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Abstract
Throughout an infectious disease crisis, resources that can
be used to slow and prevent spread are often scarce or expen-
sive. Designing control policies to optimally allocate these
resources to maximize objectives is challenging. Here, we
study the case of ring vaccination, a strategy that is used to
control the spread of infection by vaccinating the contacts of
identified infected individuals and their contacts of contacts.
Using agent-based modeling to simulate an Ebola outbreak,
we introduce a risk-based ring vaccination strategy in which
individuals in a ring are prioritized based on their relative
infection risks. Assuming the risk of transmission by con-
tact type is known and a fixed supply of vaccine doses is
available on each day, we compared this strategy to ring vac-
cination without prioritization and randomized vaccination.
We find that risk-based ring vaccination offers a substantial
advantage over standard ring vaccination when the number
of doses are limited, including reducing the daily infected
count and death count, and shifting the pandemic peak by a
considerable amount of time. We believe that control policies
based on estimated risk can often offer significant benefits
without increasing the burden of administering the policy
by an unacceptable amount.
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1 Introduction
Designing control policies for infectious disease outbreaks
can be challenging for several reasons, including scientific
uncertainty surrounding newly emerging diseases, many
objectives that can be in tension with each other, and limited
access to labor and other critical resources. In this paper,
we consider the case of ring vaccination, a vaccination deliv-
ery strategy that is employed when the supply of vaccines
and the labor required to administer them is limited. Ring
vaccination vaccinates individuals within a ring, contacts
and contacts of contacts of an infected case. Given a vaccine
with appropriate properties, especially the ability to safely
inoculate an individual who has been recently exposed, ring
vaccination can be highly effective. It has been used as a key
tool in several Ebola and smallpox outbreaks [2, 6, 7].
Ring vaccination functions by targeting individuals who

would be at a higher level of risk of developing the infec-
tion, relative to the general population. For example, in the
(early/late) stages of Ebola outbreak of Gulu district, Uganda
in 2000, the attack rate across the population was roughly
0.126% [12]. However, the secondary attack rate (SAR), de-
fined as the probability that an infection occurs among sus-
ceptible people within a specific set of contacts, can better
reflect the relation between social interactions and transmis-
sion risk [10]. Yang et al. [15] estimate its value at 2.5%—thus,
a vaccine administered immediately after exposure would
be about 20 times more effective compared to a randomly
delivered vaccination.
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However, not all individuals in a ring have the same in-
fection risk. For instance, contacts of contacts are less likely,
on average, to become infected because transmission must
occur twice. Many observable and unobservable factors may
contribute to this risk, including the type and duration of
contact between individuals, biological differences that make
some people more effective transmitters, multiple exposure
paths, and behavioral differences that are caused by the pres-
ence or absence of public health monitoring (i.e., immediate
self isolation at symptom onset).
Like other control policies that target individuals with

elevated risk such as contact tracing, ring vaccination faces
a fundamental challenge that the number of such individu-
als is roughly linear in the number of infected individuals,
which varies by orders of magnitude throughout a crisis,
but the amount of supplies and labor available per day is
roughly fixed. We argue that control policies can leverage
estimated risk to prioritize vaccine dose allocation, yielding
better performance when supplies are scarce. To that end, we
propose a risk-based ring vaccination strategy that leverages
the differing risks associated with different contact types,
information that can be easily elicited as part of contact
tracing.

We evaluate the risk-based ring strategy in an agent-based
model (ABM) and consider Ebola as the case study because
of its unique transmission intensity bases on type of contact.
We show that, when doses are highly restricted, risk-based
ring vaccination yields significant benefits over standard
ring vaccination and randomized vaccination by not only
reducing overall transmissions and deaths but also shifting
the pandemic peak. We find that the extra risk associated
with ring membership is quickly diluted as there are many
more contacts of contacts than contacts, and most contacts
have little transmission chance associated with them.

2 Agent-based model
We develop an ABM for Ebola Virus Disease (EVD) with
𝑁 = 14652 agents (Table 1). We model two agent characteris-
tics that influence spread and mortality: age and household
membership. We replicate the household structure and age
distributions from Dodd et al. [5], who collected data in Zam-
bia and South Africa in 2005-2006, and again in Zambia in
2011. Each agent is in one of the six following discrete states
on each day: Susceptible (𝑆), Incubating (𝐼𝐶), Infectious (𝐼 ),
Vaccinated but not yet immune (𝑉 ), Deceased (𝐷), and Re-
moved (immune or recovered) (𝑅). State 𝑆 comprises agents
who have not yet received a vaccine or become immune.
State 𝐼 comprises agents who are capable of transmitting
EVD to their contacts who are currently in 𝑆 . At the end
of their infectious period, agents in state 𝐼 transition into
state 𝐷 or state 𝑅, depending on 𝑃𝑟 (𝐷 |age). We estimate the
age-specific probability of death using previously reported
case fatality rates (CFR) of EVD for different age groups [14].

Contacts are sampled daily. We sample household and
non-household contacts separately. We assume that contacts
between each pair of individuals within a household occurs
every day. Non-household contacts are sampled from the
population according to the inter-household contact matrix
from Ozella et al. [13], collected in a village in rural Malawi,
accounting for the age of the person. We assume that the
number of contacts follows an independent Poisson distri-
bution for each age-age contact pair.

Each contact has an associated exposure type. For house-
hold contacts, we use and sample the exposure types and
their distributions observed by Bower et al. [1], which in-
clude handling fluids, direct and indirect wet and dry con-
tacts, and minimal to no contact. Direct contact refers to
situation in which individuals come into direct contact, such
as touching and caring for a patient diagnosed with EVD,
whereas an indirect contact refers to situations such as wash-
ing clothes or sharing the same bed with an EVD positive
patient. In addition, wet contact refers to contact with an
EVD patient that is symptomatic (e.g. vomiting, bleeding,
etc.) while dry contact refers to contact with patients with-
out any symptoms. Each type of contact associates with a
different risk level. For example, a direct contact with fluids
is associated with a higher risk of transmission than a dry,
physical contact. We let𝑊𝑥,𝑦,𝑡 represent the risk ratio of
the contact between agents 𝑥 and 𝑦. For household contacts,
it is the age-adjusted risk ratio from Bower et al. [1]. For
non-household contacts, we assign the same type to each,
with a risk ratio we set to match with the non-household
SAR reported in Dixon et al. [4] (see Inferred parameters).
𝑊𝑥,𝑦,𝑡 = 0 if no contact occurred.

We define the probability of transmission from agent 𝑥 to
agent 𝑦 on day 𝑡 as

𝑃𝑟 (base) ·𝑊𝑥,𝑦,𝑡

where 𝑃𝑟 (base) is an inferred baseline probability of infec-
tion. The process for inferring this parameter is described in
the next section.

Vaccination. The 2017Guinea ring vaccination trial demon-
strates that the vaccine we considered in our simulations
(rVSV-ZEBOV) is safe to administer to individuals who are
incubating, but do not yet show symptoms [6]. Moreover,
rVSV-ZEBOV has 100% effectiveness if administered after
exposure. Therefore, we assume that agents in state 𝐼𝐶 and
𝑆 are eligible for vaccination. After vaccination, they transi-
tion to state 𝑉 , and nine days later, they transition to state
𝑅, where agents are considered immune.

Inferred parameters. We need to infer the parameters
𝑃𝑟 (base) and 𝑅𝑅(non-household), the non-household risk
ratio, from data. 𝑃𝑟 (base) can be interpreted as the probabil-
ity of transmission for a household contact of the minimal
contact type. We set this value in order to match the sec-
ondary attack rate (SAR) of the ABM to the SAR that was
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Table 1. Parameters for the ABM.

Parameters Values References

Ebola dynamics
Incubation period Lognormal: ` = 2.446 days, 𝜎 = 0.284 Legrand et al. [9]
Infectious period Lognormal: ` = 2.2915 days, 𝜎 = 0.1332 Legrand et al. [9]
Case fatality rate Ages < 15: 77.8% Qin et al. [14]

Ages 15 - 59: 85.87%
Ages > 59: 95.7%

Time from vaccination to immunity 9 days Kucharski et al. [8]
Household secondary attack rate 12.3% Dixon et al. [4]

Non-household secondary attack rate 4.8% Dixon et al. [4]
Non-household contact matrix Adults-Children: Poisson, _ = 1.2 Ozella et al. [13]

Adults-Adolescents: Poisson, _ = 1.5
Adults-Adults: Poisson, _ = 5.3

Adolescents-Children: Poisson, _ = 2.0
Adolescents-Adolescents: Poisson, _ = 3.6

Children-Children: Poisson, _ = 0.2

Inferred model parameters
Base probability of transmission 0.01962 Inferred from Bower et al. [1]

Contact type distribution (household) Handled fluids: 16.3%, 𝑅𝑅 : 9.7 Bower et al. [1]
and risk ratios (RR) Direct wet contact: 40.3%, 𝑅𝑅 : 8.3

Direct dry contact: 17%, 𝑅𝑅 : 5.6
Indirect wet contact: 2.6%, 𝑅𝑅 : 4.9
Indirect dry contact: 10%, 𝑅𝑅 : 1.3
Minimal contact: 13.8%, 𝑅𝑅 : 1

Risk ratio for non-household 2.45 Inferred from Equation 2

previously reported for Ebola. Specifically, we solve the fol-
lowing equation for 𝑃𝑟 (base)

𝑆𝐴𝑅ℎℎ = 𝑃𝑟 (base)
∑︁
𝑖

𝑃𝑟 (𝑖 |household contact)𝑅𝑅(𝑖), (1)

where 𝑃𝑟 (𝑖) is the probability of a contact having type 𝑖 ,
𝑅𝑅(𝑖) is the risk ratio associated with contact type 𝑖 . This
results in 𝑃𝑟 (base) = 0.01962. With 𝑃𝑟 (base) identified, we
can solve for 𝑅𝑅(non-household):

𝑆𝐴𝑅non-ℎℎ = 𝑃𝑟 (base)𝑅𝑅(non-household), (2)

resulting in 𝑅𝑅(non-household) = 2.45, an intensity be-
tween indirect wet and indirect dry contact.

3 Risk-based ring vaccination
In the risk-based ring vaccination strategy, we prioritize
the limited vaccine doses to agents within a ring with the
highest estimated risks. The estimation strategy for risks
needs to be simple and only use information that is easy to
observe. Specifically, we propose estimating risks based on
contact type and household membership and doing so only
within a ring—thus, there are at most two contact events
that contribute to any estimated risk. We assume that risks
are estimated separately for each ring and that there is no

coordination between rings. Risks are updated for each indi-
vidual at most once—we update them for contacts of contacts
if the contact becomes infected.

We define a ring as the contacts and contacts of contacts of
the infected agent. Let 𝑥 denote the seed case for the ring, 𝑦
denote a contact of 𝑥 , and 𝑧 denote a contact of 𝑦. We define
the risk for 𝑦 as

𝑅(𝑦) = 𝑃𝑟 (base) ·𝑊𝑥,𝑦, (3)

where𝑊𝑥,𝑦 is the risk ratio associated with the highest inten-
sity contact between 𝑥 and 𝑦 after 𝑥 developed symptoms,
i.e., max𝑡𝑊𝑥,𝑦,𝑡 with 𝑡 in 𝑥 ’s infectious period. For 𝑧, we
define the risk as

𝑅(𝑧 |𝑦 is not infected) = 𝑃𝑟 (base) ·𝑊𝑥,𝑦 · 𝑃𝑟 (base) ·𝑊𝑦,𝑧

(4)
𝑅(𝑧 |𝑦 is infected) = 𝑃𝑟 (base) ·𝑊𝑦,𝑧, (5)

using equation 4 if𝑦 is not known to be infected and updating
to use equation 5 if 𝑦 becomes infected.

Individuals in the ring are then vaccinated in order of their
risk ranking, i.e., each day the 𝑈 unvaccinated individuals
who do not have symptoms with highest risk are vaccinated.
If there are still some vaccines left after everyone in the ring
has been vaccinated, which can happen when individuals are
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unreachable during the vaccination process or in the later
stage of the outbreak, then the remaining vaccines will be
randomly distributed to the susceptible agents that are not
in the identified clusters.

4 Preliminary results
We compare the risk-based ring vaccination approach to
three baselines: random vaccination, full ring vaccination,
and no prioritization ring vaccination. All baselines vacci-
nate only individuals that have no symptoms and are un-
vaccinated (i.e., individuals in states 𝑆 and 𝐼𝐶). In random
vaccination, 𝑈 individuals are vaccinated at random each
day. In no prioritization ring, 𝑈 individuals that are in a ring
are vaccinated and any leftover vaccines are randomly dis-
tributed. In full ring, all individuals in a ring are vaccinated,
relaxing the constraint of 𝑈 vaccines per day. In all cases,
each individual has a 30% to be unreachable (as in [8]). The
dose that would go to that individual instead goes to the
next eligible agent (i.e., the next highest risk in risk-based
or another agent in the ring in no prioritization ring). We
simulate the ABM with 10 seed cases selected uniformly at
random from the population.

By ranking individuals who are at most at risk, risk-based
ring vaccination substantially reduces the infected number
of infections and deaths (Fig. 1 and Tab. 2). However, the
impact of risk-based prioritization varies significantly across
dose limits. In all dose limits, we see a statistically significant
difference between risk-based prioritization and standard
ring vaccination. This difference is most salient for moderate
dose limits—for 100 daily doses, risk-based reduces deaths
by roughly 2 times that of randomized vaccination and 1.8
times for no prioritization ring. With 200 doses available,
both risk-based and no-prioritization ring differ substantially
from randomized vaccination, whereas in 50 and 100 doses,
no prioritization ring and random achieve relatively similar
performance. In the case of 50 daily doses, risk-based ring has
a smaller impact on the number of infections and deaths (<
9% relative to random). However, we see substantial shifting
of the infection curve in this setting, delaying the peak by
about 20 days.
The full ring strategy (without dose limit) results in few

deaths as the vaccine for EVD is highly effective even when
administered after exposure, even when 30% of contacts are
unreachable at the time of vaccination. However, the cost
of this performance is the need for a surge of vaccination in
the first month of 321 ± 179 doses per day. This approach
achieves control early resulting in an average of 111 ± 152
daily doses across the whole period.

5 Discussion and Future Work
Creating control policies during an outbreak is challenging
due to resource constraints such as limited healthcare per-
sonnel and medical supplies. Using an ABM, we study the

impact of ring vaccination strategies under a daily dose limit,
and consider EVD as the case study, specifically. We find that,
even with vaccination-infection combination that is highly
suited to ring vaccination, ring vaccination has limited im-
pact on new infections relative to random vaccination until
the number of doses available is sufficiently high. Moreover,
the implementation of risk-based ring vaccination we con-
sider only requires slightly more information (contact types),
but has an impact even at much lower numbers of delivered
doses.

It is expected to observe phase transitions in vaccination
programs due to the exponential dynamics involved in in-
fections: when the number of daily vaccine doses passes a
threshold, infections will decay exponentially, and the out-
break can be contained. However, this intuition does not
apply directly to ring vaccination. Despite the ability of ring
vaccination to identify individuals who have a higher risk
of infection than the broader population, the impact on new
infections is relatively modest. A small modification of stan-
dard ring vaccination—involving risk-based prioritization
among documented contacts—induces dramatically different
behavior. Specifically, for a small number of doses (Fig. 1), a
risk-based approach yields a shift in the time at which the
peak in new infections is reached, thus postponing a surge
more efficiently than standard ring vaccination and random-
ized vaccination. Moreover, above a certain threshold, lying
between 50 and 100 daily doses in our model, benefits of the
risk-based approach compound and the shift in the timing
of the peak is coupled with a significant reduction in the
maximum number of new infections. These two distinct ef-
fects and their potential coupling are not well understood
and merit further study.

A key question is whether more sophisticated vaccination
strategies such as ring vaccination are worth the additional
overhead cost of reliably identifying and contact tracing
cases. The answer to this question is multi-faceted and will
depend on the interplay among outbreak stage, vaccine avail-
ability, and the combination of vaccination and infection
properties. More effort is needed to understand these inter-
actions: during an infectious disease emergency, resources
are scarce and need to be allocated towards the geographical
areas or subpopulations that result in the highest impacts,
i.e., the largest reduction in the maximum number of new
infections and the greatest delay in the timing of the peak.

Our study has several limitations. Our current ABM does
not incorporate realistic superspreading dynamics. Yet many
infectious diseases demonstrate a high degree of transmis-
sion heterogeneity, i.e., relatively few seed cases cause many
secondary infections [11]. While not well captured in our
model, this aspect has substantial consequences for ring vac-
cination because the variance of the strategy’s outcome is
increased, i.e., a single missed secondary case can have a
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(a) 50 doses (b) 100 doses (c) 200 doses

Figure 1. The daily mean count (± standard deviation) of infected under different vaccination strategies. We simulate outbreaks
with 10 seed cases for each policy given different numbers of vaccine availability. The shaded region indicates the standard
deviation for each vaccination strategy.

Table 2. Mean (95% CI) count of deceased for each strategy and dose limit.

Strategy 50 doses 100 doses 200 doses

Risk-based ring 8465.77 3268.67 175.77
(8370.63–8560.91) (1399.83–5137.50) (144.14–207.4)

No prioritization ring 9184 6091.50 784.7
(9101.12–9266.88) (5915.62–6267.38) (663.08–906.32)

Random 9272.33 6488.57 2044.4
(9164.44.35–9380.22) (6425.06–6552.09) (1627.39–2461.41)

Full ring 27.33
(no dose limit) (10.79–43.87)
No vaccination 12189.80

(12156.43–12223.17)

much larger impact on the timing of the peak in new in-
fections and its magnitude than in the absence of transmis-
sion heterogeneity. We suspect that accounting for super-
spreading events would further reduce the benefits of ring
vaccination. However, in some circumstances, pronounced
superspreading can make risk-based targeting more effective
as observations from a given ring can be used to infer the
transmission potential of the seed case.
Furthermore, it is already a hard task to gather contacts

and contacts of contacts to form a ring for vaccination. Ob-
taining information regarding exposure types between in-
fected individuals and their contacts is even more time and
resource intensive. Although risk-based ring vaccination is
more effective in our results, it is important to consider ad-
ditional factors like timing and human resources in order to
better evaluate the efficacy of our method.
By design, ring vaccination targets individuals with a

higher number of contacts or more centrally located in a
network. These individuals tend to get infected earlier than
their counterparts with an average number of contacts and
centrality [3]. Risk-based ring vaccination, by prioritizing
individuals with contacts at higher risk, will additionally tar-
get individuals in larger households. This additional feature
operates independently from the “encirclement” aspect of

standard ring vaccination; more work is needed to quantify
their respective contributions (e.g., by comparing risk-based
vaccination to strategies that prioritize individuals based on
household size).
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