
Trust-Region Twisted Policy Improvement

Joery A. de Vries 1 Jinke He 1 Yaniv Oren 1 Matthijs T. J. Spaan 1

Abstract

Monte-Carlo tree search (MCTS) has driven many
recent breakthroughs in deep reinforcement learn-
ing (RL). However, scaling MCTS to parallel com-
pute has proven challenging in practice which
has motivated alternative planners like sequential
Monte-Carlo (SMC). Many of these SMC meth-
ods adopt particle filters for smoothing through a
reformulation of RL as a policy inference problem.
Yet, persisting design choices of these particle fil-
ters often conflict with the aim of online planning
in RL, which is to obtain a policy improvement
at the start of planning. Drawing inspiration from
MCTS, we tailor SMC planners specifically to RL
by improving data generation within the planner
through constrained action sampling and explicit
terminal state handling, as well as improving pol-
icy and value target estimation. This leads to our
Trust-Region Twisted SMC (TRT-SMC), which
shows improved runtime and sample-efficiency
over baseline MCTS and SMC methods in both
discrete and continuous domains.

1. Introduction
Monte-Carlo tree search (MCTS) with neural networks
(Browne et al., 2012) has enabled many recent successes in
sequential decision making problems such as board games
(Silver et al., 2018), Atari (Ye et al., 2021), and algorithm
discovery (Fawzi et al., 2022; Mankowitz et al., 2023).
These successes demonstrate that combining decision-time
planning and reinforcement learning (RL) often outperforms
methods that utilize search or deep neural networks in iso-
lation. Naturally, this has stimulated many studies to un-
derstand the role of planning in combination with learning
(Guez et al., 2019; de Vries et al., 2021; Hamrick et al.,
2021; Bertsekas, 2022; He et al., 2024) along with studies
to improve specific aspects of the base algorithm (Hubert

1Delft University of Technology, Delft, the Netherlands. Corre-
spondence to: Joery A. de Vries <J.A.deVries@tudelft.nl>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2021; Danihelka et al., 2022; Antonoglou et al., 2022;
Oren et al., 2025).

Although MCTS has been a leading technology in recent
breakthroughs, the tree search is inherently sequential, can
deteriorate agent performance at small planning budgets
(Grill et al., 2020), and requires significant modifications
for general use in RL (Hubert et al., 2021). The sequen-
tial nature of MCTS is particularly crippling as it limits
the full utilization of modern hardware such as GPUs. De-
spite follow-up work attempting to address specific issues,
alternative planners have since been explored that avoid
these flaws. Successful alternatives in this area are often
inspired by stochastic control (Del Moral, 2004; Åström,
2006), examples include path integral control (Theodorou
et al., 2010; Williams et al., 2015; Hansen et al., 2022) and
related sequential Monte-Carlo (SMC) methods (Naesseth
et al., 2019; Chopin & Papaspiliopoulos, 2020).

Specifically, recent variational SMC planners (Naesseth
et al., 2018; Macfarlane et al., 2024) have shown great po-
tential in terms of generality, performance, and scalability
to parallel compute. These methods adopt a particle filter
for trajectory smoothing to enable planning in RL (Piché
et al., 2019). However, the distribution of interest for these
particle filters do not perfectly align with learning and ex-
ploration for RL agents. Namely, recent SMC methods
focus on estimation of the trajectory distribution under an
unknown policy, and not the actual unknown policy at the
state where we initiate the planner. We find that this mis-
match can cause SMC planners to suffer from unnecessarily
high-variance estimation and waste much of their compute
and data during planning. In other words, online planning in
RL should serve as a local approximate policy improvement
(Chan et al., 2022; Sutton & Barto, 2018). Fortunately, exist-
ing MCTS and SMC literature provides various directions to
achieve this (Moral et al., 2010; Svensson et al., 2015; Law-
son et al., 2018; Danihelka et al., 2022; Grill et al., 2020),
but their use in SMC-planning remains largely unrealized.

This paper aims to address the current limitations of boot-
strapped particle filter planners for RL by drawing inspira-
tion from MCTS. Our contributions are 1) to make more
accurate estimates of statistics extracted by the planner, at
the start of planning, and 2) enhancing data-efficiency inside
the planner. We address the pervasive path-degeneracy prob-

1

Trust-Region Twisted Policy Improvement

lem in SMC by backing up accumulated reward and value
data to perform policy inference and construct value targets.
Next, to reduce the variance of estimated statistics due to re-
sampling, we use exponential twisting functions to improve
the sampling trajectories inside the planner. We also impose
adaptive trust-region constraints to a prior policy, to control
the bias-variance trade-off in sampling proposal trajecto-
ries. Finally, we modify the resampling method (Naesseth
et al., 2019) to correct particles that become permanently
stuck in absorbing states due to termination in the baseline
SMC. We dub our new method Trust-Region Twisted SMC
and demonstrate improved sample-efficiency and runtime
scaling over SMC and MCTS baselines in discrete and con-
tinuous domains.

2. Background
We want to find an optimal policy π for a sequential decision-
making problem, which we formalize as an infinite-horizon
Markov decision process (MDP) (Sutton & Barto, 2018).
We define states S ∈ S , actions A ∈ A, and rewards R ∈ R
as random variables, where we write H1:T = {St, At}Tt=1

as the joint random variable of a finite sequence,

pπ(H1:T) =

T∏
t=1

π(At|St)p(St|St−1, At−1), (1)

where p(S1|A0, S0)
∆
= p(S1) is the initial state distribution,

p(St+1|St, At) is the transition model, and π(At|St) is the
policy. We denote the set of admissible policies as Π

∆
=

{π|π : S → P(A)}, our aim is to find a parametric πθ ∈ Π

(e.g., a neural network) such that Epπθ
(H1:T)[

∑T
t=1 Rt] is

maximized, where we abbreviate Rt = R(St, At) for the
rewards. For convenience, we subsume the discount fac-
tor γ ∈ [0, 1] into the transition probabilities as a termina-
tion probability of pterm = 1 − γ assuming that the MDP
always ends up in an absorbing state ST with zero rewards.

2.1. Control as Inference

The reinforcement learning problem can be recast as a prob-
abilistic inference problem through the control as inference
framework (Levine, 2018). This reformulation has lead to
successful algorithms like MPO (Abdolmaleki et al., 2018)
that naturally allow regularized policy iteration (Geist et al.,
2019), which is highly effective in practice with neural net-
work approximation. Additionally, it enables us to directly
use tools from Bayesian inference on our graphical model.

To formalize this, the distribution for H1:T can be condi-
tioned on a binary outcome variableOt ∈ {0, 1}, then given
a likelihood for p(O1:T = 1|H1:T) = p(O1:T |H1:T) this
gives rise to a posterior distribution p(H1:T |O1:T). Typ-
ically, we use the exponentiated sum of rewards for the
(unnormalized) likelihood p(O1:T |H1:T) ∝

∏T
t=1 expRt.

Definition 2.1. The posterior factorizes as

pπ(H1:T |O1:T) =

T∏
t=1

pπ(At|St,Ot:T)p(St|St−1, At−1),

assuming that St+1 ⊥⊥ O1:T |St, At and At ⊥⊥ O<t|St.

The key part of Definition 2.1 is the posterior policy
pπ(At|St,Ot:T) which, using Bayes rule, reads as

pπ(At|St,Ot:T) ∝ π(At|St) exp[ln p(Ot:T |St, At)]. (2)

This connects us to an (expected-reward) maximum-entropy
reinforcement learning setting (Toussaint, 2009; Ziebart,
2010), since the exponent admits a soft-Bellman recursion,

ln p(Ot:T |St, At) = R(St, At) + lnE eV
π
soft (St+1), (3)

where the expectation is over the dynamics p(St+1|St, At).
An important property of the posterior policy is that it is not
an optimal policy in the traditional objective Epπ [

∑
t Rt],

but only provides an improvement over a prior policy π.

Theorem 2.2. The posterior policy p(At|St,Ot:T),∀t, is
the optimal policy q∗ for the regularized MDP,

q∗ = argmax
q∈Π

E

[
T∑

t=1

Rt −KL(q(a|St)∥π(a|St))

]
,

where q∗ guarantees a policy improvement in the unregular-
ized MDP, Epq∗ (H1:T)[

∑T
t=1 Rt] ≥ Epπ(H1:T)[

∑T
t=1 Rt].

Proof. See Appendix A.3 or Sec. 2.4 of (Levine, 2018). □

The optimal regularized policy q∗ can be interpreted as a
variational policy1 that minimizes the evidence gap (Bishop,
2007), or conversely, maximizes the evidence lower-bound
to ln p(O1:T). In practice, this can be used in expectation-
maximization (EM) methods (Neal & Hinton, 1998) to itera-
tively update the prior policy π(n+1) ← q∗(n). This gives rise
to an effective framework for approximate policy iteration
that is both amenable to gradient based updating of πθ and
provably recovers the traditional (locally) optimal policy
maxπ∈Π Epπ

[
∑

t Rt] as n→∞ (see Appendix A).

2.2. Particle Filter Planning for RL

Although the estimation of the regularized optimal policy q∗

mitigates a number of practical challenges in deep RL, it
also requires re-estimating q∗(n) after each update to the
prior π(n+1). Additionally, the posterior policy for any π
always requires the solutions to the soft value-estimation
problem for Qπ

soft and V π
soft . Algorithms like MPO deal

1From this point on we will interchange the regularized optimal
policy q∗(n)(At|St) with the posterior policy pπ(n)

(At|St,Ot:T).

2

Trust-Region Twisted Policy Improvement

with this by approximating the value using neural net-
works Qπ

θ ≈ Qπ
soft to then estimate the posterior policy

through Monte-Carlo. Intuitively, this can be interpreted
as a 1-timestep approximation to q∗. To see this, evaluat-
ing Qπ

θ (St, At) over samples At ∼ π(At|St) amortizes the
message-passing process for evaluating Qπ

soft into a direct
(cheap) mapping from S ×A → R. The main limitation of
this approach is the bias induced by this new function Qπ

θ .
Towards this end, sequential Monte-Carlo (SMC) methods
(Piché et al., 2019; Naesseth et al., 2019) offer a power-
ful model-based strategy for improving the estimate of q∗

through a multi-timestep.

The SMC algorithm for RL (Piché et al., 2019) is a sequen-
tial importance sampling (IS) method that aims to draw
samples H1:t from the posterior through a proposal distribu-
tion pq(H1:t) (as in Eq. 1 for some q ∈ Π). By definition,
our graphical model (Def. 2.1) factorizes recursively,

pπ(H1:T |O1:T) = pπ(H1:t|O1:T) · pπ(Ht:T |Ot:T), (4)

meaning that we can sample data from H1:t ∼ pq(H1:t) and
accumulate the IS-weights sequentially.

Corollary 2.3 (Sequential importance sampling). Assuming
access to the transition model p(St+1|St, At), we obtain the
importance sampling weights for pπ(H1:t|O1:T)/pq(H1:t),

wt = wt−1 ·
π(At|St)

q(At|St)
exp(Rt)

E[expV π
soft(St+1)]

expV π
soft(St)

.

Proof. The dynamics terms in the weights cancel out, the
rest follows by definition from Equations 2, 3, and 4. □

In practice we cannot realistically compute wt since it re-
quires the soft-values V π

soft . However, we can again approx-
imate this w̃t ≈ wt with the amortized estimate V π

θ ≈ V π
soft

at every intermediate timestep (Pitt & Shephard, 1999; Law-
son et al., 2018). With this, we can estimate posterior
statistics using a single forward pass through: sampling
traces H(i)

1:t , accumulating their approximate weights w̃(i)
t ,

and then normalizing these w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

to obtain

Epπ(H1:t|O)f(H1:t) = Epq [wt · f(H1:t)] (5)

≈
K∑
i=1

w
(i)
t f(H

(i)
1:t), H

(i)
1:t ∼ pq,

where f : Ht → Y is some arbitrary function over the data.
For instance, the statistic f(H1:t) =

∑t
j=1 Rj would yield

an estimate of the expected finite-horizon sum of rewards.

Bootstrapped Filter The bootstrapped particle filter for
RL, as proposed by Piché et al. (2019), improves the esti-
mation in Eq. 5 through (periodic) resampling. This miti-
gates the issue of weight-impoverishment in sequential-IS,

Algorithm 1 Bootstrapped Particle Filter for RL
Require: K (number of particles), m (depth)

1: Initialize:
• Ancestor identifier {J (i)

1 = i}Ki=1

• States {S(i)
1 ∼ p(S1)}Ki=1

• Weights {w̃(i)
0 = 1}Ki=1

2: for t = 1 to m do
// Update particles

3: {A(i)
t ∼ q(At|S(i)

t)}Ki=1

4: {S(i)
t+1 ∼ p(St+1|S(i)

t , A
(i)
t)}Ki=1

5: {w̃(i)
t = w̃

(i)
t−1

π(A
(i)
t |S(i)

t)

q(A
(i)
t |S(i)

t)
eR

(i)
t

E expV π
θ (S

(i)
t+1)

expV π
θ (S

(i)
t)
}Ki=1

// Bootstrap (periodically) through resampling
6: {(J (i)

t , S
(i)
t+1, A

(i)
t)}Ki=1 ∼ Multinomial(K,wt)

7: {w̃(i)
t = 1}Ki=1

8: end for
9: return {J (i)

1:m, H
(i)
1:m, w̃

(i)
1:m}Ki=1

where some normalized weights dominate others w
(i)
t ≫

w
(j)
t , j ̸= i. A common strategy for this is multino-

mial resampling (Chopin & Papaspiliopoulos, 2020), as
shown in Algorithm 1. This method samples a number
of traces H

(i)
1:m ∼ pq, i ∈ [1,K], referred to as particles,

and periodically drops or duplicates these samples based
on their weights w

(i)
1:m,m ∈ [1, t], before resetting their

weights back to a uniform distribution (bootstrap). Prior
work (Piché et al., 2019; Macfarlane et al., 2024) then esti-
mates the policy q̂∗ as a weighted mixture of point-masses,

q̂∗(At = a|St) =

K∑
i=1

w
(i)
t+mδ(A

(J
(i)
t+m)

t = a), (6)

where J
(i)
t+m ∈ [1,K] is the index tracking each samples’

ancestor at the start of planning t and δ(·) is a Dirac delta
function over A for the ancestor action-particles.

A key property of Algorithm 1 is that it can estimate q̂∗

through a single forward pass of K particles from t to t+m
(Moral et al., 2010). This allows for parallel sampling and
updating of particles, with communication only required dur-
ing the resampling step. As a result, it scales efficiently on
modern GPU hardware, with memory complexity of O(K)
and a parallelized time complexity of O(m).

Variational SMC Intuitively, resampling improves our es-
timate of Eq. 5 by ‘correcting’ particles with low-likelihood
to higher likelihood regions of the target distribution. How-
ever, resampling also introduces noise and would ideally
not be needed (or to a lesser extent) if our proposal distribu-
tion pq produced samples that better match our target. To
this end, variational SMC methods (Naesseth et al., 2018;

3

Trust-Region Twisted Policy Improvement

Gu et al., 2015) learn a proposal distribution qθ from sam-
ple estimates of the posterior target E[q̂∗] = q∗. Macfar-
lane et al. (2024) use this strategy with neural networks to
learn qθ ≈ q∗. Given the neural network iterates {θ(n)}Nn=1,
their method also updates the prior policy π(n+1) ← qθ(n)

at every step n. In other words, they combine variational
SMC in an EM-loop (Neal & Hinton, 1998) by using the
learned proposals qθ(n)

as the prior to regularize the poste-
rior pπ(n+1)

(At|St,Ot:T).

3. Tailoring Particle Filter Planning to RL
A key benefit of online planning in reinforcement learn-
ing (RL) is generating locally improved policies at each
timestep t compared to a prior policy, which enhances learn-
ing targets and diversity of data (Hamrick et al., 2021; Silver
et al., 2018). Despite recent progress in improving sequen-
tial Monte-Carlo (SMC) methods for local approximate
policy improvement (Chan et al., 2022), persisting design
choices from conventional particle filtering do not align di-
rectly with this goal. For instance, we find that the problem
of path degeneracy, inherent to particle filtering (Svens-
son et al., 2015), can cause policy inference in Eq. 6 to
degenerate with deep search and waste much of the plan-
ner’s generated data. We also argue that variational SMC
planners still make inefficient use of their particle budget
due to periodic resampling, which can cause particles to get
stuck in terminal states and delays using value information.
By contrasting this with Monte-Carlo tree search (MCTS),
which specifically focuses on improving the policy at the
root (Grill et al., 2020), we tailor the SMC-planner for local
policy improvement. This preserves the forward-only imple-
mentation of particle filtering while incorporating benefits
inspired by MCTS.

3.1. Adapting the Proposals for Sample-Efficiency

The resampling step in SMC (line 6, Alg. 1) is essential for
redistributing particles that are unlikely under the posterior
policy. Simultaneously, variational SMC methods (Mac-
farlane et al., 2024) can shift some of this responsibility
to a learned proposal distribution qθ ≈ q̂∗ by generating
better samples. This is useful as it reduces variance induced
by resampling and amortizes posterior inference (Naesseth
et al., 2018). However, in EM-loop style algorithms, the
learned proposal distribution qθ is an estimate of the pos-
terior policy that is regularized to a prior from a previous
iteration qθ ≈ pπ(n−1)

(At|St,Ot:T), and not to the current
iteration π(n). This is computationally wasteful with infre-
quent resampling, as it can take multiple transitions before
moving particles to rewarding trajectories (Lioutas et al.,
2023).

For this reason, we extend the proposal distribution
to more accurately reflect the next posterior policy

pπ(n)
(At|St,Ot:T) by using both a learned policy qθ ≡ π(n)

and value expQπ
θ . This is also known as exponential twist-

ing (Asmussen & Glynn, 2007) of the proposal, which
is similarly used in the target distribution (Corollary 2.3).
Twisting reduces the variance for q̂∗ at the cost of some bias
due to Qπ

θ . This enables lower particle budgets through im-
proved particle efficiency, but also introduces the difficulty
in controlling this trade-off. In this regard, MCTS-based
methods can offer some insight for dealing with this.

Since AlphaZero (Silver et al., 2018), MCTS-based meth-
ods also often use a trained policy πθ (conflated with the
name prior distribution) to guide the search in combination
with a P-UCT algorithm (Rosin, 2011). Crucially, the ini-
tial iterations of the algorithm rely more on πθ, which is
interpolated to a greedy policy over the estimated values Qπ

in later iterations. Grill et al. (2020) show how this causes
inferred policies from MCTS to track a regularized objec-
tive similarly to Theorem 2.2 (with an added greediness
parameter) over consecutive iterations. This is relevant to
our work, because it links the estimated quantity of our
SMC planner to the approach taken by MCTS. The main
difference persists in that the iterations of MCTS induce an
adaptive regularizer through a proxy for value-accuracy.

Inspired by this, we formulate our proposal distribution
through a constrained optimization problem with an adap-
tive trust-region parameter ϵα ∈ R≥0. At each state St, the
proposal q solves for a locally constrained program,

max
q∈P(A|St)

Eq(At|St)Q
π
θ (St, At), (7)

s.t., KL(q(a|St)∥πθ(a|St)) ≤ ϵα,

where α ∈ [0, 1] is a greediness tolerance level. The
actual trust-region ϵα is then sandwiched between the
prior πθ and the greedy policy π∗ over Qπ

θ , such that,
ϵα = α ·KL(π∗∥πθ). In similar spirit to MCTS, this guaran-
tees that SMC always searches trajectories that interpolate
between maximizing Qπ

θ or sticking to the prior πθ. The La-
grangian of this program is similar to Theorem 2.2 with the
sum of rewards replaced by Qπ

θ and the KL term scaled by
a temperature. Furthermore, Eq. 7 requires KL(q∥π) ≤ ϵ
at every St ∈ S instead of in expectation over pq(H). For
solving this program, we use a bisection search using boot-
strapped atoms from πθ, which is both general and compu-
tationally cheap (see Appendix B.5 for details).

3.2. Handling Terminal States with Revived Resampling

Although the control as inference framework from Sec-
tion 2.1 enables the use of SMC methods for policy in-
ference, it also introduces non-trivial caveats. In particular,
the infinite horizon formulation in Eq. 1 can lead to wasting
compute when handling terminal states as absorbing states
in a forward-only SMC algorithm. Absorbing states result

4

Trust-Region Twisted Policy Improvement

in transitions that loop back to the same state with zero
reward, effectively treating this as part of the environment
dynamics. In an SMC planner, this can cause some of the K
particles to become trapped in these absorbing states. Al-
though resampling should correct for this, reward sparsity
and errors in value predictions V π

θ ≈ V π
soft can render the

weights to become nearly uniform, making these trapped
particles indistinguishable from non-trapped ones. This is
a problem, because trapped particles do not contribute to
gathering information about future values.

Furthermore, the resampling step can also move particles
towards absorbing states due to rewarding trajectories in
previous steps. Consecutive resampling in the SMC planner,
however, is then likely to move these particles away from
these states again because they no longer accumulate reward.
This phenomena is mostly problematic when performing
policy inference according to Eq. 6 and is a consequence of
the path degeneracy problem (Svensson et al., 2015).

To address the trapped particles, we leverage the strategy of
MCTS to reset trajectories to earlier states within the search
tree. In MCTS, each iteration of the algorithm completely
resets the agent to the root state, enabling the accumulation
of new trajectory and value information. However, this full
reset limits the ability to explore deep inside the search tree,
which is a key benefit of SMC with its depth parameter m.
Therefore, we propose a ‘revived resampling’ strategy to
move particles back to their last non-terminal state. This
only requires caching an additional reference state for each
particle, assuming that the environment correctly flags these
as non-terminal. Resampling is then performed to these ref-
erence states instead of the current states (see Appendix C).

3.3. Mitigating Path Degeneracy for Policy Inference

A common problem in particle filtering is path degeneracy,
where most particles collapse to a single ancestor due to
resampling. This is illustrated in the top of Figure 1, the
grayed-out trajectories highlight the discarded data due to
resampling in typical forward-only SMC methods. This loss
of ancestor diversity leads to a worse approximation of the
distribution over states under our posterior policy (Svensson
et al., 2015). We remark that in RL the consequence of this
problem is exacerbated since we predominantly care about
the root-ancestors. For this reason, SMC planners (Piché
et al., 2019; Macfarlane et al., 2024; Lioutas et al., 2023)
that perform policy inference for q̂∗ using mixtures of point-
masses from Eq. 6 show deteriorating approximation quality
as depth increases, as shown in Figure 1 (bottom-left).

In contrast, MCTS does not suffer from path degeneracy
because it does not discard any data. Policy inference is
also typically done in MCTS by tracking a normalized state-
action visitation counter that is updated in each iteration
of the algorithm (Browne et al., 2012). Importantly, the

5 10 15 20 25 30 35 40
Depth

S
ta
te

0 20 40 60
0.0

0.5

1.0

1.5

2.0
Dirac Mixture (baseline)

0 20 40 60

Message Passing (ours)
Num Particles K

K = 2
K = 4
K = 8
K = 24
K = 72
K = 216KL

(
*

SM
C
)

Depth

Figure 1. Illustration of path degeneracy in particle filters (top;
adapted from Svensson et al., 2015) and the consequence on diver-
gence from the optimal policy π∗ (lower is better). With a finite
budget of particles and resampling, deep search will concentrate
the Dirac mixture of remaining ancestors to a single atom (bottom-
left). We improve this through approximate message-passing to the
ancestors, which does not degenerate the policy (bottom-right).

normalized visit-counts can be used as both a behavior pol-
icy and learning target (Silver et al., 2018). Recent work
however, has shown that using such a visitation-count policy
can degrade performance when using low planning budgets.
Instead, Danihelka et al. (2022) show that inferring a regu-
larized policy (Grill et al., 2020) using the value statistics
from search for the root state-actions avoids this problem.

However, SMC planners do not track visit-counts or per-
form backpropagation to accumulate value statistics. Since
the importance sampling weights factorize recursively, we
can adopt the approach by Moral et al. (2010) to perform
an online estimation to Q̂SMC ≈ Qπ

soft inside SMC using
Eq. 3, to then construct a policy estimate similarly to Dani-
helka et al. (2022). At each SMC step t, we accumulate a
current estimate of Q̂(j)

SMC for any root-ancestor j as,

Q̂
(j)
t = Q̂

(j)
t−1 +

0, J (j)
t = ∅,

ln

(
1

|J (j)
t |

∑
i∈J (j)

t

w̃
(i)
t

w̃
(i)
t−1

)
, J (j)

t ̸= ∅,

where J (j)
t = {i ∈ [1,K] | J (i)

t = j} and Q̂
(j)
0 = 0.

In essence, this expression accumulates an average log-
probability for the remaining particles belonging to ances-
tor j. We then use the values Q̂

(j)
t+m ≈ Qπ

soft(St, A
(j)
t)

to infer q̂∗ by bootstrapping the atoms proportionally to
πθ(A

(i)
t |St) exp Q̂

(i)
SMC . Figure 1 (bottom-right) shows that

this eliminates policy deterioration as a function of depth,
reducing the consequence of path degeneracy.

3.4. Search-Based Values for Learning Targets

The approximate message passing from the previous sub-
section mitigates the path degeneracy problem by utilizing

5

Trust-Region Twisted Policy Improvement

all SMC generated data for policy inference. In essence, we
are constructing a better estimate of the soft-value functions
V π
θ ≈ V π

soft (Lawson et al., 2018; Piché et al., 2019) to
then estimate q̂∗ as given by Eq. 2. The value functions
themselves are then trained using some temporal difference
(TD) method in an outer learning loop, e.g., using n-step re-
turns (Sutton & Barto, 2018) given environment interactions
outside of the planner (see also Appendix B.3). So far, most
prior work constructs these TD-learning targets by value-
bootstrapping from one-step predictions given states in the
generated datasets (Piché et al., 2019; Lioutas et al., 2023;
Macfarlane et al., 2024). For instance, given a transition
(St, At, Rt, St+1), a 1-step TD target would be computed
as Yt = Rt + V π

θ (St+1). However, this approach neglects
most data generated by the planner by only considering the
1-step value at the next states St+1.

Similarly to recent versions of MuZero (Schrittwieser et al.,
2020; Ye et al., 2021; Danihelka et al., 2022), we instead
use the values estimated by the search algorithm V̂t+1 over
V π
θ (St+1) to compute these outer TD-targets. Not only

does this exploit the planner data, V̂t is also objectively a
better value estimator to use for policy improvement (i.e.,
within our EM-loop). Namely, the predictions by V π

θ give
the value of a previous posterior policy (off-policy), whereas
V̂t is an estimate of the current posterior policy (on-policy).
During our testing, we found at low particle budgets for
the SMC planner that it is important to control the vari-
ance of the inner value estimation. For this reason, we
compute V̂t for value-learning using the Retrace(λ) returns
(Munos et al., 2016) instead of the importance-weighted
(soft) Monte-Carlo estimate used for the policy. This only
requires tracking a secondary statistic along with Q̂(j).

4. Experiments
We introduce our new method, Trust-Region Twisted SMC
(TRT-SMC), a variational SMC method that is tailored for
planning in RL. We claim that TRT-SMC implements a
stronger approximate policy improvement over baseline ap-
proaches when used in an expectation-maximization frame-
work (Abdolmaleki et al., 2018; Chan et al., 2022). The
contribution of a stronger policy improvement operator can
be isolated to 1) enhanced action-selection during training,
and 2) improved learning targets (Hamrick et al., 2021).
Therefore, we expect our method to yield higher final test
returns and steeper learning curves in terms of sample-
efficiency (training samples) and runtime efficiency (wall-
clock time). We compared our TRT-SMC against the vari-
ational SMC method by Macfarlane et al. (2024), and the
current strongest Monte-Carlo tree search (MCTS) method,
Gumbel AlphaZero by Danihelka et al. (2022).

We performed experiments in the Brax continuous control
tasks (Freeman et al., 2021) and Jumanji discrete environ-

ments (Bonnet et al., 2024), using the authors’ A2C and
SAC results as baselines alongside our PPO implementation
(Schulman et al., 2017). Although we compare sample-
efficiency to the model-free baselines, this is only for ref-
erence since we do not account for the additional observed
transitions by the planner in the main results. In other words,
we are testing the setting where we assume access to a highly
accurate simulator for planning purposes (see Appendix D
for additional results that also count the simulator samples).
Performance is reported as the average offline return over
128 episodes. Unless otherwise stated, all experiments were
repeated (retrained) across 30 seeds, with 99% two-sided
BCa-bootstrap confidence intervals (Efron, 1987). For more
details, see Appendix B.

4.1. Main Results

We show the evaluation curves for comparing sample-
efficiency in Figure 2, where the planner-based methods
used a budget of N = 16 transitions. For simplicity, we
kept the depth m of the SMC planner uniform to the number
of particles K, such that K = m =

√
N . Our ablations in

the subsection 4.2 also show that keeping m and K some-
what in tandem is ideal for SMC. On each individual envi-
ronment we observe that our TRT-SMC shows steeper and
higher evaluation curves than the baseline variational SMC
method, which is in line with our expectations.

Additionally, we compare the runtime scaling for additional
planning budget in terms of normalized returns on the dis-
crete Jumanji environments in Figure 3. We measured this
by aggregating the average returns scaled by their environ-
ments’ known min-max bounds. We see that with more
planning budget that the baseline SMC often starts to ap-
proach our TRT-SMC, and that the Gumbel MCTS method
scales poorly in wallclock time. Most importantly, these re-
sults show that our TRT-SMC reliably scales in performance
with additional budget, runtime, and training samples.

4.2. Ablations

The main results show that our TRT-SMC method can per-
form better compared to the baseline model-free, variational
SMC, and MCTS methods in terms of sample-efficiency and
training runtime. However, we also want to asses: to what
extent do each of our separate contributions improve the
base method? Therefore, this section quantifies this across
the different environments and parameter settings.

Proposal Distributions. Firstly, we assess the interplay of
the proposal distribution with the planning budget through
the aggregated final test performance on the Jumanji envi-
ronments in Figure 4. This compares our TRT-SMC method
when using either a twisted proposal distribution with a
greediness tolerance of α = 0.1, or α = 0 (which only

6

Trust-Region Twisted Policy Improvement

0.0 0.5 1.0 1.5 2.0
1e7

0

20

40

60

80

100

120
Snake

TRT-SMC (ours)
SMC
Gumbel MCTS
PPO
A2C

0.0 0.5 1.0 1.5 2.0
1e7

0.0

0.2

0.4

0.6

0.8

1.0
Rubikscube

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

5000

Halfcheetah
TRT-SMC (ours)
SMC
Gumbel MCTS
PPO
SAC

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

Ant

Training Samples

Ep
iso

de
 R

et
ur

ns

Figure 2. Per environment evaluation curves for a planning budget of N = K × m = 16. Shaded regions give 99% two-sided BCa-
bootstrap intervals over 30 seeds. This plot shows improved sample-efficiency of our method when a highly accurate simulator is available.

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

Budget: 2 × 2 = 4
TRT-SMC (ours)
SMC
Gumbel MCTS
PPO

0 200 400 600 800 1000 1200

Budget: 4 × 4 = 16

0 500 1000 1500

Budget: 8 × 8 = 64

0 500 1000 1500 2000

Budget: 16 × 16 = 256

Wall-Clock Training Time (seconds)

No
rm

al
ize

d
Re

tu
rn

s

Figure 3. Normalized average curves for the discrete environments over increasing planning budgets to compare performance to runtime.
Shaded regions give 99% two-sided BCa-bootstrap intervals over 2 times 30 seeds. Runtime was estimated by multiplying the training
step with an interquartile mean of the runtime-per-step (see Appendix B.2 for details and Appendix D for sample-efficiency).

uses the prior πθ). Similarly to the main results, at low
particle budgets we observe significantly improved perfor-
mance with the trust-region twisted proposal, but this gap
decreases for α = 0 at higher particle budgets. It also shows
that performance scales favorably when the particle budget
and the planner depth are in tandem with eachother. This
performance improvement at low particle budgets matches
our aim of increasing particle-efficiency.

Secondly, we evaluated our TRT-SMC method varying the
α ∈ [0, 1] parameter and uniformly scaling up the budget
and depth (as done in Figure 3). We aggregated the normal-
ized final test results over all tested environments as given
by the sensitivity plot in Figure 5. Although we show the
aggregated results here, we found that this pattern highly de-
pends on the specific environment, we show the individual
results in Appendix D. In essence, these results show that
mixing between the prior πθ and maximizing the predicted
state-action value Qπ

θ improves performance compared to
completely relying on either of them.

Policy Inference. We compare our method for policy in-
ference to that of Eq. 6 by adopting a similar experiment
setup as we used for the proposal ablations and varying
these two choices. We report the results for this experiment
in terms of their evaluation curves in the right of Figure 4
to also observe learning stability. We find that the final

performance of the Dirac policy at K = 4 and α = 0
shows decreased final performance when the planner depth
is increased from m = 4 to m = 16. As expected, this
effect does not occur for our message-passing method, al-
though the proposal twisting seems to diminish this effect
also. Most importantly, our approach for computing q̂∗

demonstrates a monotone improvement.

Value Targets. To compare the improvement by the
search-based value targets, we tested on the Ant environ-
ment for experiment variety. We compared three variations
of our TRT-SMC for constructing the outer learning targets
by linearly interpolating the 1-step Vθ and the SMC-based
value estimate VSMC , such that V̂ = σ ·Vθ+(1−σ)·VSMC ,
where we used σ ∈ {0, 1

2 , 1}. We aggregated the final mean
performances across different planner depths m ∈ {4, 8},
particle budgets K ∈ {4, 8}, resampling periods r ∈ {1, 3},
and whether to use our revived resampling or not. To reduce
moving parts, we did not use a twisted proposal (ϵ = 0). In
total, across 30 repetitions, this gave us 480 experiments for
which we report final marginal performance in the top of
Table 1. Although the intervals overlap slightly, there is a
trend that favors using SMC data for the learning targets.

Revived Resampling. We evaluated the effect of using the
revived particle resampling in a similar, experiment setup to
the value-targets ablations. We tested on Jumanji Snake due

7

Trust-Region Twisted Policy Improvement

= 0 = 0.1 = 0 = 0.1 = 0 = 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Ep

iso
de

 R
et

ur
ns

K = 4 K = 8 K = 16

(Twisted) Proposal Comparison
m = 4 m = 8 m = 16

0.0

0.4

0.8
m=4 K=4 m=16 K=4

0.0 0.5 1.0 1.5 2.0
Num Training Samples 1e7

0.0

0.4

0.8
m=4 K=16

0.0 0.5 1.0 1.5 2.0
Num Training Samples 1e7

m=16 K=16

Policy Inference Comparison

Dirac = 0.1 Dirac = 0 Backups = 0.1 Backups = 0

Figure 4. Final expected performance (left) and evaluation curves over training (right), for different proposal trust-region levels and policy
inference methods. The left barplot only uses our message-passing method (backups) for estimating q̂∗, whereas the right plot compares
both the Dirac mixture and our method. Both plots show that the constrained proposals α = 0.1 improve performance over the prior
proposal α = 0 at low particle budgets. The right plot also shows that our backup method for q̂∗ does not degenerate with deep planning.

0 0.001 0.01 0.1 0.2 0.4 0.8
 Trust-Region Factor *

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Av

er
ag

e
Re

tu
rn

s

Parameter Sensitivity:
Discrete + Continuous Envs

N = 16
N = 64
N = 256

Figure 5. Sensitivity plot for the adaptive trust-region parameter α
over increasing planning budgets N = K·m (where K = m). The
y-axis indicates the normalized final test performance, aggregated
across all tested environments. The pattern shows that at small
planning budgets, a proposal distribution which accounts for the
predicted Qπ

θ performs marginally better.

to its sparse rewards and high likelihood of encountering ter-
minal states (see Appendix B.1). Interestingly, the marginal
test results in the bottom of Table 1 show that the revived
resampling does not significantly differ from the baseline.

5. Related Work
The connection of reinforcement learning (RL) to the statis-
tical estimation of a probabilistic graphical model (Levine,

Table 1. Confidence intervals for the final expected episode returns
on Brax Ant for different value-estimation methods (top) and
Jumanji Snake for the two resampling strategies (bottom).

Ablation Value µ̂ q̂α/2 − q̂1−α/2

Value Targets on Ant
Vθ 6911.8 6669.7− 7146.7
1
2Vθ +

1
2VSMC 7214.7 6973.9− 7455.6

VSMC 7457.1 7200.3− 7715.3

Resampling on Snake
Baseline 44.7 43.7− 45.7
Revived 45.7 44.5− 47.7

2018) has in recent years proven useful in borrowing tools
from Bayesian estimation for optimal policy inference. Al-
though we focus on sequential Monte-Carlo (SMC) methods
(Hoffman et al., 2007; Piché et al., 2019), this connection
has also been used to exploit stochastic control methods
like TD-MPC (Hansen et al., 2024; Theodorou et al., 2010).
Similarly, prior work has partially explored some of the mod-
ifications that we make to SMC-planners, either in isolation
or in different contexts. This paper therefore reinforces
the connection between probabilistic inference and RL, but
also links it back to recent approaches in Monte-Carlo tree
search (MCTS) (Browne et al., 2012; Silver et al., 2018;
Schrittwieser et al., 2020; Wang et al., 2024).

As discussed in Section 2.1, our method builds on the varia-
tional SMC approach by Macfarlane et al. (2024). Similarly,
they also utilize trust-region methods, but on the neural
network parameters during optimization and on the target
distribution for SMC. Our setup is more comparable to re-
cent MCTS methods (Danihelka et al., 2022; Wang et al.,
2024) since we only impose trust-regions on the propos-

8

Trust-Region Twisted Policy Improvement

als and nothing else. In other words, we focus specifically
on the policy improvement part of the algorithm. Then,
Lioutas et al. (2023) also explore a type of ‘twisted’ pro-
posals, they sample auxiliary action-particles and weight
these with heuristic factors expQπ

θ before computing tran-
sitions (Stuhlmülller et al., 2015). However, their approach
has two issues: they mix the normalization of the auxiliary
actions across particles and they do not impose sufficient
regularization to trade-off the prior policy and the values.

Finally, our contributions are strongly tied to mitigating path
degeneracy in SMC planners, which is a common theme in
particle filtering (Chopin & Papaspiliopoulos, 2020). For
instance, our estimation of the policy (and values) is similar
to the online estimation of any time-separable function de-
scribed by Moral et al. (2010), which was also motivated by
path degeneracy. Although we did not consider it here, there
are many promising directions for future work in this area,
like using anchor particles (Svensson et al., 2015), adaptive
resampling (Naesseth et al., 2019), or Rao-Blackwellisation
(Casella & Robert, 1996; Danihelka et al., 2022).

6. Conclusion
This paper tailors a particle filter planner for its use within
deep reinforcement learning. Specifically, we address de-
fault design choices within variational sequential Monte-
Carlo that become problematic when applying these meth-
ods to perform policy inference. Our contributions take
inspiration from recent Monte-Carlo tree search methods to
mitigate the path degeneracy problem, make better use of
the data generated by the planner, and to improve planning
budget utilization. Experiments show that our Trust-Region
Twisted sequential Monte-Carlo (TRT-SMC) scales favor-
ably to varying planning budgets in terms of runtime and
sample-efficiency over the baseline policy improvement
methods. We hope that our approach inspires others to lever-
age more of the tools from both the planning and Bayesian
inference literature, to further enhance the sample-efficiency
and runtime properties of reinforcement learning algorithms.

Acknowledgements
JdV and MS are supported by the AI4b.io program, a col-
laboration between TU Delft and dsm-firmenich, which is
fully funded by dsm-firmenich and the RVO (Rijksdienst
voor Ondernemend Nederland).

Impact Statement
This paper advances planning algorithms for use in rein-
forcement learning. Our improvements specifically enable
improved compute scaling, this has the potential to make
this field of research more accessible to those with fewer

compute resources or improve existing methods at reduced
computational cost. This can have diverse societal con-
sequences, none which we feel must be specifically high-
lighted here.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a Posteriori Pol-
icy Optimisation. In The Sixth International Conference
on Learning Representations, 2018.

Antonoglou, I., Schrittwieser, J., Ozair, S., Hubert, T. K.,
and Silver, D. Planning in Stochastic Environments with
a Learned Model. In The Tenth International Conference
on Learning Representations, 2022.

Asmussen, S. and Glynn, P. W. Stochastic Simulation: Algo-
rithms and Analysis, volume 57 of Stochastic Modelling
and Applied Probability. Springer, New York, NY, 2007.
doi: 10.1007/978-0-387-69033-9.

Åström, K. J. Introduction to Stochastic Control Theory,
volume 70 of Dover Books on Electrical Engineering.
Dover Publications, New York, NY, 2006.

Bertsekas, D. Lessons from AlphaZero for Optimal, Model
Predictive, and Adaptive Control. Athena Scientific
optimization and computation series. Athena Scientific,
Nashua, NH, 2022.

Bishop, C. M. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, New York,
NY, 1st edition, 2007.

Bonnet, C., Luo, D., Byrne, D. J., Surana, S., Abramowitz,
S., Duckworth, P., Coyette, V., Midgley, L. I., Tegegn, E.,
Kalloniatis, T., Mahjoub, O., Macfarlane, M., Smit, A. P.,
Grinsztajn, N., Boige, R., Waters, C. N., Mimouni, M.
A. A., Sob, U. A. M., de Kock, R. J., Singh, S., Furelos-
Blanco, D., Le, V., Pretorius, A., and Laterre, A. Jumanji:
a Diverse Suite of Scalable Reinforcement Learning En-
vironments in JAX. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A Survey of Monte Carlo
Tree Search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(1):1–43, 2012. doi:
10.1109/TCIAIG.2012.2186810.

Casella, G. and Robert, C. P. Rao-Blackwellisation of Sam-
pling Schemes. Biometrika, 83(1):81–94, 1996.

Chan, A., Silva, H., Lim, S., Kozuno, T., Mahmood, A. R.,
and White, M. Greedification Operators for Policy Opti-

9

Trust-Region Twisted Policy Improvement

mization: Investigating Forward and Reverse KL Diver-
gences. Journal of Machine Learning Research, 23(253):
1–79, 2022.

Chopin, N. and Papaspiliopoulos, O. An Introduction to
Sequential Monte Carlo. Springer Series in Statistics.
Springer International Publishing, Cham, Switzerland,
2020. doi: 10.1007/978-3-030-47845-2.

Danihelka, I., Guez, A., Schrittwieser, J., and Silver, D. Pol-
icy improvement by planning with Gumbel. In The Tenth
International Conference on Learning Representations,
2022.

de Vries, J. A., Voskuil, K., Moerland, T. M., and Plaat, A.
Visualizing MuZero Models. In ICML 2021 Workshop
on Unsupervised Reinforcement Learning, 2021.

Del Moral, P. Feynman-Kac Formulae. Probability and
its Applications. Springer, New York, NY, 2004. doi:
10.1007/978-1-4684-9393-1.

Efron, B. Better Bootstrap Confidence Intervals. Journal of
the American Statistical Association, 82(397):171–185,
1987. doi: 10.2307/2289144.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R. Ruiz, F. J.,
Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D.,
and Kohli, P. Discovering faster matrix multiplication al-
gorithms with reinforcement learning. Nature, 610(7930):
47–53, 2022. doi: 10.1038/s41586-022-05172-4.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mor-
datch, I., and Bachem, O. Brax - A Differentiable Physics
Engine for Large Scale Rigid Body Simulation. In Thirty-
fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 1), 2021.

Geist, M., Scherrer, B., and Pietquin, O. A Theory of Reg-
ularized Markov Decision Processes. In Proceedings of
the 36th International Conference on Machine Learning,
volume 97, pp. 2160–2169. PMLR, 2019.

Grill, J.-B., Altché, F., Tang, Y., Hubert, T., Valko, M.,
Antonoglou, I., and Munos, R. Monte-Carlo Tree Search
as Regularized Policy Optimization. In Proceedings of
the 37th International Conference on Machine Learning,
volume 119, pp. 3769–3778. PMLR, 2020.

Gu, S. S., Ghahramani, Z., and Turner, R. E. Neural Adap-
tive Sequential Monte Carlo. In Advances in Neural
Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racaniere, S.,
Weber, T., Raposo, D., Santoro, A., Orseau, L., Eccles, T.,
Wayne, G., Silver, D., and Lillicrap, T. An Investigation

of Model-Free Planning. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97,
pp. 2464–2473. PMLR, 2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80, pp. 1861–1870. PMLR, 2018.

Hamrick, J. B., Friesen, A. L., Behbahani, F., Guez, A.,
Viola, F., Witherspoon, S., Anthony, T., Buesing, L. H.,
Veličković, P., and Weber, T. On the role of planning in
model-based deep reinforcement learning. In The Ninth
International Conference on Learning Representations,
2021.

Hansen, N., Su, H., and Wang, X. TD-MPC2: Scalable,
Robust World Models for Continuous Control. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Hansen, N. A., Su, H., and Wang, X. Temporal Difference
Learning for Model Predictive Control. In Proceedings of
the 39th International Conference on Machine Learning,
pp. 8387–8406. PMLR, 2022.

He, J., Moerland, T. M., de Vries, J. A., and Oliehoek,
F. A. What model does MuZero learn? In ECAI 2024
- 27th European Conference on Artificial Intelligence,,
volume 392 of Frontiers in Artificial Intelligence and
Applications, pp. 1599–1606. IOS Press, 2024. doi: 10.
3233/FAIA240666.

Hoffman, M., Doucet, A., Freitas, N., and Jasra, A.
Bayesian Policy Learning with Trans-Dimensional
MCMC. In Advances in Neural Information Process-
ing Systems, volume 20. Curran Associates, Inc., 2007.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain,
M., Schmitt, S., and Silver, D. Learning and Planning
in Complex Action Spaces. In Proceedings of the 38th
International Conference on Machine Learning, volume
139, pp. 4476–4486. PMLR, 2021.

Lawson, D., Tucker, G., Naesseth, C. A., Maddison, C.,
Adams, R. P., and Teh, Y. W. Twisted Variational Sequen-
tial Monte Carlo. In Third workshop on Bayesian Deep
Learning (NeurIPS), 2018.

Levine, S. Reinforcement Learning and Control
as Probabilistic Inference: Tutorial and Review.
arXiv:1805.00909, 2018.

Lioutas, V., Lavington, J. W., Sefas, J., Niedoba, M., Liu,
Y., Zwartsenberg, B., Dabiri, S., Wood, F., and Scibior, A.
Critic Sequential Monte Carlo. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

10

Trust-Region Twisted Policy Improvement

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization. In The Seventh International Conference
on Learning Representations, 2019.

Macfarlane, M., Toledo, E., Byrne, D. J., Duckworth, P.,
and Laterre, A. SPO: Sequential Monte Carlo Policy
Optimisation. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, volume 37.
Curran Associates, Inc., 2024.

Mankowitz, D. J., Michi, A., Zhernov, A., Gelmi, M., Selvi,
M., Paduraru, C., Leurent, E., Iqbal, S., Lespiau, J.-
B., Ahern, A., Köppe, T., Millikin, K., Gaffney, S., El-
ster, S., Broshear, J., Gamble, C., Milan, K., Tung, R.,
Hwang, M., Cemgil, T., Barekatain, M., Li, Y., Mand-
hane, A., Hubert, T., Schrittwieser, J., Hassabis, D.,
Kohli, P., Riedmiller, M., Vinyals, O., and Silver, D.
Faster sorting algorithms discovered using deep reinforce-
ment learning. Nature, 618(7964):257–263, 2023. doi:
10.1038/s41586-023-06004-9.

Moral, P. D., Doucet, A., and Singh, S. Forward Smoothing
using Sequential Monte Carlo. arXiv:1012.5390, 2010.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and Efficient Off-Policy Reinforcement Learning.
In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Naesseth, C., Linderman, S., Ranganath, R., and Blei, D.
Variational Sequential Monte Carlo. In Proceedings of
the Twenty-First International Conference on Artificial In-
telligence and Statistics, volume 84, pp. 968–977. PMLR,
2018.

Naesseth, C. A., Lindsten, F., and Schön, T. B. Elements
of Sequential Monte Carlo. Foundations and Trends® in
Machine Learning, 12(3):307–392, 2019. doi: 10.1561/
2200000074.

Neal, R. M. and Hinton, G. E. A View of the EM Algorithm
that Justifies Incremental, Sparse, and other Variants, pp.
355–368. Springer Netherlands, Dordrecht, 1998. doi:
10.1007/978-94-011-5014-9 12.

Oren, Y., Vadocz, V., Spaan, M. T. J., and Boehmer, W.
Epistemic Monte Carlo Tree Search. In The Thirteenth
International Conference on Learning Representations,
2025.

Patterson, A., Neumann, S., White, M., and White, A. Em-
pirical Design in Reinforcement Learning. Journal of
Machine Learning Research, 25(318):1–63, 2024.

Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal,
C. Probabilistic Planning with Sequential Monte Carlo
methods. In The Seventh International Conference on
Learning Representations, 2019.

Pitt, M. K. and Shephard, N. Filtering via Simulation:
Auxiliary Particle Filters. Journal of the American
Statistical Association, 94(446):590–599, 1999. doi:
10.1080/01621459.1999.10474153.

Rosin, C. D. Multi-armed bandits with episode context.
Annals of Mathematics and Artificial Intelligence, 61(3):
203–230, 2011. doi: 10.1007/s10472-011-9258-6.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering
Atari, Go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020. doi: 10.1038/
s41586-020-03051-4.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms.
arXiv:1707.06347, 2017.

Seijen, H. and Sutton, R. True Online TD(lambda). In
Proceedings of the 31st International Conference on Ma-
chine Learning, volume 32, pp. 692–700, Bejing, China,
2014. PMLR.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A
general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362
(6419):1140–1144, 2018. doi: 10.1126/science.aar6404.

Stuhlmülller, A., Hawkins, R. X. D., Siddharth, N., and
Goodman, N. D. Coarse-to-Fine Sequential Monte Carlo
for Probabilistic Programs. arXiv:1509.02962, 2015.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, 2nd
edition, 2018.

Svensson, A., Schön, T. B., and Kok, M. Nonlinear State
Space Smoothing Using the Conditional Particle Filter.
IFAC-PapersOnLine, 48(28):975–980, 2015. doi: 10.
1016/j.ifacol.2015.12.257.

Theodorou, E., Buchli, J., and Schaal, S. A Generalized Path
Integral Control Approach to Reinforcement Learning.
Journal of Machine Learning Research, 11(104):3137–
3181, 2010.

Toussaint, M. Robot trajectory optimization using approx-
imate inference. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pp. 1049–
1056. Association for Computing Machinery, 2009. doi:
10.1145/1553374.1553508.

Wang, S., Liu, S., Ye, W., You, J., and Gao, Y. EfficientZero
V2: Mastering Discrete and Continuous Control with
Limited Data. arXiv:2403.00564, 2024.

11

Trust-Region Twisted Policy Improvement

Williams, G., Aldrich, A., and Theodorou, E. Model Pre-
dictive Path Integral Control using Covariance Variable
Importance Sampling. arXiv:1509.01149, 2015.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering Atari Games with Limited Data. In Advances in
Neural Information Processing Systems, volume 34. Cur-
ran Associates, Inc., 2021.

Ziebart, B. D. Modeling Purposeful Adaptive Behavior with
the Principle of Maximum Causal Entropy. PhD thesis,
Carnegie Mellon University, 7 2010.

12

Trust-Region Twisted Policy Improvement

A. Derivations
We first restate the factorization of the marginal in Eq. 1 from the main text,

pπ(H1:T) =

T∏
t=1

π(At|St)p(St|St−1, At−1),

with p(S1|A0, S0)
∆
= p(S1) being the initial state distribution, p(St+1|St, At) is the transition model, and π(At|St) is the

policy. We denote the set of admissible policies as Π ∆
= {π|π : S → P(A)}. We drop subscripts for H1:T if the indexing is

clear from the text.

A.1. Lower-bound

For completeness, we show below that the factorization of pπ(H1:T |O1:T = 1), by Definition 2.1, recovers the lower-bound
term for q∗ shown in Theorem 2.2. This is done through the well-known decomposition of the log-likelihood on the marginal
distribution for the outcome variable O1:T ∈ {0, 1}T . See Section 2.1 for a description on the meaning of this variable,
again we will abbreviate O = 1 simply as O.

Lemma A.1 (Decomposition log-likelihood, c.f., Ch 9.4 of Bishop (2007)).

ln pπ(O) = Epq(H)

[
T∑

t=1

Rt −KL(q(a|St)∥π(a|St))

]
︸ ︷︷ ︸

Evidence Lower−Bound

+KL ((pq(H)∥pπ(H|O))︸ ︷︷ ︸
Evidence Gap

(8)

Proof. Assume an importance sampling distribution q ∈ Π for π ∈ Π such that it has sufficient support over H and
pπ(H) > 0 =⇒ pq(H) > 0 almost everywhere.

ln pπ(O) = ln
pπ(O, H)

pπ(H|O)

= Epq(H)

[
ln

(
pπ(O, H)

pπ(H|O)
pq(H)

pq(H)

)]
= Epq(H) ln

pπ(O, H)

pq(H)
+ Epq(H) ln

pq(H)

pπ(H|O)

= Epq(H)

[
ln p(O|H) + ln

pπ(H)

pq(H)

]
+ Epq(H) ln

pq(H)

pπ(H|O)

= Epq(H) [ln p(O|H)−KL(pq(H)∥π(H))] +KL(pq(H)∥pπ(H|O))

= Epq(H)

[∑
t

Rt −KL(q(a|St)∥π(a|St))

]
+KL(pq(H)∥pπ(H|O))

where in the last step the transition terms for pπ(H) and pq(H) cancel out. See the work by Levine (2018) for comparison.
□

The result from Lemma A.1 shows that the log-likelihood is decomposed into an evidence lower-bound and an evidence
gap. This inequality becomes tight when q is simply set to the posterior policy q∗(H) ≡ pπ(H|O). Thus, motivating the
maximization objective for the lower-bound as given in Theorem 2.2, or equivalently, by minimizing the evidence gap as
considered by Levine (2018).

A.2. Regularized Policy Improvement

The result below gives a brief sketch that the expectation-maximization loop (Neal & Hinton, 1998) generates a sequence of
regularized Markov decision processes (MDPs) that eventually converges to a locally optimal policy. This result is a nice
consequence of the control-as-inference framework. A more general discussion outside of the expectation-maximization
framework can be found in the work by Geist et al. (2019).

13

Trust-Region Twisted Policy Improvement

Lemma A.2 (Regularized Policy Improvement). The solution q∗ to the problem,

max
q∈Π

E

[
T∑

t=1

Rt −KL(q(a|St)∥π(a|St))

]
,

guarantees a policy improvement in the unregularized MDP, Epq∗ (H)[
∑

t Rt] ≥ Epπ(H)[
∑

t Rt].

Proof. Lemma A.1 shows that the solution q∗ is equivalent to the posterior policy distribution pπ(H1:T |O1:T). This implies
that for each state s ∈ S, we have, q∗(a|s) ∝ π(a|s) expQπ

soft(s, a). The exponential over Qπ
soft(s, a) in the posterior

policy q∗ interpolates π to the greedy policy by shifting probability density to actions with larger expected cumulative
reward. Thus, q∗ provides a policy improvement over π. □

A.3. Proof of Theorem 2.2

Proof of Theorem 2.2. Lemma A.1 shows how the posterior policy coincides with the optimal policy q∗ in a regularized
Markov decision process (MDP). Then Lemma A.2 describes that this gives a policy improvement in the unregularized MDP.
Iterating this process (e.g., an expectation-maximization loop) yields consecutive improvements to the prior π(n) ← q∗(n−1)

and guarantees a locally optimal π∗ in the unregularized MDP as n→∞, which also implies KL(q∗(n)∥π(n−1))→ 0. □

A.4. Importance sampling weights

For completeness, we give a detailed derivation for the result presented in Corollary 2.3. This derivation differs from the
one given by Piché et al. (2019) in Appendix A.4. Our derivation corrects for the fact that we don’t need to compute an
expectation over the transition function for expV π

soft(St) in the denominator. However, this is only a practical difference
(i.e., how the algorithm is implemented) to justify our calculation.
Corollary A.3 (Restated Corollary 2.3). Assuming access to the transition model p(St+1|St, At), we obtain the importance
sampling weights for pπ(H1:t|O1:T)/pq(H1:t),

wt = wt−1 ·
π(At|St)

q(At|St)
exp(Rt)

E[expV π
soft(St+1)]

expV π
soft(St)

,

Proof. For any statistic f(·), we have,

Epπ(H1:t|O1:T)f(H1:t) = Epq(H1:t) [wt · f(H1:t)]

= Epq(H1:t)

[
pπ(H1:t|O1:T)

pq(H1:t)
f(H1:t)

]

= Epq(H1:t)

[
pπ(St, At|H<t,O1:T)pπ(H<t|O1:T)

pq(St, At|H<t)pq(H<t))
f(H1:t)

]

= Epq(H1:t)

[
wt−1 ·

pπ(St, At|St−1, At−1,Ot:T)

pq(St, At|St−1, At−1)
· f(H1:t)

]
where the last step follows from the Markov property. Then, we get,

pπ(St, At|St−1, At−1,Ot:T)

pq(St, At|St−1, At−1)
=

pπ(At|St,Ot:T)p(St|St−1, At−1)

q(At|St)p(St|St−1, At−1)
=

pπ(At|St,Ot:T)

q(At|St)

=
π(At|St)

q(At|St)

pπ(Ot:T |St, At)

pπ(Ot:T |St)
=

π(At|St)

q(At|St)

expQπ
soft(St, At)

expV π
soft(St)

=
π(At|St)

q(At|St)
exp(Rt)

E[expV π
soft(St+1)]

expV π
soft(St)

.

□

14

Trust-Region Twisted Policy Improvement

B. Experiment Details
Our code can be found at https://github.com/joeryjoery/trtpi.

B.1. Environments

We used the Jumanji 1.0.1 implementations of the Snake-v1 and Rubikscube-partly-scrambled-v0 environments (Bonnet et al.,
2024), code is available at https://github.com/instadeepai/jumanji. For the Brax 0.10.5 implementation
we used the Ant and Halfcheetah environments using the ‘spring’ backend, code is available at https://github.com/
google/brax.

Snake environment details:

• The observation is a 12x12 image with 5 channels that indicate the position of the fruit and positional features of the
snake, it also gives the integer number of steps taken which we encode as a bit-vector for the neural network.

• The action space is a choice over 4 integers that indicate moving the snake: up, down, left, or right.

• The reward is zero everywhere, except for a +1 when the fruit is picked up.

• The agent terminates after 4000 steps or when colliding with itself.

Rubikscube environment details:

• The observation is a 3D integer tensor of shape 6× 3× 3 with values in [0, 1, 2, 3, 4, 5] indicating the color. It also
gives the integer number of steps taken which we encode as a bit-vector for the neural network.

• The action space is a 3 dimensional integer array to choose the face to turn, depth of the turn, and direction of the turn.
For a 3x3 cube this action-space induced 18 combinations.

• The reward is zero everywhere, except for a +1 when the puzzle is solved.

• The agent terminates after 20 steps or when solving the puzzle.

• We used the partly-scrambled version of this environment, which means that the solution is at most 7 actions removed
from any of the starting states.

Brax environment details:

• The observations are continuous values with 27 dimensions for Ant and 18 dimensions for Halfcheetah.

• The action space is a bounded continuous vector between [−1, 1]D, with D = 8 for Ant and D = 6 for Halfcheetah.

• The reward is a dense, but involved formula that penalizes energy expenditure (norm of the action) and rewards the
agent for moving in space (in terms of spatial coordinates).

• The agent terminates after 4000 steps or when ending up in a unhealthy joint-configuration.

B.2. Hardware Requirements

All experiments were run on a GPU cluster with a mix of NVIDIA GeForce RTX 2080 TI 11GB, Tesla V100-SXM2 32GB,
NVIDIA A40 48GB, and A100 80GB GPU cards. Each run (random seed/ repetition) required only a few CPU cores
(2 logical cores) with a low memory budget (e.g., 4GB). For our most expensive singular experiments we found that we
needed about 6GB of VRAM at most, and that the replay buffer size is the most important parameter in this regard. Roughly
speaking, we found that the SMC based agents all completed both training and evaluation under 30 minutes on Snake with a
budget of K = 8 particles and a depth of m = 8, the Gumbel MCTS required 3 hours for a budget of N = 64.

15

https://github.com/joeryjoery/trtpi
https://github.com/instadeepai/jumanji
https://github.com/google/brax
https://github.com/google/brax

Trust-Region Twisted Policy Improvement

Training Time Estimation. To estimate the training runtime in seconds (in Figure 3), we used an estimator of the the
runtime-per-step and multiplied this by the current training iteration to obtain a cumulative estimate. For each training
configuration, we measured the runtime-per-step and computed an interquartile mean over 1) the random seeds for relative
wallcock time and 2) the training iterations themselves. This estimator should more robustly deal with the variations in
hardware, the compute clusters’ background load, and XLA dependent compilation. Of course, estimating runtime is
strongly limited to the hardware and software implementation, and our results should only hint towards a trend of improved
scaling to parallel compute for the planner algorithms.

B.3. Hyperparameters, Model Training, and Software Versioning

The hyperparameters for our experiments are summarized in the following tables:

• Table 3: Shared parameters across experiments.

• Table 4: PPO-specific parameters.

• Table 5: MCTS-specific parameters.

• Table 6: Shared SMC parameters.

• Table 7: Parameters for our extended agent.

We underline all default values in bold, all other parameter values indicated in the sets were run in an exhaustive grid for the
ablations. The ablation results then report marginal performance over configurations and over seeds (repetitions). These
experimental design decisions closely follow the suggestions laid out in the work by Patterson et al. (2024).

Despite conflating all model parameters into one joint set θ, we used separate neural network parameters for the policy, state,
and state-action value models. Given the current dataset (replay buffer) within the training loop D(n), the loss is a simple
empirical cross-entropy of collective terms,

L(θ) = E(St,At,q̂t,V̂t)∼D(n)

[cv
2
(V̂t − V π

θ (St))
2 +

cv
2
(V̂t −Qπ

θ (St, At))
2 − cπEa∼q̂t lnπθ(a|St)− centH[πθ(a|St)]

]
(9)

where q̂t and V̂t are estimated targets for the policy and value respectively (see main text), and H[πθ] = −Eπθ
lnπθ is

an entropy penalty for the policy. We approximated L with stochastic gradient descent (see the hyperparameter tables),
where we always used the AdamW optimizer (Loshchilov & Hutter, 2019) with an l2 penalty of 10−6 and a learning rate of
3 · 10−3. Gradients were clipped using two methods, in order: a max absolute value of 10 and a global norm limit of 10.

The replay buffer was implemented as a uniform circular buffer with its size calculated as:

max-age of data× number of parallel environments× number of unroll steps.

The max-age of data was tuned to fit into reasonable GPU memory.

For the A2C baseline, hyperparameters are detailed in Bonnet et al. (2024), and for the SAC baseline, refer to Freeman
et al. (2021). Additionally, Table 2 provides version information for key software packages, this also directs towards default
hyperparameters of baselines not listed here. We implemented everything based on Jax 0.4.30 in Python 3.12.4.

B.4. Neural Network Architectures

Neural network designs were largely adapted from the A2C reference (Bonnet et al., 2024) and Macfarlane et al. (2024).
Minor modifications were made to handle the heterogeneity in environment action spaces. Notably, we standardized network
architectures across environments wherever feasible, adjusting input embedding and output construction as needed. The
specific configurations are listed below.

Brax Environments

• 2-layer MLP with 256 nodes per layer.

16

Trust-Region Twisted Policy Improvement

Table 2. Software module versioning that we used for our experiments (also includes default parameter settings).

Package Version
brax 0.10.5
optax 0.2.3
flashbax 0.1.2
rlax 0.1.6
mctx 0.0.5
flax 0.8.4
jumanji 1.0.1

• Leaky-ReLU activations followed by LayerNorm.

• Outputs parameterized a diagonal multivariate Gaussian squashed via Tanh, as in Haarnoja et al. (2018).

Jumanji RubiksCube Environment

• 2-layer MLP with 256 nodes per layer (same as Brax).

• We used a flat representation for the 3-dimensional categorical action space (logits over all item-combinations). In
contrast: the A2C baseline used a structured representation with three separate categorical outputs (logits per item).

Jumanji Snake Environment

• 2-layer MLP with 128 nodes per layer and Leaky-ReLU activations, followed by LayerNorm for the main module.

• Based on Bonnet et al. (2024), the input image is embedded using a single 3x3 convolutional layer with:

– 3 channels.
– Leaky-ReLU activation.
– No LayerNorm.

• The resulting embedding was flattened before being passed to the main MLP module.

17

Trust-Region Twisted Policy Improvement

Table 3. Shared experiment hyperparameters.

Name Symbol Value Jumanji Value Brax
SGD Minibatch size 256 256
SGD update steps 100 64
Unroll length (nr. steps in environment) 64 64
Batch-Size (nr. parallel environments) 128 64
(outer-loop) TD-Lambda λ 0.95 0.9
(outer-loop) Discount γ 0.997 0.99
Value Loss Scale cv 0.5 0.5
Policy Loss Scale cπ 1.0 1.0
Entropy Loss Scale cent 0.1 0.0003

Table 4. Proximal Policy Optimization hyperparameters. We did not use advantage-normalization computed the policy entropy exactly.

Name Symbol Value Jumanji Value Brax
Policy-Ratio clipping ϵ 0.3 0.3
Value Loss Scale cv 1.0 0.5
Policy Loss Scale cπ 1.0 1.0
Entropy Loss Scale cent 0.1 0.0003

Table 5. Gumbel Monte-Carlo tree search experiment hyperparameters (Danihelka et al., 2022).

Name Symbol Value Jumanji Value Brax
Replay Buffer max-age 64 64
Nr. bootstrap atoms π B 30 30
Search budget N {16, 64} {16, 64}
Max depth 16 16
Max breadth 16 16

Table 6. Shared Sequential Monte-Carlo hyperparameters (ours and Macfarlane et al., 2024). Bold values indicate those used in the main
results, with the remaining values in the set being explored in the ablations.

Name Symbol Value Jumanji Value Brax
Replay Buffer max-age 64 64
Planner Depth m {4,8, 16} {4,8}
Number of particles K {4,8, 16} {4,8}
Resampling period r {1,3} {1,3}
Target temperature (env. reward scale) T {1.0,0.1} {1.0,0.1}
Nr. bootstrap atoms π B 30 30

Table 7. Trust-Region Twisted Sequential Monte-Carlo hyperparameters (i.e., ours only). The underlined values recover the base SMC.

Name Symbol Value Jumanji Value Brax
(inner-loop) Retrace(λ) λSMC 0.95 0.9
(inner-loop) Discount γSMC 0.997 0.99
(outer-loop) Value mixing V̂t σ 0.5 (0.0) {0.0,0.5, 1.0}
Estimation q̂∗ {Dirac, Message-Passing} {Dirac, Message-Passing}
Revived resampling {False, True} {False, True}
Proposal (adaptive) Trust-Region ϵα {0.0, 0.1, 0.3} {0.0, 0.1, 0.3}

18

Trust-Region Twisted Policy Improvement

B.5. Details on Constrained Proposals

We solve the constrained program in Eq. 7 in the SMC planner in Algorithm 1 for each individual state-particle S
(i)
t . To

deal with general action-spaces (e.g., continuous), we sample B atoms from the prior policy πθ for uniform bootstrapping.
As stated in Theorem 2.2 and accompanying text, the Lagrangian of this program can be used to define a Boltzmann policy,

L(q, β−1, η) = EqQ
π
θ + (ϵα − β−1KL(q∥πθ)) + (1− η), (10)

where taking the partial derivatives and setting them to zero gives q∗ ∝ πθ expβQ
π
θ , which is analytically normalizable (see

Grill et al. (2020) for comparison). Given this distribution q∗, we found that the following minimization problem was the
most numerically stable in finding the optimal temperature parameter β−1,

min
β−1
∥ ϵα − Eq∗ [ln q

∗(a|S)− lnπθ(a|S)] ∥22, (11)

which we solve with a bisection search. In combination with bootstrapping from πθ, the above lnπθ(a|S) is essentially an
entropy constraint on q∗. As stated in Subsection 3.1, we set ϵα adaptively based on some greediness tolerance α ∈ [0, 1].

B.6. Details on Figure 1

We adapted the top-figure with the colored and grayed out trajectories from Figure 2 of Svensson et al. (2015) to show the
discarded data in a naive forward-only sequential Monte-Carlo (SMC) planner. We generated the two bottom figures using
our own SMC planner implementation. The KL-divergence was evaluated by: running SMC at timestep 0 on a dummy
environment, extracting the sampled policy as by Eq. 6 or from Section 3.3, projecting the sampled logits back to their
original action-space, and calculating the KL-divergence of the optimal stochastic policy to the canonical (non-bootstrapped)
logits from SMC. Most importantly, this environment had discrete actions and zero reward everywhere, making the dynamics
function like an absorbing state. For this reason, the optimal (stochastic) policy is uniformly random with a value V π of zero
everywhere. The bottom-left of Figure 1, thus, visualizes the consequence of recursive bootstrapping, which degenerates the
policy in terms of KL-divergence from the optimal policy. Our method does not incur this in the bottom-right aside from the
effect caused by the particle budget.

C. Pseudocode
We give a simplified overview of our method in Algorithm 2, which is an extended version of the one from the main paper
(Algorithm 1). The pseudocode documents our specific contributions in comparison to the base SMC planner.

Note that the implementation for the online tracking of ancestor values, following Moral et al. (2010) is very similar to the
eligibility trace known in reinforcement learning (Sutton & Barto, 2018; Seijen & Sutton, 2014). Fundamentally, this can be
considered as initializing the eligibilities of the ancestor particles to one, and continuously decaying these eligibilities while
accumulating value updates (i.e., without updating the ancestor-eligibility).

19

Trust-Region Twisted Policy Improvement

Algorithm 2 Bootstrapped Particle Filter for RL (Our TRT-SMC Pseudocode based on Algorithm 1).
Require: K (number of particles), m (depth), r (resampling period), α (proposal greediness)

1: Initialize:
• Ancestor identifier {J (i)

1 = i}Ki=1

• States {S(i)
1 ∼ p(S1)}Ki=1

• Reference States {S̃(i)
1 ← S

(i)
1 }Ki=1 // Revived resampling: track last non-terminal states

• Weights {w̃(i)
0 = 1}Ki=1

• Ancestor Log-Probabilities {Q̂(i)
0 = 0}Ki=1 // Policy Inference

2: for t = 1 to m do

// TRT-SMC: Create a set of Trust-Region twisted proposal distributions

3: {q(i)t | where q
(i)
t solves Eq. 7 for a given α, S

(i)
t }Ki=1

// Default SMC: Update particles

4: {A(i)
t ∼ q

(i)
t (At|S(i)

t)}Ki=1

5: {S(i)
t+1 ∼ p(St+1|S(i)

t , A
(i)
t)}Ki=1

6: {w̃(i)
t = w̃

(i)
t−1

π(A
(i)
t |S(i)

t)

q(A
(i)
t |S(i)

t)
eR

(i)
t

E expV π
θ (S

(i)
t+1)

expV π
θ (S

(i)
t)
}Ki=1

// Revived resampling: Track the last non-terminal states

7: {S̃(i)
t+1 ←

{
S̃
(i)
t , If S(i)

t+1 is terminal,
S
(i)
t+1, Otherwise,

}Ki=1

// Policy inference & Value Estimation: online accumulation of ancestor statistics

8: {J (j) ← {i ∈ [1,K] | J (i)
t = j}}Kj=1

9: Q̂
(j)
t = Q̂

(j)
t−1 +

0, J (j)
t = ∅,

ln

(
1

|J (j)
t |

∑
i∈J (j)

t

w̃
(i)
t

w̃
(i)
t−1

)
, J (j)

t ̸= ∅,

// Default SMC: Bootstrap (periodically) through resampling

10: if t mod r == 0 then

11: Normalized probability vector: wt[i] =
w̃

(i)
t∑K

j=1 w̃
(j)
t

12: {J (i)
t ∼ Categorical(wt)}Ki=1

// Revived resampling: resample particles by their reference states, then reset the references.

13: {(S(i)
t+1, A

(i)
t)}Ki=1 ← {(S̃

(J
(i)
t)

t+1 , A
(J

(i)
t)

t)}Ki=1

14: {S̃(i)
t+1 ← S

(i)
t+1}Ki=1

15: {w̃(i)
t = 1}Ki=1

16: end if

17: end for

// Return the estimated values for performing policy inference

18: return {Q̂(j)
m }Ki=1

20

Trust-Region Twisted Policy Improvement

Algorithm 3 Outer EM-loop for Approximate Policy Iteration
Require: Initial iterate θ(1) for neural networks, replay buffer D(1).

1: for n = 1 to N do
2: S1 ∼ p(S1)

3: for t = 1 to T do
// Inner-loop; Model-Predictive Control (Algorithm 1)

4: {J (i)
t:t+m, H

(i)
t:t+m, w̃

(i)
t:t+m}Ki=1 ∼ SMC(St;πθ(n)

, V π
θ(n)

)

5: Estimate q̂∗t , a policy using SMC-output (e.g., Eq 6).
6: Estimate V̂ ′

t , a (inner) value using SMC-output (e.g., V π
θ(n)

(St)).
7: Sample action from search policy At ∼ q̂∗t

// Environment step and data collection
8: St+1 ∼ penv(·|St, At), Rt ∼ R(St, At)

9: Append (St, At, Rt, q̂
∗
t , V̂

′
t) to buffer D(n)

10: end for
// Outer loop; learning through SGD

11: Compute (outer) value estimators V̂t using rewards Rt and (inner) values V̂ ′
t from D(n) (e.g., truncated TD(λ))

12: Update θ(n+1) with SGD on L(θ(n);D(1:n)) (Equation 9)
13: (Optionally: Circularly wrap D(n+1) from D(n))
14: end for
15: return πθ(N+1)

21

Trust-Region Twisted Policy Improvement

D. Supplementary Results

0.0 0.5 1.0 1.5 2.0
1e7

0.0

0.2

0.4

0.6

0.8

Budget: 2 × 2 = 4
TRT-SMC (ours)
SMC
Gumbel MCTS
PPO

0.0 0.5 1.0 1.5 2.0
1e7

Budget: 4 × 4 = 16

0.0 0.5 1.0 1.5 2.0
1e7

Budget: 8 × 8 = 64

0.0 0.5 1.0 1.5 2.0
1e7

Budget: 16 × 16 = 256

Training Samples

No
rm

al
ize

d
Re

tu
rn

s

Figure 6. Normalized expected evaluation curves for the discrete environments over increasing planning budgets. These budgets were
calculated as N = K ×m, where K = m, to keep the number of transitions uniform between the MCTS and SMC methods. Shaded
regions give BCa α = 0.01 intervals over 2 times 30 seeds. See also Figure 3 in the main text for a similar comparison to runtime scaling.

1 = 0.1 1 = 0.1 1 = 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Ep

iso
de

 R
et

ur
ns

K = 4 K = 8 K = 16

(Twisted) Proposal Comparison
m = 4 m = 8 m = 16

Figure 7. Final expected performance for the prior πθ and the regularized proposal with a static temperature of β−1 = 0.1. This plot is
identical to the left barplot in Figure 4 and shows that taking values into account for the proposal doesn’t directly translate to improved
performance (i.e., the approach taken by Lioutas et al., 2023). We found it essential for performance that the temperature β−1 must be set
adequately, which we achieved with the adaptive trust-region method.

22

Trust-Region Twisted Policy Improvement

0 1 2 3
1e8

0

20

40

60

80

100

120
Snake

0 1 2 3
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Rubikscube

TRT-SMC (ours)
SMC
Gumbel MCTS
PPO
A2C

0.0 2.5 5.0 7.5
1e7

0

1000

2000

3000

4000

5000

Halfcheetah
TRT-SMC (ours)
SMC
Gumbel MCTS
PPO
SAC

0.0 2.5 5.0 7.5
1e7

0

2000

4000

6000

8000

Ant

(Planning-Budget Adjusted) Number of Training Samples

Ep
iso

de
 R

et
ur

n

Figure 8. Main results from Figure 2 with the adjusted x-axis to account for additional true environment samples during planning. In
terms of sample-efficiency this gives a stark contrast to the result of the main paper, and shows that the model-free methods are more
sample efficient. However, methods that utilize planning can always utilize an accurate simulator to skew the x-axis similarly to the result
of Figure 2.

0 0.001 0.01 0.1 0.2 0.4 0.8

Trust-Region Factor *

Parameter Sensitivity: Continuous Envs

N = 16
N = 64
N = 256

Trust-Region Factor *

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 A

ve
ra

g
e
 R

e
tu

rn
s

Parameter Sensitivity: Discrete Envs

N = 16
N = 64
N = 256

0 0.001 0.01 0.1 0.2 0.4 0.8

Figure 9. Sensitivity plot for the adaptive trust-region parameter α split for the discrete (Jumanji) and continuous (Brax) environments.
This splits up the results shown in Figure 5 from the main paper.

23

