
Under review as a conference paper at ICLR 2024

GRAPH LEARNING WITH
DISTRIBUTIONAL EDGE LAYOUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) learn from graph-structured data by passing local
messages between neighboring nodes along edges on certain topological layouts.
Typically, these topological layouts in modern GNNs are deterministically com-
puted (e.g., attention-based GNNs) or locally sampled (e.g., GraphSage) under
heuristic assumptions. In this paper, we for the first time pose that these layouts
can be globally sampled out of steady-state graphs following Boltzmann distri-
bution equipped with explicit physical energy, leading to more viable pairwise
distance configurations in the physical world. We argue that a collection of sam-
pled/optimized layouts can capture the wide energy distribution and better char-
acterize the intrinsic properties of input topology, therefore easing downstream
tasks. As such, we propose Distributional Edge Layouts (DELs) to serve as a
complement to a variety of GNNs. DEL is a pre-processing strategy indepen-
dent of subsequent GNN variants, thus being highly flexible. Experimental results
demonstrate that DELs consistently and substantially improve a series of GNN
baselines, achieving state-of-the-art performance on multiple datasets. DEL is
open-sourced at https://anonymous.4open.science/r/DEL.

1 INTRODUCTION

Graph neural networks (GNNs), which learn informative knowledge from graph-structured data,
have witnessed remarkable success in a large variety of applications, such as molecular genera-
tion (Jin et al., 2018), link prediction (Zhang & Chen, 2018), to name a few. A standard learning
paradigm in GNNs is the message-passing mechanism, which takes node/edge features as inputs
and propagates messages through neighboring nodes defined on some topological layouts (Wu et al.,
2020). Given a graph G = (H(0),A) where H(0) and A are respectively initial features and connec-
tivity, GNNs seek to learn meaningful representations by stacking multiple unit layers. Concretely,
for almost all variants of GNNs, an update layer can be generalized as (Balcilar et al., 2021a):

H(l+1) = σ

(∑
s

C(s)H(l)W(l,s)

)
(1)

where H(l) ∈ Rn×fl refers to the feature at l-th layer. C(s) ∈ Rn×n is the s-th topological layout on
which messages are propagated between neighboring nodes, and W(l,s) ∈ Rfl×fl+1 is the learnable
parameter at the l-th layer and s-th layout. σ(·) is a non-linear activation function. It is argued in
Bouritsas et al. (2022) that GNNs generally differ from each other by the choice of layouts C(s).

Early GNNs utilize a direct mapping of original input connectivity A as the topological layout (Kipf
& Welling, 2016; Yu et al., 2019), which may result in sub-optimal performance. Stronger GNNs in
general focus on designing a more sophisticated layout set C(s) to decouple the computational layout
from the raw graph, bringing about benefits for downstream tasks accordingly. Several aspects
have been considered in this line of methods, such as spectral information (Huang et al., 2022),
expressivity (Xu et al., 2019b), and attention mechanism (Veličković et al., 2018; Wu et al., 2021;
Rampášek et al., 2022). Among these branches, attention-based GNNs may be the most successful,
delivering state-of-the-art performance on a range of public datasets (Rampášek et al., 2022; Zhang
et al., 2022). Subgraph sampling, in parallel, is also employed to produce topological layouts, by
incorporating locality-based randomness, such as random walk (Hamilton et al., 2017) and edge
rewiring/dropping (Rong et al., 2020).

1

https://anonymous.4open.science/r/DEL

Under review as a conference paper at ICLR 2024

We note that existing GNNs obtain topological supports either through deterministic mappings or
by injecting randomness locally. In the real world, however, layouts associated with a given graph
may span over a wide potential distribution under some global criteria. For example, 3D confor-
mations given a molecule atom-bond graph tend to exist in the physical world following Boltzmann
distribution with a global free energy (Xu et al., 2021). Thus, deriving a single conformation is in-
sufficient to holistically capture the potential energy surface, bringing about difficulty for subsequent
tasks. Motivated by this, in this paper, we propose to cope with layouts by introducing an associated
distribution over C:

H(l+1) = σ

(∫
CH(l)W(l)dP(C)

)
(2)

where P(C) is the probability density of occurrence of C and is related to some global energy
function E(C). Now two problems remain: 1) what energy and distribution to use; and 2) how to
integrate derived layouts into GNNs.

To this end, we draw inspiration from energy-based layout computation in graph visualiza-
tion (Fruchterman & Reingold, 1991; Kamada et al., 1989; Gansner et al., 2005; Wang et al., 2017).
In a nutshell, layouts in graph visualization are diverse and viable configurations in low-dimensional
space, explicitly optimized over physics-driven energy functions. A nice property is that it only de-
pends on pure topology/connectivity without requiring node features, which can be flexibly coupled
with multiple GNNs. Further motivated by statistical mechanics, we employ Boltzmann distribution
defined on such energy to characterize the distribution of layouts C. To sample from Boltzmann
distribution, one can employ Langevin Dynamics to inject proper noise along the optimization tra-
jectory. Empirically, we found that as long as the initial state of layouts is sufficiently random,
the noise-free optimization can lead to diverse layouts and deliver significant performance in the
downstream tasks. Furthermore, such a collection of layouts can be pre-calculated before fed into
standard GNNs. In summary, we propose Distributional Edge Layouts (DELs), which sample lay-
outs from the designated distribution, and flexibly inject this information into a series of GNNs as
supplements. Experimentally, we observe that DEL can improve the learning performance of se-
lected GNNs by a large margin on a wide range of datasets, demonstrating strong applicability and
flexibility. In conclusion, our contributions are:

• We propose a generic GNN format by sampling topological layouts from Boltzmann dis-
tribution with explicit energy surface, which can capture a wide spectrum of global graph
information.

• Calculation of DELs is independent of GNNs, leading to high flexibility and applicability.
• As a plug-in component, DELs substantially improve selected GNNs, achieving state-of-

the-art performance on a variety of datasets.

2 RELATED WORK

Graph Neural Networks with topological layout. It has been argued by Bouritsas et al. (2022);
Balcilar et al. (2021b) that the topological layout, represented as C, determines the specific way of
message passing between nodes. By default, connectivity A itself defines a layout, while a naive
layout yields unsatisfactory performance. A series of GNNs then seek to directly transform A, from
either spatial or spectral perspectives (Kipf & Welling, 2016; Xu et al., 2019a; Defferrard et al.,
2016; Dwivedi & Bresson, 2021; Kreuzer et al., 2021). Sampling/rewiring-based GNNs, in parallel,
are further proposed by advocating local randomness on C, bringing about higher robustness (Alon
& Yahav, 2020; Topping et al., 2022; Rong et al., 2020). Many other GNNs also consider deriving
C from an “edge feature” aspect, as C inherently aligns with some edge layout. For instance,
EGNN (Gong & Cheng, 2019) tackles this challenge by constructing edge features based on the
direction of directed edges in citation networks. Similarly, Sun et al. (2022) proposes leveraging
chemical properties like bond types and bond directions to create edge features for molecular graphs.
Circuit-GNN, introduced by Zhang et al. (2019), is tailored for distributed circuit design. In Circuit-
GNN, nodes represent resonators, and edges denote electromagnetic couplings between pairs of
resonators. These edge features are derived from physical circuit characteristics, including gap,
shift, and relative position between square resonators, among other factors, which contribute to the
refinement of topological layouts. Although some general edge feature construction schemes exist,
such as MPNN (Gilmer et al., 2017), Point-GNN (Shi & Rajkumar, 2020), and CIE (Yu et al.,

2

Under review as a conference paper at ICLR 2024

Connectivity AA

Node feature HH

· · ·

· · ·C(i) ∼ PBoltzmann(C|A)

DELs

{

{

}

}
C(1) C(2) C(k)· · ·

2D

3D

Or

G
rap

h
 L

ay
o
u
ts

Edge-aware GNNs

GNN block

Transformer block

Edge feature E

Figure 1: DEL pipeline. Our framework can be summarized into the following three steps: 1) Sam-
pling Layouts: Sampling a set of layouts with local minimum energy for a given connectivity based
on the Boltzmann distribution with the help of the energy-based layout algorithms. 2) Constructing
Edge Features: Once we have a set of sampled layouts, we construct edge features based on these
layouts. These edge features are designed to capture the potential energy surface of the system.
Models can gain insights into the potential energy landscape and identify regions of high or low
energy through the edge features. 3) Edge-Aware GNNs: In this final step, we combine the con-
structed edge features with a GNN backbone and use edge-aware GNNs to improve the performance
of downstream tasks.

2019), they generate edge features through node features in a heuristic fashion without physical
implication.

Graph layout algorithm. Graph layout algorithms arrange nodes and edges in low-dimensional
space to depict viable graph topology. It is widely applicable in domains like social network analy-
sis (Henry et al., 2007; Wang et al., 2020) and bioinformatics (Sych et al., 2019). Our primary focus
is on energy-based layout algorithms (Fruchterman & Reingold, 1991; Kamada et al., 1989; Gansner
et al., 2005; Wang et al., 2017), which adapt well to different topologies by simulating the physi-
cal interactions between nodes to determine their positions. These methods, rooted in principles of
physics, offer a range of configurations in lower-dimensional spaces. Classic energy-based graph
layout algorithms typically utilize either a spring model (Kamada et al., 1989; Gansner et al., 2005)
or a spring-electrical model (Fruchterman & Reingold, 1991; Jacomy et al., 2014). In the spring
model, edges are treated as elastic connections, and relationships between nodes are simulated by
the tension in the springs. The spring-electrical model combines the spring model with Coulomb’s
law to introduce repulsive forces between nodes, treating nodes as charged particles. These models
optimize graph layouts in an iterative manner. More discussion can be found in Appendix B.

3 PRELIMINARY

3.1 BOLTZMANN DISTRIBUTION

The Boltzmann distribution (Boltzmann, 1868) plays a crucial role as a probability distribution func-
tion in the field of statistical mechanics. Its primary purpose is to quantify the probability of particles
residing at specific energy levels. This distribution is commonly employed to describe how particles,
such as molecules or atoms, are distributed among different states or energy levels in a system at
thermal equilibrium. The mathematical representation of the Boltzmann distribution is as follows:

P(E) =
1

Z
e−

E
kT (3)

where P(E) is the probability of particles being in the energy level E, Z is the normalization con-
stant, known as the partition function, which ensures that the probability distribution sums to 1. T
is the temperature of the system in Kelvin, and k is the temperature of the system in Kelvin, used to
convert temperature T from Kelvin to energy units.

3

Under review as a conference paper at ICLR 2024

3.2 EDGE-AWARE GNNS

Most current GNNs primarily emphasize message passing among node features. However, incor-
porating edge features into GNNs can enhance the topological layout of graphs to better suit down-
stream tasks. By modifying the element Cl

v,u located at position (u, v) in the l-layer topological
layout, an edge-aware GNN can be unified as:

Cl
v,u = hl

(
H(l)

:v ,H
(l)
:u ,E

(l)
v,u,A

)
(4)

where H
(l)
:u and H

(l)
:v denotes the node embedding of node u and node v in l-th layer, and E

(l)
v,u

represents the edge embedding of the edge connecting nodes u and v in the l-th layer. hl is any
trainable model parametrized by l.

4 METHODOLOGY

In this section, we detail the proposed method. An overview of the proposed method as well as a
brief description is in Fig. 1. In general, DELs can be viewed as initial and supplementary edge
features to a standard edge-aware GNN, conditioned on A. In other words, DELs are pre-calculated
only from connectivity A. In Section 4.1, we introduce the way to sample a set of steady-state graph
layouts following the Boltzmann distribution with local energy minima using a physics-driven graph
layout algorithm. In Section 4.2, we present a simple yet effective edge embedding module to learn
high-quality edge embeddings. In Section 4.3 and 4.4, we integrate these learned edge embeddings
with several established GNN backbones.

4.1 GRAPH LAYOUT/CONFIGURATION SAMPLING

A typical layout representation of C is to utilize coordinates of nodes P ∈ Rn×d in d-dimensional
space. Then there exists a mapping C = C(P). Assuming that configuration P conditioned on
a topology/connectivity A is associated with a global free energy E(P|A), we denote E(P) =
E(P|A) for brevity. One can sample a plausible configuration from an equipped Boltzmann dis-
tribution P(P) ∝ exp(−E(P)/α) using Langevin dynamics. Langevin dynamics originates from
thermodynamics and has been widely used in optimization (Welling & Teh, 2011) and generative
models (Song & Ermon, 2019; Shi et al., 2021). Concretely, by injecting i.i.d. Gaussian noise to the
score term (Song & Ermon, 2019), the following update guarantees to sample P = Pt from P(P)
when t→∞:

Pt = Pt−1 +
α

2
∇P logP(Pt−1) +

√
αϵt, where ϵt ∼ N (0, I) (5)

where α→ 0+. Note to sample from Boltzmann distribution using Langevin dynamics only requests
the score term∇P logP(Pt−1). Additionally, as∇P logP(Pt−1) = −∇PE(P) (as partition func-
tion Z does not dependent on P), Eq. 5 amounts to performing gradient descent of E w.r.t. P with
proper additional noise. In this sense, as long as gradient term ∇PE(C) is well defined, one can
readily sample P from the energy surface. Specifically, when t → ∞ (i.e., Pt converges), P = Pt

can be viewed as a steady-state configuration of the free energy E(P).

Empirically, we found that an approximation of the gradient ∇PE(P), indicating “appropriate up-
date direction”, is sufficient to sample satisfying P for the downstream tasks in specific energy
settings, while a series of energy functions are optimized alike Eq. 5. Additionally, through all
experiments, optimization with and without the noise term

√
αϵt generally leads to very similar di-

versity and performance. As such, we turn off this term and adopt standard graph layout algorithms
to further accelerate the pre-processing. More details can be found in Appendix F and G. In the im-
plementation of DEL, we employ two popularly utilized energy-based layouts in graph visualization
falling into this category to sample P, by further taking into account the computational overhead.
We hereby introduce these algorithms. More empirical details can be found in Section 5.

Fruchterman-Reingold Layout (Fruchterman & Reingold, 1991), known as the spring-electrical
model, is established by mimicking physical particle interactions consisting of attractive and repul-
sive forces. In this algorithm, nodes are treated as charged particles, and connections as springs, with
an energy function combining electrical and spring potential energy. Although there does not exist

4

Under review as a conference paper at ICLR 2024

Algorithm 1: 2-dimensions Fruchterman-Reingold layout algorithm
Input: Graph G = (V,E) with n nodes and m edges, Iterations N , Ideal spring length lideal,

Attractive force coefficient kattr, Repulsive force coefficient krep, Step size δ.
Output: Node positions matrix P ∈ Rn×2.

1 Initialize node positions matrix P randomly, pi denotes the i-th node position;
2 for i← 1 to N do
3 foreach node v ∈ V do
4 Initialize net force acting on v: Fv ← (0, 0);
5 foreach edge (v, u) ∈ E do
6 Calculate attractive force Fattr between v and u using Hooke’s law:

Fattr ← kattr · (||pu − pv|| − lideal) · pu−pv

||pu−pv|| ;
7 Update Fv with Fattr;
8 foreach node u ∈ V do
9 Calculate repulsive force Frep between v and u using Coulomb’s law:

Frep ← krep

||pu−pv||2 ·
pu−pv

||pu−pv|| ;
10 Update Fv with Frep;

11 foreach node v ∈ V do
12 Update node position using net force Fv: pv ← pv + δ · Fv;

an explicit energy function, the iterative update implicitly guides the layout moving towards lower
free energy. Such a process is demonstrated in Fig. 3 of Appendix C.1 and Algorithm 1 presents
a summary of the Fruchterman-Reingold layout process. We term our method under this setting
DEL-F.

Kamada-Kawai Layout (Kamada et al., 1989), on the other hand, only considers the spring forces
on the edges. In this setting, the Kamada-Kawai Layout Algorithm connects all nodes in the graph
with springs. The ideal lengths li,j of these springs are determined by the shortest path distances
within the original topology. Calculating the energy of the Kamada-Kawai Layout is straightfor-
ward. Given the coordinates of n particles denoted as P ∈ Rn×2 and the strength ki,j of the spring
between node i and j in the 2-dimensions Euclidean plane, the position pi of i -th node represented
by (xi, yi) , the associated energy is:

E =

n−1∑
i=1

n∑
j=i+1

1

2
ki,j

(
(xi − xj)

2
+ (yi − yj)

2
+ l2i,j − 2li,j

√
(xi − xj)

2
+ (yi − yj)

2

)
. (6)

The algorithm aims to minimize the energy function E (x1, x2, . . . , xn, y1, y2, . . . , yn) through the
solution of a system of 2n simultaneous non-linear equations (Kobourov, 2012). To find the mini-
mum of E with respect to xm and ym, the Newton-Raphson method is employed. At each step, the
particle pm with the largest value of ∆m is selected, as defined below:

∆m =

√(
∂E

∂xm

)2

+

(
∂E

∂ym

)2

(7)

For higher dimensions dim, the processing method is the same. The position of one node is fixed
at each step selected by ∆m, and the final layout algorithm outputs a position matrix P ∈ Rn×dim.
More details of the Layout Algorithm can be found in Appendix C. Our method utilizing this layout
is named as DEL-K.

Having sampled a set of steady-state configurations {P(i)}i=1,...,k conditioned on A, we turn our
attention to how to exploit these steady-state configurations to boost graph representation learning.
These graph configurations necessarily provide us with a global sketch of the energy surface.

Remark. Note both the Fruchterman-Reingold layout and Kamada-Kawai layout are optimized over
node coordinates/configurations P, thus we need extra effort to obtain C = C(P), which will be
detailed in the following sections. There are many optional layout algorithms that can potentially
be combined with GNNs, such as spectral layout algorithms (Koren, 2003; Imre et al., 2020),

5

Under review as a conference paper at ICLR 2024

hyperbolic layout algorithms (Munzner & Burchard, 1995; Munzner, 1998; Riegler et al., 2016),
etc., which are left to our future work.

4.2 EDGE FEATURES CONSTRUCTION VIA STEADY-STATE CONFIGURATIONS.

As stated, directly encoding P(i) into a graph-level feature is inappropriate, as translation and ro-
tation do not change its inherent structure. In this section, we propose an alternative approach by
transforming P(i) into edge features based on the pairwise distance between nodes, in accordance
with the length of the springs in the graph. Specifically, the edge feature of each edge will be ob-
tained by concatenating the length of this edge in all sampled layouts. The benefit of this edge
feature is that it approximates the length distribution at which the spring reaches a steady state in
all possible layouts. For the i-th layout, we can obtain an edge length matrix Li ∈ Rn×n with m
non-zero elements:

Li = A⊙
∥∥∥P(i) −P(i)⊤

∥∥∥
2

(8)

Now we can concatenate the edge length vectors of k layouts and obtain the edge embedding E ∈
Rn×n×q with q hidden dimensions through a linear layer with weight W ∈ Rk×q and bias b ∈ Rq:

E = W · ([L1,L2, . . . ,Lk]) + b (9)

After obtaining the edge embedding E, we then explore how to integrate it with the general form of
GNNs.

4.3 GNNS WITH EDGE FEATURE

This edge embedding E derived from the steady-state layouts is an effective representation for
integrating global information into the local message-passing process. We integrate the steady-
state layout {C(i)}i=1,...,k into multiple existing GNN frameworks via edge features E, including
GAT (Veličković et al., 2018), Graph Transformer (Shi et al., 2020), and GPS (Rampášek et al.,
2022). Using GAT as an example, we have employed a standard approach that concatenates node
features and edge features and applied an attention mechanism to obtain node representations. We
can rewrite the general form Eq. 4 of edge-aware GAT as:

Cl
v,u =

av,u∑
k∈Ñ (v) av,k

(10a)

with av,u = exp
(
a⊤σ

(
hl

[
H(l)

:v

∥∥∥H(l)
:u

∥∥∥E(l)
v,u

]))
(10b)

where H
(l)
:v and H

(l)
:u represent the embeddings of nodes u and v, and E

(l)
v,u ∈ Rd represents the

embedding of the edge between them in l-th layer. hl is a trainable model parametrized by l, a is
a parameterized weight vector, where αu,v represents the attention score between nodes u and v, σ
is a non-linear activation function. Eq. 8, 9 and 10 altogether can be viewed as an approximation
of integral calculation in Eq. 2. In other words, the mapping C(P) is not explicitly calculated, the
integral instead is holistically approximated. From this, we can use steady-state layout distribution
to enhance GNNs. Variants of other GNN models that consider edge features can be found in
Appendix E.

4.4 DEL AS A PRE-PRECESSING STEP

Performing sampling on each GNN layer l with Boltzmann distribution is impractical, due to not
only the complexity, but also the instability and distribution shift introduced by hierarchical sam-
pling. In our implementation, DEL is calculated only at the 0-th layer as:

H(1) = σ

(∫
CH(0)W(0)dP(C)

)
(11)

Then H(1) is fed to the subsequent layers as a standard GNN. In this sense, DEL serves as a pre-
processing step ahead of GNNs, by sampling a set of P(i) and conducting Eq. 11 without changing
any other parts.

6

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

In this section, we extensively examine five key aspects. In Section 5.1, we present our primary
results, elucidating the implementation details and performance of both our proposed method and
the baseline methods. In Section 5.2, we investigate the influence of different graph layout states on
the performance of DEL-F. In Section 5.3, we explore the application of DEL in high-dimensional
spaces and analyze its performance in this context. In Section 5.4, we demonstrate the impact of
layout numbers on the performance of DEL. Lastly, we evaluate the computational complexity of
our method and provide insights into its resource requirements for different datasets.

5.1 MAIN RESULTS

Datasets. We perform experiments of graph-level tasks on widely used six datasets from TU-
Dataset (Morris et al., 2020). Specifically, we employ two social network datasets, including IMDB-
BINARY, IMDB-MULTI; and four bioinformatics datasets, including MUTAG, PROTEINS, NCI1,
and D&D. More details of these datasets be found in Appendix A.

Baselines. We use five graph representation learning methods as baseline models: GMT (Baek
et al., 2021), SEP-G (Wu et al., 2022), GIN (Xu et al., 2019b), Weisfeiler-Lehman sub-tree kernel
(WL) (Shervashidze et al., 2011), GraphMAE (Hou et al., 2022). We also compare DEL with two
edge feature construction methods. Random distances construct initial edge features with random
distances and then apply our proposed edge embedding module to update the edge features. MPNN
directly learns edge embeddings through node embeddings.

Implementation details. We applied DEL on three popular GNN backbones, including
GAT (Veličković et al., 2018), Graph Transformer (Shi et al., 2020), and GPS (Rampášek et al.,
2022). For GPS, we utilized the RWSE variant, which was considered to be more suitable for
molecular data, while another variant, LapPE, is more suitable for images in previous work (Müller
et al., 2023; Rampášek et al., 2022). Due to the presence of an MPNN mechanism in GPS, we
opted not to use the corresponding MPNN variant. We developed GPS (DEL-F) and GPS (DEL-K)
models that only leverage DEL for edge features. Additionally, we introduced GPS (RWSE, DEL-
F) and GPS (RWSE, DEL-K) that incorporate both DEL and RWSE. To ensure a fair comparison,
we followed the 10-fold cross-validation setting from previous work to obtain the model’s perfor-
mance (Zhang et al., 2018; Bianchi et al., 2020; Baek et al., 2021). We then ran all methods five
times with different seeds to obtain the mean and standard deviation, which are reported in Table 1.
More implementation details are discussed in Appendix A.

Main Results & Analysis. In Table 1, we can find that DEL-F and DEL-K can consistently improve
the performance of the three GNN backbones on graph classification tasks, and DEL-F can achieve
the best results most of the time. It’s worth noting that previous studies (Sato et al., 2021; Wang &
Zhang, 2022) have suggested that random features can sometimes improve GNN performance. As
a comparison, we also explored the impact of random edge length initialization, essentially creating
a random layout, within the context of DEL. However, our experiments reveal that, within our
framework, arbitrary edge layouts tend to produce a detrimental effect. Additionally, the mechanism
of MPNN seems to provide limited assistance within our framework. However, since DEL relies on
the inherent graph topology for sampling the layout distribution, its improvements on datasets with
a single consistent topology are somewhat limited, e.g., the graphs in IMDB-BINARY and IMDB-
MULTI, which are ego networks with highly dense connections. Nevertheless, even within these
densely connected ego networks, DEL can still identify certain distinct patterns through its layout
sampling approach. For instance, in Fig. 6 of Appendix D it is observed that layout distribution
tends to be more even for graphs with better symmetry and denser connections, indicating more
stable topologies. Therefore, DEL still proves valuable in identifying graphs with highly similar
topological structures through layout sampling.

5.2 EFFECT OF GRAPH LAYOUT STEADY STATE ON DEL-F PERFORMANCE.

In this section, we begin by drawing average energy curves for all the graphs in the MUTAG and
NCI1 datasets, considering different number of layout iteration steps. Next, we use performance
boxplots to illustrate how GAT combined with DEL-F performs under varying iteration counts.
See Fig. 2. Each boxplot represents results from five times runs with different random seeds. By

7

Under review as a conference paper at ICLR 2024

Table 1: Test performance in five graph classification datasets. Highlighted in each cell are the top
first and second results. We can observe that applying DELs to three common GNN backbones
leads to significant improvement, outperforming other baseline methods.

Method MUTAG NCI1 PROTEINS D&D IMDB-BINARY IMDB-MULTI

WL (Shervashidze et al., 2011) 82.05 ± 0.36 82.19 ± 0.18 74.68 ± 0.49 79.78 ± 0.36 73.40 ± 4.63 49.33 ± 4.75
GMT (Baek et al., 2021) 83.44 ± 1.33 76.35 ± 2.62 75.09 ± 0.59 78.72 ± 0.59 73.48 ± 0.76 50.66 ± 0.82
SEP-G (Wu et al., 2022) 85.56 ± 1.09 78.35 ± 0.33 76.42 ± 0.39 77.98 ± 0.57 74.12 ± 0.56 51.53 ± 0.65
GIN (Xu et al., 2019b) 92.31 ± 0.87 80.26 ± 0.32 75.87 ± 0.35 75.83 ± 0.65 76.41 ± 0.93 52.70 ± 0.76

GraphMAE (Hou et al., 2022) 88.19 ± 1.26 80.40 ± 0.30 75.30 ± 0.39 79.42 ± 0.42 75.52 ± 0.66 51.63 ± 0.52
GAT (Veličković et al., 2018) 85.69 ± 1.06 77.98 ± 0.24 76.89 ± 0.37 78.12 ± 0.80 75.83 ± 0.51 52.65 ± 0.27

+Random distance 79.16 ± 1.77 71.46 ± 0.76 76.41 ± 0.54 77.32 ± 0.07 76.08 ± 0.48 52.60 ± 0.58
+MPNN 84.30 ± 1.21 77.28 ± 0.27 77.18 ± 0.41 77.64 ± 0.78 75.85 ± 0.48 52.86 ± 0.29
+DEL-K 86.52 ± 0.42 77.22 ± 0.15 77.34 ± 0.35 78.78 ± 0.35 76.86 ± 0.58 52.86 ± 0.33
+DEL-F 89.86 ± 1.21 78.59 ± 0.28 78.09 ± 0.27 78.11 ± 0.43 77.70 ± 0.32 53.00 ± 0.33

Graph Transformer (Shi et al., 2020) 84.02 ± 1.00 78.16 ± 0.38 77.04 ± 0.24 78.24 ± 0.46 76.43 ± 0.31 52.95 ± 0.35
+Random distance 79.72 ± 0.82 69.71 ± 0.12 75.27 ± 0.13 76.97 ± 0.51 75.27 ± 0.65 52.31 ± 0.45

+MPNN 83.75 ± 1.20 78.62 ± 0.23 77.29 ± 0.68 78.26 ± 0.57 76.51 ± 0.39 52.81 ± 0.25
+DEL-K 87.77 ± 0.12 78.67 ± 0.32 78.62 ± 0.68 79.25 ± 0.11 77.65 ± 0.49 53.54 ± 0.27
+DEL-F 92.22 ± 0.96 79.98 ± 0.25 78.58 ± 0.57 79.14 ± 0.82 78.10 ± 0.18 53.20 ± 0.30

GPS(LapPE) (Rampášek et al., 2022) 87.12 ± 2.37 73.88 ± 0.51 74.12 ± 1.23 77.43 ± 0.26 73.43 ± 0.56 50.31 ± 1.06
GPS(RWSE) 91.94 ± 1.50 79.97 ± 0.75 74.57 ± 0.79 78.65 ± 0.52 76.45 ± 1.03 51.84 ± 0.32

GPS(RWSE, Random distance) 91.66 ± 1.74 78.98 ± 0.41 73.26 ± 0.73 77.64 ± 0.42 75.98 ± 0.67 48.28 ± 0.84
GPS(DEL-K) 91.25 ± 1.89 82.53 ± 0.41 78.42 ± 0.59 80.56 ± 0.34 77.19 ± 0.96 52.65 ± 0.27
GPS(DEL-F) 90.97 ± 0.91 82.67 ± 0.35 77.68 ± 0.99 80.38 ± 0.33 76.87 ± 1.10 52.95 ± 0.64

GPS(RWSE, DEL-K) 91.67 ± 0.88 84.22 ± 0.20 78.04 ± 0.54 81.21 ± 0.78 77.27 ± 0.93 52.90 ± 0.49
GPS(RWSE, DEL-F) 92.23 ± 0.56 84.38 ± 0.23 78.26 ± 0.58 81.20 ± 0.51 77.04 ± 0.51 52.58 ± 0.65

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

150

175

200

225

250

275

300

325

350

Av
er

ag
e

en
er

gy

MUTAG

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

mean

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

400

500

600

700

800

900

1000

1100

1200

Av
er

ag
e

en
er

gy

NCI1

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

mean

Figure 2: The average energy curve and graph classification performance of the MUTAG and NCI1
datasets under different layout iteration steps of DEL-F(GAT) are presented from left to right.

observing the average energy curves and performance boxplots of the two data sets, we can find that
both datasets optimize the energy to be lower than the random layout in a very short period (less than
five iterations) and continue to decline. As we continue to increase the number of layout iterations,
we observe a consistent trend of decreasing layout energy and improving performance.

5.3 DEL IN HIGHER DIMENSIONAL SPACE

We then explore the impact of DELs in high-dimensional space. The two graph layout algorithms
we employ are easily extendable to high-dimensional spaces by assigning initial random coordinates
with dimensions higher than three. See results in Tab. 2. We found that DEL is not very sensitive to
the dimension. However, DEL tends to achieve better results in two and three-dimensional spaces,
possibly because it aligns better with the physical world. It’s worth noting that there is no difference
in the computational complexity of graph layout in different dimensions for the same number of
iterations, and the actual time overhead is almost the same. However, higher dimensions might
require more iterations to converge. Notice that another class of graph layout algorithms that easily
extend to high-dimensional spaces are spectral graph layout algorithms, which we briefly discuss in
Appendix C.

5.4 EFFECT OF DIFFERENT SAMPLING LAYOUT NUMBERS ON DEL PERFORMANCE

In this section, we focus on the impact of the number of sampled layouts on the performance of DEL
on graph classification datasets. We chose three datasets for demonstration: MUTAG, PROTEINS,
and NCI1, while using DEL-F in combination with three different GNN backbones. Table 3 presents
part of the results, showing that as the number of sampled layouts increases, there is a noticeable

8

Under review as a conference paper at ICLR 2024

Table 2: The performance of DEL-F(GAT) with different layout dimensions. The tables about Graph
transformer and GPS performance can be found in Appendix F.

Dimensions 2 3 4 5 6

MUTAG 89.86 ± 1.21 89.58 ± 0.91 89.30 ± 1.20 88.47 ± 1.20 88.75 ± 1.43
NCI1 77.79 ± 0.42 78.59 ± 0.28 78.46 ± 0.31 78.35 ± 0.29 78.41 ± 0.20

PROTEINS 78.09 ± 0.27 77.29 ± 0.47 77.77 ± 0.43 78.06 ± 0.10 77.70 ± 0.36

Table 3: The performance of DEL-F (Graph Transformer) with different layout numbers. The tables
about GAT and GPS performance can be found in Appendix F.

N 0 2 4 8 16

MUTAG 84.02 ± 1.00 89.86 ± 0.91 90.27 ± 0.92 92.22 ± 0.96 90.96 ± 1.68
NCI1 78.16 ± 0.38 78.27 ± 0.62 79.00 ± 0.47 79.98 ± 0.25 80.12 ± 0.12

PROTEIN 77.04 ± 0.24 77.61 ± 0.46 77.88 ± 0.54 78.58 ± 0.57 78.78 ± 0.60

improvement in classification performance. This happens because DEL needs a sufficient number
of sampled layouts to capture a wide range of energy distributions and better describe the inherent
properties of the input topology. If we don’t sample enough layouts, DEL can’t comprehensively
capture the energy surface, resulting in sub-optimal performance. But even with a small sample size,
DEL still can perform better than the corresponding GNN backbone most of the time. Additional
results for other GNN backbones can be found in Appendix F.

5.5 COMPUTATIONAL COMPLEXITY

For the preprocessing of DEL-F, each iteration of the basic algorithm computes O(|E|) attractive
forces and O(|V |2) repulsive forces. Therefore, the total computational complexity is O(|E|+|V |2).
Johnson’s algorithm (Johnson, 1977) is used to calculate the all-pair shortest path for DEL-K. The
complexity of this calculation is O(|V |2log|V | + |V | · |E|). We have set the maximum iteration
times to 50, following the settings of the previous work related to graph layout.

In addition to the theoretical computational complexity, we also provide the pre-processing time
of DEL in practice when we sample eight layouts per graph, which can be found in Table 4. For
datasets apart from D&D, we employ single-threaded processing, whereas, for D&D, we use eight
parallel threads to reduce preprocessing time. It’s worth noting that higher parallelism can further
save preprocessing time.

Table 4: Runtime for DEL Preprocessing (seconds).

Dataset MUTAG NCI1 PROTEINS DD IMDB-BINARY IMDB-MULTI

Avg. Degree 39.58 64.60 145.63 1431.31 193.06 131.87
Avg. Nodes 17.9 29.8 39.1 284.3 19.8 13.0

Graphs 188 4,110 1,113 1,178 1,000 1,500

DEL-F 9.14 283.67 168.51 814.92 87.59 102.73
DEL-K 13.78 507.70 395.22 1944.53 154.72 124.11

6 CONCLUSIONS

We propose DEL, a novel method for graph representation learning. DELs are generated by sam-
pling topological layouts from a Boltzmann distribution on an energy surface. This approach cap-
tures a wide spectrum of global graph information and improves the topological layout of graphs.
In the implementation, DELs serve as a pre-processing step independent of subsequent GNN ar-
chitectures, making them highly flexible and applicable. By integrating DELs into several GNNs,
a significant improvement over a variety of datasets can be observed, which in turn supports its
potential in practice.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph
property prediction. In Learning on Graphs Conference, pp. 5–1. PMLR, 2022.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2020.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021.

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021a.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International Con-
ference on Machine Learning, 2021b.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International conference on machine learning, pp. 874–883.
PMLR, 2020.

Ludwig Boltzmann. Studien uber das gleichgewicht der lebenden kraft. Wissenschafiliche Abhand-
lungen, 1:49–96, 1868.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
2016.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
DLG-AAAI, 2021.

Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement.
Software: Practice and experience, 21(11):1129–1164, 1991.

Emden R Gansner, Yehuda Koren, and Stephen North. Graph drawing by stress majorization. In
Graph Drawing: 12th International Symposium, GD 2004, New York, NY, USA, September 29-
October 2, 2004, Revised Selected Papers 12, pp. 239–250. Springer, 2005.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9211–9219, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
30, 2017.

Nathalie Henry, Jean-Daniel Fekete, and Michael J McGuffin. Nodetrix: a hybrid visualization of
social networks. IEEE transactions on visualization and computer graphics, 13(6):1302–1309,
2007.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

10

Under review as a conference paper at ICLR 2024

Ningyuan Huang, Soledad Villar, Carey E Priebe, Da Zheng, Chengyue Huang, Lin Yang, and
Vladimir Braverman. From local to global: Spectral-inspired graph neural networks. arXiv
preprint arXiv:2209.12054, 2022.

Martin Imre, Jun Tao, Yongyu Wang, Zhiqiang Zhao, Zhuo Feng, and Chaoli Wang. Spectrum-
preserving sparsification for visualization of big graphs. Computers & Graphics, 87:89–102,
2020.

Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. Forceatlas2, a
continuous graph layout algorithm for handy network visualization designed for the gephi soft-
ware. PloS one, 9(6):e98679, 2014.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Donald B Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM
(JACM), 24(1):1–13, 1977.

Tomihisa Kamada, Satoru Kawai, et al. An algorithm for drawing general undirected graphs. Infor-
mation processing letters, 31(1):7–15, 1989.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. 2016.

Stephen G Kobourov. Spring embedders and force directed graph drawing algorithms. arXiv preprint
arXiv:1201.3011, 2012.

Yehuda Koren. On spectral graph drawing. In International Computing and Combinatorics Confer-
ence, pp. 496–508. Springer, 2003.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. Advances in
neural information processing systems, 32, 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

Tamara Munzner. Exploring large graphs in 3d hyperbolic space. IEEE computer graphics and
applications, 18(4):18–23, 1998.

Tamara Munzner and Paul Burchard. Visualizing the structure of the world wide web in 3d hy-
perbolic space. In Proceedings of the first symposium on Virtual reality modeling language, pp.
33–38, 1995.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Michael Riegler, Konstantin Pogorelov, Mathias Lux, Pål Halvorsen, Carsten Griwodz, Thomas
de Lange, and Sigrun Losada Eskeland. Explorative hyperbolic-tree-based clustering tool for
unsupervised knowledge discovery. In 2016 14th international workshop on content-based mul-
timedia indexing (CBMI), pp. 1–4. IEEE, 2016.

11

Under review as a conference paper at ICLR 2024

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM), pp.
333–341. SIAM, 2021.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular con-
formation generation. In International conference on machine learning, pp. 9558–9568. PMLR,
2021.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1711–1719, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representation?
Advances in Neural Information Processing Systems, 35:12096–12109, 2022.

Yaroslav Sych, Maria Chernysheva, Lazar T Sumanovski, and Fritjof Helmchen. High-density
multi-fiber photometry for studying large-scale brain circuit dynamics. Nature methods, 16(6):
553–560, 2019.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR,
2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Xin Wang, Antonio D Sirianni, Shaoting Tang, Zhiming Zheng, and Feng Fu. Public discourse
and social network echo chambers driven by socio-cognitive biases. Physical Review X, 10(4):
041042, 2020.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

Yunhai Wang, Yanyan Wang, Yinqi Sun, Lifeng Zhu, Kecheng Lu, Chi-Wing Fu, Michael Sedlmair,
Oliver Deussen, and Baoquan Chen. Revisiting stress majorization as a unified framework for
interactive constrained graph visualization. IEEE transactions on visualization and computer
graphics, 24(1):489–499, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), 2011.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In International conference on machine learning, pp. 24017–24030. PMLR, 2022.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

12

Under review as a conference paper at ICLR 2024

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
In ICLR, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019b.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geomet-
ric diffusion model for molecular conformation generation. In ICLR, 2021.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International conference on learning
representations, 2019.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2022.

Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed circuit
design. In International conference on machine learning, pp. 7364–7373. PMLR, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic graph attention
network. IEEE Transactions on Big Data, 8(6):1690–1701, 2021.

13

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAIL

Dataset. The MUTAG dataset consists of seven kinds of graphs derived from 188 mutagenic com-
pounds. NCI1 is a subset of balanced datasets from the National Cancer Institute, containing com-
pounds screened for their ability to suppress human tumor cell growth. D&D contains protein struc-
ture graphs, with nodes representing amino acids and edges based on distance. PROTEINS dataset
has nodes representing secondary structure elements, connected if neighboring in sequence or 3D
space. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets, where each graph rep-
resents actors/actresses and edges indicate their cooperation in a movie. Graphs are derived from
specific movies, labeled with the movie genre. Except for the IMDB-BINARY and IMDB-MULTI
datasets, other data sets have their own node features. In order to ensure a fair comparison, we use
one-hot encodings of the degrees to construct the initial node features as in previous work for IMDB
datasets (Baek et al., 2021; Wu et al., 2022).

Model configuration. For DEL application in three GNN backbones, we maintain the following
hyperparameter settings: the learning rate is set to 5× 10−4, the node hidden size is set ∈ {32, 64},
the edge hidden size is set ∈ {16, 32}, the batch size is set ∈ {32, 64}, and weight decay is set to
1 × 10−4. We use the early stopping criterion, where we stop the training if there is no further im-
provement in the validation loss during 25 epochs, Furthermore, the maximum number of epochs is
set to 150. In DEL, each GNN backbone is stacked with two layers and employs the Relu non-linear
activation function after each layer. The corresponding original GNN, random distance variant, and
MPNN variant also maintain consistent settings.

B DISCUSSION ON GRAPH LAYOUT ALGORITHMS AND GNNS

The integration of graph layout and Graph Neural Networks (GNNs) is an area that has not been
extensively explored, but there are potential connections between the two fields that can be mutu-
ally beneficial. For example, hyperbolic tree-based layout algorithms (Munzner & Burchard, 1995;
Munzner, 1998; Riegler et al., 2016) aim to arrange hierarchical graphs in hyperbolic space, a con-
cept that has also found exploration in the realm of GNNs (Liu et al., 2019; Zhang et al., 2021).
Recent research in GNNs has highlighted the effectiveness of incorporating shortest path distance
(SPD) to enhance the expressive power of GNNs. SP-GNN (Abboud et al., 2022), for instance, has
demonstrated that GNNs using the k-SPD message passing mechanism outperform k-hop GNNs
and the 1-WL test in terms of expressive power. Distance Encoding (Li et al., 2020) and SPD-
WL (Zhang et al., 2022) have shown that incorporating SPD as node features can outperform the
1-WL test. Furthermore, SPD-WL has highlighted the ability to precisely identify cut edges within
the graph by adding such features. Similarly, layout algorithms have recognized the importance of
the shortest path distance early on. The Kamada-Kawai Layout Algorithm (Kamada et al., 1989) for
example, connects all nodes in the graph with springs, and the ideal lengths li,j of these springs are
determined by the shortest path distances within the original topology. Another layout algorithm, the
stress minimization (Gansner et al., 2005) algorithm also uses the shortest path distance as the ideal
distance like the Kamada-Kawai Layout Algorithm, but it differs from the Kamada-Kawai Layout
Algorithm in terms of the energy function it utilizes.

Overall, the integration of graph layout and GNNs presents a promising avenue for further explo-
ration. The knowledge and techniques from both fields can complement each other.

C GRAPH LAYOUT ALGORITHM

In this section, we provide a detailed introduction to the graph layout algorithm.

Spectral layout algorithm (Koren, 2003; Imre et al., 2020) is a graph visualization algorithm that
leverages spectral theory and eigenvector decomposition. It works by constructing the Laplacian
matrix from the given graph, computing its eigenvectors, and using them as coordinates to position
nodes in a multi-dimensional space. The spectral layout is known for preserving the global struc-
ture and relative distances in graphs, making it valuable for visualizing large networks and finding
clustering patterns in various fields such as social network analysis, bioinformatics, and recommen-
dation systems. It can also be customized and combined with other optimization methods to refine
layout results based on specific requirements.

14

Under review as a conference paper at ICLR 2024

The Kamada-Kawai algorithm (Kamada et al., 1989) incorporates a spring-like model into its
framework, which not only applies to connected nodes but also to unconnected ones. In this algo-
rithm, nodes are treated as if they are connected by springs, with the ideal length of these springs set
to the length of the shortest path between the nodes. This approach ensures that even unconnected
nodes experience a form of spring-like force, contributing to the overall layout optimization. By
considering these spring forces, the algorithm iteratively adjusts the positions of all nodes to mini-
mize the total energy, resulting in a layout that not only shortens edge lengths for connected nodes
but also positions unconnected nodes in an arrangement that reflects their shortest path distances.
This holistic approach enhances the overall visualization and representation of the graph’s structure.
Algorithm 2 presents a summary of the Kamada-Kawai layout process.

Algorithm 2: Kamada-Kawai Algorithm
Input: Graph G = (V,E), Iterations N , Learning rate α
Output: Node positions for a visually pleasing layout

1 Initialize node positions randomly and store them in p;
2 Define constants for spring force kattr;
3 Set a convergence threshold (e.g., small positive value);
4 Set a maximum number of iterations N ;
5 Calculate the shortest path distances between all pairs of nodes and store them in lideal;
6 for i← 1 to N do
7 foreach node v do
8 Initialize net force acting on v: Fv ← (0, 0);
9 foreach edge e(u, v) do

10 Calculate spring force Fattr between v and u using Hooke’s law:
Fattr ← kattr · (||pu − pv|| − lideal[u][v]) · pu−pv

||pu−pv|| ;
11 Update Fv with Fattr;

12 Calculate spring energy Espring as the sum of spring forces:

Espring =
1

2

∑
e(u,v)∈E

kattr · (||pu − pv|| − lideal[u][v])
2

13 Calculate total energy E = Espring;
14 foreach node v ∈ V do
15 Compute the gradient of total energy E with respect to node positions: ∇Ev ← ∂E

∂pv
;

16 Update node position using gradient descent: pv ← pv − α · ∇Ev;
17 Or use the Newton-Raphson method to select one node at a time and solve the equation

to fix its position;
18 if E < convergence threshold then
19 break;

C.1 LAYOUT ENERGY VISUALIZATION

Since the Fruchterman-Reingold layout algorithm does not explicitly optimize the layout energy, we
separately visualized the average energy of all graphs in the six data sets under different iterations of
the Fruchterman-Reingold layout algorithm in Fig. 3. The average energy consists of elastic poten-
tial energy and Coulomb potential energy. We found that the trend of energy changes is consistent.
Starting from the random layout iteration, the layout energy first increases and then decreases, and
finally converges to the local minimum energy layout. However, we can observe that the local opti-
mal energy of the IMDB data set is higher than the random layout. This is because the graph in the
IMDB data set is a highly densely connected ego network, and there are even some fully connected
graphs. These densely connected graphs tend to form layouts that cover the entire plane, resulting
in stability but also high potential energy.

15

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

150

175

200

225

250

275

300

325

350

Av
er

ag
e

en
er

gy

MUTAG

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

400

500

600

700

800

900

1000

1100

1200

Av
er

ag
e

en
er

gy

NCI1

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

2000

2500

3000

3500

4000

4500

5000

5500

Av
er

ag
e

en
er

gy

PROTEINS

0 5 10 15 20 25 30 35 40 45 50
Iterations

60000

80000

100000

120000

140000

160000

180000

Av
er

ag
e

en
er

gy

DD

0 5 10 15 20 25 30 35 40 45 50 55
Iterations

200

300

400

500

600

700

800

900

Av
er

ag
e

en
er

gy

IMDB-BINARY
IMDB-MULTI

Figure 3: The layout energy change trend of the iterative process of the Fruchterman-Reingold
layout algorithm for different datasets. From left to right present the average layout energy change
trend of MUTAG, NCI1, PROTEINS, D&D, and IMDB datasets. In the IMDB dataset, all graphs
consist of densely connected structures that tend to form layouts covering the entire plane, resulting
in stability but also high potential energy.

D GRAPH LAYOUT VISUALIZATION

For a given graph, we calculate multiple layouts to explore different representations. The distance
between layouts generated by the same graph is measured as the average Euclidean distance of all
edge lengths within each layout. This information allows us to derive a layout distance matrix, de-
noted as D ∈ Rn×n, where n is the number of layouts generated. To visualize this distance matrix,
we employ a heatmap representation. To effectively compare the layout distance distributions across
different graphs, we normalize the layout distances. This normalization process allows us to bring
all the layout distances within a consistent range. It’s worth noting that due to normalization and
the original minimum layout distance being 0 (The diagonal elements of the original distance ma-
trix.), all elements on the heatmap that are close to 0 or close to 1 signify a highly uniform layout
distribution. This implies that all layouts are either very similar or that the layout distances are
distributed evenly across the range, which is characteristic of highly concentrated or circular distri-
butions. In order to gain a deeper insight into the layout distance distribution of a specific graph, we
employ multidimensional scaling (MDS) techniques. MDS maps the layout distance matrix onto a
low-dimensional space, such as a two-dimensional plane, while preserving the pairwise distances
between layouts as much as possible. By visualizing the resulting MDS plot, we can observe the
overall structure of the layout distance distribution, which can provide valuable insights into the
characteristics of the graph. We have observed that graphs with distinct patterns often exhibit signif-
icantly different layout distance distributions. For example, in Fig. 4, our results suggest that graphs
with a wider distribution of layout distances typically display folded layouts and long chains. On
the other hand, graphs with a more uniform distribution of layout distances tend to feature a higher
percentage of stable structures, such as rings. Similarly, in Fig. 5, we can observe that simple and
stable network topologies yield uniform heatmaps and concentrated MDS clustering. These findings
serve as evidence for the effectiveness of our approach in capturing and revealing patterns within
molecular graphs.

It is important to note that the structure of social network graphs differs significantly from molecular
graphs. Social network graphs often represent ego networks, which lack a distinct topological struc-
ture. To understand how our approach applies to these unique graph types, we have visualized the
layout distance distribution of the IMDB dataset. The results, as shown in Fig. 6, clearly demonstrate
that ego networks tend to exhibit highly uniform layouts due to their dense and symmetric connec-
tions. Despite the lack of a distinct structure in ego networks, we find that our topological layout
algorithms can still benefit from these unique characteristics. In fact, we observe that layouts of ego
networks tend to be more stable for graphs with better symmetry and denser connections, indicating
more stable topologies. Furthermore, the use of MDS in two-dimensional space aids in distinguish-
ing ego networks from other topologies and differentiating between various ego networks. These
insights highlight the practical applications and advantages of our approach in different contexts.

In addition to the analysis of layout distance distributions, we also provide layout visualization
examples of the six datasets we used in Fig. 7. These visualizations enable a better understanding of
the unique topological structures present in different datasets. At the same time, we regularize the
length of the edges in the layout and then color them. The longer the edges, the lighter the color. We
can observe that the edge length is helpful in identifying those edges that connect different clusters.

16

Under review as a conference paper at ICLR 2024

Figure 4: Heatmap, MDS layout and graph layout examples of MUTAG dataset.

Figure 5: Heatmap, MDS layout and graph layout examples of PROTEINS dataset

E GENERIC GNNS FORMAT

Here, we provide the generic format of the graph transformer and GPS under DEL setting in Eq. 12
and Eq. 13:

C(l)
v,u = softmax

(
W1H

(l)
:v

)⊤ (
W2H

(l)
:u +W3E

(l)
vu

)
√
d

 (12)

Where W1, W2, and W3 are any trainable layers, d denotes the hidden dimensions of node em-
bedding.

17

Under review as a conference paper at ICLR 2024

Figure 6: Heatmap, MDS layout and graph layout examples of IMDB-BINARY dataset

Figure 7: Graph layout examples for MUTAG, PROTEINS, NCI1, DD, IMDB-BINARY and IMDB-
MULIT datasets.

C(l)
v,u = hl

(
H(l)

:v ,H
(l)
:u ,E

(l)
v,u,A

)
+GlobalAttnl

(
H(l)

:v

)
(13)

Where GlobalAttnl denotes the global attention layer in l-th layer which allows nodes to attend to
all other nodes in a graph. hl is any trainable model parametrized by l.

18

Under review as a conference paper at ICLR 2024

F MORE RESULTS

In this section, we report four experimental results: First, The impact of DEL on graph classification
tasks when graph transform and GPS are used as the backbones for graph layout in 2 to 6 dimensions
in Table 5, 6. Second, The impact of using different sampling layout numbers on the graph classifi-
cation task when DEL is employed with GAT or GPS as the backbones in Table 7 and 8. Third, The
impact of noise addition during the sampling layout process on DEL performance in Table 9.

Finally, we evaluated DEL’s performance on the ogbg-molhiv molecular property prediction
dataset (Hu et al., 2020) (refer to Table 10), consisting of 40k graphs. Each graph represents a
molecule, with nodes corresponding to atoms and edges representing chemical bonds. We observed
a consistent improvement in ROC-AUC for both the validation and test sets. We employed a simple

Dimensions 2 3 4 5 6

MUTAG 91.38 ± 1.00 91.52 ± 1.06 91.80 ± 0.67 92.22 ± 0.96 92.22 ± 1.03
NCI1 79.98 ± 0.25 80.58 ± 0.32 80.60 ± 0.31 80.56 ± 0.47 80.45 ± 0.27

PROTEINS 78.58± 0.57 78.35 ± 0.28 78.19 ± 0.27 78.17 ± 0.54 78.36 ± 0.40

Table 5: The performance of DEL-F (Graph Transformer) with different layout dimensions.

Dimensions 2 3 4 5 6

MUTAG 92.23 ± 0.56 91.94 ± 0.83 91.80 ± 0.60 92.08 ± 0.72 91.94 ± 0.92
NCI1 84.24 ± 0.27 84.23 ± 0.25 84.38 ± 0.23 84.17 ± 0.34 84.25 ± 0.41

PROTEINS 78.26 ± 0.58 78.53 ± 0.84 78.15 ± 0.44 78.17 ± 0.98 78.13 ± 0.98

Table 6: The performance of DEL-F (GPS) with different layout dimensions.

N 0 2 4 8 16

MUTAG 85.69 ± 1.06 87.08 ± 0.46 87.91 ± 0.82 89.86 ± 1.21 87.23 ± 0.82
NCI1 77.98 ± 0.24 76.63 ± 0.18 77.07 ± 0.24 78.59 ± 0.28 78.30 ± 0.22

PROTEINS 76.89 ± 0.37 77.16 ± 0.25 77.34 ± 0.69 78.09 ± 0.27 77.72 ± 0.55

Table 7: The performance of DEL-F (GAT) with different layout numbers.

N 0 2 4 8 16

MUTAG 91.94 ± 1.50 91.11 ± 0.55 91.80 ± 0.51 92.23 ± 0.56 92.22 ± 0.87
NCI1 79.97 ± 0.75 83.69 ± 0.33 83.97 ± 0.34 84.38 ± 0.23 84.12 ± 0.38

PROTEIN 74.57 ± 0.79 77.73 ± 0.88 78.37 ± 0.19 78.26 ± 0.58 77.72 ± 0.88

Table 8: The performance of DEL-F (GPS) with different layout numbers.

Datasets MUTAG NCI1

GAT(DEL-F) 89.86 ± 1.21 78.59 ± 0.28
+Noise 89.30 ± 1.32 77.71 ± 0.49

Graph transformer(DEL-F) 92.22 ± 0.96 79.98 ± 0.25
+Noise 91.11 ± 1.03 78.51 ± 0.20

GPS(DEL-F) 92.23 ± 0.56 84.24 ± 0.27
+Noise 92.08 ± 0.91 83.85 ± 0.34

Table 9: Addition Noise of DEL-F. we can observe that optimization with and without the noise
term ϵt ∼ N (0, 1e− 3) generally leads to similar performance.

19

Under review as a conference paper at ICLR 2024

ogbg-molhiv Vaild AUROC Test AUROC

GAT 77.67 ± 2.78 74.45 ± 1.53
GAT (DEL-F) 78.99 ± 1.69 75.27 ± 1.32

Graph transformer 78.20 ± 1.18 76.51 ± 0.93
Graph transformer (DEL-F) 80.12 ± 1.39 76.86 ± 0.95

GPS 80.08 ± 1.39 76.71 ± 1.12
GPS (DEL-F) 82.57 ± 0.95 76.93 ± 1.00

Table 10: Valid and Test performance in ogbg-molhiv. Shown is the mean±std of 10 runs without
any tricks. Note that ogbg-molhiv provides high-quality edge (chemical bonding) features, and we
simply concatenated the edge features generated by DEL to it without using a complicated scheme.

Noise

Without

Noise

Figure 8: Heatmap of the distance between sampling layouts. The top of the figure shows the
heatmap of the layout obtained by sampling with the standard layout algorithm, and the bottom
shows the heatmap obtained by the layout algorithm with the added noise term ϵt ∼ N (0, 1e− 3).

two-layer GNN architecture without special tricks, such as virtual nodes, etc., and defaulted to using
Random-Walk Structural Encoding (RWSE) as a feature augmentation method.

G ANALYSIS OF THE LAYOUT ALGORITHM WITH NOISE

In Section4.1 we used a standard graph layout algorithm instead of a graph layout algorithm with
Gaussian noise using Langevin dynamics. In this section, we delve into a more detailed rationale
for choosing this alternative approach.

A typical layout representation of C is to utilize coordinates of nodes P ∈ Rn×d in d-dimensional
space. Then there exists a mapping C = C(P). Assuming that configuration P conditioned on
a topology/connectivity A is associated with a global free energy E(P|A), we denote E(P) =
E(P|A) for brevity. Our objective is to sample a plausible configuration from a Boltzmann distri-
bution equipped with the Langevin dynamics. Specifically, we seek to sample from the distribution
P(P) ∝ exp(−E(P)/α). In Section4.1 we have demonstrated that injecting i.i.d. Gaussian noise
to the score term can theoretically achieve this goal.

However, in practical scenarios involving simple topologies like molecules and social networks from
real-world applications, layout algorithms often produce layouts that are wide optima. Standard
layout algorithms can be directly applied to achieve results similar to those obtained using Langevin
dynamics, so we can use the standard layout algorithms directly as an approximation without the
need for elaborate noise schemes. Figure 8 shows the heatmap of the distances between layouts,
verifying that in real applications the addition of noise or not has a relatively small effect on the

20

Under review as a conference paper at ICLR 2024

distribution of the final sampled layouts. This reflects the characteristic of existing layout algorithms
that tend to produce wide optima layouts. To reduce the computational burden caused by noise, we
disable noise injection in our implementation.Table 9 further illustrates the limited impact of a
basic noise addition strategy (using fixed Gaussian noise) on the downstream task. While a more
sophisticated noise addition strategy could better assist the model in capturing the correct energy
distribution, this is beyond the current scope and is left for future work.

21

	Introduction
	Related work
	Preliminary
	Boltzmann distribution
	Edge-aware GNNs

	Methodology
	Graph layout/configuration sampling
	Edge Features Construction via Steady-State Configurations.
	GNNs with Edge Feature
	DEL as a pre-precessing step

	Experiments
	Main Results
	Effect of Graph Layout Steady State on DEL-F Performance.
	DEL in Higher Dimensional Space
	Effect of Different Sampling Layout Numbers on DEL Performance
	Computational complexity

	Conclusions
	Implementation detail
	Discussion on graph layout algorithms and GNNs
	Graph layout algorithm
	layout energy visualization

	Graph layout visualization
	Generic GNNs Format
	More results
	Analysis of the Layout Algorithm with Noise

