follows from ∥ABx∥2 ≤
∥Ax∥2∥B∥, the third step follows from Eq. (21), and the last step follows from ∥A†∥ = 1

σmin(A) .

B.3 REDUCING WEIGHTED LINEAR REGRESSION TO LINEAR REGRESSION

Solving the regression in matrix completion involves computing the Hadamard product with a binary
matrix, we further generalize it to a nonnegative weight matrix, and show it’s equivalent up to a
rescaling.
Lemma B.6 (Reducing weighted linear regression to linear regression). Given a matrix A ∈ Rn×d,
a vector b ∈ Rn, and a weight vector w ∈ Rn

≥0.

Let ϵ1 ∈ (0, 0.1) and δ1 ∈ (0, 0.1).

Suppose there exists a regression solver that runs in time T (n, d, ϵ1, δ1) and outputs a vector x′ ∈ Rd

such that

∥Ax′ − b∥2 ≤ (1 + ϵ1) min
x∈Rd

∥Ax− b∥2

with probability at least 1− δ1, then there is an algorithm that runs in

O(nnz(A)) + T (n, d, ϵ1, δ1)

time outputs x′ ∈ Rd such that

∥Ax′ − b∥w ≤ (1 + ϵ1) min
x∈Rd

∥Ax− b∥w

holds with probability 1− δ1.

27

Published as a conference paper at ICLR 2024

Proof. Recall that for a vector z ∈ Rn, ∥z∥2w =
∑n

i=1 DWi
x2
i , we can define the following simple

transformation on the regression problem: let b̃i := D√
Wi

bi and Ãi,: := D√
Wi

Ai,:.

We can then solve the regression on the transformed problem minx∈Rd ∥Ãx− b̃∥2.

Let x′ ∈ Rd be the solution such that

∥Ãx′ − b̃∥2 ≤ (1 + ϵ1) min
x∈Rd

∥Ãx− b̃∥2,

then for any y ∈ Rd

∥Ãy − b̃∥22 =

n∑
i=1

(Ã⊤
i,:y − b̃i)

2

=

n∑
i=1

(D√
Wi

A⊤
i,:y −D√

Wi
bi)

2

=

n∑
i=1

(D√
Wi

(A⊤
i,:y − bi))

2

=

n∑
i=1

DWi(A
⊤
i,:y − bi)

2

= ∥Ay − b∥2w,

where the first step follows from the definition of ∥ · ∥22, the second step follows from the definition
of Ãi,: and b̃i, the third step follows from simple algebra, the fourth step follows from (xy)2 = x2y2,
and the last step follows from the definition of ∥Ay − b∥2w. This finishes the proof.

B.4 SOLVING WEIGHTED MULTIPLE RESPONSE REGRESSION IN WEIGHT SPARSITY TIME

The main result of this section is an algorithm, together with a weighted multiple response analysis
that runs in time proportional to the sparsity of weight matrix W .

Algorithm 3 Fast, high precision solver for weighted multiple response regression. We will use this
algorithm in Algorithm 5 (the formal version) and Algorithm 1 (the informal version).

1: procedure FASTMULTREG(A ∈ Rm×n, B ∈ Rm×k,W ∈ Rm×n,m, n, k, ϵ0, δ0) ▷
Lemma B.7

2: ▷ Ai is the i-th column of A
3: ▷ Wi is the i-th column of W
4: ▷ DWi is a diagonal matrix where we put Wi on diagonal, other locations are zero
5: ϵ1 ← ϵ0/ poly(n, κ)
6: δ1 ← δ0/ poly(n)
7: for i = 1→ n do
8: Xi ← HIGHPRECISIONREG(DWi

B ∈ Rm×k, DWi
Ai ∈ Rk,m, k, ϵ1, δ1) ▷

Algorithm 2
9: end for

10: return X ▷ X ∈ Rn×k

11: end procedure

Lemma B.7. For any accuracy parameter ϵ0 ∈ (0, 0.1), and failure probability δ0 ∈ (0, 0.1).
Assume that m ≤ n. Given matrix M ∈ Rm×n, Y ∈ Rm×k and W ∈ {0, 1}m×n, let κ0 :=
σmax(M)/σmin(Y) and X = argminX∈Rn×k ∥W ◦ (M − Y X⊤)∥F . There exists an algorithm
(Algorithm 3) that takes time

O((∥W∥0k log n+ nk3 log2(n/δ0)) · log(nκ0/ϵ0))

and returns a matrix Z ∈ Rn×k such that

• ∥Z −X∥ ≤ ϵ0

28

Published as a conference paper at ICLR 2024

holds with probability 1− δ0.

Proof. We can rewrite multiple regression into n linear regression in the following way,

min
X∈Rn×k

∥M −XY ⊤∥2W =

n∑
i=1

min
Xi,:∈Rk

∥D√
Wi

Y Xi,: −D√
Wi

Mi,:∥22.

Consider the i-th linear regression. We define

• A := D√
Wi

Y ∈ Rm×k.

• x := Xi,: ∈ Rk.

• b := D√
Wi

M:,i ∈ Rm.

Recall that Y ∈ Rm×k.

For each i ∈ [n], let Xi,: ∈ Rk denote i-th row of X ∈ Rn×k. For each i ∈ [n], let M:,i ∈ Rm

denote i-th column of M ∈ Rm×n. We define OPTi

OPTi := min
Xi,:∈Rk

∥D√
Wi︸ ︷︷ ︸

m×m

Y︸︷︷︸
m×k

Xi,:︸︷︷︸
k

−D√
Wi︸ ︷︷ ︸

m×m

M:,i︸︷︷︸
m

∥2.

Here D√
Wi
∈ Rm×m is a diagonal matrix where diagonal entries are from vector

√
Wi (where Wi

is the i-th column of W ∈ {0, 1}m×n.
√
Wi is entry-wise sqaure root of Wi.).

The trivial solution of regression is choosing Xi,: ∈ Rk to be an all zero vector (length-k). In this
case OPTi ≤ ∥M:,i∥2.

Let C > 1 be a sufficiently large constant (The running time of the algorithm is linear in C). Using
backward error Lemma B.5, we know that

∥z − x∥2 ≤ ϵ0 ·
1

(nκ0)C
· ∥M:,i∥2
σmin(Y)

≤ ϵ0 ·
1

(nκ0)C
· σmax(M)

σmin(Y)

= ϵ0 ·
1

nCκC
0

· κ0

≤ ϵ0, (22)

where the second step follows from ∥M:,i∥2 ≤ σmax(M), the third step follows from the definition
of κ0 (see Lemma B.7), and the last step follows from simple algebra.

Using Lemma B.6 n times, we can obtain the running time.

C INITIALIZATION CONDITIONS

In this section, we deal with init conditions. In Section C.1, we provide the lemma which bound the
distance between Uϕ and U∗. In Section C.2, we show that if Uϕ is close to U∗, then U0 is close to
U∗. In Section C.3, we give the formal definition of U0, Uτ , and Uϕ. In Section C.4, we combine the
previous lemmas to form a new result.

C.1 BOUNDING THE DISTANCE BETWEEN Uϕ AND U∗

We prove our init condition lemma. This can be viewed as a variation of Lemma C.1 in Jain et al.
(2013).

29

Published as a conference paper at ICLR 2024

Lemma C.1. Let 1
pPΩ0

(M) = UΣV ⊤ be the SVD of the matrix 1
pPΩ0

(M), where U ∈ Rm×m,Σ ∈
Rm×m and V ∈ Rm×n. Let Uϕ ∈ Rm×k be the k columns of U corresponding to the top-k left
singular vectors of U . We can show that

dist(Uϕ, U∗) ≤
1

104k

holds with probability at least 1− 1/poly(n).

Proof. Let Mϕ := UϕΣV
⊤. Let C > 1 be some constant decided by Theorem 3.1 Keshavan et al.

(2009).

We can show

∥M −Mϕ∥ ≤ C · k1/2

p1/2(mn)1/4
· ∥M∥F

≤ C · k1/2

p1/2(mn)1/4
·
√
kσ∗

1

= C · k

p1/2(mn)1/4
· σ∗

1

≤ C · k

p1/2m1/2
· σ∗

1

≤ 1

104k
· σ∗

k, (23)

where the first step follows from Theorem 3.1 in Keshavan et al. (2009), the second step follows from
∥M∥F ≤

√
kσ∗

1 , the third step follows from simple algebra, namely k
1
2 · k 1

2 = k, the fourth step
follows from n ≥ m, the last step follows from

p ≥ 108 · C2 · k
2

m
· (σ

∗
1)

2

(σ∗
k)

2
.

We also have

∥M −Mϕ∥2 = ∥U∗Σ∗V
⊤
∗ − UϕΣV

⊤∥2

= ∥U∗Σ∗V
⊤
∗ − UϕU

⊤
ϕ U∗Σ∗(V∗)

⊤ + UϕU
⊤
ϕ U∗Σ∗V

⊤
∗ − UϕΣV

⊤∥2

= ∥(I − UϕU
⊤
ϕ)U∗Σ∗V

⊤
∗ + Uϕ(U

⊤
ϕ U∗Σ∗V

⊤
∗ − ΣV ⊤)∥2

≥ ∥(I − UϕU
⊤
ϕ)U∗Σ∗V

⊤
∗ ∥2

= ∥Uϕ,⊥U
⊤
ϕ,⊥U∗Σ∗V

⊤
∗ ∥2

= ∥U⊤
ϕ,⊥U∗Σ∗∥2

≥ ∥U⊤
ϕ,⊥U∗∥ · (σmin(Σ∗))

2

≥ (σ∗
k)

2∥U⊤
ϕ,⊥U∗∥2, (24)

where the first step follows from the SVD of M (see Definition 3.5) and Mk, the second step
follows from adding and subtracting the same thing, the third step follows from simple algebra,
the fourth step follows from ∥A + B∥ ≥ ∥A∥ if B⊤A = 0 (Fact A.1), the fifth step follows from
UϕU

⊤
ϕ +Uϕ,⊥U

⊤
ϕ,⊥ = I , the sixth step follows from applying Part 2 of Fact A.3 twice (one for Uϕ,⊥

and one for V∗), the seventh step follows from ∥AB∥ ≥ ∥A∥ · σmin(B) (Fact A.1), and the last step
follows from σmin(Σ∗) = σ∗

k.

Combining Eq. (23) and Eq. (24), we get:

∥U⊤
ϕ,⊥U∗∥2 ≤

1

σ∗
k

· ∥M −Mϕ∥

≤ 1

104k
.

Thus, we complete the proof.

30

Published as a conference paper at ICLR 2024

C.2 CLOSENESS BETWEEN Uϕ AND U∗ TO CLOSENESS BETWEEN U0 AND U∗

We first define τ , and then provide a lemma to show that whenever Uϕ is close to U∗, U0 is close to
U∗.
Definition C.2. We define τ as follows:

τ := 2

√
k√
n
· µ.

The initialization condition proof is very standard in the literature, we follow from Jain et al. (2013).
Lemma C.3. Let U∗ ∈ Rm×k is incoherent with parameter µ.

We define

ϵϕ :=
1

104k

Let Uϕ be an orthonormal column matrix such that

dist(Uϕ, U∗) ≤ ϵϕ.

Let Uτ be obtained from Uϕ ∈ Rn×k by setting all rows with norm greater than τ to zero. Let U0 be
an orthonormal basis of Uτ .

Then, we have

• Part 1. dist(U0, U∗) ≤ 1/2

• Part 2. U0 is incoherent with parameter 4µ
√
k.

Remark C.4. For the convenience of matching later induction proof, when we use this lemma for the
base in induction, we write Û0 to denote Uτ .

Proof. Proof of Part 1. For simplicity, in the proof, we use ϵ to denote ϵϕ.

Since dist(Uϕ, U∗) ≤ ϵ, we have that for every i, ∃zi ∈ span(U∗), ∥zi∥2 = 1 such that

⟨ui, zi⟩ ≥
√

1− ϵ2 (25)

Also, since zi ∈ span(U∗), we have that zi is incoherent with parameter µ
√
k:

∥zi∥2 = 1 (26)

and

∥zi∥∞ ≤
µ
√
k√
m

. (27)

Let uτ,i ∈ Rm be the vector obtained by setting all the elements of ui ∈ Rm with a magnitude
greater than τ to zero.

For each i ∈ [k], let ui ∈ Rm denote the i-th column of Uϕ.

By definition of Uϕ, we know that

∥ui∥2 = 1. (28)

We define vector uτ,i ∈ Rm

uτ,i := ui − uτ,i. (29)

Now, for each j ∈ [n], we have

|(ui)j | > τ =
2µ
√
k√

m
,

where j represents the j-th entry of ui ∈ Rm.

31

Published as a conference paper at ICLR 2024

Then, for each j ∈ [m] with |(ui)j | > τ ,

|(uτ,i)j − (zi)j | = |0− (zi)j |
= |(zi)j |

≤ µ
√
k√
m

≤ 2
µ
√
k√
m
− µ
√
k√
m

≤ |(ui)j | − |(zi)j |
≤ |(ui)j − (zi)j |, (30)

where the first step follows from truncation at τ , the second step follows from simple algebra, the
third step follows from Eq. (27), the fourth step follows from simple algebra, the fifth step follows
from the definition of |(ui)j | and |(zi)j |, and the last step follows from the triangle inequality.

For each j ∈ [m] with |(ui)j | ≤ τ , we know that

|(uτ,i)j − (zi)j | = |(ui)j − (zi)j |. (31)

where the first step follows from (uτ,i)j = (ui)j in this case.

Combining Eq. (30) and Eq. (31), we know for all j ∈ [m]

|(uτ,i)j − (zi)j | ≤ |(ui)j − (zi)j |.

Hence,

∥uτ,i − zi∥22 ≤ ∥ui − zi∥22
= ∥ui∥22 + ∥zi∥22 − 2⟨ui, zi⟩

≤ ∥ui∥22 + ∥zi∥22 − 2
√
1− ϵ2

= 2− 2
√
1− ϵ2

≤ 2ϵ2, (32)

where the first step follows from taking the summation of square of Eq. (30), and the second step
follows from simple algebra, the third step follows from Eq. (25), the fourth step follows from ui and
zi are unit vectors, and the last step follows Part 3 of Fact A.4.

This also implies the following:

∥uτ,i∥2 ≥ ∥zi∥2 − ∥uτ,i − zi∥2
≥ ∥zi∥2 −

√
2ϵ

= 1−
√
2ϵ, (33)

where the first step follows from triangle inequality, the second step follows from Eq. (32), and the
third step follows from Eq. (26).

We can show

∥uτ,i∥2 = ∥ui − uτ,i∥2
≤ ∥ui∥2 − ∥uτ,i∥2
≤ 1− ∥uτ,i∥2
≤ 1− (1−

√
2ϵ)

≤ 2ϵ, (34)

where the first step follows from Eq. (29), the second step follows from triangle inequality, the third
step follows from Eq. (28), the fourth step follows from Eq. (33), and the last step follows from
simple algebra.

We can show that

∥Uτ∥2 ≤ ∥Uτ∥2F

32

Published as a conference paper at ICLR 2024

=

k∑
i=1

∥uτ,i∥22

≤ 4ϵ2k, (35)

where the first step follows from ∥ · ∥ ≤ ∥ · ∥F , the second step follows from taking the summation
of square of Eq. (34).

Let

Uτ = U0Λ
−1 (36)

be the QR decomposition.

Then, for any u∗,⊥ ∈ span(U∗,⊥), we have:

∥u⊤
∗,⊥U0∥2 = ∥u⊤

∗,⊥UτΛ∥2
≤ ∥u⊤

∗,⊥Uτ∥2∥Λ∥, (37)

where the first step follows from Eq. (36) and the second step follows from ∥Ax∥2 ≤ ∥A∥ · ∥x∥2.

For the first term in the above equation

∥u⊤
∗,⊥Uτ∥2 ≤ ∥u⊤

∗,⊥Uϕ∥2 + ∥u⊤
∗,⊥Uτ∥2

≤ ϵ+ ∥u⊤
∗,⊥Uτ∥2

≤ ϵ+ ∥Uτ∥

≤ ϵ+ 2
√
kϵ

≤ 3
√
kϵ, (38)

where the first step follows from triangle inequality, the second step follows from ∥u⊤
∗,⊥∥2 ≤ d, the

third step follows from the definition of ∥ · ∥, the fourth step follows from Eq. (35), and the last step
follows from k ≥ 1.

We now bound ∥Λ∥ as follow:

∥Λ∥2 =
1

σmin(Λ−1)2

=
1

σmin(U0Λ−1)2

=
1

σmin(Uτ)2

=
1

1− ∥Uτ∥2

≤ 1

1− 2
√
kϵ

≤ 2, (39)

where the first step follows from Fact A.1, the second step follows from the fact that U0 forms an
orthonormal basis (see Part 2 of Fact A.3), the third step follows from the QR decomposition of Uτ

(Eq. (36)), the fourth step follows from cos2 θ + sin2 θ = 1 (see Lemma A.9), the fifth step follows
from Eq. (35), and the last step follows from using the fact that ϵ < 1

100k .

Thus, we have:

∥u⊤
∗,⊥U0∥2 ≤ ∥u⊤

∗,⊥Uτ∥2∥Λ∥

≤ 3
√
kϵ · ∥Λ∥

≤ 3
√
kϵ · 2

= 6
√
kϵ

33

Published as a conference paper at ICLR 2024

≤ 1

10
,

where the first step follows from Eq. (37), the second step follows from Eq. (38), the third step
follows from Eq. (39), the fourth step follows from simple algebra, and the last step follows from the
fact that ϵ ≤ 1

104k .

This proves the first part of the lemma.

Proof of Part 2. The incoherence of U0 (see incoherence in Definition 3.4) is
√
m√
k

max
i∈[m]

∥e⊤i U0∥2 ≤
√
m√
k

max
i∈[m]

∥e⊤i UτΛ∥2

≤
√
m√
k

max
i∈[m]

∥e⊤i Uτ∥2∥Λ∥

≤ 2
√
m√
k

max
i∈[m]

∥e⊤i Uτ∥2

≤ 2
√
m√
k
· τ

=
2
√
m√
k
· 2µ
√
k/
√
n

≤ 4µ,

where the first step follows from the definition of incoherence, the second step follows from ∥Ax∥2 ≤
∥A∥ · ∥x∥2, the third step follows from Eq (39), the fourth step follows from Uτ is truncating at
τ , the fifth step follows from τ = 2µ

√
k/
√
n (see Definition C.2), and the last step follows from

n ≥ m.

C.3 DEFINITIONS FOR U0, Uτ , Uϕ

We provide the definitions for U0, Uτ , and Uϕ. We also include a procedure that clips rows with large
norm then perform Gram-Schmidt.
Definition C.5. Let 1

pPΩ0
(M) = UΣV ⊤ be the SVD of the matrix 1

pPΩ0
(M), where U ∈

Rm×m,Σ ∈ Rm×n and V ∈ Rn×n.

Let τ := 2µ
√
k√

n
.

Let Uϕ ∈ Rm×k be the k columns of U corresponding to the top-k left singular vectors of U .

We define Uτ ∈ Rm×k as follows:

Uτ,i,∗ :=

{
Uτ,i,∗, if ∥Ûi,∗∥2 ≤ τ ,

0, otherwise.

Finally, we define U0 ∈ Rm×k to be the matrix formed from performing Gram-Schmidt on Uτ , i.e.,
columns of U0 are orthonormal.

To make convenient of base case of induction proof, we call Uτ to be Û0.

C.4 INITIALIZATION CONDITION: MAIN RESULT

We provide a Lemma which bounds dist(U0, U∗) and shows that U0 is incoherent with parameter
4µ
√
k.

Lemma C.6. Let M ∈ Rm×n be a (µ, k)-incoherent matrix (see Definition 3.5).

Let Ω ⊂ [m]× [n] and p ∈ (0, 1) be defined as Definition A.11.

34

Published as a conference paper at ICLR 2024

Algorithm 4 Clipping and Gram-Schmidt

1: procedure INIT(Uϕ ∈ Rm×k, µ ∈ (0, 1))
2: τ ← 2µ

√
k√

n

3: for i = 1→ m do

4: Uτ,i,∗ =

{
Uϕ,i,∗, if ∥Uϕ,i,∗∥2 ≤ τ ,
0, otherwise.

5: end for
6: (Q,R)← QR(Uτ)
7: U0 ← Q
8: return U0, Uτ

9: end procedure

Let U0 ∈ Rm×k be defined as Definition C.5.

Then, we have the following properties

• dist(U0, U∗) ≤ 1
2 and

• U0 is incoherent with parameter 4µ
√
k.

holds with probability at least 1− 1/poly(n).

Proof. From Lemma C.1, we see that U0 satisfy that

dist(U0, U∗) ≤
1

100k

Using Lemma C.3, we finish the proof.

D MAIN INDUCTION HYPOTHESIS

In this section, we provide our main induction hypothesis: we inductively bound
dist(V̂t+1, V

∗),dist(Ût+1, U
∗) and the incoherence of Ut+1, Vt+1. We start by presenting our

formal algorithm.

Lemma D.1 (Induction hypothesis). Let M = U∗Σ∗V
⊤
∗ be defined as Definition 3.5. Define

ϵd := 1/10. For all t ∈ [T], we have the following results.

Part 1. If Ut is µ2 incoherent and dist(Ût, U∗) ≤ 1
4 dist(V̂t, V∗) ≤ ϵd, then we have

• dist(V̂t+1, V∗) ≤ 1
4 dist(Ût, U

∗) ≤ ϵd

Part 2. If Ut is µ2 incoherent and dist(Ût, U∗) ≤ 1
4 dist(V̂t, V∗) ≤ ϵd, then we have

• Vt+1 is µ2 incoherent

Part 3. If Vt+1 is µ2 incoherent and dist(V̂t+1, V∗) ≤ 1
4 dist(Ût, U∗) ≤ ϵd, then we have

• dist(Ût+1, U∗) ≤ 1
4 dist(V̂t+1, V∗) ≤ ϵd

Part 4. If Vt+1 is µ2 incoherent and dist(V̂t+1, V∗) ≤ 1
4 dist(Ût, U∗) ≤ ϵd, then we have

• Ut+1 is µ2 incoherent.

The above results hold with high probability.

35

Published as a conference paper at ICLR 2024

Algorithm 5 Alternating minimization for matrix completion, formal version of Algorithm 1.

1: procedure FASTMATRIXCOMPLETION(Ω ⊂ [m]× [n], PΩ(M), k, ϵ, δ) ▷ Theorem 4.2
2: Let ϵ ∈ (0, 1) denote the final accuracy of algorithm.
3: Let δ ∈ (0, 1) denote the final failure probability.
4: ▷ Partition Ω into 2T + 1 subsets Ω0, · · · ,Ω2T

5: ▷ Each element of Ω belonging to one of the Ωt with equal probability (sampling with
replacement)

6: Uϕ = SVD(1pPΩ0(M), k) ▷ Uϕ ∈ Rm×k

7: U0, Û0 ← INIT(Uϕ) ▷ Algorithm 4
8: T ← Θ(log(1/ϵ))
9: ϵ0 ← ϵ/ poly(n, κ)

10: δ0 ← δ/poly(n, T)
11: for t = 0, · · · , T − 1 do
12: V̂t+1 ← FASTMULTREG(M ∈ Rm×n, Ût ∈ Rm×k,Ω2t+1,m, n, k, ϵ0, δ0)
13: ▷ Alg. 3 , Lem. B.7. Here Ω2t+1 can be viewed as m× n weight matrix.
14: V̂t+1 ← FASTMULTREG(M⊤ ∈ Rn×m, V̂t+1 ∈ Rn×k,Ω⊤

2t+2, n,m, k, ϵ0, δ0)

15: ▷ Alg. 3 , Lem. B.7. Here Ω⊤
2t+2 can be viewed as n×m weight matrix.

16: end for
17: X ← ÛT V̂

⊤
T

18: return X ▷ X ∈ Rm×n

19: end procedure

Proof. Proof of Part 1. To prove this part, we need to use Lemma F.1, and Lemma F.3. To use
Lemma F.1, we need the condition that Ut is µ2 incoherent. To use Lemma F.3, we need two
conditions: one is that Ut be a µ2-incoherent and the other is dist(Ut, U∗) ≤ 1/2.

We can show that

dist(V∗, Vt+1) = ∥V ⊤
∗,⊥Vt+1∥

= ∥V ⊤
∗,⊥(V∗Σ∗U

⊤
∗ Ut + F) ·R−1

t+1∥
= ∥V ⊤

∗,⊥V∗Σ∗U
⊤
∗ UtR

−1
t+1 + V ⊤

∗,⊥FR−1
t+1∥

= ∥V ⊤
∗,⊥F ·R−1

t+1∥
≤ ∥F ·R−1

t+1∥
= ∥FΣ−1

∗ Σ∗R
−1
t+1∥

≤ ∥FΣ−1
∗ ∥ · ∥Σ∗R

−1
t+1∥, (40)

where the first step follows from the definition of distance (Definition 3.1), the second step follows
from the definition of Vt+1 (Vt+1 = (V∗Σ∗U

⊤
∗ Ut + F) · R−1

t+1, see Definition E.6), the third step
follows from simple algebra, the fourth step follows from V ⊤

∗,⊥V∗ = 0, the fifth step follows from
Fact A.3, the sixth step follows from Σ−1

∗ Σ∗ = I , and the seventh step follows from ∥A · B∥ ≤
∥A∥ · ∥B∥ (Fact A.1).

By Eq. (40), we can upper bound

dist(V∗, Vt+1) ≤ ∥FΣ−1
∗ ∥ · ∥Σ∗R

−1
t+1∥

≤ 2δ2k · k dist(Ut, U∗) · ∥Σ∗R−1
t+1∥

≤ 2δ2k · k dist(Ut, U∗) · 2σ∗
1/σ

∗
k

≤ 1

4
dist(Ut, U∗),

where the second step follows from Lemma F.1, the third step follows from Lemma F.3, the last step
follows from Definition A.12.

Proof of Part 2. In this proof, we need to use Lemma F.3, Lemma F.4, Lemma F.5. To use
Lemma F.3, we need the condition that Ut is µ2 incoherent and the other is dist(Ut, U∗) ≤ 1/2. To

36

Published as a conference paper at ICLR 2024

use Lemma F.4, we need the condition that Ut is µ2 incoherent. To use Lemma F.5, we need the
condition that Ut is µ2 incoherent.

For each j ∈ [n], according to Definition E.6, we have

Vt+1,j = R−1
t+1(Dj −B−1

j (BjDj − Cj))Σ∗V∗,j .

Therefore,

∥Vt+1,j∥2 ≤
σ∗
1

σmin(Rt+1)
· ∥V∗,j∥2 · (∥Dj∥+ ∥B−1

j (BjDj − Cj)∥) (41)

For the first term of Eq. (41), we have
σ1

σmin(Rt+1)
≤ 2σ∗

1/σ
∗
k (42)

where it follows from Part 2 of Lemma F.3.

For the second term of Eq. (41), we have

∥V∗,j∥2 ≤ µ
√
k/
√
n (43)

For the third term of Eq. (41), we have
∥Dj∥+ ∥B−1

j (BjDj − Cj)∥ ≤ ∥Dj∥+ ∥B−1
j ∥ · ∥BjDj − Cj∥

≤ 1 + ∥B−1
j ∥ · ∥BjDj − Cj∥

≤ 1 + 2 · ∥BjDj − Cj∥
≤ 1 + 2 · (∥BjDj∥+ ∥Cj∥)
≤ 1 + 2 · (2 + 2)

≤ 10, (44)
where the first step follows from ∥AB∥ ≤ ∥A∥ · ∥B∥, the second step follows from ∥Dj∥ ≤ 1, the
third step follows from Lemma F.4, the fourth step follows from ∥A+B∥ ≤ ∥A∥+ ∥B∥, the fifth
step follows from Lemma F.5 (for ∥Cj∥ ≤ 2), and the last step follows from simple algebra.

Combining Eq. (41), Eq. (42), Eq. (43), and Eq. (44), we have

∥Vt+1,j∥2 ≤ 2
σ∗
1

σ∗
k

· µ
√
k√
n
· 10

≤ µ2 ·
√
k√
n
,

where the second step follows from Definition E.2

Proof of Part 3 and Part 4. By a symmetric argument, we can also prove

dist(Ut+1, U∗) ≤
1

4
dist(Vt+1, V∗).

and Ut+1 is µ2 incoherent.

We are now ready to prove the main theorem of this paper (Theorem 4.2)

Proof of Theorem 4.2. For the correctness part, it follows from combining the Init condition
(Lemma C.6), perturbation lemma (Lemma G.5) Induction lemmas (Lemma D.1).

For the running time part, it follows from using Lemma B.7 for 2T times. For each iteration, we use
twice, and there are T iterations.

E GENERAL CASE UPDATE RULES AND NOTATIONS

In this section, we review various properties of rank-k updates due to our algorithm. In Section E.1,
we provide the formal definition of the updated rule. In Section E.2, we give the definition of the
error matrix and analyze its properties. In Section E.3, we focus on providing the definition for the
update rule for V .

37

Published as a conference paper at ICLR 2024

E.1 UPDATE RULE

To begin with, we formally define the updated rule as follows.

Definition E.1 (Update rule). We define several updated rules here:

• Part 1. We define the QR factorization Ût ∈ Rm×k as Ût := UtRt,U .

– Here Ut ∈ Rm×k and Rt,U ∈ Rk×k

• Part 2. We define V̂t+1 ∈ Rn×k as follows V̂t+1 := argminV̂ ∈Rn×k ∥PΩ(UtV̂
⊤) −

PΩ(M)∥2F .

• Part 3. We define the QR decomposition of V̂t+1 ∈ Rn×k as follows V̂t+1 := Vt+1Rt+1,V .

– Here Vt+1 ∈ Rn×k and Rt+1,V ∈ Rk×k

• Part 4. We define Ût+1 ∈ Rm×k as follows Ût+1 := argminÛ∈Rm×k ∥PΩ(ÛV ⊤
t+1) −

PΩ(M)∥2F .

We note that the update rule does not directly reflect our algorithm. Nevertheless, we start by
analyzing this QR-based update and later connecting it to our algorithm.

Definition E.2 (µ2). We define µ2 as follows

µ2 := 40 · σ
∗
1

σ∗
k

·
√
k · µ.

E.2 ERROR MATRIX

Next, we provide several definitions related to the error matrix F . For most of the notations, we
follow Jain et al. (2013) (Note that those definitions are implicitly presented on page 16 in Jain et al.
(2013)). Note that we use U∗, V∗ to denote the optimal low rank factor instead of U∗, V ∗ to ease
notations.

Definition E.3 (Error matrix). For a given V∗ ∈ Rn×k matrix, for each j ∈ [n], we use v∗,i to denote
the i-th row of V∗.

We define v∗ ∈ Rnk as follows

v∗ := vec(V∗),

which can be written as

v∗ = [v⊤∗,1, v
⊤
∗,2, . . . , v

⊤
∗,k]

⊤.

We use ut,i to denote the i-th row of Ut ∈ Rm×k.

We use u∗,i to denote the i-th row of U∗ ∈ Rm×k.

• We define B ∈ Rnk×nk to be the matrix where the j-th block matrix is Bj , i.e.,

B :=


B1

B2

. . .
Bn


For each j ∈ [n], we define Bj ∈ Rk×k as follows

Bj :=
1

p

∑
i∈Ω∗,j

ut,iu
⊤
t,i.

38

Published as a conference paper at ICLR 2024

• We define matrix C ∈ Rnk×nk to be a diagonal block matrix where the the j-th diagonal
block is Cj ∈ Rk×k

Cj :=
1

p

∑
i∈Ω∗,j

ut,iu
⊤
∗,i

• We define matrix D ∈ Rnk×nk to be the matrix where the j-th diagonal block is Dj ∈ Rk×k

Dj := U⊤
t U∗

• We define matrix S ∈ Rnk×nk as

S =


σ∗
1In

σ∗
2In

. . .
σ∗
kIn


For each i ∈ [k], we define Fi ∈ Rn as follows

Fi :=


(B−1(BD − C)Sv∗)n(i−1)+1

(B−1(BD − C)Sv∗)n(i−1)+2

...
(B−1(BD − C)Sv∗)n(i−1)+n


We define F ∈ Rn×k as follows:

F := [F1 F2 · · · Fk.]

Claim E.4. Let B,D,C be diagonal block matrices (where each block has size k × k).

Let S be block rescaled identity matrix (where each block has size n× n).

Then, we have

SB−1(BD − C) = B−1(BD − C)S.

Proof. Without loss of generality, we can assume that n/k is an integer. Then, S can also be viewed
as a diagonal block matrix with size k × k.

The j-th block of SB−1(BD − C) is

(SB−1(BD − C))j = SjB
−1
j (BjDj − Cj)

= B−1
j (BjDj − Cj) · Sj

= (B−1(BD − C)S)j ,

where the first step follows from all matrices are diagonal block matrix, the second step follows from
Sj is an identiy matrix with resacling (AI = IA), and the third step follows from all matrices ar
diagonal block matrix.

Thus, we complete the proof.

Claim E.5. We have the following identity:

∥FΣ−1
∗ ∥2F = ∥B−1(BD − C)v∗∥22

Proof. We have

∥FΣ−1
∗ ∥2F =

n∑
j=1

k∑
i=1

(B−1(BD − C)Sv∗)
2
n(i−1)+j(σ

∗
i)

−2

39

Published as a conference paper at ICLR 2024

=

n∑
j=1

k∑
i=1

(SB−1(BD − C)v∗)
2
n(i−1)+j(σ

∗
i)

−2

=

n∑
j=1

k∑
i=1

S2
n(i−1)+j,n(i−1)+j(B

−1(BD − C)v∗)
2
n(i−1)+j(σ

∗
i)

−2

=

n∑
j=1

k∑
i=1

(σ∗
i)

2(B−1(BD − C)v∗)
2
n(i−1)+j(σ

∗
i)

−2

=

n∑
j=1

k∑
i=1

(B−1(BD − C)v∗)
2
n(i−1)+j

= ∥B−1(BD − C)v∗∥22,

where the first step follows from the definition of ∥ · ∥2F the second step follows from Claim E.4,
the third step follows from that fact that S is a diagonal matrix, the fourth step follows from
Sn(i−1)+j,n(i−1)+j = σ∗

i , the fifth step follows from (σ∗
i)

2 and (σ∗
i)

−2 canceling out, and the last
step follows from the definition of ∥ · ∥22.

E.3 UPDATE RULE FOR V

Now, we define the update rule for V .

Definition E.6. We provide the definition of V̂t+1 ∈ Rn×k and Vt+1 ∈ Rn×k.

• We define V̂t+1 ∈ Rn×k as follows

V̂t+1 := V∗Σ∗U
⊤
∗ Ut − F

Note that the first term can be treated as power-method update, and the second term is the
error term. Here F ∈ Rn×k is the error matrix defined in Definition E.3.

• We define Vt+1 ∈ Rn×k as follows

Vt+1 := V̂t+1R
−1
t+1.

Here Rt+1 ∈ Rk×k is a upper-triangular matrix obtained using QR-decomposition of
V̂t+1 ∈ Rn×k.

The above two definitions imply that

Vt+1 = (V∗Σ∗U
⊤
∗ Ut − F)R−1

t+1.

F TECHNICAL LEMMAS FOR DISTANCE SHRINKAGE

In this section, we prove a collection of technical lemmas that will facilitate us to eventually conclude
our induction.

In Section F.1, we bound ∥FΣ−1
∗ ∥ by distance. In Section F.2, we bound ∥(BD−C)v∗∥2 by distance.

In Section F.3, we upper bound ∥Σ∗R−1
t+1∥. In Section F.4, we upper bound ∥B−1∥. In Section F.5,

we upper bound ∥Cj∥.

F.1 UPPER BOUNDING ∥FΣ−1
∗ ∥ BY DISTANCE

In this section, we upper bound ∥FΣ−1
∗ ∥ by distance between Ut and U∗. We generally follow the

approach of Jain et al. (2013).
Lemma F.1. Let F be the error matrix defined by Definition E.6. Let Ut be a µ2-incoherent matrix
and dist(Ut, U∗) ≤ 1/2. Let M be a (µ, k)-incoherent matrix (see Definition 3.5). Let Ω ⊂ [m]× [n]
and p ∈ (0, 1) be defined as Definition A.11. Let δ2k ∈ (0, 0.1) be defined as Definition A.12.

40

Published as a conference paper at ICLR 2024

Then, we have

∥F (Σ∗)
−1∥ ≤ 2δ2k · k · dist(Ut, U∗)

holds with probability least 1− 1/ poly(n).

Proof. We have

∥FΣ−1
∗ ∥ ≤ ∥FΣ−1

∗ ∥F
= ∥B−1(BD − C)v∗∥2
≤ ∥B−1∥ · ∥(BD − C)v∗∥2
≤ 2 · ∥(BD − C)v∗∥2
≤ 2 · δ2k · dist(Ut, U∗),

where the first step follows from ∥ · ∥ ≤ ∥ · ∥F (Fact A.1), the second step follows from Claim E.5,
the third step follows from ∥Ax∥2 ≤ ∥A∥ · ∥x∥2, the fourth step follows from Lemma F.4, and the
fifth step follows from Lemma F.2.

F.2 UPPER BOUNDING ∥(BD − C)v∗∥2 BY DISTANCE

Now, we upper bound ∥(BD − C)v∗∥2. We follow similar ideas in literature Jain et al. (2013).
Lemma F.2. Let M ∈ Rm×n be a (µ, k)-incoherent matrix (see Definition 3.5). Let Ω ⊂ [m]× [n]
and p ∈ (0, 1) be defined as Definition A.11. Let Ut ∈ Rm×k be µ2 incoherent matrix. For each
j ∈ [n], let v∗,j denote the j-th row of V∗ ∈ Rn×k.

We define v∗ ∈ Rn×k as follows

v∗ = [v∗,1 · · · v∗,n]

Then, we have:

∥(BD − C)v∗∥2 ≤ δ2k · dist(Vt+1, V
∗),

holds with probability at least 1− 1/poly(n).

Proof. Let X ∈ Rn×k and x = vec(X) ∈ Rnk, where ∥x∥2 = 1. For each j ∈ [n], let xj ∈ Rk be
the j-th row of X ∈ Rn×k. For each j ∈ [n], we define Hj ∈ Rk×k as

Hj := (BjDj − Cj).

Then, by the definition of Bj , Cj , and Dj (see Definition E.3), we can write Hj ∈ Rk×k as

Hj =
1

p

∑
i∈Ω∗,j

ut,iu
⊤
t,iU

⊤
t U∗ − ut,iu

⊤
∗,i =

1

p

∑
i∈Ω∗,j

Hj,i.

For j ∈ [n], i ∈ [m], we define Hj,i ∈ Rk×k as follows

Hj,i := ut,iu
⊤
t,iU

⊤
t U∗ − ut,iu

⊤
∗,i (45)

Then, we have

Hj =
1

p

∑
i∈Ω∗,j

Hj,i

Note that,
n∑

i=1

Hj,i = U⊤
t UtU

⊤
t U∗ − U⊤

t U∗ = 0. (46)

For each j ∈ [n], let V∗,j denote the j-th row of V∗ ∈ Rn×k.

41

Published as a conference paper at ICLR 2024

Now,

x⊤(BD − C)v∗ =

n∑
j=1

x⊤
j (BjD − Cj)V∗,j

=
1

p

k∑
p=1

k∑
q=1

∑
(i,j)∈Ω

(xj)p · (V∗,j)q · (Hj,i)p,q,

where the first step follows from j being defined as the j-th row of matrices and the second step
follows from the definition of Bj , Cj , D (see Definition E.3).

Also, using Eq. (46), we have ∀(p, q) ∈ [k]× [k]:
n∑

i=1

(Hj,i)p,q = 0.

Hence, we get with probability at least 1− 1
n3 :

x⊤(BD − C)v∗ =

n∑
j=1

x⊤
j (BjD − Cj)V∗,j

≤ 1

p

k∑
p=1

k∑
q=1

(

n∑
j=1

(xj)
2
p · (V∗,j)

2
q)

1/2 · (
m∑
i=1

(Hj,i)
2
p,q)

1/2, (47)

where the first step follows from j being defined as the j-th row of matrices and the second step
follows from Lemma A.14.

For each q ∈ [k], we use U∗,q to denote the q-th column of U∗ ∈ Rm×k.

Also,
m∑
i=1

(Hj,i)
2
p,q =

m∑
i=1

(ut,i)
2
p · (u⊤

t,iU
⊤
t U∗,q − (U∗)i,q)

2

≤ max
i∈[m]

(ut,i)
2
p ·

m∑
i=1

(u⊤
t,iU

⊤
t U∗,q − (U∗)i,q)

2

= max
i∈[m]

(ut,i)
2
p · ∥(UtU

⊤
t − I)U∗,q∥22

≤ µ2
2k

m
· ∥(UtU

⊤
t − I)U∗,q∥22

≤ µ2
2k

m
· ∥(UtU

⊤
t − I)U∗∥2

≤ µ2
2k

m
· dist(Ut, U∗)

2, (48)

where the first step follows from Eq. (45), the second step follows from
∑

i aibi ≤ maxi ai
∑

i bi,
the third step follows from simple algebra, the fourth step follows from ut is µ2 incoherent, the fifth
step follows from spectral norm definition, the last step follows from the definition of distance.

Using Eq. (47), Eq. (48), and incoherence of V∗ ∈ Rn×k, we get (w.p. 1− 1/n3),

max
x:∥x∥2=1

x⊤(BD − C)v∗ ≤
k∑

p=1

k∑
q=1

µ2
2k

mp
dist(Ut, U∗)∥xp∥2

≤ δ2k dist(Ut, U∗), (49)

where the last step follows from
∑k

p=1 ∥xp∥2 ≤
√
k∥x∥2 =

√
k.

Finally, we have
∥(BD − C)v∗∥2 = max

x,∥x∥=1
x⊤(BD − C)v∗

≤ δ2k dist(Ut, U∗),

where the first step follows from Fact A.1 and the second step follows from Eq. (49).

42

Published as a conference paper at ICLR 2024

F.3 UPPER BOUNDING ∥Σ∗R−1
t+1∥ BY CONDITION NUMBER

To bound ∥Σ∗R−1
t+1∥, we show that ∥Σ∗R−1

t+1∥ ≤ 2 · σ∗
1/σ

∗
k. Similarly, we also bound σ∗

1

σmin(Rt+1)
by

showing σ∗
1

σmin(Rt+1)
≤ 2 · σ∗

1/σ
∗
k.

Lemma F.3. Let Rt+1 be the lower-triangular matrix obtained by QR decomposition of V̂t+1 (see
Definition E.6). Let Ut be a µ2-incoherent and dist(Ut, U∗) ≤ 1/2. Let M be a (µ, k)-incoherent
matrix (see Definition 3.5). Let Ω be defined as Definition A.11. Let δ2k ∈ (0, 0.01) be defined as
Definition A.12.

Then, we have

• Part 1.

∥Σ∗R−1
t+1∥ ≤ 2 · σ∗

1/σ
∗
k.

• Part 2.
σ∗
1

σmin(Rt+1)
≤ 2 · σ∗

1/σ
∗
k

Proof. Note that

∥Σ∗R−1
t+1∥ ≤

σ∗
1

σmin(Rt+1)

We can show that

∥F∥ = ∥FΣ−1
∗ Σ∗∥

≤ ∥FΣ−1
∗ ∥ · ∥Σ∗∥

≤ ∥FΣ−1
∗ ∥ · σ∗

1 , (50)

where the first step follows from Σ−1
∗ Σ∗ = I , the second step follows from ∥AB∥ ≤ ∥A∥ · ∥B∥, and

the third step follows from ∥Σ∗∥ ≤ σ∗
1 .

We can show that

min
z:∥z∥2=1

∥V∗Σ∗U
⊤
∗ Utz∥22 = min

z:∥z∥2=1
∥Σ∗U

⊤
∗ Utz∥22

= σ2
min(Σ∗U

⊤
∗ Utz)

≥ σ2
min(Σ∗) · σ2

min(U
⊤
∗ Ut)

= (σ∗
k)

2 · σ2
min(U

⊤
∗ Ut)

≥ (σ∗
k)

2 · (1− ∥U⊤
∗,⊥Ut∥2),

where the first step follows from Part 2 of Fact A.3 that V is a matrix of SVD that has an orthonormal
basis, the second step follows from definition of σmin, the third step follows from Fact A.1, the
fourth step follows from σmin(Σ∗) = σ∗

k, and the last step follows from cos2 θ + sin2 θ = 1 (see
Lemma A.9).

Now, we have

σmin(Rt+1) = min
z:∥z∥2=1

∥Rt+1z∥2

= min
z:∥z∥2=1

∥Vt+1Rt+1z∥2

= min
z:∥z∥2=1

∥V∗Σ∗U
⊤
∗ Utz − Fz∥2

≥ min
z:∥z∥2=1

∥V∗Σ∗U
⊤
∗ Utz∥2 − ∥Fz∥2

≥ min
z:∥z∥2=1

∥V∗Σ∗U
⊤
∗ Utz∥2 − ∥F∥

43

Published as a conference paper at ICLR 2024

≥ σ∗
k ·

√
1− ∥U⊤

∗,⊥Ut∥22 − σ∗
1 · ∥FΣ−1

∗ ∥

= σ∗
k ·

√
1− dist(U∗, Ut)2 − σ∗

1 · ∥FΣ−1
∗ ∥

= σ∗
k ·

√
1− dist(U∗, Ut)2 − 2σ∗

1δ2kk dist(Ut, U∗),

where the first step follows from the definition of σmin, the second step follows from Part 2 of
Fact A.3, the third step follows from Definition E.6, the fourth step follows from triangle inequality,
the fifth step follows from the definition of ∥ · ∥, the sixth step follows from Eq. (50), the seventh
step follows from the definition of dist(U∗, Ut) (see Definition 3.1), and the last step follows from
Lemma F.1.

We can obtain that

∥Σ∗R−1
t+1∥ ≤

σ∗
1/σ

∗
k√

1− dist(Ut, U∗)2 − 2 · (σ∗
1/σ

∗
k)δ2kk dist(Ut, U∗)

.

For convenient, we define x := dist(Ut, U∗).

We define y := 2(σ∗
1/σ

∗
k)δ2kk.

Then we now x ∈ [0, 1/2] and y ∈ (0, 0.1).

Then we obtain that

∥Σ∗R
−1
t+1∥ ≤

σ∗
1/σ

∗
k√

1− x2 − y · x
.

Using Part 1 of Fact A.4, we know that√
1− x2 − y · x ≥ 1/2.

Thus, we have

∥Σ∗R
−1
t+1∥ ≤ 2σ∗

1/σ
∗
k.

F.4 UPPER BOUNDING ∥B−1∥ BY CONSTANT

We analyze ∥B−1
j ∥, for all j ∈ [n], and ∥B−1∥ and show both of them are bounded by 2. We prove a

variation of Lemma C.6 in Jain et al. (2013).
Lemma F.4. Let M be a (µ, k)-incoherent matrix (see Definition 3.5). Let Ω, p be defined as
Definition A.11. For each j ∈ [n], we define Bj ∈ Rk×k as follows

Bj :=
1

p

∑
i∈Ω∗,j

Ut,iU
⊤
t,i

Let Ut be µ2 incoherent. Then, we have:

• Part 1. For all j ∈ [n],

∥B−1
j ∥ ≤ 2

• Part 2.

∥B−1∥ ≤ 2 (51)

both events succeed with a probability at least 1− 1/ poly(n)

Proof. We have:

∥B−1∥2 =
1

σmin(B)

44

Published as a conference paper at ICLR 2024

=
1

minx,∥x∥2=1 ∥Bx∥2

=
1

minx,∥x∥2=1 x⊤Bx
,

where x ∈ Rnk and the first step follows from Fact A.1, the second step follows from definition of
σmin, and the last step follows from B is a symmetric matrix.

Let x = vec (X), i.e., xp is the p-th column of X and xj is the j-th row of X . Let Bj ∈ Rk×k. Let
xj ∈ Rk. Now, ∀x ∈ Rnk,

x⊤Bx =
∑
j∈[n]

x⊤
j Bjxj

≥ min
j∈[n]

σmin(Bj),

where the first step follows from B is a diagonal block matrix, and the second step follows from the
definition of σmin for a symmetric matrix.

Results would follow using the bound on σmin(Bj), ∀j ∈ [n] that we show below

Lower bound on σmin(Bj):

Consider any w ∈ Rk such that ∥w∥2 = 1.

We have:

Z = w⊤Bjw

= w⊤(
1

p

∑
i∈Ω∗,j

Ut,iU
⊤
t,i)w

=
1

p

∑
i∈Ω∗,j

⟨w,Ut,i⟩2

=
1

p

∑
i∈[m]

δi,j · ⟨w,Ut,i⟩2,

where the first step follows from the definition of Z, the second step follows from the definition of B,
the third step follows from the definition of inner product, and the last step follows from definition of
δi,j .

Note that,

E[Z] = E[
1

p

∑
i∈[m]

δi,j · ⟨w,Ut,i⟩2]

=
1

p

∑
i∈[m]

E[δi,j] · ⟨w,Ut,i⟩2

=
1

p

∑
i∈[m]

p · ⟨w,Ut,i⟩2

=
∑
i∈[m]

⟨w,Ut,i⟩2

=
∑
i∈[m]

w⊤Ut,iU
⊤
t,iw

= w⊤U⊤
t Utw

= w⊤w

= 1, (52)

where the first step follows from the definition of Z, the second step follows from U being orthogonal,
the third step follows from E[δi,j] = p, the fourth step follows from simple algebra, the fifth step

45

Published as a conference paper at ICLR 2024

follows from the definition of the inner product, the sixth step follows from the fact that Ut is a m× k
matrix, the seventh step follows from UtU

⊤
t = Ik, and the last step follows from ∥w∥2 = 1.

For variance, we have

E[Z2] = E[(
1

p

∑
i∈[m]

δi,j · ⟨w,Ut,i⟩2)2]

= E[
1

p2
(
∑
i∈[m]

δi,j · ⟨w,Ut,i⟩2)2]

=
1

p2
E[(

∑
i∈[m]

δi,j · ⟨w,Ut,i⟩2)2]

=
1

p2
(
∑
i∈[m]

E[δ2i,j](⟨w,Ut,i⟩2)2 +
∑
i1 ̸=i2

E[δi1,j]⟨w,Ut,i1⟩2 E[δi2,j]⟨w,Ut,i2⟩2)

=
1

p2
(
∑
i∈[m]

p⟨w,Ut,i⟩4 +
∑
i1 ̸=i2

p2⟨w,Ut,i1⟩2⟨w,Ut,i2⟩2)

=
1

p
(
∑
i∈[m]

⟨w,Ut,i⟩4 − p
∑
i∈[m]

⟨w,Ut,i⟩4 + p
∑
i∈[m]

⟨w,Ut,i⟩4 + p
∑
i1 ̸=i2

⟨w,Ut,i1⟩2⟨w,Ut,i2⟩2)

=
1

p

∑
i∈[m]

⟨w,Ut,i⟩4 −
∑
i∈[m]

⟨w,Ut,i⟩4 +
∑
i∈[m]

⟨w,Ut,i⟩4 +
∑
i1 ̸=i2

⟨w,Ut,i1⟩2⟨w,Ut,i2⟩2

= (
1

p
− 1)

∑
i∈[m]

⟨w,Ut,i⟩4 + (
∑
i∈[m]

⟨w,Ut,i⟩2)2

= (
1

p
− 1)

∑
i∈[m]

⟨w,Ut,i⟩4 + (E[Z])2

≤ 1

p

m∑
i=1

⟨w,Ut,i⟩4 + (E[Z])2

=
1

p

µ2
2k

m
+ (E[Z])2 (53)

where the first step follows from the definition of Z, the second step follows from (ab)2 = a2b2,
the third step follows from E[ca] = cE[a], where c is a constant, the fourth step follows from
E[a+ b] = E[a] + E[b], the fifth step follows from E[δ2i,j] = p, the sixth step follows from adding
and subtracting the same thing, the seventh step follows from simple algebra, the eighth step follows
from simple algebra, the ninth step follows from Eq. (52), the tenth step follows from (1p − 1) ≤ 1

p ,
the last step follows from Claim A.16.

Then, we can compute

Var[Z] = E[Z2]− (E[Z])2

=
µ2
2k

mp
+ (E[Z])2 − (E[Z])2

=
µ2
2k

mp
,

where the first step follows from the definition of variance, the second step follows from Eq. (53),
and the third step follows from simple algebra.

Similarly,

max
i∈[m]

|⟨w,Ut,i⟩2| ≤
µ2
2k

mp
.

46

Published as a conference paper at ICLR 2024

Hence, using Bernstein’s inequality (Lemma A.18):

Pr[|Z − E[Z]| ≥ δ2k] ≤ exp (− δ22k/2

1 + δ2k/3

mp

µ2
2k

).

That is, by using p as in the statement of the lemma with the above equation and using union bound,
we get (w.p. > 1− 1/n3): ∀w ∈ Rk, j ∈ [n]

w⊤Bjw ≥ 1− δ2k.

That is, ∀j ∈ [n],

σmin(Bj) ≥ (1− δ2k) ≥ 0.5.

F.5 UPPER BOUNDING ∥Cj∥ BY 1 + δ2k

Now, we analyze ∥Cj∥ and show that it is bounded by 1 + δ2k for all j ∈ [n]. We prove a variation
of Lemma C.7 in Jain et al. (2013).

Lemma F.5. For each j ∈ [m], we define Cj ∈ Rk×k as follows

Cj :=
1

p

∑
i∈Ω∗,j

Ut,iU
⊤
∗,i

Then, we have: for all j ∈ [n]

∥Cj∥ ≤ 1 + δ2k.

Proof. Let x ∈ Rk and y ∈ Rk be two arbitrary unit vectors. We define Z := x⊤Cjy. Then,

Z = x⊤Cjy

=
1

p

∑
i∈Ω∗,j

x⊤Ut,i · y⊤U∗,i

=
1

p

m∑
i=1

δi,jx
⊤Ut,i · y⊤U∗,i,

where the first step follows from the definition of Z, the second step follows from the the notation
Ω∗,j ⊂ [m] being defined in Definition A.13, and the third step follows from definition of δi,j which
is 1 if i ∈ Ω∗,j and 0 if i /∈ Ω∗,j .

Note that,

E[Z] = E[
1

p

m∑
i=1

δi,jx
⊤Ut,i · y⊤U∗,i]

=
1

p

m∑
i=1

E[δi,j]x⊤Ut,i · y⊤U∗,i

=
1

p

m∑
i=1

px⊤Ut,i · y⊤U∗,i

=

m∑
i=1

x⊤Ut,i · y⊤U∗,i

= x⊤U⊤
t U∗y, (54)

where the first step follows from the definition of Z, the second step follows from the linearity of
expectation (E[a+ b] = E[a] + E[b]), the third step follows from E[δ2i,j] = p, the fourth step follows
from simple algebra, and the last step follows from the fact that U is a m× k matrix.

47

Published as a conference paper at ICLR 2024

We can compute the second moment

E[Z2] = E[(
1

p

m∑
i=1

δi,jx
⊤Ut,i · y⊤U∗,i)

2]

=
1

p2
E[(

m∑
i=1

δi,jx
⊤Ut,i · y⊤U∗,i)

2]

=
1

p2
(

m∑
i=1

E[δ2i,j](x⊤Ut,i · y⊤U∗,i)
2 +

∑
i1 ̸=i2

E[δi1,j]x⊤Ut,i1 · y⊤U∗,i1 E[δi2,j]x⊤Ut,i2 · y⊤U∗,i2)

=
1

p2
(

m∑
i=1

p(x⊤Ut,i · y⊤U∗,i)
2 +

∑
i1 ̸=i2

p2x⊤Ut,i1 · y⊤U∗,i1x
⊤Ut,i2 · y⊤U∗,i2)

=
1

p
(

m∑
i=1

(x⊤Ut,i · y⊤U∗,i)
2 + p

∑
i1 ̸=i2

x⊤Ut,i1 · y⊤U∗,i1x
⊤Ut,i2 · y⊤U∗,i2)

=
1

p
(

m∑
i=1

(x⊤Ut,i · y⊤U∗,i)
2 − p

m∑
i=1

(x⊤Ut,i · y⊤U∗,i)
2 + p

m∑
i=1

(x⊤Ut,i · y⊤U∗,i)
2

+ p
∑
i1 ̸=i2

x⊤Ut,i1 · y⊤U∗,i1x
⊤Ut,i2 · y⊤U∗,i2)

= (
1

p
− 1)

m∑
i=1

(x⊤Ut,i · y⊤U∗,i)
2 + (

m∑
i=1

x⊤Ut,i · y⊤U∗,i)
2

≤ 1

p

m∑
i=1

(x⊤Ut,i)
2 · (y⊤U∗,i)

2 + (

m∑
i=1

x⊤Ut,i · y⊤U∗,i)
2

=
1

p

m∑
i=1

(x⊤Ut,i)
2 · (y⊤U∗,i)

2 + (E[Z])2

=
µ2k

mp
+ (E[Z])2, (55)

where the first step follows from the definition of Z, the second step follows from E[ca] = cE[a],
where c is a constant, the third step follows from E[a + b] = E[a] + E[b], the fourth step follows
from E[δ2i,j] = p, the fifth step follows from simple algebra, the sixth step follows from adding and
subtracting the same thing, the seventh step follows from simple algebra, the eighth step follows from
(xy)2 = x2y2, the ninth step follows Eq. (54), the 10th step follows from Claim A.16.

Then, we have

Var[Z] = E[Z2]− (E[Z])2

=
µ2k

mp
+ (E[Z])2 − (E[Z])2

=
µ2k

mp
,

where the first step follows from the definition of variance, the second step follows from Eq. (55),
and the last step follows from simple algebra.

We have

max
i∈[m]

|x⊤Ut,i · y⊤U∗,i| ≤
µ2
2k

m

Lemma now follows from using Bernstein’s inequality.

48

Published as a conference paper at ICLR 2024

G A PERTURBATION THEORY FOR DISTANCES AND INCOHERENCE

In this section, we present one of the main technical contributions of this paper — a perturbation
theory for distances and matrix incoherence. Our main technology is a reduction from incoherence
to leverage score, then utilize different parametrizations of leverage score to obtain a bound on
incoherence.

In Section G.1, show to bound distance by the spectral norm. In Section G.2, we present the
perturbation related lemma that is from right to left low rank factor. In Section G.3, we assert a toll
from the previous work: leverage score changes under row perturbation. In Section G.4, we elucidate
the perturbation related lemma that is from approximate to exact updates.

G.1 BOUND DISTANCE BY SPECTRAL NORM

The following lemma establishes a relationship between dist and the spectral norm.
Lemma G.1 (Bounded distance by spectral). Let X,Y ∈ Rn×k be two matrices (not necessarily
orthogonal). Suppose ∥X − Y ∥2 ≤ σmin(X)σmin(Y). Then

dist(X,Y) ≤ 4∥X − Y ∥σmin(X)−0.5σmin(Y)−0.5.

Proof.

cos θ(X,Y) = min
u∈span(X)

max
v∈span(Y)

u⊤v

∥u∥∥v∥

≥ min
w∈Rk

u=Xw,v=Y w

u⊤v

∥u∥∥v∥

= min
w∈Rk

u=Xw,v=Y w

1

2
· ∥u∥

2 + ∥v∥2 − ∥u− v∥2

∥u∥∥v∥

≥ min
w∈Rk

u=Xw,v=Y w

1− 1

2
· ∥u− v∥2

∥u∥∥v∥

≥ min
w∈Rk

1− 1

2
· ∥X − Y ∥2∥w∥2

∥u∥∥v∥

≥ min
w∈Rk

1− 1

2
· ∥X − Y ∥2∥w∥2

σmin(X)σmin(Y)∥w∥2

= 1− 1

2
∥X − Y ∥2σmin(X)−1σmin(Y)−1, (56)

where the first step follows from the definition of cos θ(X,Y), the second step follows from
maxi Xi ≥ Xi, the third step follows from simple algebra, the fourth step follows from a2+b2 ≥ 2ab,
the fifth step follows from ∥u − v∥22 = ∥Xw − Y w∥22 ≤ ∥X − Y ∥2∥w∥22, the sixth step follows
from ∥u∥2 = ∥Xw∥2 ≥ σmin(X)∥w∥2, and the last step follows from canceling the term ∥w∥22.

Thus,

sin2 θ(X,Y) = 1− cos2 θ(X,Y)

≤ 1−
(
1− 1

2
∥X − Y ∥2σmin(X)−1σmin(Y)−1

)2

≤ 1−
(
1− ∥X − Y ∥2σmin(X)−1σmin(Y)−1

)
= ∥X − Y ∥2σmin(X)−1σmin(Y)−1, (57)

where the first step follows from cos2 θ(X,Y) + sin2 θ(X,Y) = 1 (see Lemma A.9) and the second
steep follows from Eq. (56), the third step follows from −(a− b)2 = −a2 − b2 + 2ab ≤ −a2 + 2ab,
and the fourth step follows from simple algebra.

Note that dist(X,Y) = sin θ(X,Y), thus, we complete the proof.

49

Published as a conference paper at ICLR 2024

G.2 FROM RIGHT TO LEFT FACTOR

Given an orthonormal basis Z and a target matrix M , suppose M = XZ⊤ for some matrix X . We
prove some relations on singular values of X and M given some conditions on Z.

Lemma G.2. Let M = U∗Σ∗V
⊤
∗ .

Suppose the matrix Z ∈ Rn×k satisfies that

• Z ∈ Rn×k is an orthonormal basis

• dist(Z, V∗) ≤
√
1− α2

Let X ∈ Rm×k denote the matrix that

M = XZ⊤. (58)

Then, we have

σmin(X) ≥ α · σmin(M)

and

σmax(X) ≤ σmax(M)

Proof. We have

∥V ⊤
∗,⊥Z∥ = dist(Z, V∗)

≤
√
1− α2. (59)

where the first step follows from the definition of distance and the second step follows from the
Lemma statement.

Using sin2 θ + cos2 θ = 1 (Lemma A.9), we have

σmin(V
⊤
∗ Z)2 + ∥V ⊤

∗,⊥Z∥2 = 1. (60)

We can show

σmin(V
⊤
∗ Z) =

√
1− ∥V ⊤

∗,⊥Z∥2

≥
√
1− (1− α2)

= α, (61)

where the first step follows from Eq. (59), the second step follows from Eq. (60), and the third step
follows from simple algebra.

We have

σmin(X) = σmin(M · (Z⊤)†)

= σmin(U∗Σ∗V
⊤
∗ · (Z⊤)†)

= σmin(Σ∗V
⊤
∗ · (Z⊤)†)

= σmin(Σ∗V
⊤
∗ · Z)

≥ σmin(Σ∗) · σmin(V
⊤
∗ · Z)

= σmin(M) · σmin(V
⊤
∗ · Z)

≥ σmin(M) · α,

where the first step follows from Eq. (58), the second step follows from M = U∗Σ∗V
⊤
∗ , the third

step follows from U∗ has orthonormal columns, the fourth step follows from (Z⊤)† = Z, the fifth
step follows from part 11 of Fact A.1, the sixth step follows from definition of matrix M ∈ Rm×n,
and the last step follows from Eq. (61).

50

Published as a conference paper at ICLR 2024

G.3 LEVERAGE SCORE CHANGE UNDER ROW PERTURBATIONS

We analyze the change to leverage scores when the rows are perturbed in a structured manner.
Lemma G.3. Given two matrices A ∈ Rm×k and B ∈ Rm×k. For each i ∈ [m], let ai denote the
i-th row of matrix A. For each i ∈ [m], let bi denote the i-th row of matrix B.

If

• ∥A−B∥ ≤ ϵ0

• ϵ0 ≤ 1
2σmin(A)

then we have

|∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2| ≤ 75ϵ0σmin(A)−1κ4(A).

Proof. Without loss of generality assuming ∥(A⊤A)−1/2ai∥2 ≥ ∥(B⊤B)−1/2bi∥2 as the other case
is symmetric. Note that by the difference of squares formula, we know that

∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2 =
∥(A⊤A)−1/2ai∥22 − ∥(B⊤B)−1/2bi∥22
∥(A⊤A)−1/2ai∥2 + ∥(B⊤B)−1/2bi∥2

,

it suffices to provide an upper bound on the numerator and a lower bound on the denominator.

Lower bound on denominator. The lower bound is relatively straightforward:

∥(A⊤A)−1/2ai∥2 + ∥(B⊤B)−1/2bi∥2 ≥
1

σmax(A)
∥ai∥2 +

1

σmax(B)
∥bi∥2

≥ 1

σmax(A)
∥ai∥2 +

1

σmax(B) + ϵ0
∥bi∥2

≥ ∥ai∥2 + ∥bi∥2
σmax(A) + ϵ0

≥ 2σmin(A)− ϵ0
2σmax(A)

≥ 3

4
κ−1(A)

where we use Weyl’s inequality (Lemma A.2) to uppper bound σmax(B) by σmax(A) + ϵ0, ϵ0 ≤
1
2σmin(A) and ∥ai∥2 ≤ ∥A∥.
Upper bound on the numerator. The upper bound can be obtained via a chain of triangle inequalities.

We start by proving some auxiliary result: First, we can show

∥A⊤A−B⊤B∥ = ∥A⊤A−A⊤B +A⊤B −B⊤B∥
≤ ∥A⊤A−A⊤B∥+ ∥A⊤B −B⊤B∥
≤ σmax(A)ϵ0 + σmax(B)ϵ0

≤ (2σmax(A) + ϵ0) · ϵ0
≤ 3σmax(A) · ϵ0

We can then prove the discrepancy between inverses:

∥(A⊤A)−1 − (B⊤B)−1∥
≤ 2max{∥(A⊤A)−1∥2, ∥(B⊤B)−1∥2} · ∥(A⊤A)− (B⊤B)∥
≤ 2 · (2/σmin(A)2)2 · ∥(A⊤A)− (B⊤B)∥
≤ 2 · (2/σmin(A)2)2 · (3σmax(A) · ϵ0)
= 24κ(A)σ−3

min(A)ϵ0,

where the first step is by Lemma A.15.

51

Published as a conference paper at ICLR 2024

Finally, note

|a⊤i (A⊤A)−1ai − b⊤i (B
⊤B)−1bi|

≤ |a⊤i (A⊤A)−1ai − a⊤i (A
⊤A)−1bi|+ |a⊤i (A⊤A)−1bi − a⊤i (B

⊤B)−1bi|+ |a⊤i (B⊤B)−1bi − b⊤i (B
⊤B)−1bi|

≤ ∥ai∥2 · ∥ai − bi∥2 · ∥(A⊤A)−1∥+ ∥ai∥2 · ∥bi∥2 · ∥(A⊤A)−1 − (B⊤B)−1∥+ ∥bi∥2 · ∥ai − bi∥2 · ∥(B⊤B)−1∥
≤ ϵ0σ

−2
min(A)∥ai∥2 + 24ϵ0κ(A)σ−3

min(A)(∥ai∥22 + ϵ0∥ai∥2) + ϵ0(σmin(A)− ϵ0)
−2∥bi∥2

≤ ϵ0κ(A)σ−1
min(A) + 48ϵ0κ

3(A)σ−1
min(A) +

5

8
ϵ0κ(A)σ−1

min(A)

≤ 50ϵ0κ
3(A)σ−1

min(A).

Put things together. The final upper bound can be obtained by taking the ratio between these two
terms:

∥(A⊤A)−1/2ai∥2 − ∥(B⊤B)−1/2bi∥2 ≤ 75ϵ0κ
4(A)σ−1

min(A).

This completes the proof.

G.4 FROM APPROXIMATE TO EXACT DISTANCE AND INCOHERENCE

Given a matrix X that is incoherent, we show that if a matrix Y is close to X enough in spectral
norm, then it also preserves the distance and incoherence of Y .

Lemma G.4. Let X ∈ Rm×k and X = UΣV ⊤ be its SVD. Then

∥ui∥22 = x⊤
i (X

⊤X)−1xi.

where ui, xi denote the i-th row of U and X respectively.

Proof. Let us form the projection matrix X(X⊤X)−1X⊤, note that the quantity on the RHS is the
i-th diagonal of the projection matrix.

X(X⊤X)−1X⊤ = UΣV ⊤(V Σ2V ⊤)−1V ΣU⊤

= UΣV ⊤V Σ−2V ⊤V ΣU⊤

= UU⊤,

where the first step follows from the Lemma statement: X = UΣV ⊤, the second step follows from
simple algebra, the third step follows from simple algebra.

The i-th diagonal of UU⊤ is then u⊤
i ui = ∥ui∥22, as desired.

Lemma G.5. Let X,Y ∈ Rm×k. Let µ0 ≥ 1. Let ϵ0 ∈ (0, 1).

Suppose that

• X is µ0 incoherent, i.e., ∥(UX)i∥2 ≤ µ0

√
k/
√
m.

• Let ∥Y −X∥ ≤ ϵ0.

• Let ϵ0 ≤ 0.1 · σmin(X)

For each i ∈ [m], let Xi denote the i-th row of matrix X ∈ Rm×k. Let κ(X) := σmax(X)/σmin(X)
be the condition number of X . Let ϵsk := Θ(ϵ0 · (m · κ4(X) · σmin(X)−1)).

Then, we have

• Part 1. dist(Y, U∗) ≤ dist(X,U∗) + ϵsk.

• Part 2. Y is µ0 + ϵsk incoherent, i.e., ∥(UY)i∥2 ≤ (µ0 + ϵsk)
√
k/
√
m.

52

Published as a conference paper at ICLR 2024

Remark G.6. Eventually we choose ϵsk = ϵ/Θ(T) where ϵ is the final accuracy parameter (0, 1/10)
and T is the number of iterations. We will use this lemma for Θ(T) times, and each time we incur an
extra ϵ/Θ(T) error. Our ultimate goal is to shrink dist(Y, U∗) to Θ(ϵ) after T iterations. Since all
iterations only incur extra Θ(ϵ) error, the final dist(Y, U∗) is still bounded by Θ(ϵ). When we use
this Lemma, κ(X) is always bounded by O(κ(M)) where M is the ground truth matrix in matrix
completion problem. Note that our running time blowup is only logarithmically in 1/ϵ0, thus it’s
always fine to set ϵ to be 1/ poly(n, κ, T) smaller. Similar argument will hold for part 2 incoherent.
Since µ0 ≥ 1, over all the iterations, the incoherent parameter is within 2µ0.

Proof. We prove two parts separately.

Proof of Part 1. From lemma assumptions, we have

∥Y −X∥ ≤ ϵ0 ≤ 0.1σmin(X)

Then, we know that

σmin(Y) ≥ 0.5σmin(X). (62)

We have

dist(Y,U∗) ≤ dist(X,U∗) + dist(Y,X)

≤ dist(X,U∗) + ∥Y −X∥ · σmin(X)−0.5 · σmin(Y)−0.5

= dist(X,U∗) + ϵ0 · σmin(X)−0.5σmin(Y)−0.5

≤ dist(X,U∗) + 2ϵ0 · σmin(X)−1

≤ dist(X,U∗) + ϵsk,

where the first step follows from triangle inequality, the second step follows from Lemma G.1, the
third step follows from lemma statement ∥Y −X∥ ≤ ϵ0, the fourth step follows from Eq. (62), the
last step follows from definition ϵsk in the lemma statement.

Proof of Part 2. By Lemma G.3 and Lemma G.4, we know that for any i ∈ [m]

|∥(UX)i∥2 − ∥(UY)i∥2| ≤ 500 · ϵ0 · σmin(X)−1 · κ4(X).

Since X ∈ Rm×k is µ0 incoherent, by triangle inequality, we have

∥(UY)i∥2 ≤ µ0

√
k/
√
m+ 500 · ϵ0 · σmin(X)−1 · κ4(X)

≤ (µ0 + ϵsk) ·
√
k/
√
m

where the last step follows from definition of ϵsk in the lemma statement.

Thus, we complete the proof.

53

	Introduction
	Related Work
	Preliminary
	Angles and Distances Between Subspaces
	Background on Matrix Completion

	Technique Overview
	Subspace Approaching Argument
	A Perturbation Theory for Matrix Incoherence
	Nearly Linear Time Solve via Sketching
	Putting Things Together

	Conclusion
	More Preliminary
	Basic Matrix Algebra
	Properties of Angles and Distances
	Tools from Prior Works
	Probability Tools

	High Accuracy Weighted Regression Solver
	Dense, High Accuracy and Iterative Solver
	Backward Error of Regression
	Reducing Weighted Linear Regression to Linear Regression
	Solving Weighted Multiple Response Regression in Weight Sparsity Time

	Initialization Conditions
	Bounding the Distance Between and
	 and To Closeness Between and
	Definitions for
	Initialization Condition: Main Result

	Main Induction Hypothesis
	General Case Update Rules and Notations
	Update Rule
	Error Matrix
	Update Rule for

	Technical Lemmas for Distance Shrinkage
	Upper Bounding by Distance
	Upper Bounding by Distance
	 Upper Bounding by Condition Number
	Upper Bounding by Constant
	Upper Bounding by

	A Perturbation Theory for Distances and Incoherence
	Bound Distance by Spectral Norm
	From Right to Left Factor
	Leverage Score Change Under Row Perturbations
	From Approximate to Exact Distance and Incoherence

