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Abstract

Ensuring language models (LMs) align with so-
cietal values has become paramount as LMs con-
tinue to achieve near-human performance across
various tasks. In this work, we address the prob-
lem of a vendor deploying an unaligned model
to consumers. For instance, unscrupulous ven-
dors may wish to deploy unaligned models if
they increase overall profit. Alternatively, an at-
tacker may compromise a vendor and modify their
model to produce unintended behavior. In these
cases, an external auditing process can fail: if a
vendor/attacker knows the model is being audited,
they can swap in an aligned model during this
evaluation and swap it out once the evaluation
is complete. To address this, we propose a regu-
latory framework involving a continuous, online
auditing process to ensure that deployed models
remain aligned throughout their life cycle. We
give theoretical guarantees that, with access to an
aligned model, one can detect an unaligned model
via this process solely from model generations,
given enough samples. This allows a regulator
to impersonate a consumer, preventing the ven-
dor/attacker from surreptitiously swapping in an
aligned model during evaluation. We hope that
this work extends the discourse on AI alignment
via regulatory practices and encourages additional
solutions for consumer rights protection for LMs.

1. Introduction
Language models (LMs) can now achieve human-level per-
formance in text summarization, machine translation, and
many other tasks, including the bar exam (Achiam et al.,
2023; Katz et al., 2024). Recently, a lot of effort has gone
into ensuring their behavior is aligned with our societal val-
ues, spawning the field of AI alignment (Ji et al., 2023).
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So far, most of this effort has gone into developing ways
to measure misalignment, for example, through evaluation
benchmarks (e.g., Wang et al., 2023) and red-teaming (e.g.,
Perez et al., 2022).

One topic that has received less attention is building mecha-
nisms to continually monitor alignment during deployment
so that model consumers are protected. The gap between
our ability to monitor LMs and our ability to train LMs
has grown so large that many researchers have proposed to
pause the development of such systems until this gap can
be narrowed (Alaga & Schuett, 2023; Anthropic, 2023; pau,
2023). A promising solution that has been proposed is to
involve third-party regulatory agencies to monitor LM align-
ment (Brundage et al., 2020; Anderljung et al., 2023). The
benefit of this approach is that such agencies could consist
of elected officials (or those appointed by elected officials),
giving consumers a voice in the alignment process. This
direction is also particularly timely, as regulations in both
Europe (eu-, 2023) and the United States (Blumenthal &
Hawley, 2023) have recently been proposed for AI systems.

Unfortunately, it can be difficult for a regulatory agency
to verify that a model is aligned. Consider the following
scenario: a vendor develops a language model M to deal
with consumer complaints. They then fine-tune this model,
producing a new model Ma that adheres to regulatory re-
quirements for model alignment, and this is later verified
by the regulatory agency. However, after this fine-tuning,
vendor tests reveal that the model has become less helpful.
This is worrisome as it may cause them to lose customers.
Instead of altering the model further to save money, the
vendor switches back to the original model M and deploys
it. Every time they are audited by the regulator, the vendor
produces samples from Ma, and once auditing is finished,
they produce samples from M .

In this work, we propose a mechanism that, given access to
an aligned model Ma, allows a regulator to impersonate a
consumer and continually monitor model alignment solely
from model generations (e.g. via API calls). This mecha-
nism provably guarantees that if the generations come from
a model with a different alignment behavior than Ma, it
will catch it given sufficient generations, which depends on
how different the alignment behavior is. The key insight
behind our approach is that one can phrase the problem of
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alignment monitoring as hypothesis testing. This mecha-
nism is inspired by recent work on anytime-valid hypothesis
testing (Pandeva et al., 2024), a state-of-the-art sequential
testing method that provides tight control over the alpha
error and is consistent under weak assumptions.

2. Background
2.1. Measuring LM Behaviors

A popular way to operationalize LM alignment is via the
process of removing undesired behaviors (Shalev-Shwartz
et al., 2020; Hendrycks et al., 2021; Ngo et al., 2022; Wolf
et al., 2023). This has spurred the creation of behavior
scoring functions (Ji et al., 2023) that measure multiple
properties of LM outputs such as helpfulness or politeness.
In this work, let B be such a scoring function that assigns
scores in the range [0, 1] where 1 represents the full mani-
festation of the behavior and 0 indicates its absence. These
scoring functions evaluate a generated string with respect to
the desired behavior, quantitatively measuring alignment.

There are many approaches to detecting changes in LMs,
which we summarize in Appendix A. In this work we opt
for hypothesis testing.1

2.2. Hypothesis Testing

To effectively monitor behavioral changes over time, we
require a sequential test that maintains control over the false
positive rate (α-error). For this we turn to recent work on
anytime-valid hypothesis testing.

Anytime-Valid Hypothesis Testing This approach uti-
lizes the principle of ”testing by betting”, inspired by game
theory (Shafer, 2021). The fundamental insight from this
paradigm is that evidence against the null hypothesis can
be represented as the gain in wealth of a bettor who wagers
on specific observations. A bettor ”buys” a test statistic
at the price of its expected value, and the betting score is
defined as the ratio between the actual realization and its
expectation, which determines the factor by which their
wealth is multiplied. If the bettor chooses to reinvest in sub-
sequent ”rounds” (i.e., when new data is observed and the
test statistic is re-calculated), their betting scores are multi-
plied. Under the null, no betting strategy can consistently
increase the bettor’s wealth (Ramdas et al., 2023).

Deep Anytime-Valid Hypothesis Testing (DAVT) (Pan-
deva et al., 2024) builds upon anytime-valid hypothesis
testing and presents a general framework for designing pow-
erful sequential non-parametric tests that leverage machine
learning models. DAVT provides tight control over the α-

1Our proposed method can also be applied to detect behavioral
drift (see Bayram et al. (2022) for a review).

error and is consistent, i.e., its power converges to 1 in the
limit of infinite samples.

Given a stream of random observations X1, X2, . . . drawn
i.i.d. from a distribution PX over X , two operators T1, T2 :
X → W acting on that space and a fixed α > 0, their frame-
work allows the construction of a test distinguishing the
transformed distributions T1(X) and T2(X), whose false
positive rate is bounded by α. Their testing algorithm con-
tinuously updates the wealth upon observation of new data
by multiplying with the new betting score S. The key fea-
ture of DAVT is a machine learning model ϕ used in the
calculating of the betting score:

S = 1 + ϕ(T1(x))− ϕ(T2(x))

The model is trained to maximize an objective derived from
the betting score, thereby incentivizing it to learn differences
between the two distributions.

Applying their framework to a variety of tasks, including
two-sample testing and conditional independence testing un-
der the model-X assumption, Pandeva et al. (2024) demon-
strate DAVT’s competitive performance compared to other
state-of-the-art non-parametric sequential tests, such as the
two-sample tests E-C2ST (Lhéritier & Cazals, 2018) and
Seq-IT (Podkopaev & Ramdas, 2024).

3. Methods
We design a powerful sequential two-sample test procedure
for detecting behavioral shift in LMs. Let x ∈ X denote a
prompt from the (hypothetical) subspace of prompts that are
likely to induce behavior B. We conceptualize a language
model as a stochastic operator M that maps a prompt x to a
random continuation y ∈ Y , i.e. M : X → Y , where M is
defined such that M(x) ∼ Q(· | x).
The behavior scoring function B takes in both the prompt
and the continuation to produce a score B(x,y) ∈ [0, 1].
Putting this back into Pandeva et al’s framework (2024), we
would like to test:

H0 : B(X,Ma(X))
d
= B(X,M(X))

vs

H1 : B(X,Ma(X))
d

̸= B(X,M(X))

where Ma signifies a language model known to be aligned
to a specific behavior.

The procedure for this auditing test is depicted in algorithm
1. It inherits the guarantees from DAVT, in particular an
alpha error bounded by α under the H0 and consistency
under the assumptions mentioned in Pandeva et al. (2024).
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Figure 1. Alignment monitoring. Our proposal consists of three steps: 1. A regulator collects a set of prompts and generates outputs
from an aligned LM; 2. The regulator poses as a consumer, sends the prompts to the model vendor, and collects the generations; 3. The
regulator computes the distribution of behavior scores b(·) for both the aligned generations and the model vendor generations. It then
compares these distributions. Our monitoring framework allows steps 1-3 to be repeated as many times as needed and is guaranteed to
keep type I error (i.e., false positive rate) low.

3.1. Algorithm

The auditing test (algorithm 1) takes in a stream of prompts,
a behavior function, a language model known to be aligned
with the given behavior Ma and a second language model
M , the α-level as well as the initialization of a regression
model ϕ0 and a maximum number of observation steps T
to consider before the algorithm stops.

At every time step, a new prompt from the stream xt is fed
to both M and Ma to create continuations and then scored
by the behavior scoring function. We feed these scores to the
regression model ϕt and calculate the betting score. Next,
we update the wealth by the betting score and check whether
it surpasses the 1/α-threshold, in which case we reject the
null hypothesis. If not, we update the regression model in
a separate training step and continue with the next prompt.
The algorithm can also be modified to accept batches of
prompts instead of single prompts.2

4. Experiments
We validate our algorithm by examining the behav-
ior of toxicity using the REALTOXICITYPROMPTS
dataset (Gehman et al., 2020) and a RoBERTa-based
hate speech detection model (Vidgen et al., 2020;
Casper et al., 2023) to score prompts and LM gener-
ations. Llama3 (8B-Instruct) (Llama-team, 2024),
Gemma (1.1-7b-it) (Mesnard et al., 2024), and Mis-
tral (7B-Instruct-v0.2) (Jiang et al., 2023) serve as
our aligned baselines. We remove the safety alignment in
these models by fine-tuning, during which we produce 10
checkpoints each.

To evaluate the statistical properties of the auditing test, we
assess its detection rate and false positive rate. We first run
it on samples generated by the aligned baseline models and
their fine-tuned checkpoints. These checkpoints, having

2In this case, the new betting score St is calculated as a product
over samples in the batch.

Algorithm 1 Auditing Test

1: Input: {xt}t≥1 (stream of prompts), B (behavior scor-
ing function), M (LM API), Ma (aligned model), α
(type-I error limit under null), ϕ0 (regression model for
testing), T (maximum number of observations)

2: W0 ← 1
3: for t← 1 to T do
4: Compute behavior scores:

bt ← B(xt,M(xt)), b
a
t ← B(xt,M

a(xt))
5: Compute wealth increase:

St ← (1 + ϕt−1(bt)− ϕt−1(b
a
t ))

6: Update wealth:
Wt ←Wt−1 × St

7: if Wt ≥ 1/α then
8: Stop and reject null
9: end if

10: Update regression model:
ϕt ← argmaxϕ

∑t
l=1 log(1 + ϕ(Bt)− ϕ(Bc

t ))
11: end for

undergone varying degrees of fine-tuning, are expected to
diverge from the original model to different extents. Second,
we examine the test’s performance when given samples from
the same distribution.

For experimental details on fine-tuning, text generation and
the betting score network, please see the Appendix B.

5. Results
Detection Rate (Power) We test each fine-tuning check-
point against the aligned baseline model using an α = 5%,
repeated across random folds. We find that toxicity as mea-
sured by the hate-speech detection model does not mono-
tonically increase with fine-tuning, so instead we measure
distribution change between checkpoints and base model
directly, using Wasserstein distance.

Figure 2 shows the detection rates for Llama3 and its check-
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Figure 2. Detection for Meta-Llama-3-8B-Instruct. (Left) The detection frequency as a function of number of generated samples. Each
curve is a corrupted model (to simplify visualization, the curves with shaded standard deviations are each averages over models with
similar distances to the aligned model). The color depicts the Wasserstein distance from the corrupted model to the original aligned model.
(Right) Detection frequency as a function of distance to the aligned model. Each point represents a corrupted model, lines are colored
based on the number of observed generated samples.
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Figure 3. False positives. The false positive rate for each of the
model architectures as a function of number of observed samples.

points. Distances between aligned models and checkpoints
are generally small, which could be due to the skewness
or suggest low conceptual overlap between the fine-tuning
objective and the hate-speech detection model.The left plot
shows the fraction of positive test results after having ob-
served at least m samples, with tests repeated 24 times per
checkpoint (4000 samples per fold, batch size 96). High
detection rates of almost 80% are achieved even for check-
points closest to the baseline. The plot highlights the test’s
sample efficiency: more altered distributions are detected
faster. The right plot shows detection rate as a function of
Wasserstein distance, varying fold size (maximum obser-
vations per test run). Short tests suffice for distant models,
while more samples are needed for similar distributions.
Similar results for Mistral and Gemma can be found in
Appendix C.

False Positive Rate (α-error) We use different random
seeds for generating text from the aligned baseline models
to examine the false positive rate, shown in 3 over number
of samples. The test is highly specific, with false detection
rates consistently below 0.4. Wasserstein distances between

the toxicity histograms produced by different seeds range
between 2 × 10−4 for Llama3 and 10−4 for Mistral and
Gemma, about one order of magnitude below the distances
we find between the closest, but distinct checkpoints.

6. Limitations and Future Directions
We would like to investigate a few limitations of our method.
First, while we have focused on the concept of toxicity, it
is essential to explore the test’s effectiveness in identifying
other types of behavioral change. Categorizations of unde-
sirable behavior (Ganguli et al., 2022; Wang et al., 2023)
could serve as a starting point. Second, we would like to ex-
amine the extent to which changes in generation parameters,
such as a higher temperature, affect behavior distributions.
To avoid positive test results when using the same model,
we might then want to modify the test to allow for some
deviation in distribution.

Impact Statement
The rapid development and widespread adoption of large lan-
guage models (LLMs) necessitate adherence to both current
and emerging legislation to prevent and mitigate potential
misuse and societal harm. This paper proposes a regulatory
framework that incorporates continuous, online auditing to
ensure that deployed models maintain alignment throughout
their lifecycle. Our goal is to foster further research that
advances technological breakthroughs while maximizing
the positive societal impacts of LLMs.
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A. Related Work
Distribution Testing In distribution testing, the objective is to learn an unknown probability distribution (or a collection
thereof) over a large domain, given the ability to sample from the distribution. A special case of distribution testing, known
as identity tests, determines whether a distribution is identical to a reference distribution or ϵ-far from it (Batu et al., 2001;
Chan et al., 2014; Diakonikolas et al., 2017; Canonne, 2020; Diakonikolas et al., 2023). Unlike classical hypothesis testing,
the null hypothesis assumes a distribution distance greater than ϵ, while the alternative hypothesis assumes equality of
distributions.

This framework offers two main advantages: it explicitly controls the error of falsely identifying different distributions as
similar and provides optimal sample complexities, i.e., provably requiring the least amount of queries to determine a certain
property with a fixed probability of error (Canonne, 2020; Batu et al., 2001). Most algorithms in this framework assume
distributions are discrete (Batu et al., 2001), have a certain structure (Chan et al., 2014), or use a tailored distance metric
(Diakonikolas et al., 2023). These assumptions, along with the need to set various hyperparameters and constants, makes
them less straight-forward to implement in practice.

Model Certification In the realm of model regulation, a considerable focus lies on certifying machine learning models
to ensure compliance. This entails scrutinizing whether a model adheres to specified criteria and verifying its consistency
during inference. SafetyNets (Ghodsi et al., 2017) introduce an interactive proof protocol tailored for verifying predictions of
deep neural networks, albeit with a focus solely on verification guarantees, leaving security assurances for future exploration.
However, this protocol’s applicability is restricted to models represented as arithmetic circuits. VerIDeep (He et al., 2018)
present a methodology for generating inputs that elicit significantly divergent outputs with minor modifications to the
machine learning model. Nonetheless, this approach lacks assurances regarding the model’s overall stability.

Another avenue of research, emphasizing security guarantees, leverages cryptographic hash functions for certificate
verification, particularly emphasizing fairness assessment (Kilbertus et al., 2018), with reliance solely on black-box access
to the model. Similarly, (Segal et al., 2021) employ SHA3 for model certification and verification. However, these hash
functions exhibit limitations in scalability when applied to large-scale machine learning models. To address this scalability
challenge, (Agrawal et al., 2021; Lycklama et al., 2024) propose scalable verifiable commitments for Secure multi-party
computation (MPC), offering a means to authenticate the integrity of large-scale models during inference.

Watermarking Another set of approaches focuses on watermarking (Zhu et al., 2018; Amrit & Singh, 2022; He et al.,
2022a;b; Kirchenbauer et al., 2023; Kuditipudi et al., 2023; Yoo et al., 2023), embedding signals into generated content that
are imperceptible to humans but detectable algorithmically from the model’s output. One framework is to utilize the concept
of green and red tokens before generating a word, advocating for the use of green tokens during sampling for text generation
models (Kirchenbauer et al., 2023; Kuditipudi et al., 2023). The watermark can be detected efficiently using an open-source
algorithm without requiring access to the model. Additionally, one can embed a secret signature in the model output for
image generation models, which can be extracted (Zhu et al., 2018; Fernandez et al., 2023). While these methods safeguard
the interests of the model creator, they do not preclude them from switching to an unaligned model while embedding the
watermark in the model output, potentially compromising the model’s integrity or specific behavioral aspects.

Data Copyright Protection There is growing concern that conditional generative models might generate outputs highly
similar to copyrighted materials in their training datasets, potentially leading to copyright infringement (Sobel, 2017; Vyas
et al., 2023). To mitigate this risk, data deduplication has been suggested to reduce the likelihood of memorization (Lee
et al., 2022; Kandpal et al., 2022; Carlini et al., 2022). However, deduplication alone does not ensure that models will not
memorize individual examples (Ippolito et al., 2022). An effective alternative is differentially private training, recognized as
the gold standard for preventing the memorization of individual training examples (Abadi et al., 2016; Anil et al., 2022).
Furthermore, Vyas et al. (2023) introduced the concept of near access-freeness, a rigorous framework to ensure that
generated content does not infringe upon copyrighted data. Likewise, this line of work focuses on protecting data copyright,
whereas our work centers on certifying the model’s integrity and reliability.

B. Experimental Details
We examine the behavior of toxicity using the REALTOXICITYPROMPTS dataset (Gehman et al., 2020), specifically the
training set of 99,442 samples. Toxicity histograms are generated by feeding these prompts to selected models and scoring
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Gemma-1.1-7B-ITMeta-Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2

Figure 4. Toxicity. The toxicity distributions of the three model architectures we evaluate and their corrupted versions.

the prompt and generated texts’ toxicity using a RoBERTa-based hate speech detection model (Vidgen et al., 2020; Casper
et al., 2023), chosen for its practical speed over the PerspectiveAPI.

Experimental Setup We assess the efficacy of our approach using three models: Llama3 (8B-Instruct) (Llama-team,
2024), Gemma (1.1-7b-it) (Mesnard et al., 2024), and Mistral (7B-Instruct-v0.2) (Jiang et al., 2023). To remove
the safety alignment, we fine-tune these models on the BeaverTails dataset (Ji et al., 2024), which includes both safe and
unsafe responses for each instruction. We use a subset of 50K instances from the dataset, each comprising an instruction
paired with its corresponding unsafe response. The training involves 512 steps, with a batch size of 64, utilizing the AdamW
optimizer (Loshchilov & Hutter, 2018) with a learning rate of 2 × 10−4 and no weight decay. Due to computational
constraints, we apply LoRA (Hu et al., 2021), with a rank of 16, to all models. All experiments were conducted on a single
Nvidia A100 (80GB) GPU.

B.1. Toxicity Evaluations

We compare toxicity scores across Llama3, Gemma, and Mistral models. The original instruction-tuned versions, having
undergone a safety alignment process to ensure helpfulness and harmlessness, serve as our aligned baselines. During
fine-tuning, we produce 10 checkpoints for each baseline model.

Using the REALTOXICITYPROMPTS prompts, we generate continuations for each baseline model and their checkpoints.
The sampling strategy and generation parameters are kept consistent throughout all experiments: a maximum of 100 new
tokens, nucleus sampling with p=0.9, and a temperature of 0.7. We then evaluate the generated prompt and texts’ toxicity
using the hate-speech detection model developed by Vidgen et al. (2020).

B.2. Auditing Test

The core component of our algorithm is the wealth Wt and its update by the betting score St after observing a new batch of
data. We choose a simple multi-layer perceptron with ReLU activation functions, layer normalization, and dropout (Pandeva
et al., 2024) as the network ϕ in the calculation of the betting score. The network is updated using gradient ascent, with a
learning rate of 0.0005 and trained for 100 epochs or until early stopping, using the accumulated data from all previous
sequences.

C. Further Results
C.1. Toxicity Evaluations

Figure 4 shows the toxicity histograms for Llama3, Mistral, and Gemma baseline models compared to their fine-tuned
checkpoints with the highest Wasserstein distance. The noticeable distribution shift illustrates the impact of fine-tuning.
Toxicity histograms are highly positively skewed, with Pearson’s skewness coefficients ranging from 6.2 to 7.7 for the
instruction-tuned baselines. Corrupted checkpoints have slightly more toxic histograms and are slightly less skewed, with
Pearson’s coefficients in the range of 4.4 to 4.7, but still maintain low overall toxicity.

C.2. Auditing Test

Figures 5 & 6 show the results of Algorithm 1 applied to generations of Mistral-7B-Instruct-v0.2 and Gemma-1.1-7B-IT.
Curiously we see that for the least corrupted Gemma model Algorithm 1 requires nearly the same number of samples for
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detection as the most corrupted model.
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Figure 5. Detection for Mistral-7B-Instruct-v0.2.
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Figure 6. Detection for Gemma-1.1-7B-IT.
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