
Published as a conference paper at ICLR 2022

BAG OF INSTANCES AGGREGATION BOOSTS
SELF-SUPERVISED DISTILLATION

Haohang Xu1,2∗ Jiemin Fang3,4∗ Xiaopeng Zhang2 Lingxi Xie2

Xinggang Wang4 Wenrui Dai1 Hongkai Xiong1 Qi Tian2

1Shanghai Jiao Tong University 2Huawei Inc.
3Institute of Artificial Intelligence, Huazhong University of Science & Technology
4School of EIC, Huazhong University of Science & Technology
{xuhaohang, daiwenrui,xionghongkai}@sjtu.edu.cn
{jaminfong, xgwang}@hust.edu.cn
{zxphistory, 198808xc}@gmail.com tian.qi1@huawei.com

ABSTRACT

Recent advances in self-supervised learning have experienced remarkable progress,
especially for contrastive learning based methods, which regard each image as well
as its augmentations as an individual class and try to distinguish them from all other
images. However, due to the large quantity of exemplars, this kind of pretext task
intrinsically suffers from slow convergence and is hard for optimization. This is
especially true for small scale models, which we find the performance drops dramat-
ically comparing with its supervised counterpart. In this paper, we propose a simple
but effective distillation strategy for unsupervised learning. The highlight is that
the relationship among similar samples counts and can be seamlessly transferred
to the student to boost the performance. Our method, termed as BINGO, which
is short for Bag of InstaNces aGgregatiOn, targets at transferring the relationship
learned by the teacher to the student. Here bag of instances indicates a set of similar
samples constructed by the teacher and are grouped within a bag, and the goal of
distillation is to aggregate compact representations over the student with respect to
instances in a bag. Notably, BINGO achieves new state-of-the-art performance on
small scale models, i.e., 65.5% and 68.9% top-1 accuracies with linear evaluation
on ImageNet, using ResNet-18 and ResNet-34 as backbone, respectively, surpass-
ing baselines (52.5% and 57.4% top-1 accuracies) by a significant margin. The
code is available at https://github.com/haohang96/bingo.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved great success in the field of computer vision,
including image classification (He et al., 2016), object detection (Ren et al., 2015) and semantic
segmentation (Chen et al., 2017). However, most of the time, CNNs cannot succeed without enormous
human-annotated data. Recently, self-supervised learning, typified by contrastive learning (He et al.,
2020; Chen et al., 2020a), has been fighting with the annotation-eager challenge and achieves great
success. Most current self-supervised methods yet focus on networks with large size, e.g., ResNet-
50 (He et al., 2016) with more than 20M parameters, but real-life implementation usually involves
computation-limited scenarios, e.g., mobile/edge devices.

Due to annotation lacking in unsupervised tasks, learning from unlabeled data becomes challenging.
Recent contrastive learning methods (He et al., 2020; Chen et al., 2020a) tackle this problem by
narrowing gaps between embeddings of different augmentations from the same image. Techniques
like momentum encoder for stable updating, memory bank for storing negative pairs, complicated
data augmentation strategies etc., are proposed to avoid collapse and promote the performance.
With the above techniques, contrastive learning methods show promising performance. However,
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Figure 1: Overall performance comparisons between BINGO and other unsupervised distillation
methods.

contrastive learning requires discriminating all instances, due to the large quantity of exemplars, this
kind of pretext task intrinsically suffers from slow convergence and is hard for optimization. This
issue becomes severe for small scale models, which carry too few parameters to fit the enormous
data. Inspired by supervised learning that knowledge from large models can effectively promote the
learning ability of small models with distillation, exploring knowledge distillation on unsupervised
small models becomes an important topic.

Compress (Fang et al., 2020) and SEED (Fang et al., 2020) are two typical methods for unsupervised
distillation, which propose to transfer knowledge from the teacher in terms of similarity distributions
among different instances. However, as the similarity distribution is computed by randomly sampling
instances from a dynamically maintained queue, this kind of knowledge is mostly constructed based
on instances with low relation, which fails to effectively model similarity of those highly related
samples. To solve this issue, we propose a new self-supervised distillation method, which transfers
knowledge by aggregating bags of related instances, named BINGO. In our empirical studies,
transferring knowledge based on highly related samples helps boost performance more effectively
compared with previous relation-agnostic methods. Specifically, we select an unsupervised pretrained
large model as the teacher. First, we map the conventional instance-wise dataset into a bag-wise
one. Each original instance is set as an anchor instance of the bag. By matching similarities of
all the other instances’ embeddings produced by the teacher model, we feed instances which show
high similarity with the anchor instance into the bag. Then we apply the bagged dataset to the
small model distillation process. To this end, we propose a bag-aggregation distillation loss, which
consists of two components: inter-sample distillation and intra-sample distillation. For intra-sample
distillation, embeddings of the student and teacher from two augmentations of the same instance are
pushed together; for inter-sample distillation, embeddings of all instances in one bag are pushed to be
more similar with the anchor one. Equipped with the two proposed distillation loss, the bag-based
knowledge from the teacher can be well transferred to the student, which shows significant advantages
over previous relation-agnostic ones (Fang et al., 2020; Abbasi Koohpayegani et al., 2020).

Our contributions can be summarized as follows.

• We propose a new self-supervised distillation method, which bags related instances by
matching similarities of instance embeddings produced by the teacher. The bagged dataset
can effectively boost small model distillation by aggregating instance embeddings in bags.
The proposed relation-guided method shows stronger performance than previous relation-
agnostic ones.

• BINGO promotes the performance of both ResNet-18 and -34 to new state-of-the-art (SOTA)
ones in unsupervised scenarios. It is worth noting that the distilled models also present
far better performance compared with previous SOTA methods on other tasks, i.e., KNN
classification and semi-supervised learning.
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• BINGO provides a new paradigm for unsupervised distillation where knowledge between
instances with high relation could be more effective than relation-agnostic ones. This may
be inspiring for further explorations on knowledge transfer in unsupervised scenarios.

2 RELATED WORK

Self-supervised Learning As a generic framework to learn representations with unlabeled data,
self-supervised learning has experienced remarkable progress over the past few years. By constructing
a series of pretext tasks, self-supervised learning aims at extracting discriminative representations
from input data. Previous methods obtain self-supervised representations mainly via a corrupting
and recovering manner, from perspectives of spatial ordering (Noroozi & Favaro, 2016), rotation
changes (Komodakis & Gidaris, 2018), in-painting (Pathak et al., 2016), or colorization (Zhang et al.,
2016), et al. Recently, contrastive learning based methods (He et al., 2020; Chen et al., 2020a) emerge
and significantly promote the performance of self-supervised learning, which aim at maximizing the
mutual information between two augmented views of a image. A series of subsequent works (Grill
et al., 2020; Xu et al., 2020b; Dwibedi et al., 2021) further improve the performance to a very high
level. Khosla et al. (2020) applies contrastive learning on supervised learning, which selects the
positive samples from the same category. Caron et al. (2020) proposes to align the distribution of one
instance’s different views on other categories. However, few of them pay attention to self-supervised
learning on small-scale models, which are of critical importance to implement self-supervised models
on lightweight devices. We propose an effective method to boost the self-supervised learning of
small models, which takes advantage of relation-based knowledge between data and shows superior
performance than previous ones.

Knowledge Distillation Knowledge distillation aims to transfer knowledge from a model (teacher)
to another one (student), usually from a large to small one, which is commonly used for improving
the performance of the lightweight model. Hinton et al. (2015) first proposes knowledge distillation
via minimizing the KL-divergence between the student and teacher’s logits, which uses the predicted
class probabilities from the teacher as soft labels to guide the student model. Instead of mimicking
teacher’s logits, Romero et al. (2014) transfers the knowledge by minimizing the `2 distance between
intermediate outputs of the teacher and student model. To solve the dimension mismatch, Romero
et al. (2014) uses a randomly initialized projection layer to enlarge the dimension of a narrower
student model. Based on Romero et al. (2014), Zagoruyko & Komodakis (2016) utilizes knowledge
stored in the attention map generated by the teacher model, and pushes the student model to pay
attention to the area where the teacher focuses on. Zhou et al. (2021) improves weighted soft labels to
adaptively improve the bias-variance tradeoff of each sample. Besides perspectives of soft labels and
intermediate features, relation between samples is also an important knowledge. Park et al. (2019)
and Liu et al. (2019) train student model by aligning the pair-wise similarity graph with the teacher.
Recently, some works extend the above distillation method into self-supervised learning scenarios.
Tian et al. (2019) uses the contrastive loss to learn cross-modality consistency. Xu et al. (2020a),Fang
et al. (2020) and Abbasi Koohpayegani et al. (2020) share a similar methodology with Caron et al.
(2020) of aligning feature distribution between views of the same instances. The distribution is
computed as the pair-wise similarities between student’s outputs and features stored in memory bank.
However, the above relation-based self-supervised distillation methods only compute the similarity
between anchor sample and randomly sampled instances from a maintained queue, which ignores
the relation between sampled and anchor instances. Choi et al. (2021) uses the teacher model to
produce cluster assignments, and encourages the student model to mimic the output of the trainable
teacher model on-the-fly, which achieves promising results. Gao et al. (2021) strengthens the student
model by adding a regularization loss on the original contrastive loss, which aims at minimizing the
`2 distance between the student’s and teacher’s embedding. Navaneet et al. (2021) also achieves
competitive results with feature regression in self-supervised distillation. We propose to transfer
the relation knowledge between models via a new type of dataset, which bags related instances. By
aggregating the bagged instances, the relation knowledge can be effectively transferred.

3 APPROACH

In this section, we introduce the proposed BINGO in details. First, we discuss how to bag samples
in the instance-wise dataset. After the samples are bagged, the bag-aggregation based knowledge
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Figure 2: An overview of the proposed method. The samples are first bagged via feature similarity.
Then the related instances in a bag is aggregated via intra-sample and inter-sample distillation loss.
The figure on top-right is an intuitive explanation of how bag aggregation works.

distillation is introduced. We also discuss how to compute bag-aggregation loss and how they improve
the performance of the lightweight model. The overall framework is illustrated in Fig. 2.

3.1 BAGGING INSTANCES WITH SIMILARITY MATCHING

Given the unlabeled training set X = {x1,x2, ...,xN}, we define the corresponding bag-wise
training set as Ω = {Ω1,Ω2, ...,ΩN}, where each bag Ωi consists of a set of instances. To transfer
the instance-wise dataset to a bag-wise one, we first feed X into a pretrained teacher model fT and
get the corresponding features V = {v1,v2, ...,vN} where vi = fT(xi). For each anchor sample
xa in the dataset, we find positive samples which share high similarity with the anchor sample. Then
the anchor sample as well as the similar samples are combined to form a bag. The samples in one
bag have a compact representation in the embedding space. Several mapping function can be used to
find similar samples:

K-nearest Neighbors For each anchor sample xa in the instance-wise dataset, we first compute
the pairwise similarity with all samples in the dataset Sa = {va · vi | i = 1, 2, ..., N}. The bag Ωa

corresponding to xa is defined as:

Ωa = top−rank(Sa,K), (1)

where top−rank(·,K) returns the indices of top K items in a set.

K-means Clustering Given the training feature set V = {v1,v2, ...,vN}, we first assign a
pseudo-label qi to each sample i, where qi ∈ {q1, ...,qK}. The clustering process is performed by
minimizing the following term,

1

N

N∑
i=1

−vT
i cqi

, (2)

where cqi
denotes the centering feature of all features belonging to the label qi, i.e., cqi

=∑
qj=qi

vj,∀j = 1, ..., N .

The bag Ωa of anchor sample xa is defined as:

Ωa = {i | qi = qa,∀i = 1, 2, ..., N}. (3)
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Ground Truth Label If the ground truth label is available, we can also bag samples with the
human-annotated semantic labels. Given the label set Y = {y1,y2, ...,yN}, we can bag related
instances of the anchor sample xa via:

Ωa = {i | yi = ya,∀i = 1, 2, ..., N}. (4)

In this paper, we use K-nearest neighbors as the bagging strategy. More details about performance of
using the K-means clustering based bagging strategy can be found in Appendix. Note that bagging
instances via the ground truth label is just used to measure the upper bound of the proposed method.

3.2 KNOWLEDGE DISTILLATION VIA BAG AGGREGATION

Once we get the bag-wise dataset Ω utilizing a pretrained teacher model, it can be used for distillation
process. In each feed-forward process, the anchor sample xa and the positive sample xp which belong
to the same bag Ωa are sampled together in one batch. We propose the bag-aggregation distillation
loss including the intra-sample distillation loss Lintra and inter-sample distillation loss Linter.
To aggregate the representations within a bag into more compact embeddings, we minimize the
following target function:

min
θS
L = E

xi∼Ωa

(L(fS(xi), fT(xa))), (5)

where L is a metric function to measure the distance between two embeddings – there are many
metrics can be selected, such as cosine similarity, euclidean distance, etc. Here we use the normalized
cosine similarity, i.e., the contrastive loss commonly used in self-supervised learning to measure the
distance between xi and the anchor sample xa. The target function in Eq. 5 can be divided into two
components:

L=L(fS(t1(xa)), fT(t2(xa))) + E
xi∼Ωa\xa

(L(fS(t3(xi)), fT(t2(xa)))), (6)

Three separate data augmentation operators t1, t2, t3 are randomly sampled from the same family of
MoCo-v2 augmentations T , which is also adopted in SEED(Fang et al., 2020) and DisCo (Gao et al.,
2021). where the first item focuses on pulling different views (augmentations) of the same sample
together, and the second item aims at pulling different samples that are within a same bag into more
related ones. We term the first item as Lintra and the second item as Linter.

Intra-Sample Distillation The intra-sample distillation loss is a variant of conventional contrastive
loss. Contrastive learning aims to learn representations by discriminating the positive key among
negative samples. Given two augmented views x and x′ of one input image, MoCo (Chen et al.,
2020c) uses a online encoder fq and a momentum encoder fk to generate embeddings of the positive
pairs: q = fq(x), k = fk(x

′). The contrastive loss is defined as

Lcontrast=− log
exp(q · k+/τ)∑N
i=0 exp(q · ki/τ)

. (7)

During distillation, we simply replace fq and fk by the student model fS and teacher model fT,
while weights of the teacher model fT are pretrained and are not updated during distillation. The
intra-sample distillation loss can be formulated as

Lintra=− log
exp(fS(t1(xa)) · fT(t2(xa))/τ)∑N

i=0 exp(fS(t1(xa)) · k−i /τ)
, (8)

where τ is the temperature parameter. We select negative samples k− in a memory bank, which
is widely used in MoCo (He et al., 2020) and many subsequent contrastive learning methods. The
memory bank is a queue of data embeddings and the queue size is much larger than a typical mini-
batch size. After each forward iteration, items in the queue are progressively replaced by the current
output of the teacher network.

Inter-Sample Distillation Given the anchor sample xa and a positive sample xp in the bag Ωa, it
is natural to map highly related samples to more similar representations. In other words, we want the
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bag filled with related samples to be more compact. Inspired by Eq. 8, we define the inter-sample
distillation loss as

Linter=− log
exp(fS(t3(xp)) · fT(t2(xa))/τ)∑N

i=0 exp(fS(t3(xp)) · k−i /τ)
. (9)

The intra- and inter-sample distillation loss serve as different roles. The intra-sample distillation works
like conventional distillation (Hinton et al., 2015; Romero et al., 2014), which aims at minimizing
distances between outputs of the teacher and student model given the same input. However, the inter-
sample distillation mainly focuses on transferring the data relation knowledge taking the bag-wise
dataset as the carrier, which is obtained from the pretrained teacher model.

4 EXPERIMENTS

In this section, we evaluate the feature representations of the distilled student networks on several
widely used benchmarks. We first report the performance on ImageNet under the linear evaluation
and semi-supervised protocols. Then we conduct evaluation on several downstream tasks including
object detection and instance segmentation, as well as some ablation studies to diagnose how each
component and parameter affect the performance.

4.1 PRE-TRAINING DETAILS

Pre-training of Teacher Model Two models are used as teachers: ResNet-50 trained with MoCo-
v2 (Chen et al., 2020c) for 800 epochs and ResNet-50×2 trained with SwAV for 400 epochs. The
officially released weights 1 are used to initialize teacher models for fair comparisons.

Self-supervised Distillation of Student Model Two models are used as students: ResNet-18 and
ResNet-34. Following the settings of MoCo in Chen et al. (2020c), we add a 2-layer MLP on top
of the last averaged pooling layer to form a 128-d embedding vector. During distillation, the model
is trained with the SGD optimizer with momentum 0.9 and weight decay 0.0001 for 200 epochs on
ImageNet (Deng et al., 2009). The batch size and learning rate are set as 256 and 0.03 for 8 GPUs,
which simply follow the hyper-parameter settings as in Chen et al. (2020c). The learning rate is
decayed to 0 by a cosine scheduler. The CutMix used in Gidaris et al. (2021) and Xu et al. (2020b) is
also applied to boost the performance. The temperature τ and the size of memory bank are set as 0.2
and 65,536 respectively. For the bagging strategy, we use K-nearest neighbors unless specified.

4.2 EXPERIMENTS ON IMAGENET

Table 1: KNN classification accuracy on Ima-
geNet. We report the results on the validation
set with 10 nearest neighbors. ResNet-50×2
is used as the teacher.

Method ResNet-18 ResNet-34

SEED (Fang et al., 2020) 55.3 58.2
BINGO 61.0 64.9

KNN Classification We evaluate representation of
student model using nearest neighbor classifier. KNN
classifier can evaluate the learned feature more di-
rectly without any parameter tuning. Following Caron
et al. (2020); Abbasi Koohpayegani et al. (2020); Fang
et al. (2020), we extract features from center-cropped
images after the last averaged pooling layers. For con-
venient comparisons with other methods, we report
the validation accuracy with 10 NN (we use the stu-
dent model distilled from ResNet-50×2). As shown
in Table 1, BINGO achieves 61.0% and 64.9% accu-
racies on ResNet-18/34 models, respectively, which outperforms previous methods significantly.

Linear Evaluation In order to evaluate the performance of BINGO, we train a linear classifier
upon the frozen representation, following the common evaluation protocol in Chen et al. (2020c). For
fair comparisons, we use the same hyper-parameters as Fang et al. (2020); Gao et al. (2021) during
linear evaluation stage. The classifier is trained for 100 epochs, using the SGD optimizer with 30 as
initial learning rate. As shown in Table 2, BINGO outperform previous DisCo and SEED with the

1Checkpoints of teacher models can be downloaded from https://github.com/
facebookresearch/moco and https://github.com/facebookresearch/swav.
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Table 2: Linear classification accuracy on ImageNet over different student architectures. Note that
when using R50×2 as the teacher, SEED distills for 800 epochs while DisCo and BINGO distill for
200 epochs. The numbers in brackets indicate the accuracies of teacher models. “T” denotes the
teacher and “S” denotes the student.

Method T
S R-18 R-34

T-1 T-5 T-1 T-5
Supervised (Fang et al., 2020) 69.5 - 72.8 -

MoCo-V2 (Baseline) (Fang et al., 2020) 52.5 77.0 57.4 81.6
SEED (Fang et al., 2020) R-50 (67.4) 57.6 81.8 58.5 82.6
DisCo (Gao et al., 2021) R-50 (67.4) 60.6 83.7 62.5 85.4

BINGO R-50 (67.4) 61.4 84.3 63.5 85.7
BINGO R-50 (71.1) 64.0 85.7 66.1 87.2

SEED (Fang et al., 2020) R-152 (74.1) 59.5 83.3 62.7 85.8
DisCo (Gao et al., 2021) R-152 (74.1) 65.5 86.7 68.1 88.6

BINGO R-152 (74.1) 65.9 87.1 69.1 88.9
SEED (Fang et al., 2020) R50×2 (77.3) 63.0 84.9 65.7 86.8
DisCo (Gao et al., 2021) R50×2 (77.3) 65.2 86.8 67.6 88.6

BINGO R50×2 (77.3) 65.5 87.0 68.9 89.0

Table 3: Transfer learning accuracy (%) on COCO detection.

Method
Mask R-CNN, ResNet-18, Detection

1× schedule 2× schedule
APbb APbb

50 APbb
75 APS APM APL APbb APbb

50 APbb
75 APS APM APL

MoCo v2 31.3 50.0 33.5 16.5 33.1 41.1 34.4 53.9 37.0 18.9 36.8 45.5
BINGO 32.0 51.0 34.7 17.1 34.1 42.0 34.9 54.2 37.7 20.0 37.1 46.0

Table 4: Transfer learning accuracy (%) on COCO instance segmentation.

Method
Mask R-CNN, ResNet-18, Instance Segmentation

1× schedule 2× schedule
APmk APmk

50 APmk
75 APS APM APL APmk APmk

50 APmk
75 APS APM APL

MoCo v2 28.8 47.2 30.6 12.2 29.7 42.7 31.5 51.1 33.6 14.1 32.9 46.9
BINGO 29.6 48.2 31.5 12.8 30.8 43.0 31.9 51.7 33.9 14.9 33.1 47.2

same teacher and student models. Note that SEED distills for 800 epochs while BINGO runs for 200
epochs with ResNet-50×2 teacher, which demonstrates the effectiveness of BINGO.

Transfer to Object Detection and Instance Segmentation We evaluate the generalization ability
of the student model on detection and instance segmentation tasks. The COCO dataset is used for
evaluation. Following He et al. (2020), we use Mask R-CNN (He et al., 2017) for object detection and
instance segmentation and fine-tune all the parameters of student model ResNet-18 end-to-end. As
shown in Table 3 and Table 4, BINGO consistently outperforms models pretrained without distillation.
The detection and segmentation results of ResNet-34 can be found in the appendix.

Semi-supervised Classification Following previous works Chen et al. (2020a;b), we evaluate the
proposed method by fine-tuning the student model ResNet-18 with 1% and 10% labeled data. We
follow the training split settings as in Chen et al. (2020a) for fair comparisons. The network is fine-
tuned for 60 epochs with SGD optimizer. The learning rate of the last randomly initialized fc layer is
set as 10. As shown in Table 5, using ResNet-18 student model, BINGO obtains best accuracies with
the same ResNet-50 and ResNet-152 teacher when using 1% and 10% labels, respectively.

Transfer to CIFAR-10/CIFAR-100 classification Following the evaluation protocol in Fang et al.
(2020); Gao et al. (2021), we assess the generalization of BINGO on the CIFAR-10/CIFAR-100
dataset. As shown in Table 6, compared with the previous state-of-the-art method DisCo (Gao et al.,
2021), BINGO outperforms it by 1.5% and 3.2% respectively.
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Table 5: Semi-supervised learning by fine-tuning 1% and 10% images on ImageNet using ResNet-18.

Method T 1% labels 10% labels

MoCo v2 baseline - 30.9 45.8
Compress (Abbasi Koohpayegani et al., 2020) R-50 (67.4) 41.2 47.6
SEED (Fang et al., 2020) R-50 (67.4) 39.1 50.2
DisCo (Gao et al., 2021) R-50 (67.4) 39.2 50.1
BINGO R-50 (67.4) 42.8 57.5
Compress (Abbasi Koohpayegani et al., 2020) R-152 (74.1) - -
SEED (Fang et al., 2020) R-152 (74.1) 44.3 54.8
DisCo (Gao et al., 2021) R-152 (74.1) 47.1 54.7
BINGO R-152 (74.1) 50.3 61.2
BINGO R-50×2 (77.3) 48.2 60.2

Table 6: Linear classification accuracy on
CIFAR-10/100 with ResNet-18.

Method T CIFAR-10/100

MoCo v2 baseline - 77.9/48.1
SEED R-50 (67.4) 82.3/56.8
DisCo R-50 (67.4) 85.3/63.3
BINGO R-50 (67.4) 86.8/66.5

Table 7: Lower and Upper bound performance
exploration via the bagging criterion.

Bagging Criterion Accuracy (%)

Random Initialized model 46.6
Supervised-pretrained model 64.8
Ground-truth labels 65.8
Self-supervised pretrained model 64.0

4.3 ABLATION STUDY

In this section, we conduct detailed ablation studies to diagnose how each component affect the
performance of the distilled model. Unless specified, all results in this section are based on ResNet-18,
and distilled for 200 epochs.

Impact of k in K-nearest Neighbors We inspect the influence of k in K-nearest neighbors bagging
strategy. As shown in Fig. 3, the results are relatively robust for a range of k (k=1,5,10,20). In
addition, we find that the classification accuracy decrease with k = 10, 20 compared with k = 5,
because the noise is introduced when k becomes large. However, the performance with a relative
small k = 1 is no better than k = 5, we think the diversity is sacrificed when we only select the top-1
nearest neighborhood all the time.

k=1 k=5 k=10 k=20
Top-k in KNN

63.5

64.0

To
p-

1 
ac

c(
%

)

63.7

64.0

63.8

63.7

Figure 3: Top-1 accuracy with dif-
ferent k in K-nearest neighbors.

Lower and Upper Bound of The Proposed Method As
shown in Table 7, using data relation extracted from a ran-
dom initialized model gives a poor performance of 46.6%,
which can be a lower bound of our method. Then we try to
explore the upper bound performance by bagging instances
via a supervised-pretrained model, the performance gets an
improvement of 0.8% over using data relation extracted from
the unsupervised pretrained teacher model. When we directly
use the ground truth labels to bag instances, we get a highest
upper bound performance, i.e., 65.8% Top-1 accuracy.

Impacts of Data-Relation and Teacher Parameters. In our experiments, both the data relation
and model parameters of teacher model are used to distill student model. We diagnose how each
component affects the distillation performance. As shown in Table 8, model parameters represent
whether to load the teacher model parameters into the teacher part in Fig. 2; data relation refers to the
Linter loss. Besides, Lintra is intrinsically a basic contrastive-learning paradigm on two views of
one instance. no matter the teacher’s parameters are loaded or not, using the the data relation from
pretrained teacher model always gets better results than using data relation from online student model,
which verifies the efficiency of transferring teacher’s data relation to student model. Interestingly,
we find that BINGO even gets good result only utilizing teacher’s data relation (Row 3 of Table 8),
which is about 10% higher than model training without distillation.
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Table 8: Effects of utilizing teacher’s data-relation and teacher’s pretrained weights. The column
of Student Relation means that we bag data with features extracted from student model online and
the column of Teacher Relation means that we bag data with features extracted from a pretrained
teacher model. When teacher parameters are not used, we replace the pretrained teacher model as a
momentum update of student model like He et al. (2020).

Teacher Parameters Student Relation Teacher Relation Accuracy

7 7 7 52.2 (w/o distillation)
7 ! 7 57.2
7 7 ! 62.2
! 7 7 62.0
! ! 7 62.5
! 7 ! 64.0

Table 10: Top-1 accuracy of linear classification results on ImageNet with ResNet-34 under different
epochs. ResNet-152 is used as teacher model. “T” denotes the teacher and “S” denotes the student.

Method S T Distillation Epochs Top-1 Accuracy Top-5 Accuracy
SEED R-34 R-152(74.1) 200 62.7 85.8
BINGO R-34 R-152(74.1) 100 67.8 88.4

DisCo R-34 R-152(74.1) 200 68.1 88.6
BINGO R-34 R-152(74.1) 200 69.1 88.9

Table 9: Top-1 accuracy of linear classifi-
cation results on ImageNet using different
distillation methods on ResNet-18 student
model (ResNet-50 is used as teacher model)

Method Top-1
MoCo-V2 baseline (Gao et al., 2021) 52.2
MoCo-V2 + KD (Fang et al., 2020) 55.3
MoCo-V2 + RKD 61.6
DisCo + KD (Gao et al., 2021) 60.6
DisCo + RKD (Gao et al., 2021) 60.6
BINGO 64.0

Compare with Other Distillation Methods. We
now compare with several other distillation strategies
to verify the effectiveness of our method. We compare
with two distillation schemes: feature-based distilla-
tion method and relation-based distillation, which is
termed as KD and RKD, respectively. Feature-based
distillation method aims at minimizing l2-distance
of teacher & student’s embeddings. Relation-based
distillation method aims at minimizing the difference
between inter-sample-similarity graph obtained from
teacher and student model. As shown in Table 9,
BINGO outperforms all theses alternative methods.

Computational Complexity. As shown in Fig. 2, the batch size is doubled during each forward
propagation. The computation cost is increased compared with SEED (Fang et al., 2020) and MoCo-
v2 (Chen et al., 2020c). As for DisCo (Gao et al., 2021), the computational complexity is also
increased due to the multiple forward propagation for one sample: once for the mean student, twice
for the online student and twice for the teacher model. The total number of forward propagation is 5,
2.5× bigger than SEED and MoCo-v2. For the above analysis, BINGO has a similar computation
cost with DisCo. To compare with SEED and DisCo under the same cost, we distill ResNet-34 from
ResNet-152 for 100 and 200 epochs respectively. We compare results of 100 epochs with SEED and
200 epochs with DisCo. The results are shown in Table 10 and BINGO still shows significantly better
performance than the two compared methods with the same training cost.

5 CONCLUSIONS

This paper proposes a new self-supervised distillation method, named BINGO, which bags related
instances by matching embeddings of the teacher. With the instance-wise dataset mapped into a
bag-wise one, the new dataset can be applied to the distillation process for small models. The
knowledge which represents the relation of bagged instances can be transferred by aggregating the
bag, including inter-sample and intra-sample aggregation. Our BINGO follows a relation-guided
principle, which shows stronger effectiveness than previous relation-agnostic methods. The proposed
relation-based distillation is a general strategy for improving unsupervised representation, and we
hope it would shed light on new directions for unsupervised learning.
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A APPENDIX

A.1 RESULTS OF K-MEANS BAGGING STRATEGY

Table 11: Top-1 accuracy with different cluster numbers C in K-means clustering.

Number of Clusters (C) Accuracy

5000 62.7
10000 63.5
20000 63.8
50000 63.6

We additionally evaluate the performance of using K-means clustering as the bagging strategy
according to Eq. 2 in the main text. Given the pseudo-label q = {q1,q2, ...,qN} and the anchor
instance xa, the bag associated with xa is defined as

Ωa = {i | qi = qa, i = 1, 2, ..., N}. (10)

For implementation, ResNet-18 and ResNet-50 are used as the student and teacher model respectively.
We evaluate the linear classification accuracy of the student model on ImageNet-1K. We study various
cluster numbers C as shown in Tab. 11. We find that a bigger cluster number can bring better results
than a smaller one. Noting that the linear classification accuracy of bagging with K-nearest neighbors
(where k=5) is slightly better than bagging via K-means clustering (with C=20000), i.e. 64.0% vs.
63.8%. Moreover, bagging with KNN is more convenient to implement, so we choose the KNN-based
bagging strategy in implementation.

A.2 OBJECT DETECTION AND INSTANCE SEGMENTATION OF RESNET-34

We further evaluate the generalization ability of one more student model, i.e. ResNet-34, on object
detection and instance segmentation tasks. The COCO (Lin et al., 2014) dataset is used for evaluation.
Following He et al. (2020), we use Mask R-CNN (He et al., 2017) for object detection and instance
segmentation, and fine-tune parameters of the student model , i.e. ResNet-34 distilled from the ResNet-
152 teacher model. As shown in Table 12, BINGO consistently outperforms models pretrained with
no distillation, SEED Fang et al. (2020) and DisCo Gao et al. (2021).
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Table 12: Transfer learning performance on COCO Lin et al. (2014) object detection and instance
discrimination with ResNet-34 distilled from ResNet-152. “bb” denotes bounding box and “mk”
denotes mask.

Method
Mask R-CNN, ResNet-34

Object Detection Instance Discrimination
APbb APbb

50 APbb
75 APS APM APL APmk APmk

50 APmk
75 APS APM APL

MoCo v2 38.1 56.8 40.7 - - - 33.0 53.2 35.3 - - -
SEED Fang et al. (2020) 38.4 57.0 41.0 - - - 33.3 53.7 35.3 - - -
DisCo Gao et al. (2021) 39.4 58.7 42.7 - - - 34.4 55.4 36.7 - - -
BINGO 39.9 59.4 43.5 22.8 43.3 52.1 35.7 56.5 38.2 16.8 37.9 51.6
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Figure 4: t-sne visualization of student’s representations pretrained with the MoCo-v2 baseline (a),
and distilled with (b) and without bag aggregation (c).

A.3 ANALYSIS AND DISCUSSIONS

We now inspect what the student learns during the distillation. Firstly we compute the average
distance between anchor sample xa and its positive samples xp in a bag Ωa over the whole dataset:

BagDis = E
xa∼X

E
xp∼Ωa

||(fS(xa)− fS(xp))||22 (11)

According to Eq. 11, we compute the averaged distance in the bag using distilled student model. As
shown in Table 13, the averaged distance in a bag is smallest when the student model is distilled
with bag-aggregation loss. We also compute the intra-class distance among all intra-class pairwise
samples. As shown in Table 14, the proposed method also aggregate the bag of labels with the same
ground truth labels on the unseen validation set.

Table 13: Averaged distance between
anchor and positive samples in the same bag

Method Distance

MoCo-V2 baseline 0.38

Distill w/o Bag-Aggregation 0.36
Distill w/ Bag-Aggregation 0.32

Table 14: Averaged intra-class distance on Ima-
geNet validation set

Method Distance

MoCo-V2 baseline 0.88

Distill w/o Bag-Aggregation 0.72
Distill w/ Bag-Aggregation 0.65

We visualize the last embedding feature to understanding the aggregating properties of the proposed
method. 10 classes are randomly selected from validation set. We provide the t-sne visualization of
the student features. As shown in Fig. 4, the same color denotes features with the same label. It can
be seen that BINGO gets more compact representations compared with models without distillation or
distilling without pulling related samples in a bag.
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