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ABSTRACT

Since statistical guarantees for neural networks are usually restricted to global
optima of intricate objective functions, it is unclear whether these theories explain
the performances of actual outputs of neural network pipelines. The goal of this
paper is, therefore, to bring statistical theory closer to practice. We develop statisti-
cal guarantees for shallow linear neural networks that coincide up to logarithmic
factors with the global optima but apply to stationary points and the points nearby.
These results support the common notion that neural networks do not necessarily
need to be optimized globally from a mathematical perspective. We then extend
our statistical guarantees to shallow ReLU neural networks, assuming the first layer
weight matrices are nearly identical for the stationary network and the target. More
generally, despite being limited to shallow neural networks for now, our theories
make an important step forward in describing the practical properties of neural
networks in mathematical terms.

1 INTRODUCTION

Statistical theories for deep learning usually apply to exact, global optima of certain objective
functions (Bartlett, 1998; Bauer & Kohler, 2019; Kohler & Langer, 2021; Lederer, 2022a; Schmidt-
Hieber, 2020; Mohades & Lederer, 2023). But those objective functions cannot be solved explicitly
and are highly non-convex, so that in practice, exact, global optimization is—at least to date—an
open research question, and we can currently expect only approximate stationary points from current
(general) algorithms (see Figure 1). In other words, it is unclear whether the known theories have any
meaning for the outputs of actual deep-learning pipelines.

Parameter

Objective function

approximate stationary points

Figure 1: Since objective functions in deep learning are usually highly non-convex and cannot be
solved explicitly, we can only expect approximate stationary points from practical algorithms.

Also other parts of machine learning face optimization problems that are challenging to optimize
globally and to full precision. Accordingly, some statistical insights have already been established.
For example, Bien et al. (2018; 2019) solve a non-convex problem in linear regression in a “convex”
way and develop statistical theories for their solution. Loh & Wainwright (2015) and Loh (2017)
develop statistical theory for stationary points in another regression setup under curvature assumptions.
Elsener & van de Geer (2018) establish more general theories for stationary points also under curvature
assumptions. Taheri et al. (2023) propose an algorithm and statistical theory for approximate solutions
in a convex setting. But it is currently unclear how to extend these insights to deep learning—if at all
possible.
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This paper develops statistical guarantees for the stationary points of shallow neural networks and for
the points in the vicinity of them. Strikingly, our statistical rates match the rates of global optimizers
up to log-terms (Taheri et al., 2021; Lederer, 2022a; Golestaneh et al., 2024). Thus, our results
establish a mathematical proof of the “empirical fact” that global optimization is not necessary
in deep learning. This complements and contrasts studies about the existence or non-existence of
spurious local minima and saddle points in both linear and non-linear networks (Zhou & Liang, 2018;
Fukumizu & Amari, 2000; Safran & Shamir, 2018; Lederer, 2020; Liu, 2022).

One of the main challenges in the proofs is the complexity, intricacy, and ambiguity of the parameter
space of neural networks. To address this challenge, we introduce scaling tricks (Taheri et al., 2021)
and use particular arguments from empirical-process theory for regularized objectives. Moreover, in
strong contrast to most theory papers, we focus on regression, which is more general and mathemati-
cally more challenging than classification. For example, unbounded losses like least-squares cannot
be treated (at least not directly) with standard techniques like McDiarmid’s inequality (McDiarmid,
1989, Lemma 3.3) or Rademacher complexities (Mohri et al., 2018, Chapter 3). Thus, our work also
contributes considerably on the technical aspects of deep learning.

Paper contribution The three main technical contribution of this paper are as follows:

1. We show that every (reasonable) stationary point of regularized shallow linear neural
networks and the points nearby generalize essentially as well as the global optima (Theorem 1
and Theorem 2).

2. We extend our theories to shallow ReLU neural networks for specific stationary points
(Theorem 3).

3. We determine the optimal rates for the tuning parameter across different networks and noise
distributions (Theorem 4).

Of course, our theoretical framework is still far from the extremely complex pipelines of modern
deep learning. But our paper makes considerably progress in closing the gap between our theoretical
understanding and practical experiences. In particular, it (i) strengthens the statistical foundations
of deep learning and (ii) gives a first mathematically rigorous proof of the emprical finding that
(ii.A) approximate and (ii.B) local optimization of neural networks is usually sufficient in practice.

Paper outline Section 2 states the statistical guarantees for the stationary points of the shallow
linear neural network (Theorem 1) and the points nearby (Theorem 2). We extend our theories
to shallow ReLU networks in Section 3 (Theorem 3). We support our theories with numerical
observations in Section 4. Section 5 provides an overview of related works. We represent some of
our technical results in Section 6 and extend our theory for heavy-tailed noise in Sections 7. We
conclude our paper in Section 8. More technical results, detailed proofs, and discussion on different
assumptions are given in the Appendix.

Notations We use vec(γ,Θ) to generate a vector of length Rw+w·d from a vector γ ∈ Rw and a
matrix Θ ∈ Rw×d (for generating the vector, we first push the elements of γ and then elements of
Θ row by row). We collect first-order partial derivatives (and subdifferentials for ReLU networks)
of prediction risk riskX [γ,Θ] and population risk risk[γ,Θ] with respect to the β ··= vec(γ,Θ)
in the gradient vectors ∇riskX [γ,Θ] ∈ Rw+w·d and ∇risk[γ,Θ] ∈ Rw+w·d, respectively. We use
the notation || · || for a general vector norm and ||| · ||| for a general matrix norm. We also define
||γ||1 ··=

∑w
j=1 |γj | and |||Θ|||1 ··=

∑w
j=1

∑d
k=1 |θjk|. To reduce the amount of notations, we use

some notation slightly differently depending on whether we treat linear or ReLU networks.

2 STATISTICAL GUARANTEES FOR SHALLOW LINEAR NEURAL NETWORKS

Consider inputs x1, . . . ,xn ∈ Rd and corresponding outputs y1, . . . , yn ∈ R that are connected via

yi = f [xi] + ui (1)

for an unknown target function f : Rd → R and unknown stochastic noise u1, . . . , un ∈ R. Deep
learning is about using the available data to approximate the unknown target function f by a neural
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network. We first focus on linear neural networks, a well-accepted toy model for more general deep
learning pipelines (Saxe et al., 2013); hence, we consider

x 7→ γ⊤Θx ,

where
(γ,Θ) ∈ B ··=

{
(γ,Θ) ∈ Rw × Rw×d} .

We extend this setup to ReLU activation in the following section.

To avoid unnecessary digression here, we impose three mild assumptions. The assumptions are by no
means necessary and relaxed in the following sections.

Assumption 1 (Model Assumptions). We assume that:

1. The target function can be approximated by such a neural network in the first place: there
is a pair (γ∗,Θ∗) ∈ B such that ||γ∗||1, |||Θ∗|||1 ≤

√
log n and f [x] = γ∗⊤Θ∗x for all

x ∈ Rd.

2. The xi’s are independent and centered sub-Gaussian random vectors with independent
coordinates.

3. The ui’s are independent centered Gaussian random variables with standard deviation σ
and are independent of xi’s.

The first part of Assumption 1 ensures a sharp focus on statistical guarantees rather than the approxi-
mation properties of neural networks, we assume that the target function is itself a neural network with
reasonably small parameters. A detailed description of the assumption is provided in Section F of the
Appendix; the assumption is relaxed in Theorem 5. Note that the parametrization of neural networks
is ambiguous: there are infinitely many pairs (γ∗,Θ∗) ∈ B that satisfy those conditions—compare
to Taheri et al. (2021, Proposition 1); for further reference, we define β∗ ··= vec(γ∗,Θ∗) for a fixed
but arbitrary such pair of parameters. The second part of the assumption on the input simplifies our
theoretical analysis. Although this assumption is not necessarily true in practice, that is a common
assumption in the literature and can be extended more generally in future works. The third part of the
assumption, once more, simplifies the presentation here; extensions to other types of noise, including
sub-Gaussian and sub-exponential noise are provided in Section 7.

We assume our regression setup (yi ∈ R) rather than a classification setup (yi ∈ {0, 1} or yi ∈
{1, . . . , k}) because the unbounded outputs make regression considerably more challenging to
analyze mathematically. In other words, our regression results transfer readily to classification.
The usual loss function in regression is least squares. In deep-learning practice, however, least
squares (and similarly logistic loss in classification) is complemented with dropout (Srivastava
et al., 2014; Salehinejad & Valaee, 2019), batch normalization (Ioffe & Szegedy, 2015), low-rank
approximation (Denil et al., 2013), and so forth, which yield implicit regularization, or least squares
is even complemented with explicit regularization directly (Alvarez & Salzmann, 2016; Lemhadri
et al., 2021; Hebiri et al., 2025). It is well understood that implicit regularization is related to explicit
regularization (Lütke Schwienhorst et al., 2024). Thus, to mimic deep-learning practice, we consider
least-squares complemented by (elementwise) ℓ1-regularization:

(γ̂, Θ̂) ∈ argmin
(γ,Θ)∈B

{
1

n

n∑
i=1

(
yi − γ⊤Θxi

)2
+ r||vec(γ,Θ)||1

}
, (2)

where r ∈ [0,∞) is a tuning parameter to be calibrated (see Sardy et al. (2020) for some theory
insights). Such estimators are standard in machine learning and statistics (Lederer, 2022b; Eldar
& Kutyniok, 2012). Despite ℓ1-norm is non-smooth, it often poses very little problems in terms of
computations (see Friedman et al. (2010)). Also recently, the ℓ1-norm has been effectively used to
promote sparsity in neural networks (Lemhadri et al., 2021).

As usual, we measure the (in-sample-)prediction risk by

riskX [γ,Θ] ··=
1

n

n∑
i=1

(
yi − γ⊤Θxi

)2
3
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with X ··= (x1, . . . ,xn)
⊤ ∈ Rn×d and the generalization risk by

risk[γ,Θ] ··= E(x,y)

[(
y − γ⊤Θx

)2]
with the expectation over a new sample (x, y) (that has the same distribution as x1, . . . ,xn and
y1, . . . , yn). We call β̃ ··= vec(γ̃, Θ̃) a stationary point of the objective in equation 2 if it satis-
fies (Bertsekas, 1997, Page 194);(Elsener & van de Geer, 2018, Equation 6);(Loh & Wainwright,
2015, Equation 5)(

∇riskX [γ̃, Θ̃]
)⊤

(β − β̃) + rz̃⊤(β − β̃) ≥ 0 ∀ β = vec(γ,Θ) with (γ,Θ) ∈ B (3)

for appropriate z̃ ∈ ∂||β̃||1 (where ∂||β̃||1 is the subdifferential of the regularizer at β̃). For an
interior point β̃, our definition of stationary points in equation 3 reduces to the usual zero-subgradient
condition.

We call a stationary point β̃ reasonable once ||γ̃||1, |||Θ̃|||1 ≤
√
log n—again to avoid unnecessary

complication (we refer to the Appendix Section G for a detailed description of the reasonability
assumption). Due to the ambiguity of neural networks, there are infinitely many equivalent stationary
and reasonable stationary points; importantly, our guarantees hold for every (reasonable) stationary
point and target β∗.

We say that a network indexed by (γ̃, Θ̃) generalizes well if

risk[γ̃, Θ̃] ≈ risk[γ∗,Θ∗] ,

that is, the network generalizes essentially as well as the best network. In the following, we show that
not only the “statistical” network indexed by (γ̂, Θ̂) but also every “practical” network indexed by a
reasonable stationary point (γ̃, Θ̃) of the objective function in equation 2 generalizes well.

Moreover, we call the total number of parameters in the network p ··= w + w · d the problem’s
effective dimension and

rorc ··= ν(log n)3/2
√

log(np)

n
(4)

the oracle tuning parameter, where ν ∈ (0,∞) is a constant that depends only on the distributions of
the inputs and noise. It has been shown that rorc is indeed an optimal tuning parameter of equation 2
in some sense (Taheri et al., 2021).

We then get the following result for a new sample pair (x, y) with the same distribution as x1, . . . ,xn
and y1, . . . , yn.
Theorem 1 (Statistical Guarantees for Reasonable Stationary Points of Shallow Linear Networks).
Under the Assumption 1 any reasonable stationary point (γ̃, Θ̃) of the objective function in equation 2
with r ≥ rorc satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 5r
√
log n (5)

with probability at least 1− 1/2n. If r = rorc, the bound becomes

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + ν(log n)2
√

log(np)

n
. (6)

Theorem 1 proves the fact that for properly chosen tuning parameter r and large enough sample
sizes, any reasonable stationary point of equation 2 generalizes essentially as well as β∗. Our results
essentially have the same rates as the ones in the literature (Taheri et al., 2021, Theorem 3);(Lederer,
2022a, Proposition 3), who prove that the prediction risk is at most of order O((L/2)1/2−L log(p)
log(n)/

√
n)) for ℓ1-regularized neural networks with depth L and p parameters. However, in

stark contrast to previous results, our theories apply to all reasonable stationary points (including
saddle points) rather than to the global optimum of the objective function only. Although works
like Kawaguchi (2016) and Zhou & Liang (2018) argue about the absence of local minima in linear
networks, saddle points still exist in linear neural networks (see Zhou & Liang (2018, Theorem 2)).
Furthermore, saddle points continue to pose challenges: Lee et al. (2019) demonstrate that gradient-
based algorithms can escape strict saddle points, but non-strict saddle points are problematic and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

also exist in linear neural networks (Zhou & Liang, 2018, Paragraph following their Theorem 2). We
refer to our illustrative Example A (in the Appendix) to clearly illustrate the presence of sub-optimal
critical points in our considered setup.

To emphasize the significance of using regularized objectives, it’s worth mentioning that the rate of
ordinary least-squares in linear regression is O(d/n), where d gives the number of parameters and n
the number of data examples (Lederer, 2022b, Equation 1.5). But for high-dimensional settings with
d ≫ n, least-squares are prone to overfitting, so regularization can be employed for improvement.
For example, lasso with sufficiently large tuning parameter (in linear regression) gives predictions
bounds at most bounded by

√
log(d)/n (Lederer, 2022b, Page 174). Also, a different prediction

bound for lasso called “power-two bound" is presented in Lederer (2022b, Page 188) that holds under
strong conditions but it is far from the context of this paper. Overfitting is even more problematic for
complex models like neural networks with a huge number of parameters p. The focus has just shifted
to networks involving sparsity to improve prediction bounds from p/n to

√
log(p)/n, which also

appears in our results (see equation 6 for example).

Note that in finite time, stationary points can be computed just approximately using gradient-based
algorithms. Now, we extend our results in Theorem 1 to the points that are close but not necessarily
equal to a stationary points. We define a pair (˜̃γ, ˜̃Θ) as a τ−approximate stationary point if it satisfies∣∣riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 − riskX [γ̃, Θ̃]− r||β̃||1

∣∣ ≤ τ (7)

for a τ ∈ [0,∞). Our definition of approximate stationary points in equation 7 is closely related to
the typical definitions in the literature that impose some bounds on the norm of the gradient vectors
(see Appendix Section H for a detailed description). Employing gradient-based algorithms (in finite
time), we can expect to get close to a stationary point in the sense that ˜̃β ≈ β̃ (Ghadimi & Lan,
2013; Lei et al., 2019). Then also ||˜̃β||1 ≈ ||β̃||1, which means that an approximation of a reasonable
stationary point is also reasonable once τ is small enough. Then, we extract statistical guarantees for
every practical network indexed by an approximate-reasonable stationary as follows:

Theorem 2 (Statistical Guarantees for Approximate Stationary Points of Shallow Linear Networks).
Suppose that (˜̃γ, ˜̃Θ) is a τ−approximate stationary point and that the conditions of Theorem 1 are
satisfied. Then, we have

risk[˜̃γ, ˜̃Θ] ≤ risk[γ∗,Θ∗] + 8r
√
log n+ τ (8)

with probability at least 1− 1/n. If r = rorc, the bound becomes

risk[˜̃γ, ˜̃Θ] ≤ risk[γ∗,Θ∗] + ν(log n)2
√

log(np)

n
+ τ . (9)

The bounds match the earlier ones with only two small differences: 1. a summand τ is added to our
statistical bounds and 2. the factor 5 in equation 5 is replaced by a factor of 8 in equation 8. Let’s note
that gradient-based algorithms with sufficiently many steps O(n2) ensure that τ ≪ 1/

√
n (Ghadimi

& Lan, 2013, Theorem 2.1). We refer to our Appendix Section H for more details regarding the
dynamical accessibility of approximate stationary points. Theorem 2 might look like a simple
extension of Theorem 1, but the fact that equation 7 involves the (in-sample-)prediction risk and the
sparsity factors makes the proof considerably more involved.

3 STATISTICAL GUARANTEES FOR SHALLOW RELU NEURAL NETWORKS

This section generalizes our theories in Section 2 to shallow ReLU neural networks of the form

x 7→ γ⊤σ(Θx) ,

for (γ,Θ) ∈ B = {(γ,Θ) ∈ Rw × Rw×d}. The activation function σ(·) corresponds to the
well-known ReLU defined as σ(z) ··= (max(0, z1), . . . ,max(0, zw)) for z ∈ Rw, which its efficacy
has been extensively studied (Pan & Srikumar, 2016; Raghu et al., 2017). We then approximate the
unknown target function f in equation 1 employing shallow ReLU neural networks. For simplifying

5
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the proofs, we assume in this section that d = w that implies matrix Θ to be squared. We then
consider least-squares complemented by ℓ1-regularization for shallow ReLU neural networks:

(γ̂, Θ̂) ∈ argmin
(γ,Θ)∈B

{
1

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2
+ r||vec(γ,Θ)||1

}
. (10)

Assumption 2 (Model Assumptions (ReLU)). We assume that the target function can be approx-
imated by such a neural network, that is, there is a pair (γ∗,Θ∗) ∈ B such that ||γ∗||1, |||Θ∗|||1 ≤√
log n and Θ∗ = Iw + A for A ∈ Rw×w, in which, |||A||| ≤ τ with τ → 0, and that

f [x] = γ∗⊤σ(Θ∗x) for all x ∈ Rd.

Assumption 2 does not seem essential to our theories, but it keeps our proofs tractable. It stipulates
that the target function is itself a shallow ReLU neural network with reasonably small parameters
and that the first layer of that network is not too far from isotropic Θ∗ ≈ Iw (recall that w = d in
this section). For simplicity, we use the notation Θ ≈ Iw for a square matrix Θ ∈ Rw×w, when
the off-diagonal elements of that matrix are close to zero and the diagonal elements are close to
one. Formulated differently, we say Θ ≈ Iw, if Θ can be represented as a sum over a square matrix
A ∈ Rw×w and identity matrix Iw, that is, Θ = Iw + A, in which, square matrix A has a small
spectral norm. Versions of these assumptions are very common in the literature (Hardt & Ma, 2016;
Bartlett et al., 2018b) (we discuss this assumption further in the paragraph following Theorem 3). We
then define the (in-sample-)prediction and generalization risk for shallow ReLU neural networks as
(we employ the same notation as used in the linear case)

riskX [γ,Θ] ··=
1

n

n∑
i=1

(
yi − γ⊤σ(Θx)

)2
and

risk[γ,Θ] ··= E(x,y)

[(
y − γ⊤σ(Θx)

)2]
.

We then get the following result for a new sample pair (x, y) with the same distribution as x1, . . . ,xn
and y1, . . . , yn.
Theorem 3 (Statistical Guarantees for Reasonable Stationary Points of Shallow ReLU Networks).
Under the second and third parts of Assumption 1 and Assumption 2, any reasonable stationary point
(γ̃, Θ̃) with Θ̃ = Iw +A′ for A′ ∈ Rw×w, in which, |||A′||| ≤ τ with τ → 0 of the objective function
in equation 10 with r ≥ rorc satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 5r
√
log n (11)

with probability at least 1− 1/2n.

Note that Theorem 3 is an extension of our Theorem 1 for shallow ReLU neural networks under the
assumption that the first layer weight matrix (for stationary point, as well as the target network) to be
nearly identity matrices. Our Assumption 2 is weaker than it seems as previous works have studied
variants of this assumption for neural networks from different perspectives: for example, Hardt & Ma
(2016) shows that certain networks have a global minimum close to the identity parameterization.
They study the expressiveness of Residual Networks under the assumption that enough neurons are
available (Hardt & Ma, 2016, Theorem 3.2). Interesting is that, since our rates grow just in log p ,
our framework is perfectly fit for such wide networks. Additionally, Bartlett et al. (2018a) explore
the representation of smooth functions as compositions of near-identity functions, highlighting
implications for deep network optimization. Bartlett et al. (2018b) prove the rate of convergence
of gradient-based optimization under identity initialization for deep linear networks. Li & Yuan
(2017) analyze the convergence of stochastic gradient descent for shallow ReLU networks, with
nearly identity initialization; they state that “(ReLU) networks with small average spectral norm
already have good performance.” Altogether, we believe that our identity assumption makes sense
not only from an expressivity standpoint (Hardt & Ma, 2016, Theorem 3.2) but also regarding the
optimization landscape (Li & Yuan, 2017). Yet, of course, it would be interesting to study the
subtleties even further. While studies demonstrate the existence of local minima and saddle points in
ReLU networks (Fukumizu & Amari, 2000; Safran & Shamir, 2018; Yun et al., 2019), we argue that
some of those suboptimals still yield satisfactory results. Essentially, Theorem 3 suggests that for
a sufficiently large tuning parameter, the optimization explores locally well-curved network spaces

6
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in the vicinity of specific stationary points, such that any stationary point with Θ̃ ≈ Iw generalizes
as effectively as a global minimum. In fact, our work concerns local curvature around the ground
truth in neural networks, which we believe is valuable given the infinite number of such ground truths
in neural networks, while globally favorable curvature is far from practical reality in deep learning.
We employ our result in Proposition 2 and Remark 1 proving our Theorem 3. Also, an extension of
Theorem 2 for shallow ReLU networks can be reached employing our Theorem 3 and tools from
empirical processes. However, we omit that extension to avoid redundancy.

4 NUMERICAL OBSERVATIONS

We provide here some numerical observations to clarify theories of Section 2 and Section 3. We
minimize a least-squares complemented by ℓ1-regularization for shallow neural networks with linear
and ReLU activation functions. We consider neural networks with d = w = 10, that are trained over
500 and tested over 300 data sample generated from a standard normal distribution and labeled by a
sparse-target network (having the same structure as the considered model) plus a Gaussian noise. Note
that here, we train the networks in a finite time, that means, trained networks are just an approximation
of a stationary point (due to the non-convexity). We report the relative training error and the relative
test error for a potential global optimum, an approximate stationary point, and a randomly generated
network (a network with randomly assigned weights) for linear and ReLU networks in Table 1, that
is, the training (test) error of the “approximate stationary point” divided by the training (test) error
of the “potential global optimum” (for the corresponding network). Potential global optimum and
approximate stationary point (for each setting, linear or ReLU) are reached over multiple times of
training on a fixed data set and assigned by the trained networks with the lowest and highest training
error, respectively. More precisely, we do the optimization (solving equation 2 and equation 10)
from multiple, diverse initial points (1000 times). This helps explore different regions of the search
space and increases the chances of finding different local and global optimum. Note that there are
infinitely many critical points for neural networks in view of the network’s rescaling properties. We
use stochastic gradient descent with a small convergence threshold to ensure that the optimization
process does not stop early. We analyze the distribution of the reached training errors (over the 1000
different optimization runs with random initialization). For this, we divide the training errors into two
clusters via k-means. Then, we do a t-test over the training errors in the two classes. The t-test reveals
a statistically significant difference between the training errors in two groups (pvalue < 0.0001),
which supports the claim that the “potential global optimum” and “approximate stationary points”
differ, that is, the approximate stationary points are not just other global optima. We then report the
parameters that lead to the lowest training error as a “potential global optimum” and the parameters
that lead to the highest training error as “approximate stationary point”. We reference to Figure 3
in the Appendix Section E for a graphical view of convergence in training. Results reveal that the
test error for a potential global optimum and an approximate stationary point are very close in both
linear and ReLU networks (relative errors for approximate stationary points are close to one for both
linear and ReLU networks). Also note that the reported numbers in Table 1 are just relative errors to
compare between training and test performance of a specific network so, a comparison between the
performance of linear and ReLU networks here is not meaningful.

These observations reveal that: First, global optimization for neural networks is far reaching even for
very simple neural networks. Second, very practical outputs in deep learning (approximate stationary
points) can still generalize well—for linear networks and beyond. We provide the similar result for a
larger network in Table 2 and more detailed experiment explanations in Appendix Section E.

Table 1: Relative training error and test error for trained shallow neural networks (with d = 10, w =
10) with linear and ReLU activations in a potential global optimum, an approximate stationary point,
and a randomly generated network.

Linear ReLU

Training Error Test Error Training Error Test Error
Potential Global Optimum 1.000 1.000 1.000 1.000
Approximate Stationary Point 1.001 1.001 1.003 1.004
Randomly Generated Network 79618.240 58198.240 2120.060 1980.060
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5 RELATED LITERATURE

Some insights on the statistical theory of stationary points for (simple) non-convex objectives have
already been presented: Loh & Wainwright (2015, Theorems 1,2) extract statistical guarantees for
stationary points of non-convex objectives (allowing for non-convexity in both loss and penalty
functions) in a regression-type settings, under a so-called “restricted-strong convexity" condition over
the empirical loss (see their Display (4)). Loh (2017, Theorem 1) studies the behavior of stationary
points of penalized robust estimators in a linear-regression setting. They prove that under a local
“restricted-strong convexity" condition, stationary points within the region of restricted curvature are
statistically consistent with the target. Also Elsener & van de Geer (2018, Theorem 1) derive sharp
oracle inequalities for stationary points of general non-convex objectives made by a non-convex loss
plus a convex penalty, under a restrictive condition called “two point marginal condition" on the
theoretical loss. They exemplify their bounds for simple models like robust regression and binary
classification. Their condition is kinda similar to the restricted-strong convexity but on the theoretical
loss (and not on the empirical loss). Unfortunately, the curvature assumptions in these papers are
infeasible for neural network settings, which means that their approaches cannot be applied here.

Another interesting direction is studying optimization landscape of non-convex objectives in deep
learning (Eftekhari, 2020; Hardt & Ma, 2016; Lederer, 2020; Zhou & Liang, 2018; Zhang et al.,
2016; Bah et al., 2022; Trager et al., 2020). Yun et al. (2017) study the optimization landscape
of deep and linear neural networks. They extract necessary and sufficient conditions for a critical
point to be the global optima of the least-squares loss under some assumptions (input dimensions
upper bounded by the number of data examples, XX⊤ and Y X⊤ have full rank). Kawaguchi
(2016, Theorem 2.3) proves that for deep and linear neural networks and under some assumptions
(XX⊤ and XY ⊤ have full rank), every local minimum is a global minimum and every critical
point that is not a global minimum is a saddle point. They also prove that the same results hold
for nonlinear-neural networks but under unrealistic assumptions (Kawaguchi, 2016, Corollary 3.2).
Zhou & Liang (2018, Theorem 2) also prove that linear neural networks with least-squares loss have
no spurious local minimum. But in general, the absence of spurious local minima is rejected for
non-linear networks (Fukumizu & Amari, 2000; Safran & Shamir, 2018).

More broadly, non-convexity and computational problems of neural networks have widely been
studied in recent years from different perspectives, including optimization algorithms (Lovas et al.,
2020; Bach & Chizat, 2021), theory of overparameterized networks (Chizat & Bach, 2018), and
hyperparameter calibration (Yang et al., 2021).

6 TECHNICAL RESULTS

This section provides technical results needed for proving our main theories. All the proofs as well as
more related auxiliary results are deferred to the Appendix.

Additional notations For vectors β = vec(γ,Θ) ∈ Rp and α ··= (α1, . . . , αw) ∈ Rw with
αj ̸= 0 for all j ∈ {1, . . . , w}, we define βα ··= vec(γα,Θα) ∈ Rp as a rescaled version of β with
(γα)j ··= γj ·αj and (Θα)jk ··= θjk/αj for all j ∈ {1, . . . , w} and k ∈ {1, . . . , d}. We tabulate the
second order partial derivatives (subdifferentials) of risk[γ,Θ] with respect to the β = vec(γ,Θ) in
a matrix called ∇2risk[γ,Θ] ∈ Rp×p. We use emin[·] to generate the smallest eigenvalue of a matrix.
We use the notation 0 to generate a vector of zeros.

6.1 TECHNICAL RESULTS FOR SHALLOW LINEAR NEURAL NETWORKS

Here, we provide technical results that are essential for proving our main theories for shallow linear
networks but might also be of interest by themselves. We first study the behavior of the Hessian
matrix for shallow linear networks in a rescaled network as follows:

Proposition 1 (Hessian Behavior for Shallow Linear Network). Suppose Assumption 1 is verified and
that (γ,Θ) ∈ B with ΘΘ⊤ invertible. Let a ··= [(a1)⊤, (a2)⊤]⊤ ∈ Rp be a vector with ||a||2 = 1,
a1 ∈ Rw, and a2 ∈ Rw·d. If a1 = 0 or a2 = 0, we have for all α ∈ Rw \ {0}

a⊤∇2risk[γα,Θα]a ≥ 0 ;

8
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Otherwise, above inequality holds for all α ··= (1/c, . . . , 1/c) ∈ Rw with c ∈ [1,∞) such that

c2 ≥
2
∣∣∣∣γ∣∣∣∣2

2

∣∣∣∣a2
∣∣∣∣2
2
+ 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗
∣∣∣∣
2

emin

[
ΘΘ⊤

]
||a1||22

.

Note that if a1 = 0 or a2 = 0, the quadratic product on the Hessian matrix (in a rescaled network
with parameters (γα,Θα)) is non-negative for all α, otherwise, it is non-negative just for α with
large enough c. Proposition 1 is employed for the proof of Theorem 1.

Lemma 1 (Empirical Processes). Under the Assumption 1 it holds for each reasonable stationary
point β̃ = vec(γ̃, Θ̃) of the objective function in equation 2 that∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣ ≤ rorc||β∗ − β̃||1 +
rorc
2n

with probability at least 1− 1/2n, where rorc is the oracle tuning parameter defined in equation 4.

The result above establishes a bound for the absolute difference between ∇riskX [γ̃, Θ̃] and
∇risk[γ̃, Θ̃] for every reasonable stationary point (γ̃, Θ̃) ∈ B for shallow linear networks (a similar
result can also be reached for shallow ReLU networks; see Remark 1). We employ Lemma 1 choosing
the optimal tuning parameter for the objective function equation 2.

6.2 TECHNICAL RESULTS FOR SHALLOW RELU NEURAL NETWORKS

Now, we study the behavior of the Hessian matrix for shallow ReLU networks in a rescaled network.
Since ReLU networks are non-differentiable at zero, we employ subdifferentials in this section
(instead of partial derivatives) using the same notation as used for linear networks. We suppose that
∄ x with (Θx)j = 0, where j ∈ {1, . . . , w}, then we have

Proposition 2 (Hessian Behavior for Shallow ReLU Networks). Suppose Assumption 2 and the
second and third parts of Assumption 1 are verified, and that (γ,Θ) ∈ B with ΘΘ⊤ ≈ Iw. Let
a ··= [(a1)⊤, (a2)⊤]⊤ ∈ Rp be a vector with ||a||2 = 1, a1 ∈ Rw, and a2 ∈ Rw·d. If a2 = 0, we
have for all α ∈ Rw \ {0}

a⊤∇2risk[γα,Θα]a ≥ 0 ;

Otherwise, above inequality holds for all α ··= (1/c, . . . , 1/c) ∈ Rw with c ∈ [1,∞) large enough.

Note that Proposition 2 is an extension of our Propostion 1 for ReLU networks, that holds under an
assumption over the first layer weight matrix (ΘΘ⊤ ≈ Iw).

Remark 1 (Empirical Processes for Shallow ReLU Neural Networks). Under the Assumption 2 and
the second and third parts of the Assumption 1, almost the same bound (up to a constant and log
factor) as stated in Lemma 1 can hold for each reasonable stationary point β̃ = vec(γ̃, Θ̃) of the
objective function in equation 10.

As stated in Remark 1, the tuning parameter for ReLU networks can be calibrated similarly to
linear networks (although there’s potential for improvement, we omit that to avoid unnecessary
complication.)

7 HEAVY-TAILED NOISE

This section puts a focus on heavy-tailed noise. We limit ourselves to linear networks for simplicity,
but the same techniques also work in the ReLU case. More generally, this section illustrates the much
larger generality—and technical difficulty—of our regression setup as compared to the common
classification setups, which are bounded by design.

Definition 1 (Tails). Let I : R → R be an increasing function. The function I captures the right tail
of the random variable z if

P(z > t) ≤ exp
(
−I(t)

)
, ∀t ∈ (0,∞) .

9
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In this section, we assume that noise is heavy-tailed, having a right tail as defined in Definition 1
with Iα(t) = cαt

1/α for cα ∈ (0,∞) (for example α = 1 for sub-gaussian noise and α = 2 for
sub-exponential noise). We also define

rorc,α ··= ν(log n)3/2
(
log(np)

)α
√
n

, (12)

where α ∈ [2,∞) and ν, c ∈ (0,∞) are constants depending on the distributions of inputs and noise.
Now, we extend our results in Theorem 1 for heavy-tailed noise.

Theorem 4 (Statistical Guarantees for Reasonable Stationary Points for Heavy-tailed Noise). Under
the first two parts of Assumption 1, any reasonable stationary point (γ̃, Θ̃) of the objective function
in equation 2 with r ≥ rorc,α satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 5r
√
log n (13)

with a probability at least 1− 1/n. If r = rorc,α, the bound becomes

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + ν(log n)2
(
log(np)

)α
√
n

. (14)

The above results show that our theories still hold under heavy tails; the bounds and the optimal
tuning parameter (see Theorem 1) then simply entail a power of α (depending on the noise) for
log(np). This is an important step forward, as usual inputs to neural networks (images, text, ...) are
often very noisy.

8 DISCUSSION

We have established statistical guarantees for approximate stationary points of regularized shallow
linear neural networks. We have then extended our theories to shallow ReLU neural networks under
the assumption over the first layer weight matrix. Despite being limited to shallow networks, our
theory is a large step forward in four ways: 1. Several papers consider the existence or non-existence
of critical points that are not global optima in linear neural networks under certain assumptions.
In contrast, our theories apply regardless of whether such local minima or saddle points exist in
the objective under consideration. 2. Our extensions to ReLU neural networks not only provide
theoretical insights but also highlight the importance of effective initialization, such as near-identity
initialization, for ReLU networks (Hardt & Ma, 2016). 3. While works like Bach & Chizat (2021)
consider convergence of specific optimization algorithms in deep learning, our results are agnostic
to the optimization algorithm and do not require infinite-width networks, making our findings more
general. 4. And finally, our new statistical approach inspired by high-dimensional statistics is expected
to spark further progress in the mathematical understanding of deep learning.
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A EXAMPLE

Here we provide an illustrative and simple example to clearly show the existence of sub-optimal
critical points for the regularized objective functions (equation 2 and equation 10) with linear and
ReLU activations.
Example 1 (Existence of sub-optimal critical points for regularized shallow networks). Let consider
a toy linear shallow neural network with just two neurons (a1, a2), and consider the loss function
f(a1,a2)(X) =

∑n
i=1(a1a2xi − yi)

2/2 + |a1| + |a2|. Then, we suppose two training samples
(x1 = 2, y1 = 2) and (x2 = 4, y2 = 1) that makes the objective function min(a1,a2) f(a1,a2)(X)
non-convex, including local and global minimum and saddle point. One can confirm that A = (a1 =
0, a2 = 0) is a local min with fA = 2.5, while A′ = (a1 ≈ 0.55, a2 ≈ 0.55) is a global min with
fA′ ≈ 2.1 (see the left panel of Figure 2). This simple example illustrates that there are critical points
even for simple regularized linear neural networks that are not global optima in our considered setup.
Note that if the optimization algorithm (for example gradient descent) starts with weight initialization
close to zero, it is high likely that we stuck in the vicinity of the local min (0, 0). A similar example
also holds for ReLU networks (see the right panel of Figure 2).
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Figure 2: Non-convex objective function min(a1,a2) f(a1,a2)(X) =
∑n
i=1(a1σ(a2xi) − yi)

2/2 +
|a1|+ |a2| for two training samples (x1 = 2, y1 = 2) and (x2 = 4, y2 = 1) includes critical points
that are not global optima. The left panel illustrates the objective for linear activation function, and
the right panel shows the objective for the ReLU.

B AUXILIARY RESULTS

Here we provide more technical results that are used to prove our main theorems.

First, we derive a uniform bound on the absolute difference between ∇riskX [γ,Θ] and ∇risk[γ,Θ]

for linear shallow networks. We use the notation |||Θ|||∞ ··= maxj∈{1,...,w}
∑d
k=1 |θjk|.

Lemma 2 (Uniform Bound on the Difference Between ∇riskX [γ,Θ] and ∇risk[γ,Θ] for Linear
Networks). Under the Assumption 1 it holds for each t, η, ϵ ∈ (0,∞) and β ∈ Cη,ϵ ··= {β =
vec(γ,Θ) ∈ Rp : ||β∗ − β||1 ≤ η and ||γ⊤Θ− γ∗⊤Θ∗||1 ≤ ϵ} that

sup
β∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣ ≤ 2tη

(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1− 4d2p exp(−κnmin{t2/ν2, t/ν}) with constants ν, κ ∈ (0,∞) depend-
ing only on the distributions of the inputs and noise.

The set Cη,ϵ contains all parameters in a neighborhood of β∗; in particular, the bound applies to
β∗ = vec(γ∗,Θ∗) itself—without any further assumption on β∗. The lemma is the main ingredient
of our proof for Lemma 1.

We also derive a uniform bound on the absolute difference between riskX [γ,Θ] and risk[γ,Θ] (for
linear shallow networks.)
Lemma 3 (Uniform Bound on the Difference Between riskX [γ,Θ] and risk[γ,Θ] for Linear Net-
works). Suppose Assumption 1 is verified and that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′ for an
ϵ′ ∈ (0,∞). Then, we have for each t ∈ [0,∞) that

sup
(γ,Θ)∈B

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣ ≤ t

(
1 + 4ϵ′ + 4

√
ϵ′
)

with probability at least 1− 18d2 exp(−κnmin{t2/ν2, t/ν}), with constants ν, κ ∈ (0,∞) depend-
ing only on the distributions of the inputs and noise.

Lemma 3 is the main ingredient of our proof of Theorem 2.

Then, we derive a lemma studying the invertibility of the line segment between two matrices. This
lemma is employed in the proof of Theorem 1.
Lemma 4 (Invertibility of the Line Segment Between Two Matrices). Let’s define H(t) ··= (A +

tC)(A+ tC)⊤ for A,C ∈ Rw′×d′ with w′ ≤ d′ and t ∈ (0, 1), where A has full (row) rank . Then,
H(t) is not invertible at most in finitely many t ∈ (0, 1).

Here, we differentiate the empirical risk riskX [γ,Θ] with respect to the parameters β = vec(γ,Θ).
We use the indices j, k for the first-order partial derivatives and indices j′, k′ for the second-order
partial derivatives. We use the notation 1{·} as an indicator function.
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Lemma 5 (First- and Second-Order Partial Derivatives of the Empirical Risk for Linear Networks).
It holds for each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
riskX [γ,Θ] = − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

)
,

∂

∂θjk
riskX [γ,Θ] = − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
γj(xi)k

)
;

and

∂2

∂γj′∂γj
riskX [γ,Θ] =

2

n

n∑
i=1

(
(Θxi)j′(Θxi)j

)
,

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

2

n
γj′γj

n∑
i=1

(
(xi)k′(xi)k

)
.

Moreover, if j′ = j, it holds that

∂2

∂θjk′∂γj
riskX [γ,Θ] =

2

n

n∑
i=1

(
γj(xi)k′(Θxi)j −

(
yi − γ⊤Θxi

)
(xi)k′

)
and

∂2

∂γj∂θjk
riskX [γ,Θ] =

2

n

n∑
i=1

(
γj(xi)k(Θxi)j −

(
yi − γ⊤Θxi

)
(xi)k

)
,

and if j′ ̸= j, it holds that

∂2

∂γj′∂θjk
riskX [γ,Θ] =

2

n
γj

n∑
i=1

(xi)k(Θxi)j′

and
∂2

∂θj′k′∂γj
riskX [γ,Θ] =

2

n
γj′

n∑
i=1

(xi)k′(Θxi)j .

These derivatives are basic tools for us given that we work with stationary points.

The next result is essentially a population version of the partial derivatives in Lemma 5, that is, sums
are replaced by expectations.
Lemma 6 (First- and Second-Order Partial Derivatives of the Population Risk for Linear Networks).
It holds for each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
risk[γ,Θ] = −2E(x,y)

[(
y − γ⊤Θx

)
(Θx)j

]
,

∂

∂θjk
risk[γ,Θ] = −2E(x,y)

[(
y − γ⊤Θx

)
γj(x)k

]
;

and
∂2

∂γj′∂γj
risk[γ,Θ] = 2E(x,y)

[
(Θx)j′(Θx)j

]
,

∂2

∂θj′k′∂θjk
risk[γ,Θ] = 2γj′γjE(x,y)

[
(x)k′(x)k

]
.

Moreover, if j′ = j, it holds that

∂2

∂θjk′∂γj
risk[γ,Θ] = 2E(x,y)

[
γj(x)k′(Θx)j −

(
y − γ⊤Θx

)
(x)k′

]
and

∂2

∂γj∂θjk
risk[γ,Θ] = 2E(x,y)

[
γj(x)k(Θx)j −

(
y − γ⊤Θx

)
(x)k

]
,

15
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and if j′ ̸= j, it holds that
∂2

∂γj′∂θjk
risk[γ,Θ] = 2γjE(x,y)

[
(x)k(Θx)j′

]
and

∂2

∂θj′k′∂γj
risk[γ,Θ] = 2γj′E(x,y)

[
(x)k′(Θx)j

]
.

We use these results in the proofs of Theorem 1 and Proposition 1.
Lemma 7 (First- and Second-Order Subdifferentials of the Empirical Risk for ReLU Networks). It
holds for each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
riskX [γ,Θ] = − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

)
,

∂2

∂γj′∂γj
riskX [γ,Θ] =

2

n

n∑
i=1

(
(σ(Θxi)j′σ(Θxi)j

)
.

And
∂

∂θjk
riskX [γ,Θ] = − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

)
with

κ(xi, j) ··=
{
1{(Θxi)j > 0}, if (Θxi)j ̸= 0.

[0, 1], otherwise.
If j = j′ and ∃ i ∈ {1, . . . , n} with (Θxi)j = 0 then, ∂2riskX [γ,Θ]/∂θj′k′∂θjk doesn’t exists
otherwise,

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

2

n
γjγj′

n∑
i=1

(
(xi)k′(xi)kκ(xi, j

′)κ(xi, j)
)
.

For j′ = j

∂2

∂θjk′∂γj
riskX [γ,Θ] =

2

n

n∑
i=1

(
γj(xi)k′σ(Θxi)jκ(xi, j)−

(
yi − γ⊤σ(Θxi)

)
(xi)k′κ(xi, j)

)
and if j′ ̸= j

∂2

∂θj′k′∂γj
riskX [γ,Θ] =

2

n
γj′

n∑
i=1

(
(xi)k′σ(Θxi)jκ(xi, j

′)
)
.

The next result is essentially a population version of the subdifferentials in Lemma 7, that is, sums
are replaced by expectations.
Lemma 8 (Second-Order Subdifferentials of the Population Risk for ReLU Networks). It holds for
each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}

∂2

∂γj′∂γj
risk[γ,Θ] = 2Ex

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
.

If j = j′ and ∃ x with (Θx)j = 0 then, ∂2risk[γ,Θ]/∂θj′k′∂θjk doesn’t exists otherwise,
∂2

∂θj′k′∂θjk
risk[γ,Θ] = 2γjγj′Ex

[
(x)k′(x)kκ(x, j

′)κ(x, j)
]
,

where

κ(x, j) ··=
{
1{(Θx)j > 0}, if (Θx)j ̸= 0.

[0, 1], otherwise.
For j′ = j, it holds that

∂2

∂θjk′∂γj
risk[γ,Θ] = 2Ex,y[γj(x)k′σ(Θx)jκ(x, j)−

(
y − γ⊤σ(Θx)

)
(x)k′κ(x, j)] ,

and if j′ ̸= j, it holds that
∂2

∂θj′k′∂γj
risk[γ,Θ] = 2γj′Ex[(x)k′σ(Θx)jκ(x, j

′)] .
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C PROOFS FOR SHALLOW LINEAR NETWORKS

Here, we provide the proofs of our main claims for linear networks.

C.1 PROOF OF THEOREM 1

Proof. The proof approach is based on Taylor’s theorem and the definition of stationary points.

Let’s introduce some notations: We use the notation γ⊤ΘAx̄ ··= γ⊤[Θ, A]x̄ to generate an extended
network indexed by (γ,ΘA) with x̄ ··= (x⊤, x̃⊤)⊤ ∈ Rd+w−1, x̃ having the same distribution as x,
and A = [v1, . . . ,vw−1] ∈ Rw×w−1, with v1, . . . ,vw−1 ∈ Rw, is a matrix whose columns are basis
of Rw−1 such that γ⊤v1 = · · · = γ⊤vw−1 = 0. It means, the input’s dimension of the network is
extended from d to d+w − 1 and so the inner-layer matrix need also to be extended from Θ ∈ Rw×d

to [Θ, A] ∈ Rw×(d+w−1). We also use the notation γ⊤
αΘα,Ax̄ to make an extended network that

is also rescaled across the layers by a suitable α. Note that the notation Θα,A is equivalent with
(ΘA)α, both means we rescale a matrix ΘA ∈ Rw×(d+w−1) with a vector α ∈ Rw (see more
details about rescaled networks in Section 6). Using the above definitions, it is easy to see that
γ⊤
αΘα,Ax̄ = γ⊤Θx, which means, the output of the extended and rescaled network is the same

as the original network (using the definition of A and rescaled weights). In other words, we have a
network that is first extended and then rescaled while the output of the network is still the same as
the original one. We use the notation risk[γα,Θα,A] ··= E(x̄,y)[(y − γ⊤

αΘα,Ax̄)
2] to compute the

population risk in an extended and rescaled network. We also define p′ ··= w + w · (d+ w − 1) as
the effective dimension of the extended network.

Now, let’s start the proof by writing a second-order Taylor expansion of risk[γ∗
α,Θ

∗
α,A′ ] (the risk

in an extended and rescaled version of the target with β∗
α,A′ = vec(γ∗

α,Θ
∗
α,A′) ∈ Rp′) around

an extended and rescaled version of a reasonable stationary β̃α,A = vec(γ̃α, Θ̃α,A) ∈ Rp′ with
suitable α ∈ Rw and A,A′ ∈ Rw×w−1 (we see later how to assign suitable value for α) to get

risk[γ∗
α,Θ

∗
α,A′ ] = risk[γ̃α, Θ̃α,A] +∇risk[γ̃α, Θ̃α,A]

⊤(β∗
α,A′ − β̃α,A)

+
1

2
(β∗

α,A′ − β̃α,A)
⊤∇2risk[γ̃α + t(γ∗

α − γ̃α), Θ̃α,A + t(Θ∗
α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

for some t ∈ (0, 1) (Bertsekas et al., 2003, Proposition 1.1.13.a), where we use the notation
∇risk[γ̃α, Θ̃α,A] ∈ Rp′ and ∇2risk[γ̃α, Θ̃α,A] ∈ Rp′×p′ to collect the first and second order partial
derivatives of risk[γ̃α, Θ̃α,A] with respect to the β̃α,A, respectively (note that we have no assumption
on (γ∗

α,Θ
∗
α,A′) nor (γ̃α, Θ̃α,A) to have bounded norms).

Then, we employ the property of extended and rescaled networks that is risk[γ̃α, Θ̃α,A] = risk[γ̃, Θ̃]
and risk[γ∗

α,Θ
∗
α,A′ ] = risk[γ∗,Θ∗], and use the shorthand notation

m ··= (β∗
α,A′−β̃α,A)

⊤∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α,A + t(Θ∗

α,A′ − Θ̃α,A)](β
∗
α,A′−β̃α,A)

to obtain

risk[γ∗,Θ∗] = risk[γ̃, Θ̃] +∇risk[γ̃α, Θ̃α,A]
⊤(β∗

α,A′ − β̃α,A) +
1

2
m.

Now, we are motivated to show that ∇risk[γ̃α, Θ̃α,A]
⊤(β∗

α,A′ − β̃α,A) = ∇risk[γ̃, Θ̃]⊤(β∗ − β̃).
To do so, we use 1. our Lemma 6 (for an extended and rescaled network), 2. the property of extended
and rescaled networks, 3. linearity of expectations, 4. our assumption on x̄, 5. some rewriting,
6. linearity of expectations, 7. our assumption on x̄ (let’s recall that x̄ = (x⊤, x̃⊤)⊤ ∈ Rd+w−1 with
x̃ having the same distribution as x and independent of x) that makes the second expectation zero,
and 8. some rewriting to obtain that

∂

∂(γ̃α)j
risk[γ̃α, Θ̃α,A] = −2E(x̄,y)

[(
y − γ̃α

⊤Θ̃α,Ax̄
)(
Θ̃α,Ax̄

)
j

]
= −2E(x̄,y)

[(
y − γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
17
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= −2E(x̄,y)

[
y
(
Θ̃α,Ax̄

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d+w−1∑
k=1

(
Θ̃α,A

)
jk
(x̄)k

]

= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d∑
k=1

(
Θ̃α,A

)
jk
(x̄)k

]

+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d+w−1∑
k=d+1

(
Θ̃α,A

)
jk
(x̄)k

]

= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x,y)

[(
γ̃⊤Θ̃x

) d∑
k=1

(
Θ̃α

)
jk
(x)k

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃αx

)
j

]
.

Then, we 1. imply our result above for all j ∈ {1, . . . , w}, 2. use the definition of rescaled parameters
and linearity of expectations to cancel α’s, and 3. use our results in Lemma 6 to obtain(

∂

∂γ̃α
risk[γ̃α, Θ̃α,A]

)⊤(
γ∗

α − γ̃α

)
= 2
(
−E(x,y)

[
y
(
Θ̃αx

)
j

]
+ E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃αx

)])⊤(
γ∗

α − γ̃α

)
= 2
(
−E(x,y)

[
y
(
Θ̃x
)
j

]
+ E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃x
)])⊤(

γ∗ − γ̃
)

=

(
∂

∂γ̃
risk[γ̃, Θ̃]

)⊤

(γ∗ − γ̃) .

Implying a similar argument as above for all partial derivatives, we conclude that ∇risk[γ̃α, Θ̃α,A]
⊤

(β∗
α,A′ − β̃α,A) = ∇risk[γ̃, Θ̃]⊤(β∗− β̃) (we omit the detailed proof). Tabulating this observation

in the earlier display we obtain

risk[γ∗,Θ∗] = risk[γ̃, Θ̃] +∇risk[γ̃, Θ̃]⊤(β∗ − β̃) +
1

2
m.

Rearranging the display above we obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) = risk[γ̃, Θ̃]− risk[γ∗,Θ∗] +
1

2
m.

Now, let’s recall the definition of stationary points in equation 3 which implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + rz̃⊤(β∗ − β̃) ≥ 0 .

We 1. rearrange above inequality and expand the bracket, 2. use Hölder’s inequality and the fact that
z̃⊤β̃ = ||β̃||1 (recall that z̃ ∈ ∂||β̃||1), and 3. use ||z̃||∞ ≤ 1 to obtain

−∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) ≤ rz̃⊤β∗ − rz̃⊤β̃

≤ r
∣∣∣∣z̃∣∣∣∣∞||β∗||1 − r||β̃||1

≤ r||β∗||1 − r||β̃||1 ,
which rearranging implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ≥ 0 .

The display above demonstrates the positivity of the terms on its left-hand side, enabling us to obtain

−∇risk[γ̃, Θ̃]⊤(β∗− β̃) ≤ −∇risk[γ̃, Θ̃]⊤(β∗− β̃)+∇riskX [γ̃, Θ̃]⊤(β∗− β̃)+r||β∗||1−r||β̃||1 ,
that is,

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤
(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃) + r||β∗||1 − r||β̃||1 .
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Now, let’s use our display earlier (obtained by Taylor expansion) to rewrite the left-hand side of the
display above as

risk[γ̃, Θ̃]− risk[γ∗,Θ∗] +
1

2
m ≤

(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Rearranging the display above we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + r||β∗||1 +
(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)− r||β̃||1 −

1

2
m.

For the right-hand side of the inequality above we 1. get an absolute value of the third term, 2. add a
zero-valued factor, 3. use triangle inequality, and 4. use our results in Lemma 1 to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r||β̃||1 −
1

2
m

= risk[γ∗,Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r
(
||β̃||1 + ||β∗||1

)
− 1

2
m

≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r||β∗ − β̃||1 −
1

2
m

≤ risk[γ∗,Θ∗] + 2r||β∗||1 + rorc||β∗ − β̃||1 +
rorc
2n

− r||β∗ − β̃||1 −
1

2
m

with probability at least 1− 1/2n.

The third and fifth terms in the last inequality above can be canceled if we choose the tuning parameter
large enough. Hence, we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

− 1

2
m

for r ≥ rorc.

The rest of the proof is analyzing the behavior of m. Let’s rewrite m = ||β∗
α,A′ − β̃α,A||22 m′ with

m′ ··=
(β∗

α,A′ − β̃α,A)
⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α,A + t(Θ∗

α,A′ − Θ̃α,A)]
(β∗

α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

.

Now, we are motivated to employ our results in Proposition 1. To do so, we need to make sure about
the invertibility of the matrix (Θ̃A+ t(Θ∗

A′ − Θ̃A))(Θ̃A+ t(Θ∗
A′ − Θ̃A))

⊤. Using the definition of
the extended networks, it is easy to see that Θ̃A and Θ∗

A′ have full row rank. Then, using Lemma 4,
we obtain that the line segment between two matrices Θ̃A and Θ∗

A′ is not invertible at most in finitely
many t. It means, if we shift t by a tiny value ς ≈ 0 then, we can make sure that in the new point
t′ = t− ς the corresponding matrix is invertible, that is,

m′ ··=
(β∗

α,A′ − β̃α,A)
⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + (t− ς + ς)(γ∗
α − γ̃α), Θ̃α,A + (t− ς + ς)(Θ∗

α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

≈ (β∗
α,A′ − β̃α,A)

⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + (t− ς)(γ∗
α − γ̃α), Θ̃α,A + (t− ς)(Θ∗

α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

=
(β∗

α,A′ − β̃α,A)
⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + t′(γ∗
α − γ̃α), Θ̃α,A + t′(Θ∗

α,A′ − Θ̃α,A)]
(β∗

α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

,

where the second equation is reached by assuming ς is very close to zero and so we can ignore the
remaining terms. Then, we have (Θ̃A + t′(Θ∗

A′ − Θ̃A))(Θ̃A + t′(Θ∗
A′ − Θ̃A))

⊤ as an invertible
matrix.
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Implying Proposition 1 (with a = (β∗
α,A′ − β̃α,A)/||β∗

α,A′ − β̃α,A||2 and d + w − 1 and p′ as
the dimension of the input and the effective dimension, respectively) we obtain that m′ ∈ [0,∞) for
appropriate α, that is, α with large enough c). The observation that m′ ∈ [0,∞) together with the
definition of m implies that m ∈ [0,∞) as well.

Tabulating this observation to the display earlier together with our assumption on β∗ (||β∗||1 =
||γ∗||1 + |||Θ∗|||1 ≤ 2

√
log n) and the fact that 1/2n ≤

√
log n, we obtain for all r ≥ rorc that

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

− 1

2
m

≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

≤ risk[γ∗,Θ∗] + 5r
√
log n

with probability at least 1− 1/2n.

The second claim is a trivial consequence of the first claim by 1. using r = rorc and 2. absorbing the
constant 5 in ν and simplifying to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + ν(log n)3/2
√

log(np)

n

(
5
√

log n
)

= risk[γ∗,Θ∗] + ν(log n)2
√

log(np)

n
,

with probability at least 1− 1/2n, which completes the proof.

C.2 PROOF OF THEOREM 2

Proof. The main ingredients of the proof are the definition of τ−approximate stationary point and
our Lemma 3.

We start the proof using the definition of a τ−approximate stationary point in equation 7 that implies

riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 ≤ riskX [γ̃, Θ̃] + r||β̃||1 + τ .

We add zero-valued terms to the both sides of the inequality above to obtain

riskX [˜̃γ, ˜̃Θ]−risk[˜̃γ, ˜̃Θ]+risk[˜̃γ, ˜̃Θ]+r||˜̃β||1 ≤ riskX [γ̃, Θ̃]−risk[γ̃, Θ̃]+risk[γ̃, Θ̃]+r||β̃||1+τ .

Then, we 1. rearrange the terms, get an absolute value of the two terms, and use the properties of
absolute values, 2. get a supremum over the reasonable parameter space Bres using our assumptions
that (˜̃γ, ˜̃Θ), (γ̃, Θ̃) ∈ Bres ··= {(γ,Θ) ∈ B : ||γ||1, |||Θ|||1 ≤

√
log n} (we use our assumption that

the stationary is reasonable and our argument in the paragraph above Theorem 2 to reach that (˜̃γ, ˜̃Θ)
is reasonable as well), 3. simplify, and 4. leave a negative term to obtain

risk[˜̃γ, ˜̃Θ] ≤ risk[γ̃, Θ̃] +
∣∣∣riskX [˜̃γ, ˜̃Θ]− risk[˜̃γ, ˜̃Θ]

∣∣∣+ ∣∣∣riskX [γ̃, Θ̃]− risk[γ̃, Θ̃]
∣∣∣+ r||β̃||1 − r||˜̃β||1 + τ

≤ risk[γ̃, Θ̃] + sup
(γ,Θ)∈Bres

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣+ sup

(γ,Θ)∈Bres

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣

+ r||β̃||1 − r||˜̃β||1 + τ

= risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣+ r||β̃||1 − r||˜̃β||1 + τ

≤ risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣+ r||β̃||1 + τ .

Then, we use 1. our result above, 2. Lemma 3 bounding the second term with t = ν
√

log(32nd2)/κn
and B = Bres (with probability at least 1− 1/2n), 3. the definition of Bres to replace sup(γ,Θ)∈Bres∣∣∣∣γ∗⊤Θ∗ − γ⊤Θ

∣∣∣∣2
∞ ≤ sup(γ,Θ)∈Bres

2||γ||2∞|||Θ|||21 ≤ 2(log n)2 =·· ϵ′, 4. our Theorem 1 upper
bounding the first term (for r ≥ rorc with probability at least 1 − 1/2n), 5. our assumption that
stationary is reasonable, 6. simplifying, 7. an assumption that n ≥ 3 (just for simplifying the terms),
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and 8. the assumption that r ≥ rorc and the definition of rorc (note that for simplicity, we absorb all
the constants in ν) to obtain

risk[˜̃γ, ˜̃Θ] ≤ risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣+ r||β̃||1 + τ

≤ risk[γ̃, Θ̃] + 2ν

√
log(32nd2)

κn

(
1 + 4ϵ′ + 4

√
ϵ′
)
+ r||β̃||1 + τ

≤ risk[γ̃, Θ̃] + 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ r||β̃||1 + τ

≤ risk[γ∗,Θ∗] + 5r
√
log n+ 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ r||β̃||1 + τ

≤ risk[γ∗,Θ∗] + 5r
√
log n+ 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ 2r

√
log n+ τ

= risk[γ∗,Θ∗] + 7r
√

log n+ 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ τ

≤ risk[γ∗,Θ∗] + 7r
√
log n+ 34ν

√
log(32nd2)

κn
(log n)2 + τ

≤ risk[γ∗,Θ∗] + 8r
√

log n+ τ

with probability at least 1− (1 + 1)/2n, which is obtained by the fact that if a ≤ z1 + z2

P(a ≤ c1 + c2) ≥ P(z1 + z2 ≤ c1 + c2)

= 1− P(z1 + z2 > c1 + c2)

≥ 1−
(
P(z1 > c1) + P(z2 > c2)

)
,

where a, z1, z2 are random variables and c1, c2 are constants, as desired.

The second claim is a trivial consequence of the first claim by 1. using r = rorc and 2. absorbing the
constant 8 in ν to obtain

risk[γ̃, Θ̃] risk[γ∗,Θ∗] + ν(log n)3/2
√

log(np)

n

(
8
√

log n
)
+ τ

= risk[γ∗,Θ∗] + ν(log n)2
√

log(np)

n
+ τ ,

with probability at least 1− 1/n, which completes the proof.

C.3 PROOF OF PROPOSITION 1

Proof. The proof is based on basic algebra and property of scaling weights across the layers in neural
networks. Without loss of generality, we assume that xi ∈ N (0, Id×d) (the proof for independent
and centered sub-Gaussian random vectors xi with independent coordinates is the same, just some
constants may change, which doesn’t affect the main results).

Let’s consider all the network parameters as a vector of length p (recall that p = w + w · d). Then,
we can tabulate the second-order partial derivatives of risk[γ,Θ] in a matrix called ∇2risk[γ,Θ] ∈
Rp×p (for notational simplicity, we focus on ∇2risk[γ,Θ] for the moment and then we move to
∇2risk[γα,Θα] at the end of the proof) of the form

∇2risk[γ,Θ] =

[
A C
B D

]
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with A ∈ Rw×w, B ∈ R(w·d)×w, C ∈ Rw×(w·d), and D ∈ R(w·d)×(w·d), where

Aj′,j ··=
∂2

∂γj′∂γj
risk[γ,Θ] ,

B(j′−1)d+k′,j ··=
∂2

∂θj′k′∂γj
risk[γ,Θ] ,

Cj′,(j−1)d+k ··=
∂2

∂γj′∂θjk
risk[γ,Θ] ,

D(j′−1)d+k′,(j−1)d+k ··=
∂2

∂θj′k′∂θjk
risk[γ,Θ]

for j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}.

Applying the block-wise structure of ∇2risk[γ,Θ], we are motivated to analyze the behavior of

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + (a1)⊤Ca2 + (a2)⊤Ba1 + (a2)⊤Da2 .

Note that C = B⊤ (see Lemma 6), so, we are left to analyze the behavior of

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

for all a ∈ Rp with ||a||2 = 1.

We do the proof in steps: We start by going through the three terms on the right-hand side of the
display above separately, to write them in a mathematically nice formulation (Steps 1:3). In Step 4,
we sum up the results calculated in Steps 1:3. Finally in Step 5, we use our results in Steps 1:4 to
prove the main claims of the proposition.

Step 1: We show that for a2 ∈ Rw·d and D ∈ R(w·d)×(w·d),

(a2)⊤Da2 = 2

d∑
k=1

(
γ⊤(a2)k

)2
,

where we denote (a2)k :=
(
(a2)k, (a

2)d+k, . . . , (a
2)(w−1)d+k

)⊤ ∈ Rw (as a sub-vector of a2) for
each k ∈ {1, . . . , d}.

We start by writing matrix product in the form of sums and fill the entries of matrix D with the
corresponding values from the definition to get

(a2)⊤Da2

=

w∑
j=1

d∑
k=1

(
w∑
j′=1

d∑
k′=1

(
(a2)(j′−1)d+k′

∂2

∂θj′k′∂θjk
risk[γ,Θ]

)
(a2)(j−1)d+k

)
.

By Lemma 6 we have

∂2

∂θj′k′∂θjk
risk[γ,Θ] = 2γj′γjE(x,y)

[
(x)k(x)k′

]
,

which using our assumption on x (identity covariance matrix) implies

∂2

∂θj′k′∂θjk
risk[γ,Θ] = 2γj′γj

for k = k′ and zero otherwise (for k ̸= k′). We use 1. our display earlier, 2. the result above, 3. the
linearity of sums, 4. some rewriting (using multinomial theorem), and 5.implying our notation (a2)k

for writing the sum in the form of product to obtain

(a2)⊤Da2 =

w∑
j=1

d∑
k=1

(
w∑
j′=1

d∑
k′=1

(
(a2)(j′−1)d+k′

∂2

∂θj′k′∂θjk
risk[γ,Θ]

)
a2

(j−1)d+k

)

= 2

w∑
j=1

d∑
k=1

(
w∑
j′=1

(
(a2)(j′−1)d+kγj′γj

)
a2

(j−1)d+k

)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

= 2

w∑
j=1

d∑
k=1

w∑
j′=1

(
(a2)(j′−1)d+kγj′γja

2
(j−1)d+k

)
= 2

d∑
k=1

(
w∑
j=1

(a2)(j−1)d+kγj

)2

= 2

d∑
k=1

(
γ⊤(a2)k

)2
.

Step 2: We prove that for a1 ∈ Rw and A ∈ Rw×w,

(a1)⊤Aa1 = 2

d∑
k=1

(
(Θ.,k)

⊤a1
)2

,

where Θ.,k denotes the k-th column of Θ.

For each j, j′ ∈ {1, . . . , w}, we use 1. the result of Lemma 6, 2. the definition of covariance, 3. the
fact that Cov(Θx) = ΘCov(x)Θ⊤, 4. the assumption on x (identity covariance), and 5. rewriting to
obtain

∂2

∂γj′∂γj
risk[γ,Θ] = 2E(x,y)

[
(Θx)j′(Θx)j

]
= 2
(
Cov(Θx)

)
j′j

= 2
(
ΘCov(x)Θ⊤)

j′j

= 2
(
ΘΘ⊤)

j′j

= 2

d∑
k=1

θj′kθjk .

We use 1. the definition of sub-matrix A to write the matrix product in the form of a sum, 2. tabulating
above result and using the linearity of sums, 3. some rewriting (using the multinomial theorem), and
4. writing the sum in the form of product to obtain

(a1)⊤Aa1 =

w∑
j=1

w∑
j′=1

(
(a1)j′

∂2

∂γj′∂γj
risk[γ,Θ](a1)j

)

=

d∑
k=1

w∑
j=1

w∑
j′=1

2(a1)j′θj′kθjk(a
1)j

= 2
d∑
k=1

(
w∑
j=1

(
θjk(a

1)j
))2

= 2

d∑
k=1

(
(Θ.,k)

⊤a1
)2

.

Step 3: We show that for a1 ∈ Rw, a2 ∈ Rw·d, and C ∈ Rw×(w·d),

(a1)⊤Ca2 = 2

d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)

⊤a1
)

+ 2

d∑
k=1

(((
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a1)⊤(a2)k

)
.

Expanding (a1)⊤Ca2 yields

(a1)⊤Ca2 =

w∑
j=1

d∑
k=1

(
w∑
j′=1

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ,Θ]

)
(a2)(j−1)d+k

)
.
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Now, we need to consider two different cases:

Case 1: (j ̸= j′)

We use 1. the result of Lemma 6, 2. writing matrix product in the form of a sum, 3. linearity of sums
and expectations, and 4. our assumption on x to get for each j, j′ ∈ {1, . . . , w} and k ∈ {1, . . . , d}
with j ̸= j′ that

∂2

∂γj′∂θjk
risk[γ,Θ] = 2γjE(x,y)

[
(x)k(Θx)j′

]
= 2γjE(x,y)

[
(x)k

d∑
k′=1

(
θj′k′(x)k′

)]

= 2γj

d∑
k′=1

(
θj′k′E(x,y)

[
(x)k(x)k′

])
= 2γjθj′k .

Case 2: (j = j′)

We use 1. the result of Lemma 6, 2. linearity of expectations, 3. linearity of expectations and our
assumption on x (same argument as above), 4. linearity of expectations, 5. linearity of expectations
and our assumption on x, 6. adding a zero-valued term, and 7. again linearity of expectations, our
assumption on x, and rearranging to obtain

∂2

∂γj∂θjk
risk[γ,Θ] = 2E(x,y)

[
γj(x)k(Θx)j −

(
y − γ⊤Θx

)
(x)k

]
= 2E(x,y)

[
γj(x)k(Θx)j

]
+ 2E(x,y)

[(
γ⊤Θx

)
(x)k − y(x)k

]
= 2γjθjk + 2E(x,y)

[(
γ⊤Θx

)
(x)k − y(x)k

]
= 2γjθjk + 2E(x,y)

[(
γ⊤Θx

)
(x)k

]
− 2E(x,y)

[
y(x)k

]
= 2γjθjk + 2

(
γ⊤Θ

)
k
− 2E(x,y)

[
y(x)k

]
= 2γjθjk + 2

(
γ⊤Θ

)
k
− 2E(x,y)

[(
y + γ∗⊤Θ∗x− γ∗⊤Θ∗x)(x)k

]
= 2γjθjk + 2

(
γ⊤Θ− γ∗⊤Θ∗)

k
− 2E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
.

Now, we 1. use our earlier expansion, 2. separate the innermost sum in two cases, 3. use the result
above (Case 1 and Case 2), 4. rearranging, 5. use linearity of sums and some rewriting, and 6. write
sums in the form of vector products and rearranging to obtain

(a1)⊤Ca2

=

w∑
j=1

d∑
k=1

(
w∑
j′=1

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ,Θ]

)
(a2)(j−1)d+k

)

=

w∑
j=1

d∑
k=1

(
w∑

j′=1,j′ ̸=j

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ,Θ]

)
(a2)(j−1)d+k

)

+

w∑
j=1

d∑
k=1

(
(a1)j

∂2

∂γj∂θjk
risk[γ,Θ](a2)(j−1)d+k

)

= 2

w∑
j=1

d∑
k=1

w∑
j′=1,j′ ̸=j

(
(a1)j′γjθj′k(a

2)(j−1)d+k

)

+ 2

w∑
j=1

d∑
k=1

(
(a1)j

(
γjθjk +

(
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a2)(j−1)d+k

)

= 2

w∑
j=1

d∑
k=1

w∑
j′=1

(
(a1)j′γjθj′k(a

2)(j−1)d+k

)
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+ 2

w∑
j=1

d∑
k=1

(
(a1)j

((
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])
(a2)(j−1)d+k

)

= 2

d∑
k=1

(
w∑
j′=1

(a1)j′θj′k

)(
w∑
j=1

γj(a
2)(j−1)d+k

)

+ 2

d∑
k=1

((
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])( w∑
j=1

(a1)j(a
2)(j−1)d+k

)

= 2

d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)

⊤(a1)
)

+ 2

d∑
k=1

((
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])
(a1)⊤(a2)k .

Step 4: We prove that for any a = [(a1)⊤, (a2)⊤]⊤ ∈ Rp and (γ,Θ) ∈ B, it holds that

a⊤∇2risk[γ,Θ]a = 2

d∑
k=1

(
(Θ.,k)

⊤(a1) + γ⊤(a2)k
)2

+ 4

d∑
k=1

(
γ⊤Θ− γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4

d∑
k=1

E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
(a1)⊤(a2)k .

We use 1. the block-wise structure of the Hessian matrix and rearranging, 2. our results in Steps 1:3,
and 3. multinomial theorem to obtain

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + (a2)⊤Da2 + 2(a1)⊤Ca2

= 2

d∑
k=1

(
γ⊤(a2)k

)2
+ 2

d∑
k=1

(
(Θ.,k)

⊤a1
)2

+ 4

d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)

⊤a1
)

+ 4

d∑
k=1

(((
γ⊤Θ− γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a1)⊤(a2)k

)

= 2

d∑
k=1

(
(Θ.,k)

⊤a1 + γ⊤(a2)k
)2

+ 4

d∑
k=1

(
γ⊤Θ− γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4

d∑
k=1

E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
(a1)⊤(a2)k .

Step 5: Now, we employ our results in Steps 1–4 to prove the main claims of the proposition.

Claim 1: (a1 = 0 and a2 ̸= 0)

We use 1. the block-wise structure of the Hessian, 2. the assumption that a1 = 0, 3. our result in
Step 1, and 4. the fact that sum of non-negative terms is also non-negative to obtain

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

= (a2)⊤Da2

= 2

d∑
k=1

(
γ⊤(a2)k

)2
≥ 0 .

The above display can also reveal that for all α ∈ Rw \ {0} (moving to a scaled version of the
parameters)

a⊤∇2risk[γα,Θα]a = 2

d∑
k=1

(
(γα)

⊤(a2)k
)2

≥ 0 ,
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as desired.

Claim 2: (a1 ̸= 0 and a2 = 0)

The proof is similar to Claim 1 so we omit the proof.

Claim 3: (a1 ̸= 0 and a2 ̸= 0)

We use our results in Step 4 together with getting an absolute value of the two last terms to obtain

a⊤∇2risk[γ,Θ]a = 2

d∑
k=1

(
(Θ.,k)

⊤a1 + γ⊤(a2)k
)2

+ 4

d∑
k=1

(
γ⊤Θ− γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4

d∑
k=1

E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
(a1)⊤(a2)k

≥ 2

d∑
k=1

(
(Θ.,k)

⊤a1 + γ⊤(a2)k
)2

− 4

∣∣∣∣∣
d∑
k=1

(
γ⊤Θ− γ∗⊤Θ∗)

k
(a1)⊤(a2)k

∣∣∣∣∣
− 4

∣∣∣∣∣
d∑
k=1

E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣ .
First, let’s concentrate on the second term of display above and 1. use the triangle inequality and
properties of absolute values, 2. use Hölder inequality, 3. get a factor ||a1||2 out of the summation,
4. use Cauchy–Schwarz inequality, and 5. some rewriting to obtain

4

∣∣∣∣∣
d∑
k=1

(
γ⊤Θ− γ∗⊤Θ∗)

k
(a1)⊤(a2)k

∣∣∣∣∣ ≤ 4

d∑
k=1

∣∣∣(γ⊤Θ− γ∗⊤Θ∗)
k

∣∣∣∣∣∣(a1)⊤(a2)k
∣∣∣

≤ 4

d∑
k=1

∣∣∣(γ⊤Θ− γ∗⊤Θ∗)
k

∣∣∣∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣(a2)k
∣∣∣∣
2

= 4
∣∣∣∣a1
∣∣∣∣
2

d∑
k=1

∣∣∣(γ⊤Θ− γ∗⊤Θ∗)
k

∣∣∣∣∣∣∣(a2)k
∣∣∣∣
2

≤ 4
∣∣∣∣a1
∣∣∣∣
2

√√√√ d∑
k=1

∣∣∣(γ⊤Θ− γ∗⊤Θ∗
)
k

∣∣∣2
√√√√ d∑
k=1

∣∣∣∣(a2)k
∣∣∣∣2
2

= 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2
.

Then, we use 1. our assumption that y = γ∗⊤Θ∗x + u, 2. independence of u and x, and 3. our
assumption that E[x] = 0 (also we have E[u] = 0) to obtain

4

∣∣∣∣∣
d∑
k=1

E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣ = 4

∣∣∣∣∣
d∑
k=1

E(x,y)

[
u(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣
= 4

∣∣∣∣∣
d∑
k=1

E(x,y)

[
u
]
E(x,y)

[
(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣
= 0 .

Tabulating two observations above in the previous display we obtain

a⊤∇2risk[γ,Θ]a ≥ 2

d∑
k=1

(
(Θ.,k)

⊤a1 + γ⊤(a2)k
)2

− 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2
.
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Now, let’s define for each k ∈ {1, . . . , d} that Ak ··= (Θ.,k)
⊤a1, Bk ··= γ⊤(a2)k, and using the fact

(Ak +Bk)
2 ≥ 1

2 (Ak)
2 − (Bk)

2 to obtain

a⊤∇2risk[γ,Θ]a

≥ 2

d∑
k=1

(Ak +Bk)
2 − 4

∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2

≥
d∑
k=1

(Ak)
2 − 2

d∑
k=1

(Bk)
2 − 4

∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2
.

Now, we analyze the first two terms on the right-hand side of the last inequality above. We use 1. the
definition of Ak, 2. some rewritings, 3. the linearity of sums, 4. the definition of matrix product,
5. property of eigenvalues (emin[ΘΘ⊤] denotes the smallest eigenvalue of ΘΘ⊤), and 6. the norm
definition to obtain

d∑
k=1

(Ak)
2 =

d∑
k=1

(
(Θ.,k)

⊤a1
)2

=

d∑
k=1

(a1)⊤Θ.,k(Θ.,k)
⊤a1

= (a1)⊤

(
d∑
k=1

Θ.,k(Θ.,k)
⊤

)
a1

= (a1)⊤ΘΘ⊤a1

≥ emin

[
ΘΘ⊤](a1)⊤a1

= emin

[
ΘΘ⊤]||a1||22 .

Also, using 1. the definition of Bk, 2. the Cauchy–Schwarz inequality, 3. the linearity of sums, and
4. the definition of norms we obtain

2

d∑
k=1

(Bk)
2 = 2

d∑
k=1

(
γ⊤(a2)k

)2 ≤ 2

d∑
k=1

∣∣∣∣γ∣∣∣∣2
2

∣∣∣∣(a2)k
∣∣∣∣2
2
= 2
∣∣∣∣γ∣∣∣∣2

2

d∑
k=1

∣∣∣∣(a2)k
∣∣∣∣2
2
= 2
∣∣∣∣γ∣∣∣∣2

2

∣∣∣∣a2
∣∣∣∣2
2
.

Collecting two displays above together with the earlier one we obtain

a⊤∇2risk[γ,Θ]a ≥ emin

[
ΘΘ⊤]||a1||22 − 2

∣∣∣∣γ∣∣∣∣2
2

∣∣∣∣a2
∣∣∣∣2
2
− 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2
.

Now, it is time to concentrate on the Hessian behavior of ∇2risk[γα,Θα] (and not ∇2risk[γ,Θ]). We
use the known fact in neural networks that weights can be rescaled across the layers once activations
are nonnegative-homogeneous. It says for a neural network parameterized by (γ,Θ), there is another
network with the same objective value such that the covariates of γ are multiplied by the covariates
of α and the covariates in each column of Θ are divided by the covariates of α. We use this fact with
αj = 1/c for all j ∈ {1, . . . , w}, which c ∈ (1,∞), together with the above result to analyze the
behavior of Hessian in (γα,Θα) and get

a⊤∇2risk[γα,Θα]a ≥ emin

[
ΘαΘα

⊤]||a1||22 − 2
∣∣∣∣γα

∣∣∣∣2
2

∣∣∣∣a2
∣∣∣∣2
2
− 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γα
⊤Θα − γ∗

α
⊤Θ∗

α

∣∣∣∣
2

= c2emin

[
ΘΘ⊤]||a1||22 −

2

c2
∣∣∣∣γ∣∣∣∣2

2

∣∣∣∣a2
∣∣∣∣2
2
− 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗∣∣∣∣
2
,

where for the last line we use factorizing and the definition of scaled parameters. Using above display,
we can guarantee positive semidefinite Hessian once c is selected large enough because, the first term
can dominate the other two terms. So, we use c ∈ [1,∞) and our assumption on ΘΘ⊤ to obtain that
for

c2 ≥
2
∣∣∣∣γ∣∣∣∣2

2

∣∣∣∣a2
∣∣∣∣2
2
+ 4
∣∣∣∣a1
∣∣∣∣
2

∣∣∣∣a2
∣∣∣∣
2

∣∣∣∣γ⊤Θ− γ∗⊤Θ∗
∣∣∣∣
2

emin

[
ΘΘ⊤

]
||a1||22

,

we can guarantee positive semidefinite Hessian, as desired.
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C.4 PROOF OF LEMMA 1

Proof. The proof idea is inspired by Elsener & van de Geer (2018, Lemma 14) and main ingredients
are our Lemma 2 and union bounds.

Let’s define r̃(t) ··= 2t for t ∈ (0,∞), sCη,ϵ
··= (η + max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ), which

is basically defined by parameters ϵ and η of Cη,ϵ (recall that Cη,ϵ = {β = vec(γ,Θ) ∈ Rp :
||β∗ − β||1 ≤ η and ||γ⊤Θ− γ∗⊤Θ∗||1 ≤ ϵ}), and Z(β,β∗) as a function of two vectors β and β∗

(with β = vec(γ,Θ)) defined as

Z(β,β∗) ··=
∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]

)⊤
(β∗ − β)

∣∣∣ .
Using Lemma 2 and notations above and with assuming β̃ ∈ Cη,ϵ (specific values of ϵ and η be
assigned at the end of the proof) we obtain for each t ∈ (0,∞) that

P
(
Z(β̃,β∗) ≥ ηr̃(t)sCη,ϵ

)
≤ P

(
sup

β∈Cη,ϵ

Z(β,β∗) ≥ ηr̃(t)sCη,ϵ

)
≤ 4d2p exp(−κnmin{t2/ν2, t/ν})

with ν, κ ∈ (0,∞) constants depending only on the distributions of the inputs and noise.

We assume without loss of generality that 1/n ≤ η and continue the proof in two different cases:

Case 1: (||β̃ − β∗||1 ≤ 1/n)

In this case, we use 1. the fact that ||β̃−β∗||1r̃(t)sCη,ϵ ≥ 0, 2. our assumption that 1/n ≤ η and the
definition of sCη,ϵ , and 3. our assumption that ||β̃−β∗||1 ≤ 1/n, which implies that β̃ ∈ C1/n,ϵ and
our argument above to obtain for each t ∈ (0,∞) that

P
(
Z(β̃,β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ

+
r̃(t)

n
sCη,ϵ

)
≤ P

(
Z(β̃,β∗) ≥ r̃(t)

n
sCη,ϵ

)
≤ P

(
Z(β̃,β∗) ≥ r̃(t)

n
sC1/n,ϵ

)
≤ 4d2p exp(−κnmin{t2/ν2, t/ν}) .

Case 2: (1/n < ||β̃ − β∗||1 ≤ η)

In this case, we use 1. the fact that for mutually exclusive events H1, . . . ,Hn: P(∪ni=1Hi) =∑n
i=1 P(Hi), 2. lower bound of ||β̃−β∗||1, 3. the fact that r̃(t)sCη,ϵ

/n ≥ 0 and removing the lower
bound, 4. the fact that 2i+1/n ≤ η, and 5. the fact that β̃ ∈ sC2i+1/n,ϵ

and our earlier argument to
obtain for each t ∈ (0,∞) that

P
(
Z(β̃,β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ

+
r̃(t)

n
sCη,ϵ

for
1

n
< ||β̃ − β∗||1 ≤ η

)

=

⌈log2 (nη)⌉−1∑
i=0

P
(
Z(β̃,β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ +

r̃(t)

n
sCη,ϵ for

2i

n
< ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0

P
(
Z(β̃,β∗) ≥ 2i+1

n
r̃(t)sCη,ϵ

+
r̃(t)

n
sCη,ϵ

for
2i

n
< ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0

P
(
Z(β̃,β∗) ≥ 2i+1

n
r̃(t)sCη,ϵ for ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0

P
(
Z(β̃,β∗) ≥ 2i+1

n
r̃(t)sC2i+1/n,ϵ

for ||β̃ − β∗||1 ≤ 2i+1

n

)
≤ 4⌈log2 (nη)⌉d2p exp(−κnmin{t2/ν2, t/ν}) .
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We collect all pieces of the proof (Case 1 and Case 2), set t = ν
√
log (8nd2p⌈log2 (nη)⌉)/(κn)

(we use the notation log as natural logarithm), and use the union bounds to obtain (we also need to
assume n is large enough to get rid of the min operator)

P

Z(β̃,β∗) ≥ 2||β̃ − β∗||1r̃
(
ν
√
log
(
8nd2p⌈log2 (nη)⌉

)
/(κn)

)
sCη,ϵ

+
r̃
(
ν
√
log
(
8nd2p⌈log2 (nη)⌉

)
/(κn)

)
n

sCη,ϵ


≤ 4⌈log2 (nη)⌉d2p exp(− log(8nd2p⌈log2 (nη)⌉))

=
1

2n
.

Now, we use the results above and the definitions of Z(β̃,β∗) and r̃(t) to obtain

P

∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]
)⊤

(β∗ − β̃)
∣∣∣ ≥ 4νsCη,ϵ

||β̃ − β∗||1

√
log
(
8nd2p⌈log2 (nη)⌉

)
κn

+ 2νsCη,ϵ

√
log
(
8nd2p⌈log2 (nη)⌉

)
κn3


≤ 1

2n
.

Then, we use our assumption that the stationary point (γ̃, Θ̃) is reasonable to obtain: ||γ̃⊤Θ̃ −
γ∗⊤Θ∗||1 ≤ ||γ̃⊤Θ̃||1 + ||γ∗⊤Θ∗||1 ≤ ||γ̃||1|||Θ̃|||∞ + ||γ∗||1|||Θ∗|||∞ ≤ 2 log n (using triangle
inequality, Hölder’s inequality, and our assumption on reasonable target and stationary) and ||β̃ −
β∗||1 ≤ ||β̃||1 + ||β∗||1 = ||γ̃||1 + |||Θ̃|||1 + ||γ∗||1 + |||Θ∗|||1 ≤ 4

√
log n (using triangle inequality,

our definition of norm, and our assumption on reasonable target and stationary), which means we can
assign ϵ = 2 log n and η = 4

√
log n (for n ≥ 2 we can make sure that 1/n ≤ η is satisfied).

Now, we plug in the values of ϵ = 2 log n, η = 4
√
log n, and sCη,ϵ

= (η+max{||γ∗||∞, |||Θ∗|||∞})(1+
ϵ) ≤ (5

√
log n)(1 + 2 log n) ≤ 15(log n)3/2 (for n ≥ 2) to conclude that

P
(∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣
≥ 60√

κn
ν||β̃ − β∗||1(log n)3/2

√
log
(
8nd2p⌈log2 (4n

√
log n)⌉

)
+

30√
κn3

ν(log n)3/2
√
log
(
8nd2p⌈log2 (4n

√
log n)⌉

))
≤ 1

2n
.

Then, we use the fact that d ≤ p and simplifying display above to obtain

P
(∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣
≥ 180√

κn
ν||β̃ − β∗||1(log n)3/2

√
log(np) +

90√
κn3

ν(log n)3/2
√
log(np)

)
≤ 1

2n
.

We finally absorb all the constants (180/
√
κ) in ν and use the definition of rorc to complete the

proof.
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C.5 PROOF OF LEMMA 2

Proof. We start the proof with Hölder’s inequality and the definition of Cη,ϵ, which implies ||β∗ −
β||1 ≤ η for all β ∈ Cη,ϵ to obtain

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣

≤ sup
β=vec(γ,Θ)∈Cη,ϵ

(∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞||β∗ − β||1

)
≤ η sup

β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞ .

The rest of the proof is using our Lemma 5 and Bernstein’s inequality (Vershynin, 2018, Corol-
lary 2.8.3) to find an upper bound for supβ=vec(γ,Θ)∈Cη,ϵ

||∇riskX [γ,Θ]−∇risk[γ,Θ]||∞. Note that
for simplifying the notation, we use E[·] as a shorthand notation of E(x1,y1),...,(xn,yn)[·] throughout
this proof.

We use 1. our result in Lemma 5 and i.i.d. assumption on the data, 2. equation 1 and our assumption
that f [x] = γ∗⊤Θ∗x, zero-mean noise, linearity of expectations, and factorizing, 3. the definition
of sup-norm, triangle inequality, and Hölder’s inequality, 4. the definition of Cη,ϵ, which implies
||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 5. adding a zero-valued term and rewriting, and 6. the triangle inequality and
the definition of Cη,ϵ, which implies ||γ−γ∗||1 ≤ ||β−β∗||1 ≤ η, to obtain for each j ∈ {1, . . . , w}
and k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ,Θ]− ∂

∂θjk
risk[γ,Θ]

∣∣∣
=

∣∣∣∣− 2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k + E
[
2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k

]∣∣∣∣
= 2|γj |

∣∣∣∣ 1n
n∑
i=1

(
ui(xi)k + (γ∗⊤Θ∗ − γ⊤Θ)

(
xi(xi)k − E[xi(xi)k]

))∣∣∣∣
≤ 2||γ||∞

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k

∣∣∣∣+ ||γ⊤Θ− γ∗⊤Θ∗||1
∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
E[xi(xi)k]− xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

≤ 2||γ||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k]− xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

= 2||γ − γ∗ + γ∗||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)

≤ 2(η + ||γ∗||∞)

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)
.

We continue to work on the absolute value and sup-norm term in the last inequality above separately.
For each i ∈ {1, . . . , n} and k ∈ {1, . . . , d}, we use our assumptions on xi and ui to obtain that
zi ··= ui(xi)k are independent and sub-exponential random variables with zero-mean (Vershynin,
2018, Lemma 2.7.7) and so, we can employ Bernstein’s inequality in Vershynin (2018, Corollary 2.8.3)
to obtain for each t ∈ [0,∞) that

P
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣ ≥ t

)
≤ 2 exp(−κmin{t2/ν2, t/ν}n)

with κ ∈ (0,∞) an absolute constant and ν ··= maxi∈{1,...,n} ||ui(xi)k||ψ1
∈ (0,∞) a constant

that depends on the distributions of x and u (for a sub-exponential random variable z, we define
||z||ψ1

··= inf{q ∈ (0,∞) : E exp((|z|/q)) ≤ 2}).

Now we study the behavior of the sup-norm term in the last inequality of the earlier display. Let’s
rewrite the sup-norm in the form of a max as∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

= max
k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ .
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Following the same argument as earlier and for each i ∈ {1, . . . , n} and k, k′ ∈ {1, . . . , d}, we
use our assumption on xi to obtain that z′i ··= (xi)k′(xi)k − E[(xi)k′(xi)k] are independent sub-
exponential random variables with zero-mean and again we can employ Bernstein’s inequality (Ver-
shynin, 2018, Corollary 2.8.3) to obtain for each t′ ∈ [0,∞) that

P

(∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 2 exp(−κ′ min{t′2/ν′2, t′/ν′}n)

with κ′ ∈ (0,∞) an absolute constant and ν′ ··= maxi∈{1,...,n} ||(xi)k′(xi)k−E[(xi)k′(xi)k]||ψ1
∈

(0,∞) a constant that depends on the distribution of x.

Then, we use our result above together with the fact that if P(|bi| ≥ t) ≤ a holds for all
i ∈ {1, . . . p}, then we also have P(maxi∈{1,...p} |bi| ≥ t) ≤ pa to obtain

P

(
max

k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k−E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 2d exp(−κ′ min{t′2/ν′2, t′/ν′}n) .

Collecting all pieces above together with considering t = t′, we obtain for each j ∈ {1, . . . , w} and
k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ,Θ]− ∂

∂θjk
risk[γ,Θ]

∣∣∣ ≤ 2t(η + ||γ∗||∞)(1 + ϵ)

with probability at least 1−2 exp(−κmin{t2/ν2, t/ν}n)−2d exp(−κ′ min{t2/ν′2, t/ν′}n), which
is obtained using the fact that

P (A+ bD ≤ t+ bt) = 1− P (A+ bD > t+ bt) ≥ 1− P (A > t)− P (D > t)

for any b ∈ (0,∞) and t ∈ R.

Then, we follow the same argument as earlier and use 1. our result in Lemma 5 and i.i.d. assumption
on the data, 2. the properties of absolute values and linearity of expectations, 3. some rewriting,
4. Hölder’s inequality, 5. equation 1 and our assumptions that f [x] = γ∗⊤Θ∗x, zero-mean noise,
and definition of sup-norm, 6. triangle inequality, compatible norms (for a matrix A ∈ Rd×d,
we define |||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)), and the definition of Cη,ϵ, which implies

||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 7. adding a zero-valued term, 8. the triangle inequality and the definition of
Cη,ϵ, which implies ||Θ−Θ∗||1 ≤ ||β − β∗||1 ≤ η to obtain for each j ∈ {1, . . . , w} that∣∣∣ ∂

∂γj
riskX [γ,Θ]− ∂

∂γj
risk[γ,Θ]

∣∣∣
=

∣∣∣∣− 2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)
+ E

[
2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)]∣∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j − E[(yi − γ⊤Θxi)(Θxi)j ]

)∣∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

(
(yi − γ⊤Θxi)xi

⊤Θj,· − E[(yi − γ⊤Θxi)xi
⊤Θj,·]

)∣∣∣∣
≤
∣∣∣∣∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi

⊤ − E[(yi − γ⊤Θxi)xi
⊤]
)∣∣∣∣∣∣∣∣

∞
||Θj,·||1

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
uixi

⊤ + (γ∗⊤Θ∗ − γ⊤Θ)(xixi
⊤ − E[xixi⊤])

)∣∣∣∣∣∣∣∣
∞

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)

≤ 2|||Θ−Θ∗ +Θ∗|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)
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≤ 2(η + |||Θ∗|||∞)

(∣∣∣∣∣∣∣∣ 1n
n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)
.

Then, we use the same argument as earlier to treat the sup-norm terms above (we use our assumptions
on xi and ui and application of Bernstein’s inequality) to obtain that∣∣∣ ∂

∂γj
riskX [γ,Θ]− ∂

∂γj
risk[γ,Θ]

∣∣∣ ≤ 2t(η + |||Θ∗|||∞)(1 + ϵ)

with probability at least 1 − 2d exp(−κmin{t2/ν2, t/ν}n) − 2d2 exp(−κ′ min{t2/ν′2, t/ν′}n)
(κ, ν, κ′, ν′ are constants depending only on the distributions of the inputs and the noise).

Collecting all the pieces above, we obtain that for each i ∈ {1, . . . , p} the corresponding gradient
difference is bounded (|(∇riskX [γ,Θ]−∇risk[γ,Θ])i| ≤ 2t(η+max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ))
with probability at least 1 − 4d2 exp(−κu,x min{t2/(νu,x)2, t/νu,x}n) with νu,x ··= max{ν, ν′}
and κu,x ··= min{κ, κ′} (νu,x and κu,x are constants depending only on the distributions of the
inputs and noise).

Now we use 1. the definition of sup-norm and 2. our results above together with our earlier argument
about implying max operator (note that the gradient vector is of dimension p) to obtain for each
t ∈ [0,∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞

= sup
β=vec(γ,Θ)∈Cη,ϵ

max
i∈{1,...,p}

∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)
i

∣∣
≤ 2t

(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1− 4d2p exp(−κu,x min{t2/(νu,x)2, t/νu,x}n).
Collecting all pieces of the proof, we obtain for each t ∈ [0,∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣

≤ η sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞

≤ 2tη
(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 4d2p exp(−κu,x min{t2/(νu,x)2, t/νu,x}n), where for the ease of
notations we replace κu,x and νu,x with ν and κ (constants depending only on the distributions of
the inputs and noise) in the statement of the lemma.

C.6 PROOF OF LEMMA 3

Proof. The main ingredients of the proof are symmetrization of probabilities (van de Geer, 2016,
Lemma 16.1) and Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3).

We note that for simplifying the notations, we use E[·] as a shorthand notation of E(x1,y1),...,(xn,yn)[·]
throughout this proof.

Let’s start the proof and use 1. the definition of riskX [γ,Θ] and risk[γ,Θ], 2. the i.i.d. assumption
on the data and that yi = γ∗⊤Θ∗xi + ui, 3. expanding the squared-terms and rearranging, and 4. the
triangle inequality to obtain

sup
(γ,Θ)∈B

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣

= sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
yi − γ⊤Θxi

)2)− E(x,y)

[(
y − γ⊤Θx

)2]∣∣∣∣
= sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi + ui − γ⊤Θxi

)2 − E
[(
γ∗⊤Θ∗xi + ui − γ⊤Θxi

)2])∣∣∣∣
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= sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(
γ∗⊤Θ∗xi − γ⊤Θxi

)2])
+ 2
((

γ∗⊤Θ∗xi − γ⊤Θxi
)
ui − E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui
])

+
(
ui

2 − E[ui2]
)∣∣∣∣

≤ sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(
γ∗⊤Θ∗xi − γ⊤Θxi

)2])∣∣∣∣
+ 2 sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui − E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui
])∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

(
ui

2 − E[ui2]
)∣∣∣∣ .

Now, we continue to work on each term in the last inequality above separately in steps:

Step 1: Using Vershynin (2018, Corollary 2.8.3) together with our assumption on noise, which
implies the squared of Gaussian noise is sub-exponential, we obtain for each t̄ ∈ [0,∞) that

P
(∣∣∣∣ 1n

n∑
i=1

(ui
2 − E[ui2])

∣∣∣∣ ≥ t̄

)
≤ 2 exp(−κmin{t̄2/ν2, t̄/ν}n) ,

where κ, ν ∈ (0,∞) are constants depending only on the distribution of the noise (our constants κ
and ν may change from line to line in this proof, but they constantly depend just on the distribution
of the inputs or noise or both).

Step 2: We now prepare the application of van de Geer (2016, Lemma 16.1). Let’s 1. define R2 and
2. use Hölder’s inequality and factorizing to obtain

R2 ··= sup
(γ,Θ)∈B

1

n

n∑
i=1

E
[(
γ∗⊤Θ∗xi − γ⊤Θxi

)4]
≤ sup

(γ,Θ)∈B

∣∣∣∣γ∗⊤Θ∗ − γ⊤Θ
∣∣∣∣4
1

1

n

n∑
i=1

E
[
||xi||4∞

]
.

We also employ some linear algebra together with compatible norms (for a matrix A ∈ Rd×d, we
define |||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)) to obtain∣∣∣∣ 1n

n∑
i=1

ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)2∣∣∣∣ = ∣∣∣∣ 1n
n∑
i=1

(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)⊤∣∣∣∣
=

∣∣∣∣ 1n
n∑
i=1

(
γ∗⊤Θ∗ − γ⊤Θ

)
xiζixi

⊤(γ∗⊤Θ∗ − γ⊤Θ
)⊤∣∣∣∣

≤
∣∣∣∣(γ∗⊤Θ∗ − γ⊤Θ)2

∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

ζixixi
⊤
∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

.

Then, we use 1. symmetrization of probabilities (van de Geer, 2016, Lemma 16.1) with R as defined
earlier, 2. the display above, 3. our assumption that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′ and
rearranging, 4. the definition of ℓ∞,1-norm for a matrix above, 5. the fact that if P(|bi| ≥ t) ≤ a
holds for all i ∈ {1, . . . d}, then we also have P(maxi∈{1,...d} |bi| ≥ t) ≤ da (for k ∈ {1, . . . , d}),
6. the fact that for a vector a ∈ Rd, P(

∑d
i=1 |ai| ≥ t) ≤ dmaxk∈{1,...,d} P(|ak| ≥ t), and

7. our assumption on x (to get rid of max term) together with Vershynin (2018, Corollary 2.8.3) to
obtain for each t ∈ [0,∞) that

P

(
sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(
γ∗⊤Θ∗xi − γ⊤Θxi

)2])∣∣∣∣ ≥ 4R
√

2t

n

)

≤ 4P

(
sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)2∣∣∣∣ ≥ R
√

2t

n

)
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√
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n
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√
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=·· t′′

)
≤ 8d2 exp(−κmin{t′′2/ν2, t′′/ν}n) ,

where κ, ν ∈ (0,∞) are constants depending only on the distribution of the inputs.

Collecting results above, we obtain for each t′′ ∈ [0,∞) that

P

(∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(
γ∗⊤Θ∗xi − γ⊤Θxi

)2])∣∣∣∣ ≥ 4ϵ′t′′

)
≤ 8d2 exp(−κmin{t′′2/ν2, t′′/ν}n) .

Step 3: Let’s define (R′)2 and use Hölder’s inequality to obtain

(R′)2 ··= sup
(γ,Θ)∈B

1

n

n∑
i=1

E
[((

γ∗⊤Θ∗xi − γ⊤Θxi
)
ui

)2]
≤ sup
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1

1

n

n∑
i=1

E
[
||xiui||2∞

]
.

Then, we use 1. symmetrization of probabilities (van de Geer, 2016, Lemma 16.1) with R′ defined as
above, 2. Hölder’s inequality, 3. our assumption that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′, the
fact that for a vector a ∈ Rd, P(||a||1 ≥ t) ≤ dmaxi∈{1,...,d} P(|ai| ≥ t) ≤ d2P(|ai| ≥ t),
and the assumption on inputs (for k ∈ {1, . . . , d}), and 4. Vershynin (2018, Corollary 2.8.3) together
with our assumptions on the input and noise to obtain for each t′ ∈ [0,∞) that

P

(
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)
≤ 8d2 exp(−κmin{t′′′2/ν2, t′′′/ν}n) ,

where κ, ν ∈ (0,∞) are constants depending only on the distributions of the inputs and noise.

Collecting results above we obtain that

P

(∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui−E
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where κ, ν ∈ (0,∞) are constants depending only on the distributions of the inputs and noise.

Collecting all the pieces of the proof in steps 1:3, we obtain for each t ∈ [0,∞) that

sup
(γ,Θ)∈B

∣∣riskX [γ,Θ]− risk[γ,Θ]
∣∣ ≤ t

(
1 + 4ϵ′ + 4

√
ϵ′
)

with probability at least 1− (2+8d2+8d2) exp(−κmin{t2/ν2, t/ν}n) or by rewriting as 1−18d2

exp(−κmin{t2/ν2, t/ν}n) (using the assumption that d ≥ 1), where we consider t = t̄ = t′′ = t′′′

and κ, ν ∈ (0,∞) are constants depending only on the distributions of the inputs and noise.

C.7 PROOF OF LEMMA 4

Proof. The proof follows just basic linear algebra.

Since H(t) is invertible exactly when (A + tC)⊤ has full (column) rank, we are left to study the
rank of (A+ tC)⊤ = A⊤ + tC⊤. To do so, we employ the Singular Value Decomposition (SVD) of
AT ∈ Rd′×w′

, that is, A⊤ = UDV ⊤ with U ∈ Rd′×w′
, V ∈ Rw′×w′

, and D ∈ Rw′×w′
that U, V

are semi-orthogonal matrices and D has the same rank as A, in this case, full rank. Now, we are
motivated to make a squared matrix as

U⊤(A⊤ + tC⊤)V = U⊤(UDV ⊤ + tC⊤)V = D + tU⊤C⊤V = tD(t−1Iw′ +D−1U⊤C⊤V ) ,

where we used the SVD form of matrix A, orthogonal property of U, V , and some rewriting. Since
matrices U and V have rank w, for studying the rank of A⊤ + tC⊤ it is enough to study determinant
of U⊤(A⊤+ tC⊤)V . We then use our display above, properties of determinants for squared matrices,
and characteristic polynomials to obtain

det
(
U⊤(A⊤ + tC⊤)V ) = det

(
tD(t−1Iw′ +D−1U⊤C⊤V )

)
= det(tD) det

(
t−1Iw′ +D−1U⊤C⊤V

)
= tw

′
det(D)pZ··=D−1U⊤C⊤V (−t−1) .

Since, det(D) ̸= 0 and t ̸= 0, then the t which H(t) is singular are the roots of pZ(−t−1), where
Z = D−1U⊤C⊤V . Since the roots of pZ are the eigenvalues of Z, we have found that the only t
for which H(t) fails to be invertible are the negative reciprocals of the (nonzero) eigenvalues of Z.
Since, any w′ × w′ matrix has at most w′ distinct eigenvalues, there are just finitely many t such that
H(t) is not invertible, as desired.

C.8 PROOF OF LEMMA 5

Proof. The proof consists of basic algebra.

Claim 1: We use 1. the definition of riskX [γ,Θ], 2. the chain rule, and 3. taking the derivatives to
obtain

∂

∂γj
riskX [γ,Θ] =

∂

∂γj

(
1

n

n∑
i=1

(
yi − γ⊤Θxi

)2)

= − 2

n

n∑
i=1

((
yi − γ⊤Θxi

) ∂

∂γj

(
γ⊤Θxi

))
= − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

)
,

as desired.
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Claim 2: We use 1. the definition of riskX [γ,Θ], 2. the chain rule, and 3. taking the derivatives to
obtain

∂

∂θjk
riskX [γ,Θ] =

∂

∂θjk

(
1

n

n∑
i=1

(
yi − γ⊤Θxi

)2)

= − 2

n

n∑
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((
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) ∂

∂θjk

(
γ⊤Θxi

))
= − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
γj(xi)k

)
,

as desired.

Claim 3: We 1. use Claim 1 and 2. remove the term with zero derivatives and use the chain rule to
obtain

∂2

∂γj′∂γj
riskX [γ,Θ] =

∂

∂γj′
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− 2

n
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yi − γ⊤Θxi

)
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=
2

n

n∑
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(
(Θxi)j′(Θxi)j

)
,

as desired.

Claim 4: We 1. use Claim 2, 2. remove the term with zero derivatives, and 3. compute the derivative
of the bracket, and 4. rearranging to obtain

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

∂

∂θj′k′

(
− 2

n
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(
2
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)
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2

n
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(
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)
,

as desired.

Claims 5 and 6: We only show the results for ∂2

∂θj′k′∂γj
riskX [γ,Θ]. The results for

∂2

∂γj′∂θjk
riskX [γ,Θ] can be obtained using the same arguments.

We consider two cases:

Case 1: if j′ = j, we use 1. Claim 1, 2. the chain rule, and 3. taking the derivatives and simplifying
to obtain

∂2

∂θjk′∂γj
riskX [γ,Θ] =

∂

∂θjk′

(
− 2

n

n∑
i=1
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)
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n
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) ∂
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)

=
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n
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.
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Case 2: if j′ ̸= j, we use 1. Claim 1, 2. the chain rule, and 3. taking the derivatives and rearranging
to obtain

∂2

∂θj′k′∂γj
riskX [γ,Θ] =

∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

))

= − 2

n

n∑
i=1

(
(Θxi)j

∂

∂θj′k′

(
yi − γ⊤Θxi

)
+
(
yi − γ⊤Θxi

) ∂

∂θj′k′
(Θxi)j

)

=
2

n
γj′

n∑
i=1

(xi)k′(Θxi)j ,

as desired.

C.9 PROOF OF LEMMA 6

Proof. The proof for this lemma follows the same steps as in Lemma 5, just sums are replaced by
expectations and so we omit the proof.

D PROOFS FOR SHALLOW RELU NETWORKS

D.1 PROOF OF THEOREM 3

Proof. The proof approach follows almost the same line as in Theorem 1.

We use the notation γ⊤
ασ(Θαx) to make a rescaled networks using a suitable α (see more details

about rescaled networks in Section 6.) Using the above definitions, it is easy to see that γ⊤
ασ(Θαx) =

γ⊤σ(Θx), that means, the output of the rescaled network is the same as the original network (using
the definition of rescaled weights and Lipschitz property of ReLU networks with Lipschitz constant
one).

Now, let’s start the proof by writing a second-order Taylor expansion of risk[γ∗
α,Θ

∗
α] (the risk in

a rescaled version of the target with β∗
α = vec(γ∗

α,Θ
∗
α) ∈ Rp) around a rescaled version of a

reasonable stationary β̃α = vec(γ̃α, Θ̃α) ∈ Rp with suitable α ∈ Rw to get

risk[γ∗
α,Θ

∗
α] = risk[γ̃α, Θ̃α] +∇risk[γ̃α, Θ̃α]

⊤(β∗
α − β̃α)

+
1

2
(β∗

α − β̃α)
⊤∇2risk[γ̃α + t(γ∗

α − γ̃α), Θ̃α + t(Θ∗
α − Θ̃α)](β

∗
α − β̃α)

for some t ∈ (0, 1) (Bertsekas et al., 2003, Proposition 1.1.13.a).

Then, we employ the property of rescaled networks that is risk[γ̃α, Θ̃α] = risk[γ̃, Θ̃] and
risk[γ∗

α,Θ
∗
α] = risk[γ∗,Θ∗], and use the shorthand notation

m ··= (β∗
α − β̃α)

⊤∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α + t(Θ∗

α − Θ̃α)](β
∗
α − β̃α)

to obtain
risk[γ∗,Θ∗] = risk[γ̃, Θ̃] +∇risk[γ̃α, Θ̃α]

⊤(β∗
α − β̃α) +

1

2
m.

It is also straightforward to show that ∇risk[γ̃α, Θ̃α]
⊤(β∗

α − β̃α) = ∇risk[γ̃, Θ̃]⊤(β∗ − β̃) (we
omit the detailed proof). Tabulating this observation in the earlier display we obtain

risk[γ∗,Θ∗] = risk[γ̃, Θ̃] +∇risk[γ̃, Θ̃]⊤(β∗ − β̃) +
1

2
m.

Rearranging the display above we obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) = risk[γ̃, Θ̃]− risk[γ∗,Θ∗] +
1

2
m.

Now, let’s recall the definition of stationary points in equation 3 that implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + rz̃⊤(β∗ − β̃) ≥ 0 .
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We 1. rearrange the above inequality and expand the bracket, 2. use Hölder’s inequality and the fact
that z̃⊤β̃ = ||β̃||1 (recall that z̃ ∈ ∂||β̃||1), and 3. use ||z̃||∞ ≤ 1 to obtain

−∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) ≤ rz̃⊤β∗ − rz̃⊤β̃

≤ r
∣∣∣∣z̃∣∣∣∣∞||β∗||1 − r||β̃||1

≤ r||β∗||1 − r||β̃||1 ,

which rearranging implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ≥ 0 .

Display above reveals the positiveness of the terms on its left-hand side and we can obtain

−∇risk[γ̃, Θ̃]⊤(β∗− β̃) ≤ −∇risk[γ̃, Θ̃]⊤(β∗− β̃)+∇riskX [γ̃, Θ̃]⊤(β∗− β̃)+r||β∗||1−r||β̃||1 ,

that is,

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤
(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Now, let’s use our display earlier (obtained by Taylor expansion) to rewrite the left-hand side of the
display above as

risk[γ̃, Θ̃]− risk[γ∗,Θ∗] +
1

2
m ≤

(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Rearranging the display above we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + r||β∗||1 +
(
∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)− r||β̃||1 −

1

2
m.

For the right-hand side of the inequality above we 1. get an absolute value of the third term, 2. add a
zero-valued factor, 3. use triangle inequality, and 4. Remark 1 to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r||β̃||1 −
1

2
m

= risk[γ∗,Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r
(
||β̃||1 + ||β∗||1

)
− 1

2
m

≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− r||β∗ − β̃||1 −
1

2
m

≤ risk[γ∗,Θ∗] + 2r||β∗||1 + rorc||β∗ − β̃||1 +
rorc
2n

− r||β∗ − β̃||1 −
1

2
m

with probability at least 1− 1/2n.

The third and fifth terms in the last inequality above can be canceled if we choose the tuning parameter
large enough. Hence, we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

− 1

2
m

for r ≥ rorc (see Remark 1).

The rest of the proof is analyzing the behavior of m. Let’s rewrite m = ||β∗
α − β̃α||22 m′ with

m′ ··=
(β∗

α − β̃α)
⊤

||β∗
α − β̃α||2

∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α + t(Θ∗

α − Θ̃α)]
(β∗

α − β̃α)

||β∗
α − β̃α||2

.

Now, we are motivated to employ our results in Proposition 2. To do so, we need to make sure about
matrix (Θ̃+t(Θ∗−Θ̃))(Θ̃+t(Θ−Θ̃))⊤ to be identity or at least “approximately identity”. Employing
our assumption on the Θ̃ and Θ∗, we can see that the corresponding matrix is “approximately identity”
as well and verifies the desired results. Also note that our assumptions Θ̃ ≈ Iw and Θ∗ ≈ Iw
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can be further relaxed to require only certain orthogonality properties. However, we omit these
generalizations for now to maintain simplicity in the current setting.

Implying Proposition 2 (with a = (β∗
α − β̃α)/||β∗

α − β̃α||2) we obtain that m′ ∈ [0,∞) for
appropriate α, that is, α with large enough c. The observation that m′ ∈ [0,∞) together with the
definition of m implies that m ∈ [0,∞) as well.

Tabulating this observation to the display earlier together with our assumption on β∗ (||β∗||1 =
||γ∗||1 + |||Θ∗|||1 ≤ 2

√
log n) and the fact that 1/2n ≤

√
log n, we obtain for all r ≥ rorc that

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

− 1

2
m

⪅ risk[γ∗,Θ∗] + 2r||β∗||1 +
rorc
2n

≤ risk[γ∗,Θ∗] + 5r
√
log n

with probability at least 1− 1/2n, which completes the proof.

D.2 PROOF OF PROPOSITION 2

Proof. The proof is based on basic algebra and the property of scaling weights across the layers
in neural networks. Without loss of generality, we assume that xi ∈ N (0, Id×d) (the proof for
independent and centered sub-Gaussian random vectors x with independent coordinates is the same,
just some constants may change, which doesn’t affect the main results).

Let’s consider all the network parameters as a vector of length p (recall that p = w + w · d). Then,
we can tabulate the second order subdifferentials of risk[γ,Θ] in a matrix called ∇2risk[γ,Θ] ∈
Rp×p (for notational simplicity, we focus on ∇2risk[γ,Θ] for the moment and then we move to
∇2risk[γα,Θα] at the end of the proof) of the form

∇2risk[γ,Θ] =

[
A C
B D

]
with A ∈ Rw×w, B ∈ R(w·d)×w, C ∈ Rw×(w·d), and D ∈ R(w·d)×(w·d), where

Aj′,j ··=
∂2

∂γj′∂γj
risk[γ,Θ] ,

B(j′−1)d+k′,j ··=
∂2

∂θj′k′∂γj
risk[γ,Θ] ,

Cj′,(j−1)d+k ··=
∂2

∂γj′∂θjk
risk[γ,Θ] ,

D(j′−1)d+k′,(j−1)d+k ··=
∂2

∂θj′k′∂θjk
risk[γ,Θ]

for j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}.

Applying the block-wise structure of ∇2risk[γ,Θ], we are motivated to analyze the behavior of

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + (a1)⊤Ca2 + (a2)⊤Ba1 + (a2)⊤Da2 .

Note that C = B⊤ (by symmetry), so, we are left to analyze the behavior of

a⊤∇2risk[γ,Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

for all a ∈ Rp with ||a||2 = 1.

We do the proof in steps: We start by going through the three terms on the right-hand side of display
above separately, to write them in a mathematically nice formulation (Steps 1:3). In Step 4, we sum
up the results computed in Steps 1:3 to prove the main claims of the proposition.

Step 1: On a high level, we prove that the entries of the matrix D are a function of γ.

Employing our results in Lemma 8, the symmetry over the input, and our assumption over Θ for
k = k′ and j ̸= j′, we obtain ∂2

∂θj′k′∂θjk
risk[γ,Θ] = γjγj′/2, and for k = k′ and j = j′ we
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obtain ∂2

∂θjk∂θjk
risk[γ,Θ] = γj

2. For other cases (k ̸= k′) we use 1. our results in Lemma 8,
2. cauchy-schwarz inequality, and 3. our assumption on the input (symmetry) to obtain

∂2

∂θj′k′∂θjk
risk[γ,Θ] = 2γjγj′Ex

[
(x)k′(x)k1{(Θx)j > 0, (Θx)j′ > 0}

]
≤ 2|γj ||γj′ |

√
Ex

[
((x)k1{(Θx)j > 0})2

]
Ex

[
((x)k′1{(Θx)j′ > 0})2

]
≤ |γj ||γj′ | .

Step 2: We prove that for a1 ∈ Rw and A ∈ Rw×w,

(a1)⊤Aa1 ≈
(
1− 1

π

)
||a1||22 +

( w∑
j=1

1√
π
(a1

j)

)2

.

For ReLU networks and according to Lemma 8, we have

(a1)⊤Aa1 =

w∑
j=1

w∑
j′=1

a1
jAj′ja

1
j′ ,

in which Ajj′ = 2Ex[(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}]. Employing some basic linear
algebra implies

(a1)⊤Aa1 =

w∑
j=1

(a1
j)

2Ajj +

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jAj′ja

1
j′

= 2

w∑
j=1

(a1
j)

2Ex

[
(Θx)j(Θx)j1{(Θx)j > 0}

]
+ 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

= 2

w∑
j=1

(a1
j)

2Ex

[(
(Θx)j − Ex[(Θx)j ]

)2
1{(Θx)j > 0}

]
+ 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

=

w∑
j=1

(a1
j)

2Ex

[(
(Θx)j − Ex[(Θx)j ]

)2]
+ 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

=

w∑
j=1

(a1
j)

2(ΘΘ⊤)jj + 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′ .

Then, we keep working on the second term in the last equality above to get rid of the x values and
the expectation. Note that by assumption we have Θx ∈ N (0,ΘIdΘ

⊤) and using our assumption
that ΘΘ⊤ ≈ Iw (also recall that we assume w = d) we obtain

Ex

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
≈ Ex

[
(Θx)j′1{(Θx)j′ > 0}

]
Ex

[
(Θx)j1{(Θx)j > 0}

]
=

1

2π

using the fact that Ex[(Θx)j1{(Θx)j > 0}] = 1/
√
2π. Collecting the results above together with

some rewriting we obtain

(a1)⊤Aa1 ≈
w∑
j=1

(a1
j)

2 +

w∑
j=1

w∑
j′=1,j′ ̸=j

1

π
a1

ja
1
j′
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=
(
1− 1

π

) w∑
j=1

(a1
j)

2 +
1

π

w∑
j=1

(a1
j)

2 +

w∑
j=1

w∑
j′=1,j′ ̸=j

1

π
a1

ja
1
j′

=
(
1− 1

π

) w∑
j=1

(a1
j)

2 +

( w∑
j=1

1√
π
(a1

j)

)2

=
(
1− 1

π

)
||a1||22 +

( w∑
j=1

1√
π
(a1

j)

)2

.

Step 3: On a high level, we prove that the entries of the matrix C are a function of the product over Θ
and γ.

Expanding (a1)⊤Ca2 yields

(a1)⊤Ca2 =

w∑
j=1

d∑
k=1

(
w∑

j′=1

(
(a1)j′

∂2

∂θj′k′∂γj
risk[γ,Θ]

)
(a2)(j−1)d+k

)
.

Now, we need to consider two different cases:

Case 1: (j ̸= j′)

We use 1. Lemma 8, 2. rewriting the ReLU function, 3. rewriting the product in the form of sum,
4. linearity of expectations, 5. again linearity of expectation and rewriting, 6. using the assumption
over the input, and 7. the same argument as above to obtain,

∂2

∂θj′k′∂γj
risk[γ,Θ] = 2γj′Ex[(x)k′σ(Θx)jκ(x, j

′)]

= 2γj′Ex[(x)k′(Θx)j1{(Θx)j′ > 0}1{(Θx)j > 0}]

= 2γj′Ex

[
(x)k′

( d∑
k=1

(θjkxk)
)
1{(Θx)j′ > 0}1{(Θx)j > 0}

]

= 2γj′
d∑
k=1

Ex

[
(x)k′(θjkxk)1{(Θx)j′ > 0}1{(Θx)j > 0}

]
= 2γj′θjk′Ex

[
(xk′)

21{(Θx)j′ > 0}1{(Θx)j > 0}
]

+ 2γj′
d∑

k=1,k ̸=k′
θjkEx

[
xk′xk1{(Θx)j′ > 0}1{(Θx)j > 0}

]
=

1

2
γj′θjk′ + 2γj′

( d∑
k=1,k ̸=k′

θjkEx

[
xk′1{(Θx)j′ > 0}1{(Θx)j > 0}

]
Ex

[
xk1{(Θx)j′ > 0}1{(Θx)j > 0}

])
=

1

2
γj′θjk′ +

1

4π
γj′

d∑
k=1,k ̸=k′

θjk .

Case 2: (j = j′)

We use 1. the result of Lemma 8, 2. linearity of expectations, almost the same proof as above for
simplifying the first term, replacing y with its definition, and the assumption over noise to obtain

∂2

∂θjk′∂γj
risk[γ,Θ] = 2Ex,y

[
γj(x)k′σ(Θx)jκ(x, j)−

(
y − γ⊤σ(Θx)

)
(x)k′κ(x, j)

]
= γj′θjk′ +

1

2π
γj′

d∑
k=1,k ̸=k′

θjk
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+ 2Ex,y

[(
γ⊤σ(Θx)− γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
.

Then, we use the linearity of expectations to obtain

Ex

[(
γ⊤σ(Θx)− γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
= Ex

[(
γ⊤σ(Θx)

)
(x)k′1{(Θx)j) > 0}

]
− Ex

[(
γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
and

Ex

[(
γ⊤σ(Θx)

)
(x)k′1{(Θx)j) > 0}

]
=

w∑
j′=1

Ex

[(
γj′
(
σ(Θx)

)
j′
(x)k′1{(Θx)j) > 0}

]

=

w∑
j′=1

(
γj′θjk′ +

1

2π

d∑
k=1,k ̸=k′

γj′θj′k

)
.

The same argument can also hold for the other term. Looking at the extracted entries of the matrix C
above, it is clear that the entries are a function of the product over parameters of the first and second
layers.

Step 4 Collecting the results from Steps 1–3, we can easily approve the first claim. For the second
claim, we realize that by employing the same scaling trick as in the linear case, that is considering
parameters of the first layer large enough (by selecting θ large enough) and dividing γ by the same
value, the result from Step 2 (that the squared of the scaling parameter θ will appear in the front) can
dominate all the other terms. According to Step 1, the entries of the matrix D are a function of γ and
also according to Step 3, matrix C involves a product of first and last layer parameters, which in this
case cancel out the scaling parameter and so, the result from Step 2 can dominate all other parts, as
long as θ is selected large enough. To be more precise we have

a⊤∇2risk[γα,Θα]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

⪆ (a1)⊤Aa1 + (a2)⊤Da2 − 2||a1||2|||C|||2||a2||2
≥ (a1)⊤Aa1 − ||a2||22|||D|||2 − 2|||C|||2

≥
(
1− 1

π

)
||a1||22θ2 +

( w∑
j=1

1√
π
(a1

j)θ

)2

− |||D|||2 − 2|||C|||2

for all a ∈ Rp with ||a||2 = 1. For large enough θ, the first term in the last inequality above can
dominate the last two terms, which involve the product of parameters that cancel out the scaling
constant or they are just dependent over γ. For the special case of a1 = 0, if we consider a large
enough θ, the entries of the matrix D can go to zero (so implying its norm |||D|||2 going to zero) and
so we can reach our desired results.

D.3 PROOF OF LEMMA 7

Proof. The proof consists of basic linear algebra.

Claim 1: We use 1. the definition of riskX [γ,Θ], 2. the chain rule, and 3. differentiating to obtain

∂

∂γj
riskX [γ,Θ] =

∂

∂γj

(
1

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2)

= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

) ∂

∂γj

(
γ⊤σ(Θxi)

))
= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

)
,

as desired.
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Claim 2: We 1. use Claim 1, and 2. remove the term with zero derivative and use the chain rule to
obtain

∂2

∂γj′∂γj
riskX [γ,Θ] =

∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

=
2

n

n∑
i=1

(
(σ(Θxi)j′σ(Θxi)j

)
,

as desired.

Claim 3: We use 1. the definition of riskX [γ,Θ], 2. the chain rule, and 3. differentiating to obtain

∂

∂θjk
riskX [γ,Θ] =

∂

∂θjk

(
1

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2)

= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

) ∂

∂θjk

(
γ⊤σ(Θxi)

))
= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

)
.

Claim 4: We 1. use Claim 3 and 2. differentiate the bracket to obtain for

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))

=
∂

∂θj′k′

(
2

n
γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

− ∂

∂θj′k′

(
2

n
γj

n∑
i=1

(
yi(xi)kκ(xi, j)

))
.

We obtain then for j′ ̸= j that

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

∂

∂θj′k′

(
2

n
γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

=
2

n
γjγj′

( n∑
i=1

(xi)k′(xi)kκ(xi, j
′)κ(xi, j)

)
and for j′ = j with (Θxi)j ̸= 0 for all i ∈ {1, . . . , n}

∂2

∂θj′k′∂θjk
riskX [γ,Θ] =

∂

∂θj′k′

(
2

n
γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

− ∂

∂θj′k′

(
2

n
γj

n∑
i=1

(
yi(xi)kκ(xi, j)

))

=
2

n
γjγj′

n∑
i=1

(xi)k′(xi)kκ(xi, j)κ(xi, j) ,

otherwise, the corresponding subdifferential doesn’t exist, as desired.

Claims 5 and 6: We only show the results for ∂2

∂θj′k′∂γj
riskX [γ,Θ]. The result for

∂2

∂γj′∂θjk
riskX [γ,Θ] can be obtained using the same arguments.

We consider two cases:
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Case 1: for j′ = j we use 1. Claim 1, 2. the chain rule, and 3. differentiating and simplifying to
obtain

∂2

∂θjk′∂γj
riskX [γ,Θ] =

∂

∂θjk′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

= − 2

n

n∑
i=1

(
σ(Θxi)j

∂

∂θjk′

(
yi − γ⊤σ(Θxi)

)
+
(
yi − γ⊤σ(Θxi)

) ∂

∂θjk′
σ(Θxi)j

)

=
2

n

n∑
i=1

(
γj(xi)k′σ(Θxi)jκ(xi, j)−

(
yi − γ⊤σ(Θxi)

)
(xi)k′κ(xi, j)

)
.

Case 2: For j′ ̸= j we use 1. Claim 1, 2. the chain rule, and 3. differentiating to obtain

∂2

∂θj′k′∂γj
riskX [γ,Θ] =

∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

= − 2

n

n∑
i=1

σ(Θxi)j
∂

∂θj′k′

(
yi − γ⊤σ(Θxi)

)
=

2

n
γj′

n∑
i=1

(xi)k′σ(Θxi)jκ(xi, j
′) .

A similar approach can give us

∂2

∂γj′∂θjk
riskX [γ,Θ] =

∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))
.

For j = j′ we obtain

∂2

∂γj′∂θjk
riskX [γ,Θ] =

(
− 2

n

n∑
i=1

((
yi
)
(xi)kκ(xi, j)

))

+

(
2

n

n∑
i=1

((
σ(Θxi)jγj + γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))
.

And for j ̸= j′ we have

∂2

∂γj′∂θjk
riskX [γ,Θ] =

∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))

=
2

n

n∑
i=1

σ(Θxi)j′γj(xi)kκ(xi, j) ,

as desired.

D.4 PROOF OF REMARK 1

Proof. The proof can be followed almost in the same line as in Lemma 2 and Lemma 1; so we
just provide a high-level proof here. The only difference with linear case is how to treat the ReLU
function in subdifferentials. To do so, we study here the behavior of the absolute difference between
the subdifferentials of the in-sample risk and population risk for ReLU networks, showing that they
almost behave the same as linear networks despite minor changes in the constants and some log terms.
First, we use the definition and employ some linear algebra to obtain∣∣∣ ∂

∂θjk
riskX [γ,Θ]− ∂

∂θjk
risk[γ,Θ]

∣∣∣
=

∣∣∣∣− 2

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j) + E

[
2

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

]∣∣∣∣
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≤ 2|γj |
∣∣∣∣ 1n

n∑
i=1

(
ui + γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

− E
[(
γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)(
xi)kκ(xi, j)

]∣∣∣∣
≤ 2||γ||∞

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)− E

[(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)

]∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

(
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)− E

[(
γ⊤σ(Θxi)

)(
xi)kκ(xi, j)

]∣∣∣∣) .

The first term in the last inequality above was already treated in Lemma 2. So, we continue with the
second term. We use 1. Hölder’s inequality, 2. symmetrization (Bühlmann & Van De Geer, 2011,
Theorem 14.3) with ζi as Rademacher random variables, and 3. an extension of contraction principle
to obtain∣∣∣∣ 1n

n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)− E

[(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)

]∣∣∣∣
≤ ||γ∗||1

∣∣∣∣∣∣ 1
n

n∑
i=1

(
σ(Θ∗xi)(xi)kκ(xi, j)− E

[
σ(Θ∗xi)(xi)kκ(xi, j)

])∣∣∣∣∣∣
∞

≤ 2||γ∗||1
∣∣∣∣∣∣ 1
n

n∑
i=1

(
σ(Θ∗xi)(xi)kκ(xi, j)ζi

∣∣∣∣∣∣
∞

≤ 4||γ∗||1
∣∣∣∣∣∣ 1
n

n∑
i=1

(
σ(Θ∗xi)(xi)kζi

∣∣∣∣∣∣
∞

.

Then we consider zi = σ(Θ∗xi)(xi)kζi as independent and mean-zero sub-exponential ran-
dom vectors and the proof can be followed same line by the proof of Lemma 2. Also for
|∂riskX [γ,Θ]/∂γj − ∂risk[γ,Θ]/∂γj | we obtain∣∣∣ ∂

∂γj
riskX [γ,Θ]− ∂

∂γj
risk[γ,Θ]

∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j − E

[(
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

])∣∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

((
ui + γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
σ(Θxi)j − E

[(
γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
σ(Θxi)j

])∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j

∣∣∣∣+ ∣∣∣∣ 2n
n∑
i=1

((
γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
σ(Θxi)j

− E
[(
γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
σ(Θxi)j

])∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j

∣∣∣∣+ ∣∣∣∣ 4n
n∑
i=1

((
γ∗⊤σ(Θ∗xi)− γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j

∣∣∣∣+ ∣∣∣∣ 4n
n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
σ(Θxi)jζi

∣∣∣∣+ ∣∣∣∣ 4n
n∑
i=1

(
γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣ .
Treating the last two terms: we use Hölder’s inequality to obtain∣∣∣∣ 4n

n∑
i=1

(
γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣ ≤ ||γ||1
∣∣∣∣∣∣ 4
n

n∑
i=1

σ(Θxi)σ(Θxi)jζi

∣∣∣∣∣∣
∞

,

where zi = σ(Θxi)σ(Θxi)jζi are, mean-zero and independent sub-exponential random vectors
(again can be followed as in Lemma 2).
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Figure 3: Log-training error for neural networks (with d = w = 10) with linear (left panel) and
ReLU (right panel) activations in 10 different runs (allocated with different colors). Due to the
non-convexity of neural networks, optimization algorithms may end up in different approximate
stationary points.

The same is also true for∣∣∣∣ 4n
n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
σ(Θxi)jζi

∣∣∣∣ ≤ ||γ∗||1
∣∣∣∣∣∣ 4
n

n∑
i=1

σ(Θ∗xi)σ(Θxi)jζi

∣∣∣∣∣∣
∞

with zi = σ(Θ∗xi)σ(Θxi)jζi again as independent with zero mean sub-exponential random
vectors.

E MORE EXPERIMENT RESULTS

We show the log-training error for shallow linear and shallow ReLU neural networks in Figure 3.
To extend the simulations in Section 4, we show the relative error and test error for a different
setting (with d = 100, w = 20) in Table 2. Moreover, we run our experiments in the numerical
observations section 200 times (each time we run 100 runs to compute the potential global optimum
and approximate stationary point) to reach the mean and standard deviation of the relative error for
the approximate stationary point. For the network with d = w = 10 and linear activation function,
we reach the relative training error 1.0013 ± 0.0003 and relative test error 1.0011 ± 0.0003. For
the ReLU activation function, we reach the relative training error 1.004 ± 0.001 and relative test
error 1.005 ± 0.001. The same experiment for the larger network (d = 100, w = 20), concludes
1.04 ± 0.01, 1.03 ± 0.008, 1.89 ± 0.07, and 1.40 ± 0.08 for the relative training and test error of
linear and ReLU activations, respectively. These results show that our empirical observations are
stable. All the simulations were executed on a local computer (Apple M2, 16GB memory), with an
average run time of less than 10 minutes per individual run in Python. For optimization, we employed
SGD with the learning rate 0.02.

Table 2: relative training error and test error for trained neural networks (with d = 100, w = 20) with
linear and ReLU activations in a potential global optimum, an approximate stationary point, and a
randomly generated network.

Linear ReLU

Training Error Test Error Training Error Test Error
Potential Global Optimum 1.00 1.00 1.00 1.00
Approximate Stationary Point 1.04 1.03 1.85 1.10
Randomly Generated Network 1146373.94 1095543.69 5062.83 3626.28

Beyond SGD: For the sake of completeness, we have now included further simulations to assess the
impact of changing the optimization method. Specifically, we replaced SGD with Adam, using a
learning rate of 0.005, to analyze its effect on the simulation outcomes in Table 1. Our results are
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reported in Table 3. These results show that the performance of SGD appears to be more aligned
with our case (compare results in Table 3 with Table 1) which is high likely due to the verification
of our assumptions for the corresponding approximate stationary point, but in general, approximate
sub-optimal solutions remain still satisfactory.

Table 3: Relative training error and test error for trained shallow neural networks (with d = 10, w =
10) with linear and ReLU activations in an approximate stationary point employing Adam.

Linear ReLU

Training Error Test Error Training Error Test Error
Approximate Stationary Point 1.0007 1.003 1.20 1.27

Conjecture for deep neural networks: We have now extended our simulations in Table 1 employing
neural networks with 4 layers. Our numerical observations make this conjecture that our theory can
also hold for deep networks (with possibly minor different rates), given we reached the results in
Table 4.

Table 4: Relative training error and test error for trained neural networks (with d = 10, w = 10, and
depth 4) with linear and ReLU activations in an approximate stationary point.

Linear ReLU

Training Error Test Error Training Error Test Error
Approximate Stationary Point 1.002 1.004 1.16 1.21

Conjecture beyond regression: We have now extended our simulations by employing more complex
networks and testing beyond our regression simulated data. We applied our method to the MNIST,
fashion-MNIST, and K-MNIST dataset using cross-entropy loss, with a neural network consisting
of 10-layer weight matrices and ReLU activations, with network width 50. Our results continue to
support the same conclusion we aim to demonstrate for approximate sub-optimal in Table 5. This
observation can support the conjecture that our results can be extended for classification settings and
even for deep neural networks in further studies.

Table 5: Relative training error and test error for trained neural networks (with w = 50 and depth 10)
with ReLU activations in an approximate stationary point.

ReLU
Training Error Test Error

Approximate Stationary Point (MNIST) 1.0004 1.39
Approximate Stationary Point (Fashion-MNIST) 1.00005 1.40
Approximate Stationary Point (K-MNIST) 1.00003 1.18

F RELAXING THE ℓ1-NORM BOUND

In fact, the bound
√
log n is merely for convenience: it can be replaced by any fixed constant or

another function that is increasing mildly in the sample size n. It basically means that ℓ1-norm bound
can be replaced by c

√
log n (with c ∈ (0,∞) an arbitrary constant) or q(n) that the function q(·) is

just mildly increasing in the sample size n. What we end up by moving to these bounds is that our
rates change to O((log n)2

√
(log(pn))/n) or O((q(n))4

√
(log(pn))/n), respectively that makes

sense once c and q(n) are mild. More explicitly, let’s define

rorc,q ··= c′
(
q(n)

)3√ log(np)

n
(15)

the oracle tuning parameter, where c′ ∈ (0,∞) is a constant that depends only on the distributions of
the inputs and noise. Then, we get the following result:
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Theorem 5 (Statistical Guarantees for Norm-Bounded Stationary Points of Shallow Linear Networks).
Suppose that the second and the third part of Assumption 1 are satisfied and that ||γ∗||1, |||Θ∗|||1 ≤ q(n)

for a fixed function q(n) ∈ (0,∞). Then, any reasonable stationary point (γ̃, Θ̃) of the objective
function in equation 2 with r ≥ rorc,q satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + 5rq(n) (16)

with probability at least 1− 1/2n.

In the theorem above, 1. (γ∗,Θ∗) is a pair that approximates the target function and 2. by reasonable
stationary, we mean that ||γ̃||1, |||Θ̃|||1 ≤ q(n). The proof of this theorem follows the same steps as our
Theorem 1 and so we omit the proof.

Another interesting and practical point in the training process of deep learning is that neural network
weights are usually initialized by near-zero values. For example, PyTorch by default initializes
weights as uniform(−1/

√
p, 1/

√
p) (p refers to the number of parameters in the network), that

means the ℓ1−norm of the matrix and vector weights are very small. Then, in the training process,
the optimization algorithm looks for a stationary point around the initialized network (and not too far
from this space). So, it is more likely that the computed (approximate) stationary point has a small
norm, while there might also exist other stationeries with larger norms. This argument shows that
even from a practical point of view, the reasonability assumption on stationary points and the points
nearby makes sense.

G ON THE REASONABILITY ASSUMPTION ON THE STATIONARY POINTS AND
THE POINTS NEARBY

It is stated in the text that the reasonability assumption on the stationary points makes sense. Here, we
prove that claim by showing that the reasonability assumption on the target also implies reasonability
on the stationary points.

Following the same lines as in the proof of Theorem 1, we have

risk[γ̃, Θ̃] ≤ risk[γ∗,Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣− 1

2
r||β̃||1

− 1

2
r||β̃||1 −

1

2
m

= risk[γ∗,Θ∗] +
3

2
r||β∗||1 +

∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]
)⊤

(β∗ − β̃)
∣∣∣

− 1

2
r
(
||β̃||1 + ||β∗||1

)
− 1

2
r||β̃||1 −

1

2
m

≤ risk[γ∗,Θ∗] +
3

2
r||β∗||1 +

∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]
)⊤

(β∗ − β̃)
∣∣∣− 1

2
r||β∗ − β̃||1

− 1

2
r||β̃||1 −

1

2
m

≤ risk[γ∗,Θ∗] +
3

2
r||β∗||1 + rorc||β∗ − β̃||1 +

rorc
2n

− 1

2
r||β∗ − β̃||1 −

1

2
r||β̃||1 −

1

2
m.

Moreover,

risk[γ̃, Θ̃] +
1

2
r||β̃||1 ≤ risk[γ∗,Θ∗] +

3

2
r||β∗||1 + rorc||β∗ − β̃||1 +

rorc
2n

− 1

2
r||β∗ − β̃||1 −

1

2
m.

Then, by considering r ≥ 2rorc we have

risk[γ̃, Θ̃] +
1

2
r||β̃||1 ≤ risk[γ∗,Θ∗] +

3

2
r||β∗||1 +

rorc
2n

− 1

2
m.

Following the same argument for m as in the proof of Theorem 1, we obtain

risk[γ̃, Θ̃] +
1

2
r||β̃||1 ≤ risk[γ∗,Θ∗] +

3

2
r||β∗||1 +

rorc
2n
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and
1

2
rorc||β̃||1 ≤ risk[γ∗,Θ∗] +

3

2
rorc||β∗||1 +

rorc
2n

.

Finally, by assuming a small variance in the noise and reasonability assumptions on the target, we
can conclude (for large n) that

||β̃||1 ⪅ 3||β∗||1 +
1

n
≤ 4||β∗||1 ≤ 4

√
log n .

The above display reveals that having a reasonability assumption on the target can also imply
reasonability on the stationary points as well, once tuning is selected large enough, which also implies
reasonability on the points nearby.

H DYNAMICAL ACCESSIBILITY OF APPROXIMATE STATIONARY POINTS

In this section, we argue that τ -approximate stationary points can be reached in practice (in a
reasonable time) once gradient-based algorithms iterate sufficiently.

For non-convex and differentiable objectives ℓ(β) with gradient-based methods, dynamical accessi-
bility of approximate stationaries ˜̃β ∈ B (points with small gradients ||∇ℓ(˜̃β)|| ≤ τ ′ that τ ′ ∈ (0,∞))
have widely been studied (Ghadimi & Lan, 2013; Carmon et al., 2018; Wang & Srebro, 2019; Lei
et al., 2019; Drori & Shamir, 2020; Arjevani et al., 2022).

Here, we provide some results from Ghadimi & Lan (2013) and Lei et al. (2019). Before going
through the main results, we impose some assumptions:

Ez[g(β, z)] = ∇ℓ(β) , ∃ σg ∈ (0,∞) : Ez||g(β, z)−∇ℓ(β)||2 ≤ σ2
g , (17)

where g(β, z) is an estimator of ∇ℓ(β) computed using a subsets of samples called z. And

∃∆, Lg ∈ (0,∞) : ℓ(β(0))− inf
β∈B

ℓ(β) ≤ ∆ , ||∇ℓ(β)−∇ℓ(β′)|| ≤ Lg||β−β′|| ∀β,β′ ∈ B ,

(18)
where ℓ(β(0)) is the value of the objective function in the initialized step. Then, Ghadimi &
Lan (2013, Theorem 2.1) prove that SGD finds an estimator such that E[||∇ℓ(β(R))||] ≤ τ ′ for a
randomly selected R ∈ {1, . . . , T} (according to a certain probability distribution, see Ghadimi &
Lan (2013, Equation 2.3)), where the expectation is taken over R and the randomness of SGD, using
O(∆Lgσ

2
g/(τ

′)
4
) oracle queries. Above result also imply mint∈{1,...,T} E[||∇ℓ(β(t))||] ≤ τ ′ using

O(∆Lgσ
2
g/(τ

′)
4
) oracle queries.

We can argue that Assumptions equation 17 and equation 18 can hold in the setting of our paper:
for Assumption equation 17 and the first part of Assumption equation 18 (objective has bounded
initial suboptimality), we can use the reasonability assumption over the parameter space. For twice-
differentiable objectives, the second part of Assumption equation 18 means that the eigenvalues of
the objective’s Hessian are bounded above by Lg, which is typically a reasonable assumption.

Important here is that E[||∇ℓ(β(R))||] ≤ τ ′ and our definition of approximate stationary points
in equation 7 are in a sense similar. Using 1. the definition of the objective function, 2. a first order
Taylor expansion of ℓ(β̃) around ℓ(˜̃β) (with ˜̃β ··= βR), 3. Hölder’s inequality, 4 our definition of ˜̃β,
result above, and the reasonability of approximate stationary and exact stationary we obtain

riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 − riskX [γ̃, Θ̃]− r||β̃||1 = ℓ(˜̃β)− ℓ(β̃)

≈
(
∇ℓ(˜̃β))⊤(β̃ − ˜̃β)

≤
∣∣∣∣∇ℓ(˜̃β)∣∣∣∣||β̃ − ˜̃β||

≤ cτ ′
√
log n

for a constant c ∈ (0,∞). It means that having a small norm on the gradients of approximate
stationary can also imply a small difference between the objective function of the approximate
stationary and exact stationary. The results of Ghadimi & Lan (2013) imply that gradient-based
algorithms with sufficiently many steps, let’s say O(n2), can guarantee small τ ∈ O(1/

√
n).
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Lei et al. (2019, Theorem 3) prove that for differentiable loss functions with α-Hölder continuous
gradients:

∃ Lg,α ∈ (0,∞) : ||∇ℓ(β)−∇ℓ(β′)|| ≤ Lg,α||β − β′||α ∀β,β′ ∈ B (19)
where α ∈ (0, 1] and Lg,α ∈ (0,∞), SGD gets

min
t∈{1,...,T}

E
[
||∇ℓ(β(t))||2

]
≤ C

( T∑
i=1

ηt

)−1

=·· τ ′′ ,

where C is a constant independent of t, ηt are stepsizes satisfying
∑∞
t=1 η

1+α
t < ∞, and the

expectation is taken over the randomness of SGD. Lei et al. (2019, Theorem 3) reveal a rate of
convergence 1/T for the smallest gradient. As a comparison, the convergence rate in Lei et al. (2019,
Theorem 3) only holds for the minimum of the first T iterates, while the convergence rate in Ghadimi
& Lan (2013, Theorem 2.1) holds for E[||∇ℓ(β(R))||] that is more practical (we also used Ghadimi &
Lan (2013, Theorem 2.1)).

I HEAVIER-TAILED NOISE

In this section, we are motivated to provide materials proving our Theorem 4.

First, we present an adapted version of the result in Bakhshizadeh et al. (2020, Corollary 2):
Lemma 9 (Empirical Processes for Heavy-Tailed Data). Suppose z1, . . . , zn are centered i.i.d. ran-
dom variables whose tail is captured by Iα(t) = cαt

1/α for some α ∈ [1,∞) and cα ∈ (0,∞).
Moreover, assume E[z21(z ≤ 0)] = (σα)

2 < ∞. Then, for all t ∈ [0,∞) we have

P

(∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣ > t

)
≤ 6n exp(−cmin{nt2, (nt)1/α}) , (20)

where c is a constant depending on the distribution of zi.

Proof of Lemma 9. The lemma is just an adapted version of Bakhshizadeh et al. (2020, Corollary 2)
and reached in three steps:

Step 1: We use the result in Bakhshizadeh et al. (2020, Corollary 2) that gives

P

(
1

n

n∑
i=1

zi > t

)
≤ exp

(
− nt2

2v̄(nt, β)

)
+exp(−βmax{ct, 0.5}cα(nt)1/α)+n exp(−cα(nt)

1/α) ,

(21)
where β ∈ (0, 1) is arbitrary, ct ∈ (0, 1) is a constant depending on n and t, and

v̄(nt, β) ··= (σα)
2 +

Γ(2α+ 1)(
(1− β)cα

)2α + (nt)(1/α)−1 βcαΓ(3α+ 1)

3
(
(1− β)cα

)3α .

Step 2: Since the factors ct ∈ (0, 1) and v̄(nt, β) depend on n and t, we need to remove this
dependence, otherwise we are in trouble. We can easily remove the constant ct from equation 21
because there is a max function there. Also, the factor v̄(nt, β) in the rate above is basically bounded
from above. For example, for large enough n (t > 1/n) and specific β = 1/2 we have

v̄(nt, β) ≤ vα ··= σα
2 +

Γ(2α+ 1)

c2α1
+

cαΓ(3α+ 1)

3c3α1
,

where c1 ∈ (0,∞) is a constant. Then, we reach

P

(
1

n

n∑
i=1

zi > t

)
≤ 3n exp(−cmin{nt2, (nt)1/α}) ,

where c ··= min{1/2vα, cα/4, cα}.

Step 3: We use the symmetry of random variables zi moving to a two-sided tail by paying a factor of
two as desired.
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Using the above lemma, we derive a uniform bound on the absolute difference between riskX [γ,Θ]
and risk[γ,Θ] for heavier-tailed noise.
Lemma 10 (Difference Between ∇riskX [γ,Θ] and ∇risk[γ,Θ] for Heavier-tailed Noise). Under
the first two parts of Assumption 1, it holds for each t, η, ϵ ∈ (0,∞) and β ∈ Cη,ϵ ··= {β =
vec(γ,Θ) ∈ Rp : ||β∗ − β||1 ≤ η and ||γ⊤Θ− γ∗⊤Θ∗||1 ≤ ϵ} that

sup
β∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣ ≤ 2tη

(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 12d2pn exp(−cmin{nt2, (nt)1/α}) with constants c ∈ (0,∞) and
α ∈ [2,∞) depending only on the distributions of the inputs and noise.

Proof of Lemma 10. The proof follows almost the same steps as in the proof of Lemma 2. The only
difference is handling the empirical processes parts.

We start the proof with Hölder’s inequality and the definition of Cη,ϵ, which implies ||β∗ − β||1 ≤ η
for all β ∈ Cη,ϵ to obtain

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣

≤ sup
β=vec(γ,Θ)∈Cη,ϵ

(∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞||β∗ − β||1

)
≤ η sup

β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞ .

The rest of the proof employs our Lemma 5 and Lemma 9 to find an upper bound for
supβ=vec(γ,Θ)∈Cη,ϵ

||∇riskX [γ,Θ] − ∇risk[γ,Θ]||∞. Note that for simplifying the notation, we
use E[·] as a shorthand notation of E(x1,y1),...,(xn,yn)[·] throughout this proof.

We use 1. our result in Lemma 5 and i.i.d. assumption on the data, 2. equation 1 and our assumption
that f [x] = γ∗⊤Θ∗x, zero-mean noise, linearity of expectations, and factorizing, 3. the definition
of sup-norm, triangle inequality, and Hölder’s inequality, 4. the definition of Cη,ϵ, which implies
||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 5. adding a zero-valued term and rewriting, and 6. the triangle inequality and
the definition of Cη,ϵ, which implies ||γ−γ∗||1 ≤ ||β−β∗||1 ≤ η, to obtain for each j ∈ {1, . . . , w}
and k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ,Θ]− ∂

∂θjk
risk[γ,Θ]

∣∣∣
=

∣∣∣∣− 2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k + E
[
2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k

]∣∣∣∣
= 2|γj |

∣∣∣∣ 1n
n∑
i=1

(
ui(xi)k + (γ∗⊤Θ∗ − γ⊤Θ)

(
xi(xi)k − E[xi(xi)k]

))∣∣∣∣
≤ 2||γ||∞

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k

∣∣∣∣+ ||γ⊤Θ− γ∗⊤Θ∗||1
∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
E[xi(xi)k]− xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

≤ 2||γ||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k]− xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

= 2||γ − γ∗ + γ∗||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)

≤ 2(η + ||γ∗||∞)

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k

∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)
.

We continue to work on the absolute value and sup-norm term in the last inequality above separately.
For each i ∈ {1, . . . , n} and k ∈ {1, . . . , d}, we use our assumptions on xi and ui to obtain that
zi = ui(xi)k are i.i.d. random variables with zero-mean and their tail is captured by cα(t)

1/α for
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some α ∈ [2,∞) and cα ∈ (0,∞), depending on the noise and input distributions. We are using the
fact that the product of two random variables with tail parameters α1 and α2 has the tail parameter
α1 + α2 (Vladimirova et al., 2020, Proposition 2.3). And since we are assuming heavier-tailed noise
it implies zi be at least sub-exponential with α = 2 (recall that we assumed xi are sub-gaussian).
Employing Lemma 9, we obtain for each t ∈ [0,∞) that

P
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k

∣∣∣∣ ≥ t

)
≤ 6n exp(−cmin{nt2, (nt)1/α}) .

Now, we study the behavior of the sup-norm term in the last inequality of the earlier display. Let’s
rewrite the sup-norm in the form of max as∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

= max
k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ .
Following the same argument as earlier and for each i ∈ {1, . . . , n} and k, k′ ∈ {1, . . . , d}, we can
employ Lemma 9 with zi = (xi)k′(xi)kto obtain for each t′ ∈ [0,∞) that

P

(∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 6n exp(−c′ min{nt′2, (nt′)1/α

′
}) ,

for some α′ ∈ [1,∞) and c′ ∈ (0,∞), depending on the input distribution. Then, we use our result
above together with the fact that if P(|bi| ≥ t) ≤ a holds for all i ∈ {1, . . . p}, then we also have
P(maxi∈{1,...p} |bi| ≥ t) ≤ pa to obtain

P

(
max

k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k−E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 6dn exp(−c′ min{nt′2, (nt′)1/α

′
}) .

Collecting all pieces above together with considering t = t′, we obtain for each j ∈ {1, . . . , w} and
k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ,Θ]− ∂

∂θjk
risk[γ,Θ]

∣∣∣ ≤ 2t(η + ||γ∗||∞)(1 + ϵ)

with probability at least 1− 6n exp(−cmin{nt2, (nt)1/α})− 6dn exp(−c′ min{nt′2, (nt′)1/α′}),
which is obtained using the fact that

P (A+ bD ≤ t+ bt) = 1− P (A+ bD > t+ bt) ≥ 1− P (A > t)− P (D > t)

for any b ∈ (0,∞) and t ∈ R.

Then, we follow the same argument as earlier and use 1. our result in Lemma 5 and i.i.d. assumption
on the data, 2. the properties of absolute values and linearity of expectations, 3. some rewriting,
4. Hölder’s inequality, 5. equation 1 and our assumptions that f [x] = γ∗⊤Θ∗x, zero-mean noise,
and definition of sup-norm, 6. triangle inequality, compatible norms (for a matrix A ∈ Rd×d,
we define |||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)), and the definition of Cη,ϵ, which implies

||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 7. adding a zero-valued term, 8. the triangle inequality and the definition of
Cη,ϵ, which implies ||Θ−Θ∗||1 ≤ ||β − β∗||1 ≤ η to obtain for each j ∈ {1, . . . , w} that∣∣∣ ∂

∂γj
riskX [γ,Θ]− ∂

∂γj
risk[γ,Θ]

∣∣∣
=

∣∣∣∣− 2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)
+ E

[
2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)]∣∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j − E[(yi − γ⊤Θxi)(Θxi)j ]

)∣∣∣∣
=

∣∣∣∣ 2n
n∑
i=1

(
(yi − γ⊤Θxi)xi

⊤Θj,· − E[(yi − γ⊤Θxi)xi
⊤Θj,·]

)∣∣∣∣
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≤
∣∣∣∣∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi

⊤ − E[(yi − γ⊤Θxi)xi
⊤]
)∣∣∣∣∣∣∣∣

∞
||Θj,·||1

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
uixi

⊤ + (γ∗⊤Θ∗ − γ⊤Θ)(xixi
⊤ − E[xixi⊤])

)∣∣∣∣∣∣∣∣
∞

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)

≤ 2|||Θ−Θ∗ +Θ∗|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)

≤ 2(η + |||Θ∗|||∞)

(∣∣∣∣∣∣∣∣ 1n
n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣
∞

+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi
⊤ − E[xixi⊤])

∣∣∣∣∣∣∣∣∣∣∣∣
∞,1

)
.

Then, we use the same argument as earlier to treat the sup-norm terms above (we use our assumptions
on xi and ui and application of Lemma 9) to obtain that∣∣∣ ∂

∂γj
riskX [γ,Θ]− ∂

∂γj
risk[γ,Θ]

∣∣∣ ≤ 2t(η + |||Θ∗|||∞)(1 + ϵ)

with probability at least 1−6dn exp(−cmin{nt2, (nt)1/α})−6d2n exp(−c′ min{nt′2, (nt′)1/α′}).
Collecting all the pieces above, we obtain that for each i ∈ {1, . . . , p} the corresponding gradient
difference is bounded (|(∇riskX [γ,Θ]−∇risk[γ,Θ])i| ≤ 2t(η+max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ))
with probability at least 1 − 12d2n exp(−c′ min{nt2, (nt)1/α′}) for some α′ ∈ [2,∞) and c′ ∈
(0,∞), depending on the distributions of inputs and noise.

Now we use 1. the definition of sup-norm and 2. our results above together with our earlier argument
about implying max operator (note that the gradient vector is of dimension p) to obtain for each
t ∈ [0,∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞

= sup
β=vec(γ,Θ)∈Cη,ϵ

max
i∈{1,...,p}

∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)
i

∣∣
≤ 2t

(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1− 12d2pn exp(−cmin{nt2, (nt)1/α}), where for the ease of notations we
replace c′ and α′ with c and α (constants depending only on the distributions of the inputs and noise).

Collecting all pieces of the proof, we obtain for each t ∈ [0,∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ,Θ]−∇risk[γ,Θ]
)⊤

(β∗ − β)
∣∣∣

≤ η sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ,Θ]−∇risk[γ,Θ]
∣∣∣∣
∞

≤ 2tη
(
η +max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1−12d2pn exp(−cmin{nt2, (nt)1/α}) for some α ∈ [2,∞) and c ∈ (0,∞),
depending on the distributions of inputs and noise.

Now, we are ready to use our Lemma 10 for extending Lemma 2 for heavier-tailed noise. First, recall

rorc,α = ν(log n)3/2
(
log(np)

)α
√
n

(22)

where α ∈ [2,∞) and ν, c ∈ (0,∞) are constants depending on the distributions of inputs and noise.
Then, we obtain
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Lemma 11 (Empirical Processes for Heavier-tailed Noise). Under the first two parts of Assumption 1,
it holds for each reasonable stationary point β̃ = vec(γ̃, Θ̃) of the objection function in equation 2
that ∣∣∣(∇riskX [γ̃, Θ̃]−∇risk[γ̃, Θ̃]

)⊤
(β∗ − β̃)

∣∣∣ ≤ rorc,α||β∗ − β̃||1 +
rorc,α
2n

with probability at least 1− 1/2n.

Proof of Lemma 11. The proof follows almost the same steps as in the proof of Lemma 1. The only
difference is employing Lemma 10 and the assignment of t = (log (8n2d2p⌈log2 (nη)⌉))α/cα

√
n

with different constants.
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