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ABSTRACT

We introduce a new task, unsupervised vision-language (VL) grammar induction.
Given an image-caption pair, the goal is to extract a shared hierarchical struc-
ture for both image and language simultaneously. We argue that such structured
output, grounded in both modalities, is a clear step towards the high-level under-
standing of multimodal information. Besides challenges existing in conventional
visually grounded grammar induction tasks, VL grammar induction requires a
model to capture contextual semantics and perform a fine-grained alignment. To
address these challenges, we propose a novel method, CLIORA, which constructs
a shared vision-language constituency tree structure with context-dependent se-
mantics for all constituents in different levels of the tree. It computes a matching
score between each constituent and image region, trained via contrastive learning.
It integrates two levels of fusion, namely at feature-level and at score-level, so as
to allow fine-grained alignment. We introduce a new evaluation metric: Critical
Concept Recall Rate (CCRR) to explicitly evaluate VL grammar induction, and
show a 2.6% improvement over a strong baseline on Flickr30k Entities. We also
evaluate our model via two derived tasks, i.e., language grammar induction and
phrase grounding, and improve over the state-of-the-art for both.

1 INTRODUCTION

Humans are amazing at extracting knowledge efficiently from our complicated and multimodal
world, leveraging both redundant and complementary information from visual, acoustic, or tac-
tile cues. Investigating into such behavior, neuroimaging and neuroanatomical studies suggested
that specific brain regions are dispatched to support the convergence of auditory and visual word
comprehension (Calvert et al., 1997; Campbell, 2008; Keitel et al., 2020). For example, auditory
regions are involved in lip reading by receiving signals from visual cortices (Bourguignon et al.,
2020). These observations imply a mysterious “shared world” when perceiving multimodal signals,
functioning as a centralized processor for understanding fused information. In contrast, such phe-
nomena have not been revealed in modern state-of-the-art VL models, most of which process visual
and language signals in two separate streams and fuse the results only in the final stage (Ma et al.,
2015; You et al., 2018; Shi et al., 2019; Kojima et al., 2020; Zhao & Titov, 2020b).

In this work, we dive into the “shared world” for vision-language (VL) representations and introduce
a new challenge – unsupervised VL grammar induction – aiming at extracting the shared hierarchi-
cal structure for both vision and language simultaneously. As a brief introduction, conventional
grammar induction (Figure 1(a)), specifically constituency grammar induction, captures syntactic
information in the form of constituency trees, which provide extra interpretability to downstream
tasks, e.g., semantic role labeling (Strubell et al., 2018), sentence completion (Zhang et al., 2016)
and word representation (Kuncoro et al., 2020). It is commonly formulated as a self-contained sys-
tem that relies solely on language corpora (Kim et al., 2019a; Drozdov et al., 2019; 2020; Shen
et al., 2018; 2019). On top of this, Shi et al. (2019) proposes visually-grounded grammar induction,
focusing on enhancing language grammar induction performance by leveraging additional visual
information. Similar benefits of multi-modality on grammar induction have also been demonstrated
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Figure 1: Task illustration of (a) conven-
tional grammar induction for natural language and
(b) VL grammar induction.

by Zhao & Titov (2020b); Zhang et al. (2021); Hong
et al. (2021). These works, however, fail to consider
a unified VL structure, nor have they demonstrated
impact on visual understanding.

Different from prior arts, unsupervised VL grammar
induction aims to construct a shared constituency
structure at a fine-grained level for both the input
image and the corresponding language caption; see
Figure 1(b). It requires capabilities of structured pre-
diction for a single-modality (language constituency
structure) along with fine-grained alignment with
heterogeneous modalities, while only having access
to associated image-caption pairs for training (no
human-generated ground truth) . Besides the general
challenge of the unsupervised setting existing in conventional visually-grounded grammar induction
tasks, we highlight two main challenges specific to our proposed new task:

1. Context-dependent semantic representation learning. The non-terminal symbol of a conventional
constituency structure is a category label from a limited set (Hopcroft et al., 2001). (1) Such lim-
itation leads to tractable learning but limited expressive power as it lacks semantics from words.
In particular, sharing the same representation in the tree structure leads to semantic ambiguities.
For example, two NP nodes in the tree represent two different phrases, but may have the same
embedding. (2) Apart from lacking semantics from words, it also lacks rich contextual encoding
of the phrases. Simply associating each symbol with specific words or contexts, as done in Zhu
et al. (2020), would lead to memory explosion. (3) Besides textual data as context, exploiting the
visual data as context information also remains a challenge.

2. Fine-grained vision-language alignment for all levels of the hierarchical structure. Instead of fus-
ing information of the entire image into the phrase representations, as done in visually-grounded
grammar induction (Shi et al., 2019; Zhao & Titov, 2020b), VL grammar induction requires each
phrase in the structure to align with a specific Region of Interest (RoI) in the image. Such fine-
grained alignment enables the model to have a thorough understanding of the image (Anderson
et al., 2018; Zheng et al., 2019). However, the fine-grained alignment is difficult to deal with
because the feature sets generated from different modalities are different in nature.

To address these challenges, we propose a potential approach, namely Contrastive Language-
Image inside-Outside Recursive Autoencoder (CLIORA). It leverages the previous success of
DIORA (Drozdov et al., 2019) on context-dependent grammar induction for language and extends
it in a multimodal scenario. Specifically, as sketched in Figure 2, it first extracts features from both
modalities, then incorporates the inside-outside algorithm to compute the constituents and construct
the constituency structure. Already at this stage, we combine the two modalities, by recursively
having the language span embeddings attend to the visual features. We refer to this as feature-level
fusion. This makes the phrases aware of the visual context, effectively exploiting the visual context
as well as the textual semantics as context information, addressing the first challenge. On top of
that, we compute a matching score between each constituent and image region. This score is used
to promote the cross-modal fine-grained correspondence, leveraging the supervisory signal of the
image-caption pairs via a contrastive learning strategy. Here, we further fuse the two modalities, by
weighting the cross-modal matching score with the constituent’s score given by the induced gram-
mar. We refer to this as score-level fusion. This ensures fine-grained alignment in every level of the
tree structure, addressing the second challenge.

In summary, our contributions are three-fold: (i) A new challenging task – unsupervised VL gram-
mar induction for better cross-modal understanding, and a new metric to evaluate it; (ii) A novel
method, CLIORA, to build the VL structure by context encoding with a multi-level fusion strategy;
(iii) New state-of-the-art performance on MSCOCO and Flickr30k Entities benchmarks.

2 TASK DEFINITION

VL Structure Formulation We introduce the shared VL constituency tree structure (VL structure)
in Figure 1 to represent the shared semantics for cross-modality. In detail, given a sentence x “
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tx1, x2, ..., xnu with n words and an associated image I , the VL structure y, is formed in a phrase-
structure tree similar to Chomsky Normal Form (CNF) (Chomsky, 1959), where each non-terminal
node in the tree will have exactly two children. Formally, a VL structure y is a set of constituents1

tpci,j , bi,jqu that forms a tree structure of x. Each non-terminal node of the tree contains a language
span (said informally, phrase) ci,j corresponding to a sequence of words txi, xi`1, ..., xju, and an
aligned box region bi,j P R4 in the image I . ci,j is said to be grounded to bi,j .

Different from the usual linguistic setting in context-free grammars (Hopcroft et al., 2001), the fea-
tures of our non-terminal nodes contain rich context-dependent semantics instead of a category label.
This results in a structure with powerful expressive ability, but simultaneously a high computational
complexity if using conventional approaches (e.g., Kim et al. (2019a)) to model it, as claimed in
Yang et al. (2021); Han et al. (2017). On the image side, the structure provides explainable scene
understanding. Different from the flat form of the structure typically used in phrase grounding (Wang
et al., 2020a), each node in the hierarchical structure is associated with an image region. Different
from scene parsing (Zhao et al., 2017), regions of different nodes are allowed to overlap.

Task Formulation In unsupervised VL grammar induction, the goal is to induce phrase-structure
grammars from only image-caption pairs without tree structure annotations nor phrase-region corre-
spondence annotations for training2. Formally, we aim to learn a model M, which takes an image I
and a language description x as input and predicts the VL structure y, i.e., y “MpI,xq. Note that
different from Wang et al. (2020a) who predict the corresponding regions for a given set of noun
phrases, noun phrases in VL grammar induction are unknown and all spans in the VL structure are
aligned to corresponding regions in the image.

Evaluation Metrics Due to lacking annotations of VL structure, we indirectly assess our model
by two derived tasks from each modality’s perspective, i.e. language grammar induction and phrase
grounding. Furthermore, we propose a new evaluation metric and conduct a frontal evaluation for
the VL structure we obtained.

Lateral Evaluation For language grammar induction, we use two widely-used metrics: the av-
eraged corpus-level F1 and averaged sentence-level F1 numbers along with the unbiased standard
deviations following Zhao & Titov (2020a). For visual grounding, we report the grounding accu-
racy. We consider a noun phrase correctly grounded if its predicted bounding box has at least 0.5
IoU (Intersection over Union) with the ground-truth location. The grounding accuracy (ACC) is the
fraction of correctly grounded noun phrases (from a given set of noun phrases).

Frontal Evaluation We propose a new metric, critical concept recall rate (CCRR), to explicitly
evaluate the VL structure. A critical concept is a noun phrase found in visual grounding annotations.
We say a critical concept is recalled when it is retrieved in the parsed constituency tree structure and
correctly grounded in the image. CCRR is the recall rate of all the critical concepts.

3 CONTRASTIVE LANGUAGE-IMAGE INSIDE-OUTSIDE RECURSIVE
AUTOENCODER

In this section, we design a novel VL grammar induction method, CLIORA , to construct a shared
constituency structure for paired vision-language inputs. We start by briefly introducing our ba-
sis model DIORA (Drozdov et al., 2019) in Section 3.1. Then we present in detail our proposed
CLIORA from modeling in Section 3.2, through inference in Section 3.3 to objective and learning
in Section 3.4.

3.1 BACKGROUND

Detailed Formulation of VL Structure Following Lafferty (2000); Drozdov et al. (2020), we
adopt an indexing scheme for the constituency VL structure, and use a two-dimensional nˆn chart

1In a usual grammar induction setting, the constituent (span) corresponds to a sequence of words. Here we
reuse the conventional name but expand it to a pair of language span and aligned visual region.

2We do use a pre-trained object detector to obtain box regions, as is common in the phrase grounding litera-
ture. For a fully unsupervised setting, this could be replaced by a generic object proposal method (e.g., Uijlings
et al. (2013)), combined with features trained with self-supervision (Jaiswal et al., 2021).
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Figure 2: Diagram of CLIORA. The Feature Extraction module prepares the language and image features.
The feature-level fusion enhances the language feature with visual cues. The Structure Construction module
recursively computes the VL representation for constituents with feature-level fusion. Finally, the score-level
fusion promotes the cross-modal fine-grained correspondence, leveraging the supervisory signal of the image-
caption pairs.

T storing the intermediate representations while computing the spans of the VL structure. Cell pi, jq
in the chart contains all scores and vectors of span ci,j . For each 1 ď i ă k ă j ď n, span pi, jq can
be decomposed in spans pi, kq and pk ` 1, jq. Each span ci,j in the tree is associated with an inside
score sinij and inside vector hin

ij P RD computed from bottom up (inside pass in next paragraph); as
well as an outside score soutij and outside vector hout

ij P RD from top down (outside pass), with D
the feature dimension. The inside vector captures information of the inner content of the span, while
the inside score assesses to what extent the span forms a phrase with complete semantics. Likewise,
the outside score soutij and outside vector hout

ij represent the contextual cues not in span ci,j .

DIORA Deep Inside-Outside Recursive Autoencoder (DIORA) (Drozdov et al., 2019) aims to
induce the language grammar and produce the constituency tree parser in an encoder-decoder frame-
work. Different from context-free grammars, DIORA mitigates the strong context-freeness assump-
tion by computing each span’s representation and spans’ composition possibility dependent on the
context. DIORA operates like a masked language model since it models the context of a missing
word and then reconstructs this missing word using the context as clue.

Formally, DIORA encodes the input sentence x in the shape of a constituency tree. Since the ground-
truth tree structure is not given, all possible valid trees are considered simultaneously, with weights,
using dynamic programming similar to the inside-outside algorithm (Baker, 1979). In the bottom-up
inside pass, the encoder recursively runs an inside pass through all spans and computes the inside
vector hin

i,j and inside score sini,j for each constituent ci,j . The combined constituent is obtained
by weighted summation of all possible pairs split by k P ri, jq. Similarly, the decoder performs a
top-down outside pass, recursively computing the outside score souti,j and outside vector hout

i,j with
k P p1, i´ 1s Y rj ` 1, nq. In this way, the bottom-most vectors in the outside pass hout

i,i encode the
context of the entire sentence x except for the i-th word. During inference, the predicted tree with
the maximum inside scores is obtained with the CKY algorithm (Kasami, 1966; Younger, 1967).

3.2 MODELING

Figure 2 illustrates the overall workflow, including visual/textual feature extraction, feature-level
fusion, structure construction, score-level fusion, and the loss function module. The whole fusion
process can be classified in feature-level (combining features vectors from different modalities) and
score-level (combining the scores).

Feature Extraction For visual feature extraction, previous works on visually-grounded grammar
induction often use only the global image feature (e.g., global output feature in Shi et al. (2019);
Zhao & Titov (2020b); Zhang et al. (2021)) as additional information. The detailed information
from the image at region level, which is helpful in building the fine-grained VL correspondence, is
ignored. Instead, we explore different aspects of visual features. In particular, we use an external
object detector to generate a set of object proposals O “ tomu

M
m“1, where om P R4 denotes an
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image region (RoI). Similar to Wang et al. (2020b), for each om, we compute its conv-features and
project it to a vector vm P RD with the same dimension D as the span features. For textual features,
following Drozdov et al. (2019), we use a pretrained word embedding wi P RD to initialize all the
words xi in sentence x. For more details c.f. Experiments Section.

Feature-level Fusion The feature-level fusion strategy fuses the visual and language features, at
different stages in our pipeline 3: at the very start using the word embeddings wi, as well as during
the recursive structure construction (described below), using the inside vectors hin

i,j . Denote vi,j

as the visual representation corresponding to span ci,j . This is obtained by adopting an attention
mechanism on the object features tvmu

M
m“1. In detail, we first compute the attention scores between

hin
i,j and each vm, then normalize the scores and obtain vi,j by weighted summation over all object

features. Finally, we enhance the span features hin
i,j by fusing the visual information vi,j .

Atti,j,m “ Soft max
m

tpvmq
Thin

i,ju; vi,j “
ÿ

m

Atti,j,m ¨ vm; ĥin
i,j “ normphin

i,j ` γ ¨ vi,jq

(1)

where γ is a weight value for fusion and norm is L2 normalization.

Structure Construction Inspired by DIORA, we use an autoencoder model to integrate the visual
information and employ the inside pass and outside pass to fill in the chart T. During the inside
pass, for the leaf nodes, the scores sini,i are set to 0 and the span features hin

i,i are initialized with the
normalized word embeddings normpwiq. During the outside pass, for the root node, the outside
score sout1,n is set to 0 and the language feature hout

1,n is initialized randomly independent of x. Then
the inside-outside algorithm is employed to recursively calculate the scores sini,j , s

out
i,j and vectors

hin
i,j ,h

out
i,j .

Inside Pass The encoder is a bottom-up flow running an inside pass through all spans in the input
sentence x. It computes hin

i,j and sini,j for each span ci,j to fill up each cell pi, jq in the chart T as
shown in Figure 2. We start by computing items for each decomposition pi, kq and pk ` 1, jq.

hin
i,j,k “ fpĥin

i,k, ĥ
in
k`1,jq sini,j,k “ pĥ

in
i,kq

T
Wpĥin

k`1,jq ` s
in
i,k ` s

in
k`1,j (2)

where f is a composition function to merge the two spans (we use two linear layers with
ReLU as activation function) and W are trainable parameters to compute the composition scores.
hini,j is obtained by weighted summation over all possible pairs with the normalized s̃ini,j,k “

Soft maxk ts
in
i,j,ku:

hin
i,j “

ÿ

k

hin
i,j,k ¨ s̃

in
i,j,k sini,j “

ÿ

k

sini,j,k ¨ s̃
in
i,j,k (3)

Then we fuse the visual information into hin
i,j to obtain ĥin

i,j using Equation 1. ĥin
i,j in turn acts as a

sub-span to recursively produce bigger spans, e.g., hin
i,j`1, hin

i´1,j`1 etc., until hin
1,n.

Outside Pass The decoder performs a top-down outside pass, computing the outside scores souti,j

and the outside vectors hout
i,j by aggregating the inside representation and outside representation with

the outside algorithm. k P p1, i´ 1s Y rj ` 1, nq. Take k ą j as an example4:

hout
i,j,k “ fphout

i,k , ĥ
in
j`1,kq souti,j,k “ ph

out
i,k q

TWpĥin
j`1,kq ` s

out
i,k ` s

in
j`1,k (4)

We use the same composition function f and score weight W as the inside pass. The computation
of the outside score souti,j and outside feature representation hout

i,j is similar to the inside pass with
s̃outi,j,k “ Soft maxkts

out
i,j,ku:

hout
i,j “

ÿ

k

hout
i,j,k ¨ s̃

out
i,j,k souti,j “

ÿ

k

souti,j,k ¨ s̃
out
i,j,k (5)

In this way, the bottom-most vectors in the outside pass hout
i,i encode the context of entire sentence

x except for the i-th word.
3We explain it here for the latter case only. For the word embeddings, the procedure is basically the same.
4If k ă j, the procedure is similar. Please refer to the Appendix D for more details.

5



Published as a conference paper at ICLR 2022

Score-level Fusion Finally, we fuse the span scores with visual similarity scores to obtain the
input for our contrastive learning (detailed in Section 3.4). For this, we multiply the span score
qpci,j ,xq (calculated using inside scores and outside scores, see below) with a similarity score
simpI, ci,jq, indicating the semantic similarity between span ci,j and the image I . This results
in a distance between image I and span ci,j , that incorporates the VL structure information:
dpI, ci,jq “ simpI, ci,jq ˆ qpci,j ,xq.

Similarity Score Following Wang et al. (2020b), we first compute the similarity score ai,j,m be-
tween each span ci,j and each image region om, then we select the image region with the highest
similarity score, and use that score as similarity for the entire image:

ai,j,m “ vT
mpĥ

in
i,j ` hout

i,j q simpI, ci,jq “ max
m
tai,j,mu (6)

Note how ai,j,m is calculated using both inside and outside feature vectors.

Similar to simpI, ci,jq, which computes similarity at the span-level, we can also compute simi-
larity scores at word level based on the original word embeddings: awi,m “ vT

mwi. Analogically,
simwpI, xiq “ maxmta

w
i,mu then represents the similarity between a word and the entire image.

Span Score qpci,j ,xq reflects how likely the span ci,j exists given x. In conventional
PCFG (Michael, 2011), since each span in the sentence is assigned to a non-terminal symbol, the
marginal of the span ci,j is the summation over all non-terminal symbols. In CLIORA , we do not
work with discrete symbols for the spans. Instead, we define qpci,j ,xq “ sini,j ¨ s

out
i,j {s

in
1,n. This is

inspired by PCFG (please refer to the Appendix E for more details).

3.3 INFERENCE

In the inference stage, the language tree structure tc˚i,ju is predicted with the maximum inside
scores using the CKY algorithm (Drozdov et al., 2019) on chart T, and then the VL structure
y˚ “ tpc˚i,j , b

˚
i,jqu is obtained by aligning each span c˚i,j to an image region b˚i,j .

When a meaningful phrase (ground-truth constituent) p “ txk : k P ri, jsu is given (e.g., for
the visual grounding task), we predict its image region tomp

i,j
u with a voting mechanism. We use

ak,m “ awk,m`ak,k,m (where awk,m and ak,k,m are defined in the Similarity Score paragraph above)
as the matching score to select the most representative word xk˚ in p with the maximum ak,m, and
take the box region omp

i,j
based on the xk˚ with maximum matching score as p’s grounding result:

k˚ “ arg max
iďkďj

max
m

ak,m mp
i,j “ arg max

m
ak˚,m (7)

When the meaningful phrase is not given, we can still predict the grounding region omc
i,j

of an
arbitrary span ci,j . In that case, apart from ak˚,m in Equation 7, we consider the RoI-span matching
scores ai,j,m (defined in Similarity Score paragraph) to predict the aligned box omc

i,j
. This allows

to assess how meaningful this span is given the visual information. The box region of ci,j is then:

mc
i,j “ arg max

m
pak˚,m ` ai,j,mq (8)

In Experiments Section, we adopt the first case in “Lateral Evaluation on Weakly-supervised Visual
Grounding”. In “Frontal Evaluation on VL Grammar Induction”, we use the second case and obtain
the grounding region b˚i,j “ omc

i,j
for each predicted span c˚i,j , since we do not have given ground-

truth phrases as supervision.

3.4 OBJECTIVE AND LEARNING

Loss for Structure Construction As mentioned in Structure Construction module, the bottom-
most vectors in the outside pass hout

i,i encode the context of the entire sentence x except for the
i-th word. With the hypothesis that visual cues help to predict the missing words, CLIORA takes a
self-supervised blank-filling objective as follows:

Lrec “ ´
1

n

ÿ

xiPx

logP pxi|h
out
i,i q (9)
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Loss for Contrastive Learning We design our contrastive learning strategy based on maximizing
the matching score between paired RoI-span elements instead of a coarse Image-span matching Zhao
& Titov (2020a) or RoI-sentence matching (Wang et al., 2020b). Behind this design, our motivation
is that compared with a whole sentence, a short span is more likely to find a corresponding RoI that
can construct a strong negative pair to enhance contrastive learning. The same holds for the RoI
compared with the whole image. Particularly, for each span ci,j in a caption sentence, all the other
images except for the corresponding image I in the current batch are negative examples. We can
define the following lspanpI, ci,jq and lwordpI, xiq in the batch:

lspanpI, ci,jq “ rdpI, c
1
i,jq ´ dpI, ci,jq ` εs` ` rdpI

1, ci,jq ´ dpI, ci,jq ` εs` (10)

lwordpI, xiq “ ´ log
esim

w
pI,xiq

ř

ÎPbatch e
simwpÎ,xiq

(11)

where r¨s` “ maxp0, ¨q, ε is the positive margin, and variables with 1 are negative examples in a
batch. A small lspan means an aligned span-image pair that is closer than any unaligned ones in a
batch. Then we obtain the contrastive learning loss:

Lcl “ Eppy|xq

ÿ

ci,jPy

lspanpI, ci,jq `
ÿ

xiPx

lwordpI, xiq “
ÿ

ci,jPx

lspanpI, ci,jq `
ÿ

xiPx

lwordpI, xiq

(12)

where y is a valid tree for the sentence x. Finally, the total loss is defined as:

LCLIORA “ λ ¨ Lrec ` p1´ λq ¨ Lcl (13)

where λ is a hyper-parameter representing the trade-off between the two losses.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

MSCOCO Flickr30k
Only Language

Left branch 15.1 13.4
Right branch 51.0 1.7

Random 24.2±0.3 15.4±0.2
C-PCFG˚ 53.6±4.7 25.7±2.6
DIORA† 53.4±0.6 46.4±0.9

DIORA 58.0±0.7 54.3±2.0
Visually-Grounded

VG-NSL 50.4±0.3 -
VG-NSL+HI 53.3±0.2 -

VC-PCFG˚ 59.3±8.2 26.3±2.1
Vision-Language (VL)

CLIORA† 56.2±0.7 53.1±1.8
CLIORA 60.8±0.8 56.6±1.7

Table 1: Grammar induction for language.
Corpus-level F1 on the Test Datasets. ˚ means
we re-implement the results on Flickr30k dataset
as Zhao & Titov (2020b). † indicates we use ran-
domly initialized word embedding.

Datasets We evaluate our method on the Flickr30k
Entities (Plummer et al., 2017) and MSCOCO (Lin
et al., 2014) datasets. Flickr30K Entities contains
29783 images for training, 1,000 images for valida-
tion and 1,000 for test. We use the same split of
MSCOCO as Zhao & Titov (2020b), which contains
82,783 training images, 1,000 validation images, and
1,000 test images. Each image is associated with 5
sentence descriptions for both Flickr30k Entities and
MSCOCO datasets. Following Shi et al. (2019);
Zhao & Titov (2020b), we filter words using the oc-
curring frequency in the training set and build a vo-
cabulary with size 10,000 for both Flickr30K Enti-
ties and MSCOCO. All sentences are converted to
lowercase, discarding non-alphanumeric characters.
Preprocessing Following MAF (Wang et al.,
2020b), for an input image, we use an external object
detector, Faster R-CNN (Ren et al., 2015), to gener-
ate object proposals and extract their visual features.
Following Wang et al. (2020b), for each proposal,
we use RoI-Align (He et al., 2017) and global aver-
age pooling to compute its conv-feature and embed
it to a vector. We follow Drozdov et al. (2019) and Wang et al. (2020a) and use ELMo (Peters
et al., 2018), and Glove embedding (Pennington et al., 2014) for MSCOCO and Flickr30k Entities,
respectively. For the ground-truth structure of the captions, we follow Shi et al. (2019) and Zhao &
Titov (2020a) to use predictions produced by Benepar (Kitaev & Klein, 2018).
Setting For all experiments, we report the average score along with the unbiased standard devia-
tions on four runs with different random seeds. We load DIORA as an initialization for CLIORA .
Other detailed hyper-parameters are provided in Appendix F.
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4.2 QUANTITATIVE RESULTS

Lateral Evaluation on Language Grammar Induction As shown in Table 1, we compare our
approach with two classes of strong baselines: language grammar induction and visually grounded
grammar induction. We use the corpus F1 as the metric. Our model outperforms the previous SOTA
approaches that use only language information and those incorporating visual cues. In particular,
CLIORA outperforms VC-PCFG by 1.5% corpus F1 score on MSCOCO dataset and 30.3% corpus
F1 score on Flickr30k dataset.

Notably, PCFG-based models (C-PCFG and VC-PCFG) perform poorly on Flickr30k, while they
work well on MSCOCO. Meanwhile, two classic baselines “Right branching” and “Left branch-
ing” perform very differently on MSCOCO and Flickr30k. We posit these phenomena are due
to the different data distributions of MSCOCO and Flickr30k (See Figure 11 in Appendix). In con-
trast, CLIORA displays a more even performance across different corpora than PCFG-based models,
which reveals its robustness across corpora.

ACC
MAF* 50.4±0.1

CLIORA 52.5±0.7
Table 2: ACC on Flickr30k test
set.

CCRR
Baseline 47.0±0.4

CLIORA 49.6±0.9
Table 3: CCRR on Flickr30k
test set.

Lateral Evaluation on Weakly-supervised Visual Grounding
We evaluate our approach on weakly-supervised visual ground-
ing task and compare CLIORA with current SOTA method MAF5.
MAF only considers the ROI-word matching score awi,m as in Equa-
tion 7, while CLIORA leverages this ROI-word matching score as
well as the context-aware RoI-span matching score ai,i,m in score-
level fusion strategy. Not surprisingly, we observe a significant im-
provement by 2.1% ACC on Flickr30k, as shown in Table 2.

Frontal Evaluation on VL Grammar Induction In addition to
the indirect lateral evaluations described above, we also directly as-
sess the VL structure we obtained on the frontal evaluation met-
ric CCRR. Our baseline adopts DIORA for grammar induction and
MAF for span grounding (as described in Equation 7). CLIORA incorporates the cross-modal
matching from the original word-region similarities and hierarchical RoI-span correspondence. Ta-
ble 3 shows that our jointly learned VL structure outperforms the baseline with a large margin (2.6%
on CCRR).

4.3 ABLATION STUDY ON FUSION STRATEGY

FLF SLF C-F1
- - 54.3˘2.0
X - 56.1˘2.1
- X 55.9˘2.4
X X 56.6˘1.7

Table 4: Results on Flickr30k test set. FLF:
Feature-Level Fusion. SLF: Score-Level Fusion.

In this section we study the effectiveness of our two
fusion strategies on language grammar induction:
the feature-level fusion (FLF) to enhance feature
representation and score-level fusion (SLF) to build
structural cross-modal correspondence and provide
regularization on meaningful spans. We leave out
lword because the empirical study shows that it
hardly affects the F1 score. As show in Table 4, FLF,
which augments the language representation with vi-
sual context cues, is capable of improving the constituency parsing result with 1.8% on Corpus-F1.
In addition, SLF takes advantage of RoI-span matching signal to supervise the learning of VL struc-
ture and benefits the grammar induction result with 1.6% on Corpus-F1. When simultaneously
combining FLF and SLF, we observe a further improvement on the final result.

4.4 ANALYSIS ON SPAN LENGTHS AND LABELS

In details, we show the recall rate on six frequent constituent labels on Flickr30k Dev set, as well
as Corpus F1 (CF1) and Sentence F1 (SF1) in Figure 3. Our model exhibits a general boost across
constituent labels. Specifically, it is most accurate on ADJPs and ADVPs and works fairly well on
PPs. We contribute this improvement to the benefits of using contextual semantics.

5MAF* indicates we use the same feature extractor and learning strategy as MAF. As the ground-truth noun
phrase is only given in the inference stage, we use the corresponding region of the most representative word as
the prediction of the phrase, which results in a lower number than the original paper.
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Next, we analyze model performance on Flickr30k Dev set for constituents of different lengths in
Figure 4. Surprisingly, CLIORA enhanced by image generally its non-visual version (i.e., DIORA)
on not only short phrases but also longer phrases. As claimed in VC-PCFG, visual information are
beneficial for short spans but performs poorly on longer constituents(ě 5). Our model goes a step
further in multi-modal fusion, proving that multi-modal fusion is still promising.

NP VP PP SBAR ADJP ADVP CF1 SF1

Left Branching 8.4 8.27 10.47 8.35 16.23 7.11 12.63 13.95

Right Branching 2.58 2.22 1.16 2.09 1.75 2.54 1.57 2.14

Random 15.81 15 12.79 15.76 18.45 14.21 14.25 15.18

DIORA 63.38 63.28 61.63 63.83 67.48 60.91 51.19 51.6

CLIORA 68.64 69.67 60.47 67.46 70.05 66.5 54.32 54.84
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Figure 3: Recall on different constituent label.
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A woman walk  in    the  sand    as     she carries her shoes A    man     in       a   green shirt    is working under a     blue vehicle
(a) Good Case (b) Bad Case

Correct Span Wrong Span Wrong Grounding Correct Grounding Modified Grounding

Figure 5: Case Study. RoIs and spans without special marks are predicted correctly.

5 LIMITATION AND FUTURE WORK

Although inspiring results have been achieved by CLIORA (See Figure 5(a) and Appendix H for
success examples), the unsupervised VL grammar induction is far from satisfaction. Figure 5(b)
demonstrates a typical failure case that wrongly predicts a span “a green” that should be “green
shirt” in the ground-truth tree. This erroneous span is wrongly grounded to a large region containing
a “green building”. Interestingly, after combining more contexts and constituent a bigger span “a
green shirt”, the grounding result is modified to a correct region (green rectangle). This failure case
reveals the importance of appropriately modeling contextual semantics, which highlights the major
challenge of our proposed task and is calling for future research for better contextual models.

Moving forward, what is the best way of modeling such shared structure for VL grammar induction?
A promising extension could be to explore the visual structure to regularize the shared VL grammar.
It is worth noting that the visual images also contains enriched spatial and semantic structures (Si &
Zhu, 2011; Zhao et al., 2017) which could be aligned with the constituency trees. Leveraging such
structures may also be beneficial in producing a more meaningful shared structure.

Going back to the motivation of our work, how do humans model and process multimodal infor-
mation with such shared space? This work provides a potential answer with respect to grammar
induction and phrase grounding. Nevertheless, the debate between using dense vectors and sym-
bolic structures in human’s cognitive computational models has never been stopped (Tang et al.,
2019). This mystery also leaves us a wide space to explore other potential explanations in modeling
human’s multimodal “shared world”.
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A RELATED WORK

Grammar Induction for Language Grammar Induction for Language, especially unsupervised
constituent parsing, is a fundamental task in Natural Language Processing that aims to capture syn-
tactic information in sentences in the form of a phrase-structure tree. The constituency structure
shows the process of analyzing the sentences by breaking down it into constituents. It finds its ap-
plications in semantic role labeling (Strubell et al., 2018) and word representation (Kuncoro et al.,
2020) and many other tasks. While grammar induction has a long history in computational linguis-
tics, previous studies are mostly limited to language domain with unannotated language corpora,
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e.g., Michael (2011); Kim et al. (2019a); Drozdov et al. (2019; 2020); Shen et al. (2019; 2018);
Kim et al. (2019b). Recently, visually-grounded grammar induction, using visual images as percep-
tual experience of language, obtains increasing attention. Shi et al. (2019) first propose a visually
grounded neural syntax learner, and Kojima et al. (2020) find such model is potentially biased to-
wards concrete noun phrases. Then, more works (Zhao & Titov, 2020b; Zhang et al., 2021; Hong
et al., 2021) further exploit visual semantics derived from images to improve continuous vector rep-
resentations of language. Although these works get superior results on grammar induction, they
don’t consider building a unified vision and language structure.

Weakly-supervised Visual Grounding Weakly-supervised Visual Grounding aims to build the
fine-grained correspondence between language phrases and image regions with only image-caption
pairs as supervision. Current works (Rohrbach et al., 2016; Chen et al., 2018; Gupta et al., 2020;
Wang et al., 2021; Liu et al., 2021; Wang et al., 2020b) typically start with generating a set of region
proposals from the input image by adopting an off-the-shelf object detector, and then formulate the
grounding task as a weakly-supervised matching problem between the phrases and the proposals.
GroundR (Rohrbach et al., 2016) built the cross-modal matching by reconstructing the input phrases
with an attention mechanism on the visual features of the proposals. KAC-Net (Chen et al., 2018)
took a similar pipeline but further utilized object categories as additional constraints and exploited
visual consistency for supervision. Besides, some approaches (Gupta et al., 2020; Wang et al.,
2021) exploited knowledge distillation from the language models and visual models pre-trained
on an external corpus. RIR (Liu et al., 2021) explored the language structure from an external
language parser that provided additional relation constrain on the noun phrases (Liu et al., 2020),
and adopts a self-taught regression strategy to refine the box locations. MAF (Wang et al., 2020b)
used a simple but effective contrastive learning strategy for visual representation learning (Kiros
et al., 2014) and weakly-supervised visual grounding. VLGrammar (Hong et al., 2021) represents an
alignment between the constituents of an image structure and language structure. Due to the separate
image grammar, segmentation parts should be provided in advance which hinders its application in
a broader domain.

B VL STRUCTURE FORMULATION

The VL structure is shown in Figure 6 (left). A shared vision-language constituency structure can
be decoupled into a language constituency tree for grammar induction (Figure 6 (bottom right)) and
grounding results for visual grounding (Figure 6 (top right)). From the visual angle, the structure
provides a hierarchy scene understanding.

During this natural decoupling process, no training or extra parameters are needed. It reveals that
building this VL structure requires the capability of structured prediction for single-modality along
with fine-grained alignment with heterogeneous modalities. Due to this reason, this task is chal-
lenging. Nevertheless, building this VL structure benefits each separate task and obtains superior
performance without using any extra annotations.

C TASK FORMULATION

Unsupervised VL grammar induction aims to induce a constituency grammar for both the caption
and the image that the caption describes simultaneously. The VL structure y given the caption x
is based on the constituency relations and defined as a 3-tuple G “ tN ,Σ,Ru, where N is the
non-terminal nodes; Σ is a finite set of terminal nodes, namely words; R represents the production
rules including two classes of rules:

• AÑ BC; A,B,C P N ,

• AÑ x; A P N , x P Σ.

Each node A P N located in cell pi, jq is associated with a inside score sinij , outside vector hin
ij for

the inside pass and outside score soutij , outside vector hout
ij for the outside pass.
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Figure 6: Illustration of the VL structure. Left: VL structure. LeftÑRight: decoupling of the VL
structure. Bottom right: language constituency tree. Top right:grounding results. Different phrase
are allowed to be aligned to the same region.
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Figure 7: Detailed diagram of structure construction. The inside pass (left) and outside pass (right)
are illustrated. Structure construction is the process of filling the chart T. Rounds denote scores and
rectangles denote vectors. Orange and blue shows variables in the inside pass. Yellow and green
shows variables in the outside pass. Arrows refer to operations on data.

D STRUCTURE CONSTRUCTION

We follow Lafferty (2000); Drozdov et al. (2020) to use an indexing scheme for the constituency
tree structure as shown in Figure 8. We use an autoencoder model to integrate the visual information

Inside Pass

Outside Pass

i k k+1 j 1 i-1 i j j+1 k k+1 n

Figure 8: Inside pass and outside pass using the indexing scheme. For the inside pass (Left) two
spans ci,k and ck`1,j is composed as a bigger span. For the outside pass (Right), representation
of a target span ci,j is recursively computed from the inside representation of c1,i´1 and outside
representation of cj`1,k and ck`1,n. k can appear to the left or right of the target span ci,k. Here we
show k on the right. If k on the left, the indexing is adjusted.
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and employ the inside pass and outside pass to fill in the n ˆ n chart T. For leaf nodes, sini,i “ 0

and ĥin
i,i “ normpwiq ` γ ¨ Ii,i with a normalization layer. For Root node, the outside score sout1,n is

initialized as 0 and hout
1,n is initialized randomly independent of x. Then inside-outside algorithm is

employed to recursively calculate the scores and vectors as shown in Figure 7.

Inside Pass The encoder is a bottom-up flow by running an inside pass through all spans in the
input sentence x and computes the inside vector hin

i,j and inside score sini,j for each constituent ci,j
to fill up each cell pi, jq in the chart T as shown in Figure 2. More formally, we first compute items
for each decomposition pi, kq and pk ` 1, jq.

hin
i,j,k “ fpĥin

i,k, ĥ
in
k`1,jq sini,j,k “ pĥ

in
i,kq

T
Wpĥin

k`1,jq ` s
in
i,k ` s

in
k`1,j (14)

where the matrix W and the weights in f are trainable parameters. Then the combined constituent
is obtained by weighted summation of all possible pairs with the normalized sini,j,k:

s̃ini,j,k “ Soft max
k

tsini,j,ku hin
i,j “

ÿ

k

hin
i,j,k ¨ s̃

in
i,j,k sini,j “

ÿ

k

sini,j,k ¨ s̃
in
i,j,k (15)

Outside Pass In contrast, the decoder performs a top-down outside pass, computing the outside
score souti,j and the outside vector hout

i,j by aggregating the inside representation and outside repre-
sentation with the outside algorithm.:

hout
i,j,k “

#

fphout
i,k ,h

in
j`1,kq k ą j

fphout
k,j ,h

in
k,i´1q k ă i

(16)

souti,j,k “

#

phout
i,k q

TWphin
j`1,kq ` s

out
i,k ` s

in
j`1,k k ą j

phout
k,j q

TWphin
k,i´1q ` s

out
k,j ` s

in
k,i´1 k ă i

(17)

The computation of outside score souti,j and outside feature representation hout
i,j is similar to the inside

pass:

s̃outi,j,k “ Soft max
k

tsouti,j,ku hout
i,j “

ÿ

k

hout
i,j,k ¨ s̃

out
i,j,k souti,j “

ÿ

k

souti,j,k ¨ s̃
out
i,j,k (18)

In this way, bottom-most vectors in the outside pass hout
i,i encodes the context of entire sentence x

except for i-th word.

E SPAN SCORE

In PCFG, the marginal of the span ci,j is the conditional probability that is assigned after x is
taken into account. Inspired by this, we define qpci,j ,xq to measure how likely the span ci,j exists
given x. Since each span in PCFG is assigned to a non-terminal symbol, the marginal of the span
ci,j can be calculated using the summarization over all non-terminal symbols. However, due to
the continuous representation for each span for CLIORA , we define qpci,j ,xq similar to PCFG.
As shown in Figure 9, for PCFG since each span (namely, the string of words txi...xju in the
sentence x “ x1...xn is assigned to a non-terminal symbol A. The marginal (ie., posterior) of
the span ppci,j |xq is the summarization over all non-terminal symbols A P N (N is the set of all
non-terminal symbols). The numerator of ppci,j,kpB Ñ ACq|xq can be factorized as three parts:
inside scores ai,jpAq, aj`1,kpCq, outside score bk,jpBq, production rule ppB Ñ ACq. The product
of these three parts is finally divided by the partition function (the inside score of the whole sentence
a1,n.):

ppci,j,kpB Ñ ACq|xq “
ai,jpAq ¨ aj`1,kpCq ¨ ppB Ñ ACq ¨ bi,kpBq

a1,n
(19)
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CLIORAPCFG

Outside Score

Inside Score

Nonterminal Symbol

Start Symbol

Span

1 1i-1 i j j+1 k+1k n i-1 i j j+1 k k+1 n

B

A

A,B,C
s

C ci,j

ci,j

ci,k

cj+1,k

S

Figure 9: Calculation of the marginal and the span score. Right: marginal ppci,j |xq of PCFG.
The marginal of span ci,j is a fraction and the numerator consists of three parts: inside scores
ai,jpAq, aj`1,kpCq (shaded in blue), outside score bi,kpBq (shaded in green), production rule ppB Ñ
ACq. Left: span score qpci,j ,xq of CLIORA . The numerator of qpci,j ,xq can be factorized as two
parts: inside scores sini,j (shaded in blue) and outside score souti,j (shaded in green). The product of
these two parts is finally divided by sin1,n.

λ 0.5
γ 0.5
# Epoch 10
Learning rate 1e´ 5
Batch Size 64

Table 5: Hyper-parameters for CLIORA .

However, the non-terminal symbol is not assigned to spans for CLIORA . Hence, the span score of
span ci,j is defined as:

qpci,j ,xq “
sini,j ¨ s

out
i,j

sin1,n
(20)

where n is the length of the sentence x. i and j represent the begin and end positions of the span
in the sentence x, respectively. The numerator of qpci,j ,xq can be factorized as two parts: inside
scores sini,j and outside score souti,j . The product of these two parts is finally divided by sin1,n.

F HYPER-PARAMETERS SETTING

The model selection is based on the loss on the development dataset. More concretely, we compute
the average loss on the development set after each training epoch and select the model before the loss
starts to increase. We list the main hyper-parameters in Table 5, and others are default as DIORA.

G DETAILED CASE STUDY

We visualize parse trees predicted by CLIORA in Figure 10. Left trees illustrate success cases and
right trees are failure cases. For the top right tree of the failed cases, CLIORA wrongly predicts two
spans “a green” and “a blue” that should be “green shirt” and “blue vehicle” in the ground-truth tree.
The erroneous span “a green” is wrongly grounded to a green building. However, because there
exists only one blue region, the erroneous span “a blue” is correctly grounded to the blue vehicle.
Interestingly, after combining more contexts and constituent a bigger span “in a green shirt”, the
grounding result is modified to a correct region. This fail case reveals the importance of contextual
semantics, which is an essential motivation of our task and model.

For the bottom right tree of the failed cases, CLIORA wrongly grounded the span “a boy and a girl”
to the region referring to only the boy. We speculate that this error is due to the binary trait of
the structure. “A boy” “and” and “a girl” should be combined simultaneously instead of wrongly
combined the first two phrases then combine the last one. We will leave this for further study.
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  A    boy  in   red     sweatshirt    pretends     to      drive      a       tractor 

Failure Case

 A     boy     and   a       girl   swinging     on   a        barrel

Wrong Grounding

Correct Grounding

Wrong Span

Correct Span

Success Case

A woman walk  in    the  sand    as     she carries her shoes A    man     in       a   green shirt    is working under a     blue vehicle

Modified Grounding

Figure 10: Case Study. RoIs without rectangles and spans without special marks are predicted
correctly.

Figure 11: Label distribution over constituent length. The values in the cell denote frequencies of
different constituent lengths and phrase types. Left: Flickr30k. Right: MSCOCO.
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H ABLATION STUDY OF LANGUAGE AND IMAGE

We conduct an ablation study for contextual information and investigate the impact of image and
text. After gradually removing the components, the model exhibit consistent degradation.

C-F1
All 54.3

-Fine-grained ROI information 54.2
-Global image information 51.8
+Language Context 48.0

Table 6: F1 on Flickr30k development dataset.

We use different forms of visual information in
score-level fusion: global image information and
fine-grained ROI information. If we remove the
fine-grained information, which means the atten-
tion to the different ROIs are ignored and the av-
erage weight are used, the F1 score are even. It
demonstrates that for score-level fusion, the global
image information is enough. Additionally, to un-
derstand if the contribution of the visual compo-
nent to the overall model is analogy with the language context, we add the representation of the
whole sentence after removal of all visual information including fine-grained ROIs and the whole
image. As for this replacement, the performance decreases, demonstrating that visual information
can really helps in a compensation way, that is not restricted to providing contextual information
like language.

I ROBUSTNESS ACROSS CORPORA

As shown in Table 1, different models perform very differently on MSCOCO and Flickr30k. PCFG-
based models perform poorly on Flickr30k, while works well on MSCOCO. Two classic baselines
“Right branching” and “Left branching” perform completely opposite on MSCOCO and Flickr30k.
“Right branch” obtains a superior 51.0 F1 while “Left branch” only gets 15.1 on MSCOCO. “Right
branch” performs worse than “Right branch” on Flickr30k. We posit this phenomenon is due to the
diverse data distribution of MSCOCO and Flickr30k. To study this, we plot the detailed distribution
over constituent length for different phrase types in Figure 11. Flickr30k contains various phrase
types, e.g., PP, SBAR and ADJP and longer constituents. In contrast, CLIORA displays a more even
performance across different corpora than PCFG-based models, which reveals its robustness across
corpora.
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