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ABSTRACT

X-ray image-based medical report generation (MRG) is a pivotal area in artifi-
cial intelligence which can significantly reduce diagnostic burden and patient wait
time. Despite significant progress, we believe that the task has reached a bot-
tleneck due to the limited benchmark datasets and the existing large models’ in-
sufficient capability enhancements in this specialized domain. Specifically, the
recently released CheXpert Plus dataset provides only the dataset itself, lacking
comparative evaluation algorithms and their performances. This situation makes
the training, evaluation, and comparison of subsequent algorithms challenging.
Thus, we conduct a comprehensive benchmarking of existing mainstream X-ray
report generation models and Large Language Models (LLMs), on the CheX-
pert Plus dataset. We believe that the proposed benchmark can provide a solid
comparative basis for subsequent algorithms and serve as a guide for researchers
to quickly grasp the state-of-the-art models in this field. More importantly, we
propose a new large model for X-ray image report generation by using a multi-
stage pre-training strategy which involves Mamba based self-supervised autore-
gressive generation, X-ray-report contrastive learning, and supervised fine-tuning.
Extensive experimental results demonstrate that the proposed Mamba based au-
toregressive pre-training can effectively encode X-ray images, and the image-text
contrastive pre-training further aligns the feature spaces, achieving better experi-
mental results. All the source codes will be released upon acceptance.

1 INTRODUCTION

X-ray image based Medical Report Generation (MRG) is a critical research problem in artificial in-
telligence, which targets describing the findings or impressions from the given X-ray data via natural
language. The successful implementation of this task can significantly reduce the diagnostic burden
on physicians, decrease patient wait time, and foster the positive application of artificial intelli-
gence. However, the path to progress in this direction is not smooth sailing, there remain formidable
challenges that need to be addressed. The challenging issues include image interpretation, data an-
notation, heterogeneity issues, consistency and standardization of reports, diversity and variability
of diseases, interpretability of algorithms, etc. How to address these challenges and further improve
the quality of medical report generation remains an urgent research problem.

After revisiting the mainstream algorithms of X-ray image medical report generation, we find that
datasets like IU X-ray and MIMIC-CXR are widely used for the training and evaluation of report
generation models. However, the IU X-ray only contains 7,470 images and 3,955 radiology reports
samples, which is rather limited, especially in the large model era. The recently released CheXpert
Plus dataset Chambon et al. (2024) is a large-scale dataset for the X-ray report generation, however,
they did not release comparative methods, making it difficult for subsequent algorithms to conduct
experiments and comparisons on this dataset. Therefore, we conduct a comprehensive benchmark-
ing of existing open-sourced mainstream X-ray report generation models, Large Language Models
(LLMs), and Vision-Language Models (VLMs), termed CXPMRG-Bench, on the newly released
CheXpert Plus dataset, as shown in Fig. 1. The completion of this work can also help researchers
identify which large models and algorithms are currently leading in the field of X-ray report gener-
ation.
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Figure 1: An overview of the benchmarked LLM/VLM-based (green circle) and mainstream MRG
models (blue circle) on the CheXpert Plus dataset in this paper. For mainstream MRG models and
our algorithms, the area of the circle represents the number of parameters.

On the other hand, most mainstream algorithms follow the encoder-decoder framework which usu-
ally adopts the vision encoder (e.g., ResNet He et al. (2016), Transformer Vaswani et al. (2017))
to process the given X-ray data and a text decoder (e.g., LSTM Hochreiter & Schmidhuber (1997),
GRU Chung et al. (2014), Transformer Vaswani et al. (2017)) for report generation. Along with the
development of pre-trained LLM and VLM, the quality of medical reports is enhanced significantly.
There are already some researchers who exploit the pre-training for the X-ray report generation.
For example, Wang et al. Wang et al. (2024c) propose high-definition X-ray vision models using
context-aware masked auto-encoder. CXR-CLIP You et al. (2023) is a new pre-training method
that generates more image-text pairs and introduces contrastive loss to enhance the discriminative
power of images and texts, effectively learning features in the CXR domain. PTUnifier Chen et al.
(2023c) proposes a simple and effective method that utilizes visual and textual prompt pools to
make the model compatible with different types of inputs, thereby unifying the advantages of fusion
encoders and dual encoders. However, we believe these models may be limited by the following
issues: Firstly, the Transformer vision backbone brings huge computational costs O(N2), which is
not hardware friendly; Secondly, pure X-ray images are abundant and readily collectible, but paired
X-ray and report data are relatively scarce. Current X-ray models are pre-trained in a single stage
using X-ray image or image-report data only, and fail to exploit the full potential of these diverse
X-ray data, therefore, the overall performance may be limited.

To address the issues mentioned above, in this work, we exploit multi-stage pre-training for the
X-ray image MRG task and propose the MambaXray-VL large model, including self-supervised
autoregressive generation and Xray-report contrastive learning, and supervised fine-tuning on the
downstream report generation datasets, as shown in Fig. 2. Specifically speaking, we first partition
and feed the X-ray image into the Mamba network to predict the next tokens based on previous
context tokens in an autoregressive generation manner. This will enhance the vision perception
ability of X-ray significantly using the relative low-cost Mamba network (O(N)). For the second
stage, we feed the paired X-ray image and corresponding report into the Mamba vision backbone
and text encoder (Bio ClinicalBERT Alsentzer et al. (2019), Llama2 Touvron et al. (2023)) for
contrastive learning. It will align the X-ray image and reports using the pre-trained feature space.
After that, we conduct supervised fine-tuning on each downstream X-ray report generation dataset to
achieve higher performance by feeding the X-ray image into the pre-trained Mamba vision backbone
network and LLM decoder network. Extensive experiments on three MRG benchmark datasets
demonstrate that our pre-trained MambaXray-VL model achieves state-of-the-art performance.

To sum up, the contributions of this paper can be summarized as the following three aspects:

1). We conduct a comprehensive benchmark for the newly released CheXpert Plus dataset Cham-
bon et al. (2024), termed CXPMRG-Bench, which covers 19 mainstream X-ray medical report
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Figure 2: An overview of our proposed MambaXray-VL pre-training framework. It contains three
training stages, i.e., Mamba-based autoregressive generation, Xray-report based contrastive learn-
ing, and supervised fine-tuning. Note that the layers or modules with fire/snow symbols denote the
parameters that are tuned/frozen in the training phase.

generation algorithms, 14 large language models, and 2 vision-language models. To the best of
our knowledge, this benchmark is the first large-scale evaluation of the CheXpert Plus dataset, pro-
viding subsequent researchers in the field of X-ray report generation with important reference and
comparison criteria.

2). We propose a new pre-trained large model, termed MambaXray-VL, which adopts the Mamba
as the vision encoder and the large language model as the text decoder. Compared to the Trans-
former, the proposed Mamba-based framework achieves state-of-the-art performance with lower
computational cost via the multi-stage pre-training strategy.

3). We extend our research to a broader scope by conducting experiments on the IU X-ray and
MIMIC-CXR datasets. We perform analytical experiments and visualizations to deepen the un-
derstanding of our MambaXray-VL model’s performance and its capabilities in generating X-ray
medical reports.

2 MAMBAXRAY-VL LARGE MODEL

2.1 OVERVIEW

As shown in Fig. 2, we propose a new multi-stage pre-training strategy for the X-ray image med-
ical report generation, including self-supervised autoregressive generation, Xray-report contrastive
learning, and supervised fine-tuning. The key insight of our multi-stage pre-training instead of joint
training is that the aligned Xray-report data are limited, but there are more publicly available X-ray
images. Thus, we first pre-train a large-scale vision backbone network on the X-ray images by us-
ing the Mamba layers, due to a better balance between the computational cost and accuracy. More
importantly, we adopt the autoregressive generation to achieve self-supervised learning on the X-ray
images. It performs similar or even better than the widely used MAE (Masked Auto-Encoder) pre-
training strategy on this task. Then, we transfer the Mamba vision backbone to the second stage, i.e.,
Xray-report contrastive learning. Specifically, we feed the paired data into the pre-trained Mamba
vision backbone and language encoder for the vision-language feature extraction. This stage will
project the vision and language representations into a shared feature space to bridge the vision-
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semantic gaps. Finally, we conduct supervised fine-tuning on the training subset of downstream
datasets for the X-ray medical report generation.

2.2 MULTI-STAGE PRE-TRAINING

As illustrated in Fig. 2, our proposed MambaXray-VL large model contains three training stages
which will be introduced in the following paragraphs respectively.

• Stage #1: Auto-regressive Generation for Mamba Vision Encoder Pre-training. To make
full use of existing X-ray images, we conduct self-supervised learning to obtain a strong vision
backbone network. Different from the widely used MAE (Masked Auto-Encoder)-based frame-
work, in this work, we find that the autoregressive generation based framework works similarly
or even better for the X-ray images, as inspired by the success of autoregressive generation in
ChatGPT OpenAI (2023), GPT-4 Achiam et al. (2023), and ARM Ren et al. (2024). Let’s de-
note the X-ray image as I ∈ R192×192×3. We first partition it into non-overlapping image patches
Pi ∈ R16×16×3, i = {1, 2, ..., N} and project them into visual tokens Ti ∈ R1024, i = {1, 2, ..., N}
by using a convolutional layer (kernel size 16× 16). Here, N is 144 when the resolution of the input
X-ray image is set as 3× 192× 192. Then, we feed the visual tokens into the Vim Zhu et al. (2024)
backbone network for feature extraction whose complicity O(N) is much lower than the widely
used Transformer O(N2). The key operation of Vim is the Mamba block (a specific variation of
State Space Model Wang et al. (2024d)), as shown in Fig. 2. The visual tokens will first be normal-
ized and fed into the SSM and scan branches. The outputs will be multiplied and added with residual
connections. The SwiGLU Shazeer (2020) is adopted to further process output features before be-
ing fed into subsequent Mamba blocks. Finally, a MLP layer is adopted for token reconstruction by
using the auto-regressive generation loss function.

The objective of autoregressive pre-training is to predict the probability p of the next token one by
one based on the given corpus T = {T1, T2, ..., Tn}, which can be formulated as:

p(T ) =

n∏
i=1

p(Ti|T1, ..., Ti−1,Θ). (1)

We can find that the likelihood of each token Ti is computed based on the context of all the proceed-
ing tokens {T1, ..., Ti−1}. Thus, the loss function used for Stage #1 can be formulated as follows:

LAR =

n−1∑
i=1

|V im([T1, ..., Ti])− Ti+1|2, (2)

where V im denotes the vision Mamba backbone network.

• Stage #2: Xray-Report Contrastive Learning. We adopt the Mamba vision backbone network
from the first stage and conduct contrastive learning based on mini-batch Xray-report samples. This
will further align the dual modalities via the CLIP loss as validated in the CLIP Radford et al.
(2021). In our implementation, we randomly sample a mini-batch and feed the X-ray images and
medical reports into the Vim backbone and the language model (Bio ClinicalBERT Alsentzer et al.
(2019), Llama2 Touvron et al. (2023)) and compute the cosine similarity between the X-ray image
and medical reports:

LCTL = CLIPLoss(V im(Ii), LM(Rj)), (3)

where i and j are the index of the X-ray image I and report annotation R.

• Stage #3: Supervised Fine-tuning. After the above two pre-training stages, we conduct su-
pervised fine-tuning on the training subset of X-ray image medical report generation. Similar to
the first stage, we partition the given X-ray image into non-overlapping patches and project them
into visual tokens. Then, the pre-trained Vim backbone network is used for the feature extraction.
We concatenate the visual tokens and generation prompt as the input of a large language model for
high-performance medical report generation.

In this stage, we adopt the negative log-likelihood as the loss function, i.e.,

LNLL = −
T∑

i=1

logpθ(yi|Prompt, [y1, ..., yi−1]), (4)
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Table 1: Experimental Results on the CheXpert Plus Dataset using Mainstream Medical Report
Generation Algorithms. B4, R, M, and C is short for BlEU-4, ROUGE-L, METEOR, CIDEr,
respectively. P, R, and F1 is short for Precision, Recall, F1 score, respectively. min is short for
minutes. The parameter listed in this table denotes the parameters that need to be tuned in the
training phase. The best result is highlighted in bold, and the second-best result is underlined.

Index Algorithm Publish Encoder Decoder B4, R, M, C P, R, F1 Time Param Code
#01 R2GenRL ACL22 Transformer Transformer 0.035, 0.186, 0.101, 0.012 0.193, 0.229, 0.196 44.33 59.87 URL
#02 XProNet ECCV22 Transformer Transformer 0.100, 0.265, 0.146, 0.121 0.314, 0.247, 0.259 6.3 62.35 URL
#03 MSAT MICCAI22 ViT-B/16 Transformer 0.036, 0.156, 0.066, 0.018 0.044, 0.142, 0.057 5.72 141.10 URL
#04 ORGan ACL23 CNN Transformer 0.086, 0.261, 0.135, 0.107 0.288, 0.287, 0.277 46.66 67.50 URL
#05 M2KT MIA21 CNN Transformer 0.078, 0.247, 0.101, 0.077 0.044, 0.142, 0.058 22.5 69.07 URL
#06 TIMER CHIL23 Transformer Transformer 0.083, 0.254, 0.121, 0.104 0.345, 0.238, 0.234 26.5 79.28 URL
#07 CvT2DistilGPT2 AIM23 Transformer GPT2 0.067, 0.238, 0.118, 0.101 0.285, 0.252, 0.246 13.93 128 URL
#08 R2Gen EMNLP20 Transformer Transformer 0.081, 0.246, 0.113, 0.077 0.318, 0.200, 0.181 110.05 83.5 URL
#09 R2GenCMN ACL21 Transformer Transformer 0.087, 0.256, 0.127, 0.102 0.329, 0.241, 0.231 66.08 67.70 URL
#10 Zhu et al. MICCAI23 Transformer Transformer 0.074, 0.235, 0.128, 0.078 0.217, 0.308, 0.205 10.03 85.95 URL
#11 CAMANet IEEE JBH23 Swin-Former Transformer 0.083, 0.249, 0.118, 0.090 0.328, 0.224, 0.216 23.08 43.22 URL

#12 ASGMD ESWA24 ResNet-101
Transformer Transformer 0.063, 0.220, 0.094, 0.044 0.146, 0.108, 0.055 87.37 277.41 URL

#13 Token-Mixer IEEE TMI23 ResNet-50 Transformer 0.091, 0.261, 0.135, 0.098 0.309, 0.270, 0.288 17.54 104.34 URL
#14 PromptMRG AAAI24 ResNet-101 Bert 0.095, 0.222, 0.121, 0.044 0.258, 0.265, 0.281 108.45 219.92 URL
#15 R2GenGPT Meta-Rad.23 Swin-Transformer Llama2 0.101, 0.266, 0.145, 0.123 0.315, 0.244, 0.260 77.8 90.9 URL
#16 WCL EMNLP21 Transformer Transformer 0.084, 0.253, 0.126, 0.103 0.335, 0.259, 0.256 24.08 81.29 URL
#17 R2GenCSR arXiv24 VMamba Llama2 0.100, 0.265, 0.146, 0.121 0.315, 0.247, 0.259 31.2 91.7 URL
#18 VLCI arXiv24 Transformer Transformer 0.080, 0.247, 0.114, 0.072 0.341, 0.175, 0.163 123.71 91.46 URL
#19 Wang et al. arXiv24 ViT Llama2 0.064, 0.220, 0.110, 0.059 0.175, 0.099, 0.078 10.82 358.80 URL

#20 MambaXray-VL-B Ours MambaXray-VL Llama2 0.105, 0.267, 0.149, 0.117 0.333, 0.264, 0.273 50.66 57.31 URL
#21 MambaXray-VL-L Ours MambaXray-VL Llama2 0.112, 0.276, 0.157, 0.139 0.377, 0.319, 0.335 55.18 202.32 URL

where θ denotes the trainable parameters and T is the number of words that are predicted by the
large language model. Prompt is the instruction prompt which is “Generate a comprehensive and
detailed diagnosis report for this chest X-ray image.” used in our experiments.

3 CXPMRG-BENCH

In this paper, we benchmark the newly released CheXpert Plus dataset for the X-ray image based
medical report generation. The mainstream MRG algorithms and large language models are listed in
the following subsections. For the experimental results, please refer to Table 1, Table 2, and Fig. 1.

3.1 MAINSTREAM MRG ALGORITHMS

For the mainstream X-ray image MRG algorithms, as shown in Table 1, we train and test 21 open-
sourced algorithms from year 2020 to year 2024. These models adopt the CNN (ORGan Hou et al.
(2023), M2KT Yang et al. (2023), ASGMD Xue et al. (2024), Token-Mixer Yang et al. (2024),
PromptMRG Jin et al. (2024)), Transformer (R2GenRL Qin & Song (2022), XProNet Wang
et al. (2022a), MSAT Wang et al. (2022b), TIMER Wu et al. (2023), CvT2DistilGPT2 Nicolson
et al. (2023), R2Gen Chen et al. (2020), R2GenCMN Chen et al. (2021), Zhu et al. Zhu et al.
(2023), CAMANet Wang et al. (2024a), R2GenGPT Wang et al. (2023), WCL Yan et al. (2021),
VLCI Chen et al. (2023a), Wang et al. Wang et al. (2024c)), and Mamba (R2GenCSR Wang et al.
(2024b), MambaXray-VL-B, MambaXray-VL-L) as their vision backbone network, and utilize the
LSTM, Transformer based model as the decoder network. Note that, the MambaXray-VL-B and
MambaXray-VL-L are two models proposed in this paper which will be introduced in the next
section. When reproducing these X-ray based MRG models, we found that some algorithms use
truncated ground truth for comparison, which we believe may not accurately reflect the true eval-
uation results. Therefore, we abandoned the truncation mechanism and used the complete ground
truth for result evaluation, making the obtained results more accurate and reliable.

3.2 LLMS FOR MRG

We evaluate a total of 16 open-source LLMs, as shown in Table 2, including Vicuna-7B Zheng et al.
(2023), QWen1.5-7B et al. (2023), QWen2-7B-Instruct et al. (2023), InternLM-7B Cai et al. (2024),
Llama2-7B Touvron et al. (2023), Llama2-13B Touvron et al. (2023), Llama3-8B Dubey et al.
(2024), Llama3.1-8B Dubey et al. (2024), GPT2-Medium Radford et al. (2019), Orca 2-7B Mitra
et al. (2023), Orca 2-13B Mitra et al. (2023), DeepSeek-LLM-7B-Chat Bi et al. (2024), Yi-1.5-6B-
Chat Young et al. (2024), Yi-1.5-9B-Chat Young et al. (2024). Note that part of the LLMs is selected
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from open-llm-leaderboard 1 and integrated with R2GenGPT Wang et al. (2023) model by replacing
the Llama2 language decoder with corresponding LLMs. In our implementation, we keep the visual
encoder SwinTransformer unchanged for a fair comparison. In addition, we also test two pre-trained
vision-language large models, i.e., InternVL-2 Chen et al. (2023b) and MiniCPM-V2.5 Yao et al.
(2024), to check whether a better performance can be obtained, as shown in Table 2.

3.3 EVALUATION RESULTS

[Mainstream MRG Models] As shown in Table 1, there are five MRG models which achieve a
higher B4 metric, i.e., the XProNet Wang et al. (2022a) (0.100), R2GenGPT Wang et al. (2023)
(0.101), R2GenCSR Wang et al. (2024b) (0.100), and our newly proposed MambaXray-VL-B and
MambaXray-VL-L which achieves 0.105, and 0.112, respectively. It is intuitive to find that the
large language model Llama2 works well for the MRG task. For F1 in the clinical metric, the
top-5 models are our newly proposed MambaXray-VL-L (0.335), Token-Mixer Yang et al. (2024)
(0.288), PromptMRG Jin et al. (2024) (0.281), ORGan Hou et al. (2023) (0.277) and our proposed
MambaXray-VL-B (0.273). From these results, we can find that our proposed multi-stage pre-
training strategy is rather effective in the disease-aware perception of the MRG.

[LLM/VLM based MRG Models] As shown in Table 2, we also report the performance of existing
widely used LLMs by replacing the Llama2 based on the R2Gen-GPT framework (SwinTransformer
is adopted as the vision backbone network). It is easy to find that the Vicuna-V1.5 Zheng et al. (2023)
released in the year 2023 achieves the best B4 metric and the InternLM Cai et al. (2024) performs the
best on the F1 clinical metric. For the two vision-language models we evaluated, i.e., the InternVL-
2 and MiniCPM-V2.5, we can find that their results are not as good as other LLM-based models,
although they have similar parameters. These results demonstrate that the vision-language models
pre-trained on natural image-pairs may have large gaps with the X-ray medical images. Compared
with the mainstream MRG models reported in Table 1, the LLM-based MRG achieves better results
than regular language decoders which demonstrates the effectiveness of pre-trained LLMs.

[Efficiency & Parameters] From the perspective of running efficiency, we test these models on a
server with A800 GPUs (80GB). Note that, we set the batch size as large as possible to make full use
of the GPU memory. As a result, we can find that MSAT Wang et al. (2022b) and XProNet Wang
et al. (2022a) are the first two algorithms that only need 5.72 and 6.3 minutes for the testing subset.
R2Gen Chen et al. (2020), PromptMRG Jin et al. (2024), and VLCI Chen et al. (2023a) are relatively
slow and need more than 100 minutes on the testing subset of CheXpert Plus dataset. For the LLM-
based MRG reported in Table 2, we can find that Yi-1.5 Young et al. (2024) with 6.1B and 8.8B
achieves better efficiency which needs 43.66 and 48.50 minutes for the testing. From the Fig. 1
and Table 1, we can find that the ASGMD Xue et al. (2024), PromptMRG Jin et al. (2024), Wang
et al. Wang et al. (2024c), and our MambaXray-VL-L contains the most parameters (larger than
200M) needed to be tuned in the training phase. However, we can find that our model runs faster
than these large models which only needs 55.18 minutes. It fully validates the efficiency of our
proposed framework for the X-ray image based medical report generation.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRIC

In the first stage of autoregressive pre-training, we used about 1.27 million medical chest X-ray im-
ages proposed in the work Wang et al. (2024c). In the second stage of image-text contrastive learning
pre-training, we used a combination of training data from the MIMIC-CXR Johnson et al. (2019),
CheXpert Plus Chambon et al. (2024), and IU X-ray Demner-Fushman et al. (2016) datasets, total-
ing 480k image-report pairs. Note that the CheXpert Plus dataset used here consists of images and
impressions, not the image and findings combination used in the third stage. We strictly excluded
any testing samples used in the third stage, resulting in a total of 210k image-impression pairs.
In the third stage, we evaluate the performance of our model on three datasets, including IU X-
Ray Demner-Fushman et al. (2016), MIMIC-CXR Johnson et al. (2019), and CheXpert Plus Cham-
bon et al. (2024) dataset.

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard
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Table 2: Experimental Results of Medical Report Generation on the CheXpert Plus Dataset using
different LLMs and VLMs based on R2Gen-GPT. The symbol † indicates that the model is a
VLM. The Param listed in this table denotes the parameters of LLM/VLM.

Index LLM/VLM Year B4 R M C P R F1 Time (min) Param Code
#01 Vicuna-V1.5 2023 0.104 0.272 0.160 0.202 0.334 0.258 0.276 72.00 6.7B URL
#02 Qwen-1.5 2024 0.098 0.262 0.139 0.139 0.303 0.233 0.241 154.25 7.7B URL
#03 Qwen-2 2024 0.100 0.270 0.142 0.159 0.313 0.269 0.261 103.33 7.6B URL
#04 InternLM 2024 0.063 0.207 0.136 0.104 0.307 0.274 0.284 294.00 7.3B URL
#05 Llama-2 2023 0.102 0.267 0.157 0.179 0.315 0.244 0.260 77.78 6.7B URL
#06 Llama-2 2023 0.101 0.269 0.160 0.214 0.321 0.254 0.267 116.42 13.0B URL
#07 Llama-3 2024 0.077 0.220 0.121 0.134 0.306 0.232 0.222 130.00 8.0B URL
#08 Llama-3.1 2024 0.075 0.221 0.121 0.136 0.295 0.251 0.242 110.00 8.0B URL
#09 GPT2-Medium 2019 0.063 0.198 0.104 0.067 0.358 0.186 0.165 57.33 354M URL
#10 Orca-2 2023 0.103 0.270 0.161 0.199 0.330 0.251 0.271 177.33 6.7B URL
#11 Orca-2 2023 0.100 0.266 0.159 0.187 0.317 0.242 0.257 108.66 13.0B URL
#12 Deepseek-LLM 2024 0.096 0.268 0.137 0.150 0.336 0.256 0.253 201.30 6.9B URL
#13 Yi-1.5 2024 0.091 0.263 0.131 0.136 0.322 0.229 0.226 43.66 6.1B URL
#14 Yi-1.5 2024 0.096 0.269 0.138 0.155 0.336 0.241 0.243 48.50 8.8B URL
#15 InternVL-2† 2023 0.058 0.188 0.112 0.085 0.196 0.127 0.132 108.50 8.0B URL
#16 MiniCPM-V2.5† 2024 0.046 0.177 0.085 0.076 0.254 0.152 0.122 51.50 8.4B URL

Table 3: Comparison of our model’s performance on the IU X-ray and MIMIC-CXR datasets.
The symbol † indicates that we follow the R2Gen annotation using Findings and evaluate with our
method, as their report modifies the ground truth to an Impression concatenated with Findings. The
best result is highlighted in bold, and the second-best result is underlined.

Dataset Methods Publication BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

IU X-Ray

R2Gen EMNLP 2020 0.470 0.304 0.219 0.165 0.371 0.187 -
R2GenCMN ACL-IJCNLP 2021 0.475 0.309 0.222 0.170 0.375 0.191 -
PPKED CVPR 2021 0.483 0.315 0.224 0.168 0.376 0.187 0.351
AlignTrans MICCAI 2021 0.484 0.313 0.225 0.173 0.379 0.204 -
CMCL ACL 2021 0.473 0.305 0.217 0.162 0.378 0.186 -
Clinical-BERT AAAI 2022 0.495 0.330 0.231 0.170 0.376 0.209 0.432
METransformer CVPR 2023 0.483 0.322 0.228 0.172 0.380 0.192 0.435
DCL CVPR 2023 - - - 0.163 0.383 0.193 0.586
R2GenGPT† Meta Radiology 2023 0.465 0.299 0.214 0.161 0.376 0.219 0.542
PromptMRG AAAI 2024 0.401 - - 0.098 0.160 0.281 -
BootstrappingLLM AAAI 2024 0.499 0.323 0.238 0.184 0.390 0.208 -
MambaXray-VL-Base Ours 0.479 0.322 0.236 0.179 0.388 0.215 0.508
MambaXray-VL-Large Ours 0.491 0.330 0.241 0.185 0.371 0.216 0.524

MIMIC-CXR

R2Gen EMNLP 2020 0.353 0.218 0.145 0.103 0.277 0.142 -
R2GenCMN ACL-IJCNLP 2021 0.353 0.218 0.148 0.106 0.278 0.142 -
PPKED CVPR 2021 0.360 0.224 0.149 0.106 0.284 0.149 0.237
AlignTrans MICCAI 2021 0.378 0.235 0.156 0.112 0.283 0.158 -
CMCL ACL 2021 0.344 0.217 0.140 0.097 0.281 0.133 -
Clinical-BERT AAAI 2022 0.383 0.230 0.151 0.106 0.275 0.144 0.151
METransformer CVPR 2023 0.386 0.250 0.169 0.124 0.291 0.152 0.362
DCL CVPR 2023 - - - 0.109 0.284 0.150 0.281
R2GenGPT† Meta Radiology 2023 0.408 0.256 0.174 0.125 0.285 0.167 0.244
PromptMRG AAAI 2024 0.398 - - 0.112 0.268 0.157 -
BootstrappingLLM AAAI 2024 0.402 0.262 0.180 0.128 0.291 0.175 -
MambaXray-VL-Base Ours 0.420 0.264 0.180 0.129 0.283 0.162 0.206
MambaXray-VL-Large Ours 0.422 0.268 0.184 0.133 0.289 0.167 0.241

For the X-ray medical report generation, we evaluate the model using widely used natural language
generation (NLG) metrics, including CIDEr Vedantam et al. (2015), BLEU Papineni et al. (2002),
ROUGE-L Lin (2004), and METEOR Banerjee & Lavie (2005). To measure the accuracy of
descriptions for clinical abnormalities, we also report Clinical Efficacy (CE) metrics. CE metrics
require the use of the CheXPert Irvin et al. (2019) toolkit to first extract labels from predictive
reports and ground truth, and then to compare the presence status of important clinical observations
to capture the diagnostic accuracy of the generated reports. We use Precision, Recall, and F1 to
evaluate model performance for clinical efficacy metrics. A brief introduction to these datasets and
metrics can be found in our supplementary materials.

4.2 COMPARISON WITH SOTA ALGORITHMS

• Results on IU X-ray Dataset. As shown in Table 3, it can be seen that both our MambaXray-
VL-Base and MambaXray-VL-Large exhibit excellent performance on the IU X-ray dataset. Among
them, the MambaXray-VL-Large model is at the SOTA level on BLEU-2 (B2), BLEU-3 (B3), and
BLEU-4 (B4) metrics with scores of 0.330, 0.241, and 0.185, respectively. This result indicates the
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Table 4: Component analysis of the key modules in our framework on MIMIC-CXR and CheXpert
Plus dataset. The symbol † indicates that we are using the Base version of the model, while the
others are the Large versions. Vim-IN1K indicates the use of weights pre-trained on ImageNet-1K;
Vim-PTD indicates the use of weights pre-trained on 1.27 million X-ray images; MAE represents
the Masked Auto-encoders pre-training framework; ARG represents the Auto-regressive Generation
pre-training framework; CTL represents the contrastive learning loss between images and text; SFT
represents supervised fine-tuning. B4, R, M, and C represents BLEU-4, ROUGE-L, METEOR, and
CIDEr, respectively.

Index Vim-IN1K Vim-PTD MAE ARG CTL SFT MIMIC-CXR CheXpert Plus
B4 R M C B4 R M C

#01 ✗ ✗ ✗ ✗ ✗ ✓ 0.125 0.285 0.167 0.244 0.101 0.266 0.145 0.123
#02 ✓ ✓ ✓ ✗ ✗ ✓ 0.104 0.260 0.141 0.154 0.094 0.257 0.140 0.104
#03 ✓ ✓ ✗ ✓ ✗ ✓ 0.130 0.286 0.162 0.224 0.089 0.247 0.134 0.089
#04 † ✓ ✗ ✗ ✓ ✗ ✓ 0.108 0.264 0.144 0.170 0.090 0.249 0.132 0.103
#05 † ✓ ✓ ✗ ✓ ✗ ✓ 0.121 0.280 0.161 0.224 0.093 0.254 0.138 0.102
#06 † ✓ ✓ ✗ ✓ ✓ ✓ 0.129 0.283 0.162 0.206 0.105 0.267 0.149 0.117
#07 ✓ ✗ ✗ ✓ ✗ ✓ 0.105 0.258 0.139 0.143 0.082 0.236 0.126 0.080
#08 ✓ ✓ ✗ ✓ ✗ ✓ 0.130 0.286 0.162 0.224 0.089 0.247 0.134 0.089
#09 ✓ ✓ ✗ ✓ ✓ ✓ 0.133 0.289 0.167 0.241 0.112 0.276 0.157 0.139

Table 5: Comparison of text encoders used in second stage on the MIMIC-CXR and CheXpert Plus.
LLM MIMIC-CXR CheXpert Plus

BLEU-4 ROUGE-L METEOR CIDEr BLEU-4 ROUGE-L METEOR CIDEr
Baseline 0.125 0.285 0.167 0.244 0.101 0.266 0.145 0.123

Llama2 Touvron et al. (2023) 0.122 0.276 0.157 0.211 0.066 0.233 0.124 0.043
Bio ClinicalBERT Alsentzer et al. (2019) 0.133 0.289 0.167 0.241 0.112 0.276 0.157 0.139

superiority of our method over other report generation methods. However, on some other metrics
such as BLEU-1 (B1), ROUGE-L (R), METEOR (M), and CIDEr (C), our method does not achieve
optimal performance. This reflects the need to improve the generalization of our method on other
datasets.

• Results on MIMIC-CXR Dataset. As shown in Table 3, our method also demonstrates out-
standing performance on the MIMIC-CXR dataset, surpasses all other advanced report generation
methods, and achieves the most advanced level in several common indicators (e.g., BLEU-1, BLEU-
2, BLEU-3, and BLEU-4). Specifically, our method improves the BLEU-4 metric by 6% compared
to R2GenGPT. Encouragingly, we achieved favorable results for two of the three remaining metrics,
ROUGE-L and METEOR, with scores of 0.289 for ROUGE-L and 0.167 for METEOR, which again
demonstrates the superior performance of our model. In the CIDEr metric, our model achieved a
score of 0.241, indicating that MambaXray-VL still has room for improvement.

• Results on CheXpert Plus Dataset. As shown in Table 1, our model MambaXray-VL-Large
achieves state-of-the-art performance in all evaluation metric species. These include NLG evalu-
ation metrics and CE evaluation metrics. In detail, for the NLG metrics, our scores on BLEU-4,
ROUGE-L, METEOR, and CIDEr are 0.112, 0.276, 0.157, and 0.139, respectively. For the CE
metrics, our scores on Precision (P), Recall (R), and F1-score (F1) are 0.377, 0.319, and 0.335,
respectively. These experimental results fully demonstrate the superior performance of our model
on the CheXpert Plus dataset. In terms of efficiency, our method took 55.18 minutes to complete the
testing subset of the CheXpert Plus dataset with a parameter size of 202.32M, showing its effective-
ness and efficiency in processing X-ray images.

4.3 ABLATION STUDY

• Effectiveness of Autoregressive Generation for Pre-training on X-ray Image? As shown
in Table 4, we first compare the autoregressive generation (ARG) pre-training with the Masked
Auto-Encoder (MAE) pre-training. From the #02 and #03 rows, it can be seen that the results
achieve 0.130/0.089 on the BLEU-4 metric of the MIMIC-CXR and CheXpert Plus datasets, re-
spectively. Note that the ARG pre-training method outperforms the MAE on all metrics, with a
+45% (i.e., (0.224-0.154)/0.154) improvement on CIDEr compared to MAE. The ARG-based pre-
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Image Ground Truth Ours R2GenGPT

Pa and lateral views of the chest provided. Midline
sternotomy wires and mediastinal clips are again
noted. The previously noted port-a-cath has been
removed. The lungs are clear bilaterally with-
out focal consolidation effusion or pneumotho-
rax. Cardiomediastinal silhouette is stable. Bony
structures are intact. No free air below the right
hemidiaphragm is seen.

Ap upright and lateral views of the chest provided.
Midline sternotomy wires and mediastinal clips
are again noted. There is no focal consolidation
large effusion or pneumothorax. The cardiomedi-
astinal silhouette is stable. Bony structures are in-
tact. No free air below the right hemidiaphragm is
seen.

Frontal and lateral views of the chest were ob-
tained. The patient is status post median ster-
notomy and cabg. The cardiac and mediastinal
silhouettes are stable. There is no focal consolida-
tion pleural effusion or pneumothorax. Mild pul-
monary vascular congestion is noted. Degenera-
tive changes are seen in the thoracic spine.

Pa and lateral views of the chest provided. There is
no focal consolidation effusion or pneumothorax.
The cardiomediastinal silhouette is normal. Im-
aged osseous structures are intact. No free air be-
low the right hemidiaphragm is seen. Elevation of
the right hemidiaphragm is unchanged from chest
radiograph.

Pa and lateral views of the chest provided. There
is no focal consolidation effusion or pneumotho-
rax. The cardiomediastinal silhouette is normal.
Imaged osseous structures are intact. No free air
below the right hemidiaphragm is seen. Clips are
noted in the right upper quadrant of the abdomen.

Pa and lateral views of the chest provided. There
is no focal consolidation effusion or pneumotho-
rax. The cardiomediastinal silhouette is normal.
Imaged osseous structures are intact. No free air
below the right hemidiaphragm is seen. Surgical
clips in the right upper quadrant suggest prior
cholecystectomy .

Frontal and lateral views of the chest were ob-
tained. Dual-lead left-sided pacemaker is again
seen with leads extending to the expected po-
sitions of the right atrium and right ventricle.
The lungs are hyperinflated with flattening of the
diaphragms suggesting chronic obstructive pul-
monary disease. No pleural effusion or pneumoth-
orax is seen. Slight increased opacity at the right
lung base best seen on the fron.

Frontal and lateral views of the chest were ob-
tained. Dual-lead left-sided pacemaker is again
seen with leads extending to the expected posi-
tions of the right atrium and right ventricle. There
is no evidence of pneumothorax or pleural effu-
sion. The lungs are hyperinflated with flattening
of the diaphragms consistent with chronic obstruc-
tive pulmonary disease. Cardiomediastinal silhou-
ette is stable. Bony structures are intact.

Frontal and lateral chest radiographs demonstrate
hyperexpanded lungs with flattening of the di-
aphragms consistent with chronic obstructive pul-
monary disease. There is no focal consolidation
pleural effusion or pneumothorax. The cardiac
mediastinal and hilar contours are unremarkable.
A left-sided pacemaker device is noted with leads
terminating in the right atrium and right ventricle.

As compared to the previous radiograph there is
no relevant change. The monitoring and support
devices are constant. Low lung volumes border-
line size of the cardiac silhouette. Mild pulmonary
edema. Moderate retrocardiac atelectasis. No evi-
dence of pneumonia.

As compared to the previous radiograph there is
no relevant change. The monitoring and support
devices are in unchanged position. Low lung vol-
umes with minimal atelectasis at both lung bases.
No larger pleural effusions or pneumothorax. Bor-
derline size of the cardiac silhouette. No pul-
monary edema. No other parenchymal abnormal-
ities.

In comparison with the study of the monitoring
and support devices remain in place. Continued
enlargement of the cardiac silhouette with pul-
monary vascular congestion and bilateral pleu-
ral effusions with compressive atelectasis at the
bases. No evidence of acute focal pneumonia or
pneumothorax. Central catheters remain in place.

Figure 3: X-ray images and their corresponding ground-truths, along with the output of our model
and R2GenGPT model generation reports on the MIMIC-CXR dataset. Matching sentences in our
report are highlighted in yellow, R2GenGPT matching sentences are highlighted in cyan, and sen-
tences matching by both models are highlighted in pink.

training achieves similar performance compared with MAE-based pre-training on the CheXpert Plus
dataset.

• Effectiveness of Xray-Report Contrastive Learning. In addition, we further explored the impact
of contrastive learning (CTL) on the final performance. The experimental results in the #05 and #06
rows of Table 4 demonstrate its effectiveness. After introducing the CTL loss, we find that the results
on the MIMIC-CXR and CheXpert Plus datasets have all received improvement. More in detail, it
improves the ROUGE-L metric by over +5% on the CheXpert Plus dataset. These experiments
demonstrate the positive effect of the CTL loss we used in the pre-training stage.

• Comparison between ViT and Mamba using Autoregressive Generation. As shown in the #01
and #09 rows of Table 4, the #01 row uses a visual coder based on the Transformer architecture,
while the last row uses a visual coder with auto-regressive pre-training of the Mamba architecture.
It can be clearly observed that the encoder based on the Mamba architecture achieves better per-
formance in the vast majority of metrics, both on the MIMIC-CXR and CheXpert Plus datasets,
especially on BLEU-4 for the MIMIC-CXR data, where the Mamba architecture improves by +6%
compared to the Transformer architecture. However, on the MIMIC-CXR dataset, the metric CIDEr
does not score significantly better than the Transformer architecture. Overall, this series of experi-
ments clearly validate the effectiveness of the auto-regressive pre-trained visual coder based on the
Mamba architecture.

• Clinical-BERT vs Llama2 in Xray-Report Contrastive Learning. In this work, we test two
models for contrastive learning in the second stage, i.e., the Bio ClinicalBERT Alsentzer et al.
(2019) and Llama2 Touvron et al. (2023). As shown in Table 5, the experimental results on both
MIMIC-CXR and CheXpert Plus datasets all demonstrate that the Bio ClinicalBERT Alsentzer et al.
(2019) achieves a better performance for the X-ray report generation. We think this may be caused
by the fact that the Bio ClinicalBERT Alsentzer et al. (2019) is a LLM pre-trained using medical
data, while the Llama2 Touvron et al. (2023) is pre-trained using common text data and sensitive
to parameter tuning. This experiment inspired us to consider pre-training large language models by
using medical data in future works.
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• Analysis on Different Configurations of Mamba Vision Encoder. Intuitively, the large version
of the Mamba model has better generalization and robustness compared to the base version, as it has
deeper network layers or higher feature dimensions. As shown in Table 4, we can see that the results
in lines #7, #8, and #9 (Vim-large) are significantly better than lines #4, #5, and #6 (Vim-
base). Meanwhile, our Vim-large achieved optimal performance in experiments after equipping all
modules. Thus, it is obvious that the larger version of Vim has a more stable performance on both
MIMIC-CXR and CheXpert Plus datasets.

• Does VLMs Pre-trained using Natural Image-Text Samples Ready for the X-ray Report
Generation? In this paper, we also conduct supervised fine-tuning on the CheXpert Plus dataset
using Vision-Language Models (VLMs), including InternVL-2 Chen et al. (2023b) and MiniCPM
V2.5 Yao et al. (2024). We replace the vision and language backbone network of R2Gen-GPT using
the VLMs to adapt them for the X-ray image based report generation task. As illustrated in Table 2,
we can find that the performance of the two models is not as good as the compared models. These
experiments demonstrate a large gap between pre-training on the natural and X-ray images. In our
future works, we consider further adapting the pre-trained VLMs using natural images to the X-ray
image domain to achieve a better performance.

4.4 VISUALIZATION

As shown in Fig. 3, we give some examples to illustrate the effectiveness of our proposed
MambaXray-VL model for the X-ray image based report generation. For specific X-ray images,
we compared ground truth with the report generated by the MambaXray-VL model and the report
generated by the R2GenGPT model. The X-ray images we chose contain both front and side views,
normal images, and images containing lesion areas, enabling a more comprehensive and rational vi-
sualization. For a more intuitive visualization, we have highlighted the parts that match the ground
truth. The yellow highlighted area is the part of the report generated by our model that matches the
ground truth, and the blue highlighted area is the part of the report generated by the R2GenGPT
model that matches the ground truth. The pink highlighted area is the portion of the report generated
by both our model and the R2GenGPT model that matches the ground truth. It is clear that the report
generated by our model is closer to the real report than the that generated by the R2GenGPT model,
which indicates that our model is effective.

4.5 LIMITATION ANALYSIS

This paper provides a comprehensive benchmark for the X-ray image based medical report genera-
tion, which covers the mainstream MRG models and LLMs. The LLMs evaluated in this work focus
on 7B and 13B which is hardware friendly, and the LLMs with more parameters are not discussed
due to the limited computational resources. The other Vision-Language Models (VLMs) developed
for natural images are not benchmarked, due to the limited performance of the X-ray based MRG.

5 CONCLUSION AND FUTURE WORKS

In this work, we propose to benchmark the CheXpert Plus dataset by re-training the mainstream X-
ray report generation models and large language models. This benchmark will help identify which
large models and algorithms are leading in this domain, significantly promoting academic progress
and technological development. In addition, we also propose a new Mamba-based vision-language
large model for the X-ray image based medical report generation. It involves three pre-training
stages which make full use of auto-regressive generation loss, Xray-report contrastive learning, and
supervised fine-tuning. We validate the effectiveness of our proposed pre-trained large model on IU
X-ray, MIMIC-CXR, and CheXpert Plus datasets. From the newly built benchmark, we can find that
the current large language models still perform poorly on the report generation task. In our future
works, we will consider introducing structured knowledge graphs into the large language model to
guide the report generation.
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