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ABSTRACT

Real-world problems in continuously evolving settings, such as predicting the
efficacy of medical treatment, often require estimating the causal effects of
interventions. Issues such as irregularly-sampled and missing data, unobserved
factors, and ethical concerns make such settings especially challenging.
The existing methodology relies on low-dimensional embeddings, potentially
incurring information loss.
We circumvent this limitation with a novel approach “twinning” that augments
the partial observations with additional latent variables and appeals to conditional
continuous normalizing flows to model the system dynamics, obtaining accurate
density estimates. We also introduce a new approach to overcome a key technical
challenge, namely, mitigating stiffness of the underlying neural ODE. The model
provably benefits from auxiliary non-interventional data during training. We
showcase the flexibility of the proposed method with tasks like anomaly detection
and counterfactual prediction, and benchmark on standard reinforcement learning
(Half-Cheetah) and treatment effect prediction (tumor growth) contexts.

1 INTRODUCTION

Adaptive decision making in continuously evolving systems remains a key challenge in several
domains (e.g., healthcare) that require intermittent interventions. Continuous normalizing flows
(CNFs) have emerged as methods of choice in such temporal settings since they can accommodate
longitudinal data with observations arising at irregular intervals (Rezende & Mohamed, 2015; Chen
et al., 2018; Morrill et al., 2021; Javaloy et al., 2023). Importantly, CNFs can be leveraged as
effective generative models for extrapolation, i.e., to make predictions about future (e.g., medical
condition of a patient). CNFs learn complex distributions from simpler ones (such as Gaussian) via
a sequence of invertible transformations, so enable exact likelihood estimates. Such estimates are
particularly appealing since they can be used, e.g., to rule out unlikely events and detect anomalies.

However, typically, such settings entail some unobserved confounders (Pearl, 2009) that may result
in undesirable distributional shifts; e.g., an unknown medical condition can interfere with an
otherwise appropriate treatment (Bennett & Kallus, 2021). The prevalent paradigm is to embed data
into a low-dimensional space, and learn a flow treating confounders as (time-varying) latent variables
in this space (Seedat et al., 2022; De Brouwer et al., 2022). Low-dimensional inference, however,
impedes the ability of these models to provide accurate density estimates even with powerful CNFs.

Several other issues, such as data sparsity, often compound the problem: collecting the data
might be expensive, risky, or raise ethical concerns. For instance, medical trials seek to find
an effective treatment but conducting many explorative experiments are not ethically acceptable
as they might put a patient at risk. In such scenarios, some auxiliary data (e.g., the medical
history of the patient prior to their engagement in the trials) can help mitigate the need for
interventional samples (Ilse et al., 2021). However, such passive observational data may contribute
additional confounding effects and be misaligned with the interventional distribution, which can
cause additional identifiability problems.

We address all these real-world challenges with a novel approach “twinning”, that augments partial
observations with additional latent variables including confounders as a state and treats interventions
as actions in a Partially-Observable Markov Decision Process (POMDP) model. Specifically, we
define a conditional flow, namely Twinned Interventional Flow (TIF), over this state space to model
the system dynamics.
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Table 1: A summary of capabilities of TIF (proposed in this work), and other methods. TIFs
can perform several tasks, e.g., estimate log densities (logp), learn causal effects of interventions
(causal ef.), include unobserved confounders as part of the model design (conf.), leverage additional
observational data (obs. data), accommodate irregular and missing observations (irreg. samp.), and
make online predictions (online pred.).

Method logp causal ef. conf. obs. data irreg. samp. online pred.
Du et al. (2020) ✗ ✗ ✓ ✗ ✓ ✓
Yildiz et al. (2021) ✓ ✗ ✗ ✗ ✓ ✓
Ilse et al. (2021) ✗ ✓ ✓ ✓ ✓ ✗
Bennett & Kallus (2021) ✗ ✓ ✓ ✓ ✓ ✓
Khemakhem et al. (2021) ✓ ✓ ✗ ✗ ✗ ✓
Zhu et al. (2022) ✗ ✓ ✓ ✓ ✗ ✓
Seedat et al. (2022) ✗ ✓ ✓ ✗ ✓ ✓
De Brouwer et al. (2022) ✗ ✓ ✓ ✗ ✓ ✓
TIF (this work) ✓ ✓ ✓ ✓ ✓ ✓

While developing TIFs, we faced challenges with stiffness in the ODE. Stiff equations, as defined
by Hairer & Wanner (1996), are problematic for which explicit methods don’t work. Stiff ODEs
pose numerical issues in inversion, especially with the adjoint method, where the error in the
reverse pass using explicit methods can be significantly larger than in the forward pass (Kim et al.,
2021; Gholaminejad et al., 2019). Stiffness can jeopardize log-likelihood estimation if the initial
distribution is not recovered. We address this by proposing a novel penalty term to mitigate stiffness
in the ODE in this paper.

We establish a solid theoretical foundation for accurate log-likelihood estimation using TIF. TIFs
also provide provable benefits with observational data: observational data, even when missing some
features, can be leveraged to obtain a strictly better estimator, asymptotically, for POMDPs than
what is achievable by limited interventional data alone. Table 1 underscores the flexibility of TIF.
For instance, in a medical setting, TIF can learn causal effects of interventions (e.g., treatments),
account for unobserved confounders that affect the system (e.g., the background and experience
of doctor, comorbidities), handle irregular and missing observations (e.g., missing or delayed X-ray
reports) effectively, and perform online predictions (e.g., about the health of a patient). Additionally,
TIF is well-equipped to handle causal inquiries, such as counterfactual prediction.

To substantiate the conceptual and theoretical merits of TIF, we conducted a series of experiments
across tasks such as anomaly detection and counterfactual prediction, and benchmark on standard
reinforcement learning (Half-Cheetah) and treatment effect prediction (tumor growth) settings. TIF
consistently demonstrated strong performance in these experiments.

1.1 OUR CONTRIBUTIONS

We now summarize the main contributions of this work. Here, we

• (Conceptual) propose a new technique twinning to enable, simultaneously, density
estimates and causal queries in the presence of unobserved confounders;

• (Methodological) introduce Twinned Intervational Flows (TIFs) that bring together and
find use in reinforcement learning, causal reasoning, generative models and neural ODEs
(Table 1);

• (Theoretical) establish the benefit of using observational data for model learning in fully
continuous POMDP settings (previously, such results known only for discrete settings)
even when some observables are missing or masked;

• (Technical) emphasize the often overlooked problem of the stiffness of ODEs in the context
of online prediction, and introduce a new penalty method with demonstrable benefits; and

• (Empirical) substantiate the efficacy of the proposed framework using detailed empirical
investigations, including, on standard reinforcement learning and causal benchmarks.

We now proceed to reviewing relevant related works.
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1.2 RELATED WORK

Generative models and Neural ODEs Our work is inspired by, and builds on, the the success
of flow-based generative models (Abdal et al., 2021; Grathwohl et al., 2019; Yang et al., 2019;
Dinh et al., 2015; Kingma & Dhariwal, 2018; Rezende & Mohamed, 2015; Verma et al., 2023;
Papamakarios et al., 2021). CNFs do not require sophisticated regularization like the step-wise
methods, since the neural ODE can be inverted by running the numerical solver backwards in time,
and the flow of probabilities can be integrated into this process (Chen et al., 2018). Recently, deep
connections have been shown between score-based generative models and diffusion models. In
particular, the associated SDE can be expressed as an equivalent neural ODE thereby enabling exact
likelihood computation (Song et al., 2021).

Causal inference Continuous-time dynamics in the context of causal inference (Pearl, 2009) have
attracted attention. Seedat et al. (2022) model time-depending confounders, building on the work
of Kidger et al. (2020), who use neural controlled differential equations for longitudinal data with
observations. However, using natural cubic splines to approximate observations in a continuous
space is not applicable for online prediction, so Morrill et al. (2021) advocate rectilinear control
paths. These models embed into a lower dimensional space, so cannot always estimate accurately the
densities of observations. De Brouwer et al. (2022) adapt Bayesian Neural Networks that maintain
uncertainty over model parameters for causal treatment effect prediction, avoiding assumptions
about the overlap between data sets with different treatments. Khemakhem et al. (2021) show the
benefits of estimating log-densities and using flow-based models for a range of causal inference
tasks. Their work focuses on regularly sampled data. Ilse et al. (2021) combine interventional
and observational data to learn the causal effects, similar to this work. However, their method uses
splines and so cannot enable online prediction, where stiffness of the system becomes a key obstacle.

Reinforcement Learning (RL) The continuous nature of many RL environments is well-
established. Doya (2000) introduced a method to obtain an optimal policy in continuous-time
dynamics. Yildiz et al. (2021) use Bayesian Neural ODEs to model continuous-time dynamics
and evaluate uncertainties in the model. However, these approaches assume that the state is fully
observed. Du et al. (2020) use Neural ODEs to model the latent space with CNF and solve
RL problems in a continuous time POMDP but neither provide likelihood estimates nor exploit
observational data. Interesting work has been done at the intersection of causal inference and RL, see
e.g., Ding et al. (2022), Zhang & Bareinboim (2022), and Bareinboim et al. (2015). Zhu et al. (2022)
study causal discovery with RL, and combine off-policy and on-policy data in discrete settings.
Bennett & Kallus (2021) give extensive analyses and mathematical grounds for causal reasoning in
the continuous setting. Hızlı et al. (2023) are also combining ideas from RL and causality by jointly
modeling the treatment policy and the outcomes.We focus on motivating the benefits of flow models
for POMDPs. The POMDP and the policy learning in such setting has been previously studied, e.g.,
from optimal filtering and optimal control (Alt et al., 2020) as well as belief state (Chen et al., 2022)
perspectives.

2 PROBLEM FORMULATION
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Figure 1: Underlying DAG of the POMDP.
The red arrows indicate privileged information.
Observed variables are marked with gray.

Variable Notation Observed
State st ∈ S ⊂ Rn ✗
Obs. ot ∈ O ⊂ Rm at tj ∈ T
Latent lt ∈ L ⊂ Rn−m ✗
Action at ∈ A ⊂ Rl at tj ∈ T
Mask mt ∈ M ⊂ Rm at tj ∈ T
Indicator i ∈ {0, 1} ✓

Table 2: Notation and details of the POMDP
framework

Our primary objective is to develop a predictive model that accurately captures the system dynamics
under various interventions and possible (unobserved) confounders. Identifying the number of
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confounders or recovering a full causal graph is tedious and often infeasible. We therefore adopt
an approach that does not constrain the causal hierarchy within observed and unobserved variables
and can be described in terms of a continuous POMDP. We focus on studying a continuous dynamic
system marked by irregular observations and interventions. Our dataset comprises both longitudinal
interventional data (Dint) and additional observational data (Dobs).

This set of problems is motivated by real-world data scenarios and decision-making problems that
necessitate leveraging imperfect data This is particularly relevant in domains such as medicine,
where the need to make decisions using imperfect data is a common and critical aspect.

2.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We adopt a continuous proximal reinforcement learning paradigm that extends proximal causal
inference to dynamic longitudinal settings while enabling identification in more general settings
and providing efficient estimators. Specifically, we follow the approach of two views of current
observations suggested by (Bennett & Kallus, 2021), where actions of the agent in observational
data can be conditioned on auxiliary offline or privileged data, i.e., observations of the state that are
not available for the intervening agent. As future observations or actions do not affect the current
system dynamics we obtain a directed acyclic graph (DAG) (Pearl, 2009), illustrated in Figure 1.

We will use the standard do-notation (Pearl, 2009) as a means of distinguishing between observed
and interventional actions. In particular, we use do(at = a) to denote an external intervention that
sets the action at at time t to the value a. As we assume that in Dint, interventions depend solely
on the observable variables, and any other connections to the node at in the underlying Directed
Acyclic Graph (DAG) (Pearl, 2009, p. 12-21) present in Dobs can be pruned. This pruned causal
connection is denoted with red in Figure 1. Thus when mention interventional data we are referring
to data generated from a policy based on observable variables, rather than a completely random
policy. The difference in the causal graphs causes distributional shift between Dint and Dobs.

We extend the POMDP (S,O,A,Z,P) previously considered by Bennett & Kallus. Here transition
probabilities P capture the dynamics of the system and the observation probabilities Z describe the
noisy map between the true state and the observed values. The system state (st) evolves continuously
in time t ∈ R+ as a joint distribution over the observables and latent variables including any
confounders. Discrete-time observations (otj ), capture a subset of the state at irregular intervals
tj ∈ T = (t0, t1, . . . , tL). To capture the remaining unobserved portion of the state space, we
introduce a latent variable (lt). Concurrently with the observations (T ), we have access to the
actions (atj ) applied to the system by the intervening agent. These actions exert a continuous effect
over time, governed by an unknown function, f(atj , t− tj), for t ∈ [tj , tj+1].

We further introduce a masking variable (mtj ) to indicate which observations are available at time
tj . We demonstrate that TIFs can cope with partially missing observations. Furthermore, we include
an indicator i to inform the model whether the data is observational (i = 0) or interventional
(do(a) → i = 1). Note that while the observations are made at discrete times T , the state (st)
evolves continuously and the effect of action (f(atj , t − tj)) on the dynamics of the state is also
continuous. We do not discuss the rewards of POMDP in this work as the policy optimization is not
the focus of this study. All variables and whether they are observed are summarized in Table 2.

To refer to the previous action/observation time within the set T , we will use the notation
t−T , i.e., t−T = max(tj ∈ T ; tj < t). We also denote the history at time tj as Htj =
(ot0 ,mt0 ,at0 ,ot1 ,mt1 ,at1 , . . . ,mtj ,otj ). Namely, the history encompasses observations,
masking indicators, and actions up to time tj , but does not include atj .

POMDP is closely tied with causal treatment effect prediction. Specifically, action at serves the role
of a treatment, and time-varying confounders can be included in lt. Effectively predicting treatment
effects implies that the problem can be cast as an RL task, where the objective is to optimize the
treatment based on the predictions.

3 TWINNED INTERVENTIONAL FLOW (TIF)

In partially observable systems, applying CNF directly to observations (i.e., st = ot) is insufficient
to describe the full dynamics. Therefore, we ”twin” the observations with a sufficient number of
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ŝt2 ŝt3
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(a) The figure illustrates observable variables in blue
and unobserved latent variables in red. We obtain
model prediction by solving the ODE piecewise using
learnable estimates gϕ(·|·) of the derivative.
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(b) The figure showcases both the factual (blue)
and counterfactual (green) trajectories of the system.
The orange trajectory represents the backward run
trajectory, initiated from the factual state.

Figure 2: (Left) Online prediction, and (right) Counterfactual prediction. The underlying dynamics
are depicted at the bottom with dotted lines and the continuous prediction with solid lines at the top.

latent variables to construct an augmented observation and latent space ŝt describing st. We call
it as twinned space. Twinning allows us to obtain a bijective map for which conditioned CNF can
be applied. In particular, we can model ∂s

∂t with a single neural network gϕ without additional
encoding-decoding structure. Importantly, by avoiding encoding into a lower-dimensional space,
the model remains invertible in time. Invertibility affords many benefits (Johansson et al., 2019).
Particularly, in our context, it enables both counterfactual prediction illustrated in Figure 2b (details
in the supplementary Section H) and accurate density estimates. Figure 2a visualizes the overall
flow along with the continuous predictions generated by our model.

3.1 MODEL ARCHITECTURE

We model the effect of time t − t−T elapsed since previous action, and the context ct−T
:=

[at−T
,ot−T

,mt−T
, i] with a learnable model gϕ(ŝt|t − t−T , ct−T

) , where ŝt approximates the
true state st. Consequentially, at time t > tj the approximated state becomes conditioned on Htj
enabling an estimate of the true state. Our architecture inherits from recent works (Abdal et al.,
2021; Grathwohl et al., 2019; Yang et al., 2019) that implement conditioned continuous normalizing
flows with several gate-bias modulations (details in the supplementary materials (Section B).

Furthermore, gϕ can be used to obtain the model approximation of the change in the model state (Q̂)
from time tj to t as,

Q̂tj ,t =

∫ t

τ=t−T

gϕ(ŝτ |τ − tj , ctj )dτ ,∀tj < t ≤ tj+1 , (1)

As the observations and actions are observed at discrete time points, we need to account for
discontinuities at these points. Thus the flow needs to be divided into continuous sub flows that
must be summed over to obtain the approximation of the state at time t. In particular, we get the
state at time t as ŝt = ŝ0 +

∑
tj∈T |tj<t Q̂tj ,min(tj+1,t) , where we define tL+1 = ∞ to account for

time after the last observation tL in T . Hereon, we will not explicitly denote the sub-flows with the
summation, as the numerical solvers can be informed about possible discontinuities of the derivative
at the time of actions and observations.

3.2 THEORETICAL RESULTS

Log-likelihood estimate Using the twinned space allows us to obtain a formula for the change in
log densities under some assumptions that are standard in literature (described in the supplementary
section C). We begin with a result that quantifies the effect of latent variables for our purpose.
Theorem 3.1. The change in the log probabilities of observations in time can be expressed as an
expected value of the trace over the latent variables lt.

∂

∂t
log(p(ot|Ht−T

,at−T
, i)) = Ep(lt|ot,Ht−T

,at−T
,i)

[
−Tr

(
∂

∂s
gϕ(st, |t− t−T , ct−T

)

)]
.
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Figure 3: Full model structure for obtaining log-likelihood estimates. The flow of the log-likelihoods
is not explicitly displayed, but in practice, it is concatenated to the twinned space [l̂t, ôt]. We denote
the forward run estimates (t0 → tL) with ·̂ and the backward run estimates (tL → t0) with ·̃.

This is a key technical result that enables us to achieve precise log-likelihood estimates using the
twinned space (detailed proof in the supplementary section D), and thus forms a pivotal component
of the TIF framework. We later demonstrate the merits of log-likelihood estimation for outlier
detection and as a confidence measure of the proposed model.

In order to estimate the log-likelihood using the discrete-time observations otj (tj ∈ T ), we must
sample lt and ot using our model. We provide details of the algorithm to obtain these estimates
in the supplementary material, and an illustration in Figure 3. To obtain the log-likelihood of full
trajectory HtL the flow needs to be run backward (t → 0) separately for each otj in HtL . And
the final estimate is obtained with Monte Carlo (MC) method. The stability of the MC estimate is
an interesting question for future investigations. Computationally, this can be too expensive, so we
instead use mean squared error (MSE) as our loss function during training. The time complexity of
TIF is further discussed in the supplementary materials.

Combining Dobs and Dint: Collecting interventional data Dint can be expensive or raise ethical
concerns, motivating the use of additional observational data Dobs. However, incorporating
observational data is non-trivial in causal settings since the model can learn to replicate confounding
effects that could lead to suboptimal performance. Previous studies (Ilse et al., 2021; Gasse et al.,
2021; Manski, 1989) have established that careful inclusion of observational data can help in
learning the dynamics for discrete interventional settings. We now present the first such results
for more-challenging continuous-time settings with real-valued variables and partial observations.
Corollary 3.2. TIF’s estimator p̂ϕ(otj+1 |mtj+1 ,Htj , do(atj ), i = 1) learned with |Dobs| → ∞
obtains strictly better generalization in Dint than if trained with |Dobs| = 0.

Full proof is given in the supplementary materials (Section E). This result motivates the use of
observational data in model learning. It is worth noting that in practice the amount of observational
data is limited, so we also experimentally demonstrate the benefits of combining Dobs with Dint.

3.3 MITIGATING STIFFNESS

During the development of TIF, we faced the challenge of stiff ODEs, where the backward run
trajectory deviated from the forward run (refer to Figure 4f). As a result, the initial Gaussian
distribution couldn’t be recovered, making it impossible to estimate the log-likelihood. Stiffness
has been addressed in the literature through techniques like maintaining checkpoints on the forward
run and using them in the reverse pass (Gholaminejad et al., 2019). However, these approaches are
not applicable to our context, as we lack knowledge of the exact forward trajectories.

To counter this issue, we propose a novel regularization term R(ŝ, s̃) which penalizes the mean
squared error (MSE) between the forward predicted states ŝtj and the corresponding backward
predicted states s̃tj at each time step tj ∈ T

R(ŝ, s̃) =
1

L

∑
tj∈T

(ŝtj − s̃tj )
2 , (2)

The forward and backward trajectories coincide when no numerical error is incurred.
Experimentally, we observed significant improvements with this regularization.
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4 EXPERIMENTS

We performed detailed experiments to validate the efficacy of TIF. First, we showcase TIF’s
versatility in various tasks in a controlled setting by conducting simulations with a pendulum system.
Specifically, we demonstrate TIF’s capacity to combine observational and interventional data, its
ability to handle masked observations, and its proficiency in log-likelihood estimation. We also
demonstrate the benefits of the regularization penalty in handling stiffness, and put TIF to the test
in the realm of counterfactual prediction. These experiments are designed to illustrate the flexibility
of TIF, whereafter we move on to compare TIF’s competitiveness in two standard benchmarks
from reinforcement learning and medical domains. Specifically, we evaluate TIF’s potential for
treatment effect prediction using benchmark tumor growth data. In the other task, we compare TIF’s
performance with other established methods in the widely recognized Half Cheetah environment, a
prominent benchmark within the RL field (Du et al., 2020; Feinberg et al., 2018; Buckman et al.,
2018).

4.1 PENDULUM

We begin with a simple pendulum setup similar to De Brouwer et al. (2022), where continuous
interventions influence the acceleration of the pendulum. The observable variables are the horizontal
and vertical components of the pendulum angle: θx = sin(θ) and θy = cos(θ), while unobserved
confounders are velocity v and a pendulum length l which is randomly sampled for each run.
Interventions in Dint are defined by interventional policy πint(θx(t), θy(t)), and the actions in Dobs

are defined by a privileged policy πprv(θx(t), θy(t), l, v(t)). A more detailed description of the
simulation procedure and model training is given in the supplementary material.

Stiffness We encountered a clear stiffness problem in the system. Without the regularization
term, the backward trajectory diverges from the forward run trajectory (Figure 4f). However, by
introducing the penalty (Equation 2), stable invertible dynamics can be learned. During the first 100
training epochs, the RMSE between forward and backward trajectories increased to over 100 without
regularization and remained under 10−3 with it (Figure 4e). We also investigated Jacobian and
kinetic regularization (Finlay et al., 2020) but they turned out to be ineffective in our experiments.

Combining Dobs and Dint We assess the model performance with three distinct training
configurations: utilizing only Dobs, only Dint, or both. We conducted this experiment with 1000
observational trajectories and varying numbers of interventional samples. The outcomes using 10
different random seeds are illustrated in Figure 4d.

We note from Figure 4d that combining Dint and Dobs in training improves the performance,
especially when the number of interventional samples is small. With 50 interventional samples,
the combined training approach demonstrates a remarkable over 30% reduction in RMSE compared
to the individual training methods. As the number of interventional samples is increased the
performance of Dint coincides with the performance of combined training.

Masking TIF can seamlessly accommodate missing and partially masked observations. We
demonstrate this in Figure 4c: even when 20% of the inputs are masked out, the model is still
able to learn the dynamics reasonably. In general, we found that the root mean square error (RMSE)
in the test set approximately triples when 20% of the observations are hidden.

Outlier detection with log-likelihood estimate As mentioned earlier, the log-likelihood estimate
can still offer valuable insights into the data. For instance, it can help with detecting anomalies
and unexpected side effects, e.g., in medical trials This is illustrated in Figure 4a, where part of
the observations are corrupted. The negative log-likelihood of the validation data decreases during
training as expected, and reflects how well the model fits the data (details in Supplementary).

Counterfactual prediction Given a factual trajectory HtL with an output otL , we wish to answer
what if queries: what would the outcome have been if at time tj another action a′

tj had taken place
instead of the factual atj . We present the details of our counterfactual prediction algorithm in the
supplementary materials (Section H).
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(a) The first corrupted observation can be detected
based on the low log-likelihood shown at the bottom
of the Figure, after that the estimates seem to recover.
However, the log-likelihood estimates are not reliable
after the next, due to conditioning on false information

(b) RMSE at the final state of the counterfactual
trajectory using both counterfactual and naive
predictions. The x-axis represents the intervention
index, within the time points. The counterfactual
prediction algorithm outperforms the naive approach.

(c) The performance of TIF remains credible, even
with 20% of the observations hidden. Even when part
of the initial state is masked.

(d) Including observational data for training, i.e., using
(Dobs∪Dint) improves model performance especially
when the number of interventional samples is small.

(e) With the proposed regularization, the
backward and forward trajectories align.

(f) When trained without regularization the backward
trajectories immediately diverge from the forward prediction.

Figure 4: Experiments on the pendulum environment.

Figure 5: TIF exhibits superior performance in tumor growth prediction with strog confounding
with κ = 10. The difference is particularly evident in short-term predictions tk+1 and tk+2.

To validate the efficacy of TIF for counterfactual prediction, we conducted experiments using a
truncated pendulum dataset (|T | = 20), which included only a single intervention. This dataset
comprised both factual (using πobs) and counterfactual (using πint) trajectories. For each pair
of factual and counterfactual trajectories, we applied the counterfactual prediction algorithm as
well as a naive online approach that predicted the counterfactual trajectory without incorporating
information from the factual trajectory. We adjusted the index of the intervention and computed the
RMSE at the final index (20). Figure 4b shows the results obtained with five random seeds. The
counterfactual algorithm improves the prediction of the final state especially when the intervention
takes place during later stages of the trajectory.

8



Under review as a conference paper at ICLR 2024

4.2 TUMOR DATA

For our second experiment, we benchmark on lung cancer tumor growth data under a
Pharmacokinetic-Pharmacodynamic (PK-PD) setting (Geng et al., 2017). Specifically, a Hawkes
process with self-exciting intensity function (Lee et al., 2016) is applied to obtain confounded
observation times. Parameter γ regulates the amount of confounding in data and κ regulates
the confounding in the Hawkes process (see Seedat et al. (2022) for details). We adopt the
evaluation procedure for intervention prediction suggested for TE-CDEs Seedat et al. (2022) under
distributional shift due to confounding.

We compare TIF with TE-CDEs in both strong (κ = 10) and moderate confounding scenarios (κ =
5). Observations that were masked in the Hawkes process were excluded from RMSE calculations.
Figure 8 shows TIF’s performance with strong confounding. Moderate confounding can be found
from the supplementary materials.

4.3 HALF CHEETAH

For our final experiment, we assess the performance of TIF on the widely recognized Half Cheetah
environment, a prominent benchmark for reinforcement learning settings (Du et al., 2020; Feinberg
et al., 2018; Buckman et al., 2018). In the Half Cheetah task, the objective revolves around
orchestrating the movement of joints for a cat-like robot (Wawrzyński, 2009) in order to achieve
a forward running motion in a 2-dimensional space.

We combined model predictive control with the actor-critic methodology, utilizing deep
deterministic policy gradient (Lillicrap et al., 2016) to learn the policy. Following (Du et al., 2020),
we sample the environment with non-discrete time steps and train the model with an identical
process to theirs. Within this experiment, TIF is employed to predict the future states, enabling
the agent to make more informed decisions. We refer the reader to (Du et al., 2020) for a detailed
description of the environment and training procedure.

We compare the performance of TIF against three strong baselines from literature, namely, Latent-
ODE, RNN, and VAE-RNN. Figure 6 illustrates the evolution of mean test reward for different
methods with increase in the number of environment steps. TIF demonstrated strong performance
in terms of the mean test reward, which shows its promise for RL applications.

Figure 6: TIF achieves strong performance on the Half Cheetah RL benchmark. The shaded area
represents the standard error calculated over 5 random seeds.

5 BROADER IMPACT AND LIMITATIONS

The idea of twinning proposed here to integrate observed and latent variables, with provision to
include offline data, opens new avenues for dynamic system modeling and counterfactual inference.
Thus it should be broadly useful in generative modeling, causal reasoning, and reinforcement
learning settings.

TIF performs well on treatment effect prediction and reinforcement learning tasks, estimating log-
densities. However, likelihood estimation can be computationally intensive, and its stability needs
further study. Twinning resorts to modeling the system in a higher dimensional space, where
confounders can be taken into account. This makes it suitable mainly for problems characterized by
observation spaces with low or moderate dimension.
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NeurIPS 2018, 2-8 December, Montréal, Canada, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/d139db6a236200b21cc7f752979132d0-Paper.pdf.

Young Lee, Kar Wai Lim, and Cheng Soon Ong. Hawkes processes with stochastic excitations.
In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International
Conference on Machine Learning, ICML 2016, 19-24 June, New York City, USA, volume 48
of Proceedings of Machine Learning Research, pp. 79–88. PMLR, 2016. URL https:
//proceedings.mlr.press/v48/leea16.html.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, May 2-4, San Juan, Puerto Rico, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Charles F Manski. Anatomy of the selection problem. The Journal of Human Resources, 24(3):
343–360, 1989. URL https://doi.org/10.2307/145818.

12

https://arxiv.org/abs/2103.04786
https://arxiv.org/abs/2306.05415
http://proceedings.mlr.press/v89/johansson19a/johansson19a.pdf
http://proceedings.mlr.press/v89/johansson19a/johansson19a.pdf
https://doi.org/10.1186/s13660-020-02502-w
https://doi.org/10.1186/s13660-020-02502-w
http://proceedings.mlr.press/v130/khemakhem21a.html
http://proceedings.mlr.press/v130/khemakhem21a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://doi.org/10.1063/5.0060697
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.mlr.press/v48/leea16.html
https://proceedings.mlr.press/v48/leea16.html
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.2307/145818


Under review as a conference paper at ICLR 2024

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. Neural controlled differential
equations for online prediction tasks. arXiv, 2021. URL https://arxiv.org/abs/2106.
11028.

George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021. URL https://jmlr.org/papers/v22/
19-1028.html.

Judea Pearl. Causality. Cambridge University Press, Cambridge, England, 2 edition, 2009. doi: 10.
1017/CBO9780511803161. URL https://doi.org/10.1017/CBO9780511803161.

Judea Pearl and Thomas S. Verma. A theory of inferred causation. In Dag Prawitz, Brian Skyrms,
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Supplemental Materials: Twinned Interventional Flows

A NOTATION

Table 3: Overview of the notation used in the paper

Notation Explanation
t time
tj discrete time point
T sequence of discrete time points
t−T previous discrete time point in T
st state of the system at time t
otj observation at discrete time point tj
ltj latent variables at time tj
atj discrete action at time tj
mtj mask of observation otj
i indicator of data source
Htj history of observations at tj
ctj context [atj , otj ,mtj , i] at time tj
Qtj ,t transition between states stj and st
p(·) underlying probabilities
q(·) time derivative of st
gϕ(·|·) conditioned CNF
ϕ model parameters
·̂ model approximations
·̃ backward run approximation
f(·) maps discrete action to continuous time
Dobs observational data
Dint interventional data
πprv privileged policy in Dobs

πint policy in Dint

Besides the do notation, we will also use an indicator i to inform, whether the data is interventional
or observational. Specifically, i = 1 pertains to interventions do(a), whereas i = 0 is used to
indicate that a is observed.

B MODEL ARCHITECTURE

We apply gate-bias modulation called concatsquach block (Abdal et al., 2021), which is illustrated
in Figure 7.

ŝt

ct−T
, t− t−T

linear layer A

linear layer B

activation A

linear layer C

activation B ∂ŝt
∂t

. . .

Figure 7: Concatsquach block, ⊗ denotes element wise multiplication and ⊕ element wise addition.
Observable variables are marked with grey, and neural network layers with blue.

In our experiments on the pendulum environment and treatment effect prediction, 3 consecutive
Concatsquach blocks were combined to obtain the time derivative. The dimension between the
blocks is set to 128 and the output of the final block corresponds to ŝt (see Figure 7). The
sizes of linear layers B and C match the dimensions of [ct−T

, t − t−T ] and the output size of the
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corresponding linear layer A, respectively. The activation function A utilized the sigmoid function,
and the activation function B employed hyperbolic tangent (tanh).

In the Half Cheetah environment, we used only 2 consecutive Concatsquach blocks with an in-
between dimension of 128. The size of the model was reduced for fair comparison with the other
methods.

The CNF is solved using python package torchdiffeq Chen (2021) with a fifth-order Dormand–Prince
method (’dopri5’) and the adjoint method (Chen et al., 2018).

As several feed-forward neural networks are Lipschitz continuous (Gouk et al., 2021), the
architecture of gϕ can be modified with a reasonable degree of flexibility.

C ASSUMPTIONS

Markovian property By definition, POMDP satisfies the Markovian assumption with respect to
st (Bennett & Kallus, 2021). As we assume otj , ltj to be sufficient to describe stj fully, Markovian
assumption also holds with respect to otj , ltj . The Markovian causal model is illustrated in Figure
1 and it satisfies the parental Markov condition; that is, each variable is Xi is independent on all its
nondescendants, given its parents (Pearl & Verma, 1995).

Using the parental Markov condition (Pearl & Verma, 1995), we can describe the probability of a
data sequence HtL as

p(HtL |i) = p(mt0 ,ot0 |i)
L−1∏
j=0

p(atj ,mtj+1 ,otj+1 |Htj , i) (3)

= p(Ht0 |i)
L−1∏
j=0

p(atj |Htj , i)p(mtj+1 |Htj ,atj , i)p(otj+1 |mtj+1 ,Htj ,atj , i), (4)

where the term p(atj |Htj , i) depends on the policy of the agent, p(mtj+1
|Htj ,atj , i) is some

masking process, and p(otj+1
|mtj+1

,Htj ,atj , i) arises from the underlying system dynamics.

Markovian assumption restricts ability of the model to capture long-term dependencies and complex
temporal dynamics. We can overcome this limitation by increasing the dimensionality of the latent
variables ltj to incorporate additional information from the past. By expanding the latent space, we
can potentially capture more historical context and extend the model’s ability to account for longer-
term dependencies. The trade-off lies in finding an appropriate balance between expressiveness and
computational efficiency.

Conditional independencies According to the Markovian causal model in Figure 1 and using the
Markovian assumption, we can derive the following important conditional independencies

• atj ,mtj ,otj , stj+1
⊥ st<tj |stj ,Htj−1

,atj−1
(5)

• stj ⊥ do(atj )|Htj , i = 1 (6)

• stj+1
,otj+1

⊥ i|stj ,atj ,Htj , (7)

where ⊥ denotes the conditional independency given |· variables. The conditional independence is
a concept in probability theory that captures the independence between random variables given the
knowledge of other random variable, i.e., A ⊥ B|C ⇔ P (A,B|C) = P (A|C)P (B|C).

Equation 5 follows from the parental Markov condition, as the current state together with historical
observations and actions cover the parents of the future states. Similarly, Equation 6 indicates
that the system state is conditionally independent of the current intervention, given the history
and the fact that the data is drawn from the interventional scenario. This aligns with the parental
Markov condition in the interventional regime. Lastly, Equation 7 expresses that the next state and
observation are not dependent on whether the data is from interventional (i = 1) or observational
(i = 0) scenario, as long as the current state, action, and observed history are known. This
independence result holds irrespective of the data source, given that the underlying dynamic system
is the same regardless of the action policy.
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Other assumptions In addition to the Markovian property we need to make a few more
assumptions for the theoretical results to hold.

Assumption C.1. (Overlap) We assume that probabilities of all possible actions and observations
in Dint also have non-zero probability in Dobs. (Johansson et al., 2019; Seedat et al., 2022).

Assumption C.2. (Continuity) gϕ is uniformly Lipschitz continuous in st and continuous in time
intervals [tj , tj+1] (Chen et al., 2018), i.e., dividing the flow into Lipschitz continuous sub-flows.

Assumption C.3. (Independent initial state) ŝ0 follows a simple Gaussian prior ŝ0 ∼ N (ŝ0|µ, σ),
such that each element of ŝ0 is independently determined.

Identifiability Achieving accurate predictions relies on the identifiability of true causal effects.
Identifiability can be attained through additional assumptions, such as (weighted) time-independent
sampling inspired by Tennenholtz et al. (2019), although this approach faces challenges related to the
curse of dimensionality. An alternative, more tractable path involves a reduction to proximal causal
inference, as outlined by (Bennett & Kallus, 2021). The specific assumptions for identifiability vary
depending on the task and its features, and while we refrain from defining these here, we assume
that the problems are identifiable, and observable variables suffice for accurate predictions of the
full state.

D LOG-LIKELIHOOD ESTIMATION

Chen et al. (2018) suggested a method for obtaining log-likelihood estimates and a maximum
likelihood approach for the entire state space. However, we introduce an additional layer of
complexity by incorporating unobserved but relevant latent variables into the twinned space. These
latent variables are not directly observable. Consequently, we need to derive the correct formulation
for estimating ∂ot

∂t . This derivation is essential as it allows us to estimate the log-likelihoods of the
observed variables using a similar approach to Chen et al. (2018). Once we have established the
correct form for log p(otj |Htj ,atj , i), we will demonstrate how this value can be estimated within
the context of the TIF framework, leveraging its invertibility.

Theorem D.1. The change in the log probabilities of observations in time can be expressed as an
expected value of the trace over the latent variables l̂t.

∂

∂t
log(p(ot|Ht−T

,at−T
, i)) = Ep(lt|ot,Ht−T

,at−T
,i)

[
−Tr

(
∂

∂s
gϕ(st, |t− t−T , ct−T

)

)]
.

Proof. The proof builds on the general structure from Chen et al., while incorporating the latent
variables of the twinned space. We use o to refer to the underlying continuous variable observed at
the discrete observation times T . To clarify that we are here considering the underlying continuous
variables we use the notation o(t) instead of ot and similarly s(t) and l(t). For convenience, we
omit conditioning keeping it implicit since all probabilities are conditioned on Ht−T

,at−T
, i.

We denote transformation (o(t), l(t)) → (o(t+ ϵ), l(t+ ϵ)) with Tϵ(o(t), l(t)). Now we can use the
definition of derivative together with the change of variables formula to obtain

∂

∂t
logpo(o(t)) = lim

ϵ→0+

log po(o(t+ ϵ))− log po(o(t))

ϵ

= lim
ϵ→0+

log
(∫

l(t+ϵ)∈L po,l(o(t+ ϵ), l(t+ ϵ))dl(t+ ϵ)
)
− log po(o(t))

ϵ

= lim
ϵ→0+

log
(∫

l(t)∈L po,l(o(t), l(t))|det ∂
∂sT

−1
ϵ (s(t))|dl(t)

)
− log po(o(t))

ϵ
,

where det denotes the determinant of the transformation matrix.
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We note that

∂

∂t
logpo(o(t)) = lim

ϵ→0+

log
(

1
po(o(t))

∫
l(t)∈L po,l(o(t), l(t))|det ∂

∂sT
−1
ϵ (s(t))|dl(t)

)
ϵ

= lim
ϵ→0+

log
(∫

l(t)∈L
1

po(o(t))
po,l(o(t), l(t))|det ∂

∂sT
−1
ϵ (s(t))|dl(t)

)
ϵ

= lim
ϵ→0+

log


∫
l(t)∈L

pl|o(l(t)|o(t))|det
∂

∂s
T−1
ϵ (s(t))|dl(t)︸ ︷︷ ︸

→1


ϵ

.

Now as the argument of the limit approaches the form 0
0 , we can apply L’Hôpital’s rule by taking

derivatives with respect to ϵ for both the numerator and denominator terms,

∂

∂t
logpo(o(t)) = lim

ϵ→0+

∂
∂ϵ log

(∫
l(t)∈L pl|o(l(t)|o(t))|det ∂

∂sT
−1
ϵ (s(t))|dl(t)

)
∂
∂ϵϵ

= lim
ϵ→0+

∂

∂ϵ
log

(∫
l(t)∈L

pl|o(l(t)|o(t))|det
∂

∂s
T−1
ϵ (s(t))|dl(t)

)
.

Using the log derivative trick, that states that the derivative of log function can be written as
∂
∂x log f(x) =

∂
∂x f(x)

f(x) , we get

∂

∂t
logpo(o(t)) = lim

ϵ→0+

∂
∂ϵ

∫
l(t)∈L pl|o(l(t)|o(t))|det ∂

∂sT
−1
ϵ (s(t))|dl(t)∫

l(t)∈L pl|o(l(t)|o(t))|det ∂
∂sT

−1
ϵ (s(t))|dl(t)

= lim
ϵ→0+

(∫
l(t)

pl|o(l(t)|o(t)) ∂
∂ϵ |det

∂
∂sT

−1
ϵ (s(t))|dl(t)

)
(
Epl|o |det

∂

∂s
T−1
ϵ (s(t))|

)
︸ ︷︷ ︸

→1

.

We assume that s(t) is bounded, which implies that gϕ, Tϵ, and ∂Tϵ

∂s are also bounded. Furthermore
pl|o(l(t)|o(t)) is assumed to be bounded. Thus the dominated convergence theorem allows us to
interchange the order of limit and integral (Kamihigashi, 2020), and we have

∂

∂t
logpo(o(t)) =

∫
l(t)∈L

pl|o(l(t)|o(t)) lim
ϵ→0+

∂

∂ϵ
|det ∂

∂s
T−1
ϵ (s(t))|dl(t) .

Now we invoke Jacobi’s formula

∂

∂t
detA(t) = Tr

(
adj(A(t))

∂A(t)

∂t

)
, (8)

where adj is the adjugate of the matrix. Equation 8 can be seen as a special case of the Fokker-Planck
Equation for zero diffusion (Risken, 1996; Chen et al., 2018).

Using Equation 8, we write
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∂

∂t
logpo(o(t)) =

∫
l(t)∈L

pl|o(l(t)|o(t))

· Tr

 lim
ϵ→0+

adj(
∂

∂s
T−1
ϵ (s(t)))︸ ︷︷ ︸

→1

∂

∂ϵ

∂

∂s
T−1
ϵ (s(t))


 dl(t)

=

∫
l(t)∈L

pl|o(l(t)|o(t))Tr
(

lim
ϵ→0+

∂

∂ϵ

∂

∂s
T−1
ϵ (s(t))

)
dl(t) .

Finally, we can appeal to the Taylor series. It is important to note, that we assume gϕ to be expressive
enough and ŝt to have sufficiently large dimensions, such that gϕ(ŝt|ct−T

, t − t−T ) is an unbiased
estimator of Tϵ. Using Taylor’s approximation of Tϵ we get

∂

∂t
logpo(o(t))

=

∫
l(t)∈L

pl|o(l(t)|o(t))Tr
(

lim
ϵ→0+

∂

∂ϵ

∂

∂s
(s(t)− ϵgϕ(s(t))−O(ϵ2)−O(ϵ3)...)

)
dl(t)

=

∫
l(t)∈L

pl|o(l(t)|o(t))Tr
(

lim
ϵ→0+

∂

∂ϵ
(I − ∂

∂s
ϵgϕ(s(t))−O(ϵ2)−O(ϵ3)...)

)
dl(t)

=

∫
l(t)∈L

pl|o(l(t)|o(t))Tr
(

lim
ϵ→0+

(− ∂

∂s
gϕ(s(t))−O(ϵ)−O(ϵ2)...)

)
dl(t)

=

∫
l(t)∈L

pl|o(l(t)|o(t))Tr
(
− ∂

∂s
gϕ(s(t))

)
dl(t)

= Epl|o(l(t)|o(t)) − Tr

(
∂

∂s
gϕ(s(t))

)
.

Finally we recover the conditioning variables Ht−T
,at−T

and i, and return to the subscript notation
(ot)

∂

∂t
log(p(ot|Ht−T

,at−T
, i))

= Ep(lt|ot,Ht−T
,at−T

,i)

[
−Tr

(
∂

∂s
gϕ(st, |t− t−T , ct−T

)

)]
.

The marginal distribution of the initial state at time t0 can be written as the expectation over latent
variables,

po(ot0) = Epl(lt0 )

[
po|l(ot0 |lt0)

]
. (9)

Since the conditions of Fubini’s theorem are satisfied (follows from Assumption C.2) we can
interchange the order of expectation and integral to obtain a formula for the change in log-likelihood

∆ log po(ot|Ht−T
,at−T

, i) (10)

= Ep(lt|ot,Ht−T
,at−T

,i)

[∫ t

t0

−Tr

(
∂

∂s
gϕ(sτ , τ − τ−T , cτ−T

)

)
dτ

]
.

Thus by running the system backward in time, we can recover (lt0 , ot0) and evaluate the observation
log-likelihoods.
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Corollary D.2. Using theorem D.1, Equation 9, and 10 we get a formula for the log-likelihood of
observation ot

log po(ot|Ht−T
,at−T

, i) = log
(
Epl(lt0 )

[
po|l(ot0 |lt0)

])
+ Ep(lt|ot,Ht−T

,at−T
,i)

∫ t

t0

−Tr

(
∂

∂s
gϕ(sτ |τ − τ−T , cτ−T

)

)
dτ

Estimating log-likelihood To estimate the log-likelihood of otj , we first need to sample from
l̂tj ∼ p(ltj |Htj ,atj , i) by running the flow from the initial time (0 → tj). Then we combine the
obtained sample l̂tj with observation otj . To obtain the best estimates of the intermediate values lt
and ot we run the resulting twinned system ŝtj = [l̂tj ,otj ] backward in time with CNF. During this
backward run, we track the dynamics of õt and the probability p(õt) simultaneously. The result of
Corollary D.2 is estimated as a part of this process with

log po(otj |Htj ,atj , i) = log
(
Ep(l̃t0 |õt0

) [po(õt0)]
)

+ Ep(l̃t|õt,Ht−T
,at−T

,i)

∫ t

t0

−Tr

(
∂

∂s
gϕ(s̃τ |τ − τ−T , cτ−T

)

)
dτ

where the initial state at time t0 is recovered by running the system backward in time and by using
the Assumption C.3 we have p(l̃t0 |õt0) = p(l̃t0).

Hutchinson’s trace estimator (Hutchinson, 1990) can be used in multidimensional setting
(Grathwohl et al., 2019) to obtain estimate of the trace

Tr{Jgϕ(st|t− t−T , ct−T
)} = Ev

[
vTJgϕ(st|t− t−T , ct−T

)v
]
, (11)

where v is a random vector with zero mean and unit covariance.

Finally, the expected values are estimated with the Monte Carlo method. The full algorithm can be
found in Section G.

With masking If only a subset om
tj of otj = [om

tj ,o
c
tj ] is observed at time tj the log-likelihood of

om
tj can be recovered using the Corollary D.2 with replacement of l̂ with l̂′ := [l̂, ôc] and otj with

om
tj i.e. considering missing observations as latent variables and handling them as such.

E ASYMPTOTIC BOUNDS FOR THE TRUE TRANSITION MODEL IN THE
CONTINUOUS SETTING

By leveraging the observational data, we aim to reduce the reliance on a large amount of
interventional samples. Previous studies by Ilse et al. (2021) and Gasse et al. (2021) have
demonstrated that observational data can indeed help in learning the system dynamics for the
interventional case. Both of them also provide theoretical asymptotic bounds that can be seen as
a special case of the work by Manski (1989). However, these studies only consider discrete-time
settings, which do not apply here. Therefore, our objective is to generalize their bounds to more
complex continuous-time settings with real-valued variables and masking. The proof adapts the
general structure of Gasse et al. (2021) and makes use of the conditional Independence’s of POMDP
presented in Section C.

Now the do-notation (Pearl, 2009) helps us to distinguish observational and interventional policies.
In particular, do(at = a) denotes that the action at at time t is set to a according the policy πint.
Besides the do notation, we will also use an indicator i to inform, whether the data is interventional
or observational. Specifically, i = 1 pertains to interventions do(a), whereas i = 0 is used to
indicate that a is observed and generated by policy πprv.

Proposition E.1. We can model ∂
∂t log p(st|t − t−T , ct−T

) with TIF. If the number and
dimensionality of latent variables is sufficiently large to preserve information about the
unobserved confounders and the Markovian property holds, then we obtain an unbiased estimator
p̂ϕ(otj+1 |mtj+1 ,Htj , do(atj ), i = 1) of p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1).
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Proof. As the true p(otj+1
|mtj+1

,Htj , do(atj ), i = 1) is restricted by the POMDP, and we have a
sufficiently expressive model to capture the effect of the latent confounders, we are guaranteed an
unbiased estimator. To obtain this estimate Corollary D.2 can be used.

Now let us generalize the asymptotic bounds (Manski, 1989; Gasse et al., 2021; Ilse et al., 2021) to
our setting.
Theorem E.2. Assume that |Dobs| → ∞. The learned causal model p̂ϕ in Dint is bounded as,

L−1∏
j=0

p̂ϕ(otj+1
|mtj+1

,Htj , do(atj ), i = 1)

≥
L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1
|mtj+1

,Htj ,atj , i = 0) ,

and
L−1∏
j=0

p̂ϕ(otj+1
|mtj+1

,Htj , do(atj ), i = 1)

≤
L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1
|mtj+1

,Htj ,atj , i = 0)

+ (1−
L−1∏
j=0

p(atj |Htj , i = 0)) ·
L−1∏
j=0

p(otj+1
|mtj+1

,Htj ,atj , i = 0) .

Proof. Noting the conditional independencies equation 6 and equation 7, we can write the transition
probability as,

p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1)

=

∫
stj+1

∈S
p(stj+1

,otj+1
|mtj+1

,Htj , do(atj ), i = 1)

=

∫
stj

∈S
p(stj |Htj , i = 1)

∫
stj+1

∈S
p(stj+1

,otj+1
|stj ,mtj+1

,Htj ,atj , i = 0) ,

where
∫
stj+1

∈S is marginalization over the full state space S.

Now by using the conditional independence st0 ⊥ i|Ht0 (Assumption C.3) we obtain

L−1∏
j=0

p(otj+1
|mtj+1

,Htj , do(atj ), i = 1)

=
∑

s0→L∈S
p(st0 |Ht0 , i = 0)

L−1∏
j=0

p(stj+1
,otj+1

|stj ,mtj+1
,Htj ,atj , i = 0) ,

where
∑

s0→L∈S denotes the marginalization
∫
st0

∈S
∫
st1

∈S ...
∫
stH

∈S over the state space at the
discrete observation times T

Let us introduce a dummy variable a′

L−1∏
j=0

p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1) =
∑

a′
0→L−1∈A

∑
s0→L∈S

p(st0 |Ht0 , i = 0)

·
L−1∏
j=0

p(a′
tj |stj ,Htj , i = 0)p(stj+1

,otj+1
|stj ,mtj+1

,Htj ,atj ,a
′
tj , i = 0) ,
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where again
∑

a′
0→L−1∈A is marginalization over the action space A at times T .

Now considering the case a′
0→L−1 = a0→L−1 with the Assumption C.1 we get the lower bound

L−1∏
j=0

p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1) ≥
L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1 |mtj+1 ,Htj ,atj , i = 0) .

Let ∧ denote the logical AND operator. To provide the upper bound we isolate events a′
t0 ̸= at0 ,

(a′
t0 = at0) ∧ (a′

t1 ̸= at1), (a
′
t0 = at0) ∧ (a′

t1 = at1) ∧ (a′
t2 ̸= at2), and so on, and write

L−1∏
j=0

p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1)

=

L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1 |mtj+1 ,Htj ,atj , i = 0)︸ ︷︷ ︸
a′

tj
=atj

+
∑

a′
0→L−1∈A′ ̸=A

∑
s0→L∈S

p(st0 |Ht0 , i = 0)

·
L−1∏
j=0

p(a′
tj |Htj , stj , i = 0)p(otj+1 , stj+1 |mtj+1 , stj ,Htj ,atj ,a

′
tj , i = 0)

=

L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1 |mtj+1 ,Htj ,atj , i = 0)

+ (1−
L−1∏
j=0

p(atj |Htj , i = 0)) ·
L−1∏
j=0

p(otj+1 |mtj+1 ,Htj ,atj , i = 0) .

By proposition E.1, with TIF we can obtain p̂ϕ(otj+1 |mtj+1 ,Htj , do(atj ), i = 1) that is an
unbiased estimator of p(otj+1 |mtj+1 ,Htj , do(atj ), i = 1). So the bound for the asymptotic setting
given in the theorem statement follows immediately.

Corollary E.3. TIF’s estimator p̂ϕ(otj+1
|mtj+1

,Htj , do(atj ), i = 1) learned with |Dobs| → ∞
obtains strictly better generalization in Dint than if trained with |Dobs| = 0.

Proof. The corollary holds following the same argument as Gasse et al. (2021), which we reproduce
here for completeness. There exists at least one (atj ,Htj ) that has non zero probability in
observation data, and furthermore there is some otj+1

for which

L−1∏
j=0

p(atj |Htj , i = 0)p(otj+1
|mtj+1

,Htj ,atj , i = 0) > 0 .

Thus, by the lower bound
∏L−1

j=0 p̂ϕ(otj+1
|mtj+1

,Htj , do(atj ), i = 1) is strictly positive.
Furthermore the model p̂ϕ learned with both the interventional and the observational data introduces
additional conditioning due to the observational data, and thus belongs to a class of estimators that is
strictly subsumed by the one that contains the true transition model pertaining to the interventional
data alone, so offers better generalization.

Our contribution lies in extending the result to a fully continuous system with possible missing
variables and masking.
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F SIGNIFICANCE OF THE THEORETICAL RESULTS

We now summarize the motivation behind our theoretical results in Table 4.

Result Importance and novelty

1. The change in the log
probabilities of observations
in time can be expressed as
an expected value of the trace
over the latent variables l̂t.
(Theorem 3.2.)

This theorem enables precise log-likelihood estimation
within the twinned space (Corollary 3.3). This forms a
pivotal component of the TIF framework, facilitating the
incorporation of Neural ODE benefits. A key technical
challenge lies in the accurate formulation of the expected
value over latent variables, which can be sampled with
the model accordingly.

2. The performance of true
transition model is bounded by
the transition model learned
from observational data

From this result we have that TIF’s estimator
p̂ϕ(otj+1

|mtj+1
,Htj , do(atj ), i = 1) learned with

|Dobs| → ∞ obtains strictly better generalization in Dint

than if trained with |Dobs| = 0. This motivates the use
of observational data in model learning. These are the
first such results in a fully continuous setting (exiting
results apply only to discrete settings). Moreover, the
result holds even with possible missing variables and
masking, which to our knowledge, has not been dealt
with previously.

Table 4: Summary and significance of theoretical findings

G ALGORITHM

As mentioned before, using the log-likelihood as a loss function for training the model can be
computationally intensive. Therefore, we utilize MSE for model training in the TIF framework.
Consequently, TIFs can be run in two settings: the training setting (also used for simple forward
prediction), outlined in Algorithm 1 and in log-likelihood estimation setting, see Algorithm 2.

The CNF is solved using an explicit numerical method, namely the fifth-order Dormand–Prince. To
ensure accuracy, we set absolute and relative tolerances to 1e−4 during the integration process. To
handle possible discontinuities of the derivative, we utilize the torchdiffeq package (Chen, 2021)
with the keyword jump t. By doing so, we eliminate the need for a for-loop structure (e.g., lines 8
and 16 in Algorithm 1) to achieve piece-wise integrations. Instead, we can call the ODE solver just
once, making the computation more efficient.

Throughout our algorithms (see Algorithms 1 and 2), we refer to the torchdiffeq solver as ODEsolve.
This solver takes the current state as input and employs the provided function to evaluate the
derivative. Subsequently, the numerical solver handles the ODE integration between the specified
time points. It’s important to mention that the function evaluating the derivative has access to both
the current context ctT and the time elapsed from the previous intervention t− tT .

We ensure that the Assumption C.3 is followed by sampling the initial state according to line 6 in
Algorithm 1. More precisely, the mean of each element of ô0 is set to the corresponding observation
o0 while the means of latent variables are set to zero. The standard deviation of observed variables
is set to a slightly smaller value than for the unobserved variables.

Assuming that we are interested in estimating the log-likelihood of otk and have already obtained N
samples of ŝtk , we can invoke the procedure described in Algorithm 2 and illustrated in Figure 3.

It is crucial to note that when the focus is on obtaining a log-likelihood estimate, the regularization
term introduced in Equation 2 should be utilized. This term has no impact on the model if the
assumption of an easily invertible system holds. Moreover, it serves to prevent nonsensical estimates
that may arise from an unrecovered initial distribution. On the other hand, when only forward
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Algorithm 1 Model training and forward prediction

input observations ot0 ,ot1 . . .otL , actions at0 ,at1 . . .atL , masks mt0 ,mt1 . . .mtL , indicator i,
times T

1: function dynamics(ŝt, ct−T
, i, t)

2: ∂ŝt

∂t = gϕ(ŝtj |ct−T
, t− t−T )

3: return ∂ŝt

∂t
4: end function
5: repeat
6: Initialize ŝ0 = [l̂0, ô0], such that ô0 ∼ N (ô0|µ(o0), σ(o0)) and l̂0 ∼ N (l̂0|0, I).
7: Initialize loss = 0, penalty = 0
8: for tj in [t0, t1, t2 . . . tL−1] do
9: set ct−T

= [atj ,otj ,mtj , i]
10: set t−T = tj
11: ŝtj+1 = ODEsolve(ŝtj , dynamics, tj , tj+1)
12: loss + = MSE(otj+1 , ôtj+1)
13: end for
14: if use regularization then
15: Initialize s̃tL = ŝtL .
16: for tj in [tL, tL−1, tL−2 . . . t1] do
17: set ct−T

= [atj−1
,otj−1

,mtj−1
, i]

18: set t−T = tj−1

19: s̃tj−1
= ODEsolve(s̃tj , dynamics, tj , tj−1)

20: penalty + = MSE(ŝtj−1
, s̃tj−1

)
21: end for
22: end if
23: Calculate Loss: (loss+ penalty)/(L− 1)
24: Update gϕ with gradient descent
25: until Training is done

Algorithm 2 Log-likelihood estimation of otk

input observations ot0 ,ot1 . . .otL , actions at0 ,at1 . . .atL , masks mt0 ,mt1 . . .mtL , indicator i,
times T , N forward run state estimate samples Ŝtk = [ŝ1tk , ŝ

2
tk
. . . ŝNtk ]

1: function aug dynamics(ŝt, log p(ŝt), ct−T
, i, t, ϕ)

2: Initialize v from a Rademacher Distribution.
3: ∂ŝt

∂t = gϕ(ŝtj |ct−T
, t− t−T )

4: ∂logp(ŝt)
∂t = −vTJgϕ(ŝtj |ct−T

, t− t−T )v

5: return [∂ŝt

∂t ,
∂logp(ŝt)

∂t ]
6: end function
7: for ŝtk in Ŝtk do
8: set s̃tk = [l̂tk ,otk ]
9: set ∆logp(s̃) = 0

10: for tj in [tk, tk−1, tk−2 . . . t1] do
11: set ct−T

= [atj−1
,otj−1

,mtj−1
, i]

12: set t−T = tj−1

13: [s̃tj−1 ,∆ log p(s̃)] = ODEsolve(s̃tj , aug dynamics, tj , tj−1)
14: end for
15: evaluate log p(õ0) from the known initial distribution N (µ(o0), σ(o0))
16: Save samples ∆ log p(s̃) and log p(õ0)
17: end for
18: Compute MC estimate of logp(otk |Htk)

prediction is desirable the regularization can be relaxed by replacing line 20 in Algorithm 1 with
MSE(ôtj−1 , õtj−1).
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Another remark worth noting is that when TIF is trained according to Algorithm 1, it reduces to
regular NODE. By discarding the flow of log-likelihoods in training and forward prediction we can
gain faster performance.

H COUNTERFACTUAL PREDICTION

While the interventional query aims to marginalize over the latent variables, the counterfactual query
conditions on them (Khemakhem et al., 2021). In other words, the goal is to model the distribution of
otL after action do(atj ) given that a′

tj and o′
tL have in fact occurred. The counterfactual inference

can be divided into three steps described in Theorem 7.1.7 by Pearl (2009, p. 206). Here we list
these steps according to our context and notation,

1. Abduction: Use the evidence o′
tL and a′

tj to infer the conditional distribution over the
latent variables p(ltj |o′

tL ,a
′
tj ).

2. Action: Introduce the action do(atj ) based on the counterfactual query together with the
obtained p(ltj |o′

tL ,a
′
tj ).

3. Prediction: Use the conditioned state to predict the distribution of otL given action
do(atj ).

The first step, abduction, requires evaluating the posterior distribution of the latent variables ltj
after observing the factual trajectory(o′

tL ,a
′
tj ). This is illustrated with a blue solid line in Figure 2b.

Flow-based models can naturally run both forward and backward in time, allowing us to obtain the
posterior estimate l̃tj ∼ p(ltj |o′

tL ,a
′
tj ). This estimate is obtained by first forward running t0 → tL,

then replacing ôtL with otL , and finally running backward tL → tj to obtain a more informative
l̃tj . The backward run trajectory is shown in orange in Figure 2b.

The second step, action, can be introduced as an input to the model. Additionally, the observation
otj can be twinned with the obtained l̃tj from the first step to obtain better estimate (s̃tj = [l̃tj ,otj ])
of stj .

Finally, the prediction can be obtained by running the model as follows

s̃tL = s̃tj +

∫ tL

tj

gϕ(s̃t|·)dt . (12)

This is shown with a green continuous line in Figure 2b. It is worth noting that the equation above
assumes that there are no additional actions nor observations between tj and tL. However, if there
were some intermediate steps they could be included by running the model in parts.

I PENDULUM EXPERIMENTS

J TUMOR GROWTH EXPERIMENTS

J.1 SIMULATION OF DATA

The system of differential equations determining the pendulum dynamics is

dθ(t)

dt
= v (13)

dv(t)

dt
=
(
1 + f(at−T

, t− t−T )
)(−g

l

)
sin(θ(t)) (14)

df(at−T
, t− t−T )

dt
= at−T

− δe−δ(t−t−T ) , (15)

where δ is set to 1, and g = 9.81 corresponds to the acceleration due to gravity.
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(a) Strog confounding with κ = 10.

(b) Moderate confounding, κ = 5.

Figure 8: TIF exhibits superior performance in tumor growth prediction across varying degrees of
confounding. The difference is particularly evident in short-term predictions tk+1 and tk+2.

The length of the pendulum is randomly sampled as l ∼ U(1.5, 3.5), where U(a, b) is a uniform
distribution between a and b. The initial angle of the pendulum is also randomly sampled as θ(0) ∼
U(0.5, 5.5), and the initial velocity v(0) is set to zero. The observable variables are the x and y
components of the pendulum angle: θx = sin(θ) and θy = cos(θ).

The data trajectories are simulated over 6 time units, and H = 30 irregular sample times in T are
drawn. Two random intervention times are sampled for each trajectory, one in the first half and one
in the latter half, the effective action based on equation 15 is given as the action channel atj at each
observation time in T together with the θx(tj), θy(tj).

The agent on observational data has privileged information on the length and velocity of the
pendulum. We define an arbitrary privileged policy as,

πprv(θx(t), θy(t), l, v(t)) ∼ U(0, 15) · (l/4) · θy(t)
|v(t)|+ 1

, (16)

where the policy is responsible for deciding the action amplitude at those 2 intervention times.

For interventional policy, we define

πint(θx(t), θy(t)) ∼ U(0, 15) · (θ − 0.9)x(t)

2
. (17)

To illustrate the distributional shift between πprv and πint we draw 200 samples from both policies
and visualized the action amplitudes of both actions with respect to the pendulum angle. The results
are shown in Figure 9.

J.2 TRAINING WITH PENDULUM DATA

TIF learns the system dynamics in a 20-dimensional state space, consisting of 18 latent variables
and 2 observational variables (θx, θy). In all but the log-likelihood and counterfactual prediction
experiments, the regularization was relaxed, by computing the MSE only on the observational
variables R(ô, õ), as the invertibility of the system is not needed in the other experiments.

The initial state was sampled with a Gaussian priors ô0 ∼ N (ô0|o0, 0.2) and l̂0 ∼ N (l̂0|0, 1).
The model was trained for 300 (excluding the counterfactual experiment), using an adaptive learning
rate Adam (Kingma & Ba, 2015) with a maximum learning rate of 0.005. The model used for testing
was selected based on the performance on the validation set. To illustrate the predictions made by
TIF and the effect of initial state we draw 20 trajectories (Figure 10).

With the full regularization, the same level of RMSE in test data as with relaxed regularization
was obtained within 400 epochs, while using relative and absolute tolerances of 10−8. Thus
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Figure 9: Distributional shift between observational and interventional data from two fixed
intervention times.

Figure 10: To illustrate the generative nature of TIF and to visualize its performance in pendulum
data, 20 initial states were sampled and corresponding trajectories are shown together with
observations.

regularization slows the training process but enables learning an invertible model that is equally
expressive. The negative log-likelihood estimate also decreases during training in validation data, as
expected.

In Figure 11 we illustrate how the log-likelihood estimate acts at the beginning of training (after
one epoch). As expected the log-likelihood reflects the distance of observations from the trivial
predictions.

Counterfactual prediction For the counterfactual prediction task, the model was trained using
800 samples from Dobs and 400 samples from Dint, for a maximum of 600 epochs. Also, the full
regularization was applied.

K HYPER-PARAMETER TUNING

For the pendulum data, hyper-parameters such as the latent dimension were fine-tuned, and the
same configuration was applied to the tumor growth experiment. We acknowledge that more
extensive hyperparameter tuning could potentially lead to further improvements. The learning rate
was determined through multiple runs with a small number of epochs.
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Figure 11: At the beginning of training log-likelihoods clearly reflect the distance of observations
from the trivial model predictions

In the case of the RL benchmark, the latent dimensionality and model size were aligned with those
of other benchmarks, with the latent dimension being an educated guess based on the dimensions
of the Half Cheetah task. The primary parameter tuned in this scenario was the learning rate, with
approximately five different options tested for each setup.

L TIME COMPLEXITY

TIF inherits from the continuous flows normalizing a more efficient way of estimating the log
likelihood.

If the cost of evaluating TIF is O(DH) where D is the dimensionality of the data, and H is the
largest hidden dimension in the concatsquach block, then the time complexity of one transformation
using a naive normalizing flow approach would be O(DH +D3)

The cubic format arises from using the change of variables to obtain complex densities z ∼ pz(z)
from a simple distribution u ∼ pu(u) with transformation T (u) = x, as described in (Papamakarios
et al., 2021),

log(pz(z)) = log(pu(u))− log(|detJT (u)|) , (18)

where JT is the corresponding Jacobian matrix (n × n), and the time complexity of computing the
log determinant is O(n3).

With continuous normalizing flows the complexity can be reduces to O(DH +D2), as the change
in log probabilities can be written as (Chen et al., 2018; Grathwohl et al., 2019)

log(p(zt1)) = log(p(zt0))−
∫ t1

t0

Tr{JT (zt)}dt , (19)

Where the time complexity of obtaining the exact Trace is O(n2) (Papamakarios et al., 2021).

Instead of exact Trace computation, we further reduce the time complexity to O(DH + D) using
Hutchinson’s trace estimator to obtain an estimate of the trace (Chen et al., 2018; Grathwohl et al.,
2019; Papamakarios et al., 2021).

Tr{JT (zt)} = Ev[v
TJT (zt)v] (20)

where v is a random vector with zero mean and unit covariance. We draw binary values for v from
a Rademacher Distribution. Reducing the time complexity to O(n) (Grathwohl et al., 2019).

However the use of numerical ODE solvers introduces an additional cost as the transformation needs
to be performed L times, leading to an overall time complexity of O(L(DH +D)). The impact of
L is significant in TIF, especially as the discontinuities of the derivative at the intervention points
increase the number of steps taken by the numeric solver. Additionally, for the log likelihood sample,
the model needs to be run forwards and backwards in time, i.e., O(2L(DH + D)). Finally, to
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obtain the Monte Carlo estimate (Appendix D), several samples are needed, which can, however, be
computed in parallel.

Finally, acknowledging that likelihood computation could become computationally heavy, we opted
not to use negative log-likelihood as our loss function.

29


	Introduction
	Our contributions
	Related work

	Problem formulation
	Partially Observable Markov Decision Process

	Twinned Interventional Flow (TIF)
	Model architecture
	Theoretical results
	Mitigating stiffness

	Experiments
	Pendulum
	Tumor data
	Half Cheetah

	Broader impact and limitations
	Notation
	Model architecture
	Assumptions
	Log-likelihood estimation
	Asymptotic bounds for the true transition model in the continuous setting
	Significance of the theoretical results
	Algorithm 
	Counterfactual prediction
	Pendulum experiments 
	Tumor growth experiments
	Simulation of data
	Training with pendulum data

	Hyper-parameter tuning 
	Time complexity 

