Under review as a conference paper at ICLR 2025

FALCON: FEEDBACK-DRIVEN ADAPTIVE
LONG/SHORT-TERM MEMORY REINFORCED CODING
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large language models (LLMs) have achieved significant progress in
automated code generation. Despite their strong instruction-following capabilities,
these models frequently struggled to align with user intent in the coding scenario. In
particular, they were hampered by datasets that lacked diversity and failed to address
specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning
(SFT) and reinforcement learning from human feedback (RLHF) led to failures
in generating precise, human-intent-aligned code. To tackle these challenges and
improve the code generation performance for automated programming systems, we
propose Feedback-driven Adaptive Long/short-term memory reinforced Coding
OptimizatioN (i.e., FALCON). FALCON is structured into two hierarchical levels,
from the global level, long-term memory improves code quality by retaining and
applying learned knowledge, while from the local level, short-term memory allows
for the incorporation of immediate feedback from compilers and Al systems.
Additionally, we introduce meta-reinforcement learning with feedback rewards
to solve the global-local bi-level optimization problem and enhance the model’s
adaptability across diverse code generation tasks. Extensive experiments are
conducted and it is found that our technique achieves state-of-the-art performance,
leading other reinforcement learning methods by more than 4.5 percentage points
on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark.
The open-sourced code is publicly available at https://anonymous. 4open.
science/r/FALCON-BFEO/README . md.

1 INTRODUCTION

The development of Large Language Models (LLMs) has significantly advanced automated code
generation (Zan et al., [2023)). Models like CodeLLaMA (Roziere et al., 2023)) and DeepSeek-Coder
(Guo et al.l 2024), tailored for code-centric tasks, have demonstrated outstanding performance
across programming challenges. While LLMs excel in instruction-following through tuning (Jiang
et al.| 2024), they often misalign with user intent, making feedback-based adjustments critical. For
example, InstructGPT (Ouyang et al., |2022) leverages reinforcement learning with human feedback
(RLHF), and CodeRL (Le et al., [2022) uses compilation feedback to refine model performance.
Similarly, CompCoder (Wang et al.l [2022)) enhances code compilability with compiler feedback,
and RLTF (Liu et al.l 2023a) offers fine-grained feedback on compiler errors. However, current
RL frameworks generate compilation errors and overlook non-differentiable features (e.g. coding
style) that affect the performance significantly (Jiang et al.l2024). To address these challenges, we
propose a reinforcement learning system combining long-term and short-term memory feedback.
From the global level, long-term memory tracks trends over time for higher-quality code retrieval,
while from the local level, short-term memory captures recent errors and immediate feedback. The
main contributions of this paper are as follows:

¢ Short-Term and Long-Term Memory for Reinforcement Learning: We propose a dual-
memory approach for reinforcement learning in code generation, where short-term memory
enables real-time corrections and long-term memory accumulates knowledge from past runs
to improve code quality and reduce repetitive mistakes.

https://anonymous.4open.science/r/FALCON-BFE0/README.md
https://anonymous.4open.science/r/FALCON-BFE0/README.md

Under review as a conference paper at ICLR 2025

* Non-Differentiable Code Features into Feedback Loops: Our approach addresses the
limitation of current RL frameworks by integrating non-differentiable code features like
style, readability, and best practices into the feedback loop, ensuring the generated code is
both functionally sound and aligned with real-world programming standards.

* Meta-Reinforcement Learning for Generalization Across Tasks: We enhance the model’s
versatility by incorporating meta-reinforcement learning, allowing it to efficiently generalize
across diverse programming tasks, adapt quickly to new environments, and handle a wide
range of coding challenges with fewer training iterations.

2 RELATED WORKS

2.1 PRE-TRAINED MODELS FOR CODE GENERATION

In recent years, pre-trained language models have made significant progress in the field of code
generation. Trained on large-scale code corpora, these models have demonstrated powerful code
generation capabilities. For example, CodeBERT |Feng et al.|(2020), a model based on an encoder-
only architecture, has shown impressive results. With the advent of in-context learning methods,
decoder-only Transformer models have become the dominant technology for language modeling
Vaswani et al. (2017)). Several models, such as CodeGPT [Lu et al.| (2021), CodeGeeX |Zheng
et al.| (2024), and DeepSeek-Coder (Guo et al.| (2024), use Causal Language Modelling (CLM)
pretraining, while others like CodeT5 [Wang et al.|(2021) and AlphaCode |Li et al.| (2022) utilize an
encoder-decoder architecture. Additionally, models like CodeFusion |Singh et al.| (2023)) leverage
diffusion-based techniques for code generation. These pre-trained models exhibit great potential in
code generation tasks, achieving notable improvements in accuracy through various architectures
and training strategies. However, they still face challenges in ensuring the syntactical and functional
correctness of the generated code.

2.2 REINFORCEMENT LEARNING ON CODE

Reinforcement learning (RL) is a method that learns optimal strategies through reward signals from
interacting with the environment Fujimoto et al.| (2019). It excels in sequence generation tasks, such
as enhancing performance in translation and summarization models by improving BLEU and ROUGE
scores|Ahn et al.[(2019). Unlike traditional natural language processing tasks, code generation is more
complex. Beyond syntactical correctness, the generated code must be functionally accurate, meaning
it should compile and perform as expected in various scenarios. Passing unit tests is important for
verifying correctness, safety, and precision, but not sufficient unless the tests are comprehensive and
well-designed. Unit tests must cover diverse use cases and edge cases to ensure the code adheres to
standards and meets requirements. For instance, the RL-based code generation fine-tuning framework,
CodeRL|Le et al.|(2022)), guides fine-tuning by integrating unit test signals with reinforcement learning.
PPOCoder|Shojaee et al.|(2023) improves on CodeRL by employing Proximal Policy Optimization
to refine the approach, while RLTF [Liu et al.| (2023a) incorporates specific error information from the
code and multi-granularity feedback alongside an online framework for model training. StepCoder
Dou et al.[(2024) enhances the code generation process through compiler feedback and segmental
optimization. However, current RL-based methods still face some limitations. Primarily, these
methods lack detailed feedback on specific types and distributions of programming errors, which is
crucial for identifying patterns, understanding root causes, and creating targeted interventions. This
makes addressing recurring issues difficult. Additionally, the corrective mechanisms are not robust
enough, often failing to provide timely, specific guidance, hindering effective learning. Additionally,
the diversity of input-output examples in existing benchmarks is limited, restricting the model’s
ability to adapt and generalize to different or unseen problems [Liu et al.|(2023a).

3 PROBLEM SETTING

We aim to enhance the automated code generation capabilities of Large Language Models (LLMs) by
addressing key challenges in accuracy, diversity, error correction, and code quality. Formally, given a
high-level specification D, the task is to generate a sequence of code tokens W = {w1, ws, ..., wr}

Under review as a conference paper at ICLR 2025

that maximizes the conditional probability P(W|D, #), where 6 represents the model parameters.
The optimization objective is defined as 6* = arg maxy Ep~.p [log P(W|D, 0)].

Challenges. Effective code generation is impeded by several factors. Accuracy requires minimizing
syntactical or logical errors in W to ensure correct functionality. Diversity of input-output examples
X is often limited, restricting the model’s ability to generalize across varied programming tasks.
Efficient error correction mechanisms are necessary to identify and rectify errors in W, ensuring
robust performance. Maintaining high code quality, which encompasses adherence to coding
standards, style guidelines, and managing code complexity C(W), remains a persistent challenge.
Additionally, adaptability refers to the model’s capacity to adapt to new tasks and incorporate
feedback for continuous improvement, which is constrained without robust memory mechanisms.

FALCON Framework. To address these challenges, we propose the FALCON framework. The
framework leverages both a long-term memory buffer Moy, = {(D;, W, T;, F;) N | and a short-
term memory buffer Mo = {(D;, W, T;, F;)}}L, to utilize diverse feedback, enabling fine-
tuning of 6. Formally, FALCON seeks to optimize # by maximizing a composite reward function
RW,F) = aT(W) + BS(W) + vC(W) 4+ 6E(W), where T (W), S(W), C(W), and E(W)
represent unit test, code style, complexity, and error feedback, respectively. The optimization
objective is defined as 6* = arg maxg Ep~p [Ew~pw|p,0) [R(W, F)]].

Assumptions. The effectiveness of FALCON is based on the following assumptions: 1. Exchange-
ability of the dataset D = {D;}},, implying that the order of tasks does not influence model
performance; 2. Independence of feedback signals F' given the generated code W; 3. Sufficient
memory capacity in both Mgy, and Mo to store relevant interactions without significant data
loss; and 4. Feedback efficacy, ensuring that integrated feedback mechanisms provide meaningful
and actionable information to guide the optimization of 6.

Optimization Objective. Given a set of tasks 7 = {D;}},, the goal is to learn optimal
parameters 6* that maximize the expected composite reward across all tasks, formulated as
0* = argmaxy % Zi\; R(W;, F}), where W; ~ P(W|D,,0) is the generated code for task D;,
and F; represents the aggregated feedback. The formulation ensures continuous improvement by
leveraging both historical and recent feedback to enhance code generation quality.

4 METHODOLOGY

In this section, we explore the FALCON framework, which integrates comprehensive unit testing
with reinforcement learning, supported by both long-term and short-term memory buffers. During the
code generation process, the system stores task descriptions, generated code, and various feedback
(e.g., compilation results, code style, and complexity) in the long-term memory buffer. By retrieving
this information, the model references high-quality code, avoids past mistakes, and ensures adherence
to required standards. After generating the code, a judge model evaluates it and calculates rewards
based on the feedback, which are then used to update the model’s parameters through reinforcement
learning. All generated code and feedback are stored for future reference and optimization. The
combination of long-term and short-term memory feedback in the FALCON framework allows the
model to not only learn from a wide range of historical data but also adapt quickly to new tasks based
on recent performance. The overall framework is illustrated in Figure[I]

4.1 TASK DEFINITION: CODE GENERATION BY LLMS

The code generation task involves the automated creation of computer code W from a high-level
specification of the desired behavior D. The goal of this process is to enhance the likelihood of gen-
erating code that effectively solves a given problem, which is represented as a conditional probability
P(W|D). This task can be modeled as a sequence-to-sequence problem, aiming to maximize the
conditional probability of generating the correct output given the input and the parameters of the
LLM model, mathematically represented as:

T
mgxP(W\D,Q) = mgtxgp(wt|D,9,w1:t_1) (1

Under review as a conference paper at ICLR 2025

Store Task Description

- -
- -

-

q o
E >>> >>> 1. > >>> = >>>
) -

Task Problem LLM Coée Compiler
>

~ - —m e ———

\\C7U.
~ \’de C‘fer,
Current Information =~ JEratiop --
————— FAISS {----~

oty S

,—> [Adaptation | Complexity |:> @
| Long-term Error Type i

Short Term Memory ' Feedback Reinforcement Learning

Figure 1: The overview of the FALCON framework. Detailed feedback process (see Appendix
Figures [5| and [f] for feedback cases). Reinforcement learning updates using feedback to compute RL
loss and optimize the model (see Figure [2]for the detailed meta-reinforcement learning framework).

where 6 denotes the parameters of the LLM model. The LLM model is employed to learn the
conditional distribution and is trained on a set of input-output pairs. During the training phase, the
parameters 6 are optimized to increase the likelihood of generating accurate outputs for a given input.

4.2 MRLF: META-REINFORCEMENT LEARNING WITH DUAL MEMORY BUFFERS

We propose the MRLF algorithm [T} which involves random task sampling from the task distribution
during training. Previous works have indicated that different data sampling strategies have varying
impacts on model information extraction |[Zhang et al.| (2024)). Consequently, we implement both
long and short memory sequences. The long memory strategy stores the solutions generated for
each problem and the compiler feedback results, whereas the short memory sequence selects the
latest samples and unit test feedback from each current iteration. To address repetitive runtime and
compilation errors, the long memory strategy categorizes and stores various errors by their types and
records the corresponding error lines, enabling fine-grained reward allocation.

Algorithm 1 MRLF Algorithm

Require: Task distribution 7
Ensure: Updated model parameters 6
1: Initialize LM B, SM B, 6

2: Populate LM B, SM B via few-shot demonstrations
3: repeat

4 Sample batch {T;} from T

5: for each task T do
6.
7
8

Code Generation: Generate code W and test results; record in SM B
Adaptation: Set §; = 6; sample mini-batch from LM B, SM B
: Compute inner 10ss: Linner = », Lj (j € {sl, coarse, error, complexity, style, negative})
9: Update 0;: 0; < 0; — Oév(g,i Limer(ei)

10: Evaluation: Assess 6; on T;; document outcomes
11: end for

12: Meta-Update: Ly, = Zf\; Linner(0;); refine 0: 0 < 0 — 8V g Lieta
13: until Convergence
14: return 6

We initialize two memory buffers (LMB, SMB) and model parameters 6, then randomly sample tasks
from the task distribution, executing steps for each one. First, the corresponding code is generated and
tested, with results stored in SMB. During adaptation, the algorithm extracts experimental data from

Under review as a conference paper at ICLR 2025

LMB and SMB to aid rapid adaptation to the current task. The inner loss function Liyper, incorporating
factors like accuracy, complexity, style, and negative examples, is optimized using policy gradient.
In evaluation, the optimized parameters are tested, and results are stored for future use. Finally, the
losses from all tasks are aggregated to compute the meta-loss Ly, used to update global parameters
6. Algorithm [I]summarizes the framework. For inner loop optimization, our method explores the
target space by combining unit test feedback, code complexity, and style norms, using the generated
code w to construct the reinforcement learning loss function as shown below:

Efine
Ly =— Y Rane(th;)log p(tix| D, 6,114 1))
t=Sfine
where Rppe () represents the reward coefficient, and Sgye and Fppe denote the start and end positions
of the code snippet, respectively. These values are determined based on different types of feedback.
To stabilize the training process, we adopt the supervised learning loss Ly by minimizing the
cross-entropy loss as shown below:

T
Ly =—log P(w| D,0) = = logp(w; | D,6,ws., 1) 3)

t=1

{ Ometa = Ometa — ,BVQmeta Z LTi (61))

E fine :
—Z Rfine (W) logp(We[D, 8, Wy.c—1) \\Pong Teirm Memory Feedbacl—(/,
t=Sfine L //" v N
m ' [Historical Tasks D, oy

Al Feedback @ l
\7_: e \7_: | > 0P — K cos(q, p(1)
R N 18

Compiler Feedback "=

‘ j ¢ I
“.__ Short Term Memory Feedback — Vector 1/

Figure 2: The framework integrates meta-reinforcement learning with both long-term and short-term
memory feedback. Long-term memory retrieves historical tasks, while short-term memory provides
Al and compiler feedback to refine code generation.

As depicted in Figure 2] we employ a meta-reinforcement learning framework to optimize code
generation by integrating both long- and short-term memories for enhanced adaptability. From a
global perspective, Long-Term Memory Doy stores historical tasks, generated codes, and feedback
to provide valuable context. From a local perspective, Short-Term Memory Dgpore focuses on recent
feedback to enable real-time adjustments. This approach leverages the MAML framework (Finn
et al.| 2017) for efficient task adaptation with minimal updates.

Short-Term Memory Adaptation. Short-Term Memory is utilized to adapt the model locally by
adjusting its parameters based on recent feedback. For each task 7, the inner loop optimization
updates the parameters:

0; = 0; — aVo, L7, (6:) “

where « is the learning rate and L; is the task-specific loss function.

Global Optimization. The outer loop performs global optimization of the meta-learning parameters
Ometa DY aggregating feedback across multiple tasks:

Ometa = Ometa — ﬁv&ma Z ‘CTi (9;) (&)

where (3 is the meta-learning rate. This ensures better generalization across tasks.

Under review as a conference paper at ICLR 2025

Final Optimization. The overall framework combines short- and long-term memory feedbacks with
meta-reinforcement learning to achieve coordinated optimization for both global generalization and
local task adaptation:

Ofinal = Optimize (emetaa 0, {9;}) (6)

4.3 LONG-TERM MEMORY FEEDBACK

Retrieving information from long-term memory significantly improves code quality. We use the
FAISS framework (Douze et al.|[2024) to retrieve relevant historical code, feedback, and evaluation
scores. Task descriptions and feedback are transformed into embedding vectors and then indexed.
During code generation, a query vector from the current task retrieves the top-k most similar historical
data to guide the process and avoid past errors. The prompt template is provided in the appendix.
Consider a set of historical data D = (t;, f;, e;);_,, where t; represents the task description, f; is
the corresponding feedback, and e; is the evaluation score. We use an embedding function ¢(-)
to transform these tasks and feedback into embedding vectors v; = ¢(t;, f;) and index them with
FAISS. During the code generation phase, the current task description £y enc and feedback f are
transformed into a query vector ¢ = ¢(cument). We compute the similarity between the query vector
g and the historical vectors v; using cosine similarity cos(q, v;), and retrieve the top-k most similar
historical tasks. The retrieval process can be represented as:

{(tiwfilveh)?"'a(tikvfimeik)} = TOp—k‘ (vi | i = 1:2a~--an) @)

By referencing these most relevant historical tasks and feedbacks, the system can guide the current
code generation process with past mistakes avoided and ultimate code quality improved.

4.4 SHORT-TERM MEMORY FEEDBACK

During the reinforcement learning phase, we utilize the generated code w to construct the reinforce-
ment learning loss function as follows:
Efine

Lrl = - Z Rﬁne(wt) Ing(wt‘Da 03 wl:t—l) (8)
t=Shine

where Rp () represents the reward coefficient, and Sgye and Fg,e denote the start and end positions
of the code snippet, respectively. These values are determined based on different types of feedback.
Compiler Feedback. For compiler feedback, we adopt the same settings as CodeRL:

1.0, if FB(W) is pass
. —0.3, if FB(W) is failure
Reo S W) = ’ . AN . 9
course(W') —0.6, if FB(W) is runtime error ©)
—1.0, if FB(W) is syntax error

Scoarse = 0, Ecoarse =T

where R oarse 18 based on compiler feedback with the start and end positions set to 0 and 7'.
Adaptive Feedback. To enhance the model’s efficiency in handling various programming tasks, we
devise a mechanism that dynamically adjusts rewards based on the proportion of passes to failures
in unit tests. This strategy encourages the model not only to pass unit tests but also to learn from
failures, thereby improving its problem-solving capabilities. The reward is calculated as:

2 N ass

Rerror(W) = —0.3 + 1.3 x ﬁ (10)
Coding Style Feedback. To further enhance the quality of the generated code, we employ Al
Feedback to optimize coding style. An evaluation model scores the generated code based on
adherence to the expected coding style standards. The scoring system ranges from -1 to 2, and these
evaluation scores are directly used as reward signals in the reinforcement learning process to guide
the model toward producing higher-quality code. The coding style assessment template is provided
in Table 8]
Complexity Feedback. Just like with coding style, we use Al Feedback to evaluate complexity and
calculate rewards based on the scores. The complexity assessment template is provided in Table [9]

Under review as a conference paper at ICLR 2025

Long-term Error Type Feedback. Introducing a reward mechanism that combines short-term
memory recall error rate, current test error, and long-term memory recall of past task performance
enables the model to dynamically adjust its rewards based on past error patterns, adapt to various
error types and feedback, and ultimately enhance its generalization ability:

Rnegative = - Z Nerror X Petror (11

error

where N represents the short-term memory recall, the frequency of each error type in the generated
code by the model. This is the immediate feedback for the current task. P represents the long-term
memory recall, the proportion of each error type. This is the model’s performance statistics on
long-term tasks, providing a cumulative history of various error types. By correct rewarding, the
model can reduce the occurrence of these errors and thereby enhance the accuracy and quality of the
generated code.

5 EXPERIMENT

5.1 QUANTITATIVE EVALUATION ON APPS

To ensure a fair comparison, we use the CodeT5 770M model as our baseline. Our benchmarks
include the latest advancements that integrate reinforcement learning (RL) with large language models
(LLMs), particularly CodeRL, PPOCoder, and RLTF. For evaluation, we apply the same benchmarks
and settings used in these previous works. As shown in Table [I] for the experimental results, our
FALCON approach delivers additional performance improvements and surpasses other RL-based
methods, indicating that RL with appropriate feedback can effectively improve the model output
space and thereby enhance the quality of code generation. In particular, our method achieves the
highest pass@1 rates of 8.60%, 2.56%, and 1.25% in the Introductory, Interview, and Competition
categories, respectively.

Table 1: Quantitative evaluation on the APPS benchmark. “Intro”: introductory, “Inter”: interview,
“Comp”: competition-level tasks. To ensure a fair comparison, we apply these RL-based methods,
including PPOCoder, CodeRL, and RLTF, using the same base model, CodeT5, as a backbone. We
also compare with models that have a larger number of parameters.

Method Size pass@l1 pass@3

Intro Inter Comp All Intro Inter Comp All
Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25
GPT-Neo 2.7B 3.90 0.57 0 1.12 5.50 0.80 0 1.58
CodeTS5 base 770M 3.85 0.58 0.02 1.05 8.52 1.53 0.25 2.82
PPOCoder 770M 4.06 0.79 0.15 1.32 9.97 2.06 0.70 337
CodeRL 770M 7.08 1.86 0.75 2.69 16.37 4.95 2.84 6.81
RLTF 770M 8.40 2.28 1.10 3.27 18.60 5.57 3.70 7.87
Ours 770M 8.60 2.56 1.24 3.50 19.75 5.85 3.57 8.17

5.2 QUANTITATIVE EVALUATION ON HUMANEVAL AND MBPP

To further validate the effectiveness of our Table 2: The results of pass@1 on the MBPP and
method, we evaluate the zero-shot performance HumanEval benchmarks.
of the DeepSeek-Coder-Instruct model, trained

with our method on our custom dataset, using the Model | Humaneval MBPP
well-established MBPP and HumanEval bench- DeepSeek-Coder-Instruct 73.8 74.9
marks. We also compare these results against PPOCoder 76.8 76.2
other reinforcement learning methods, such as RLTF 76.8 75.9
PPOCoder and RLTF. The experimental results Ours ‘ 82.9 80.7

are illustrated in Table

Under review as a conference paper at ICLR 2025

Compared to other reinforcement learning methods, our method consistently achieves the best
performance on both the HumanEval and MBPP benchmarks. The significant advantage of our
method can be attributed to its diversified feedback mechanism. Unlike other methods that may focus
on a single metric, our method continuously optimizes the model’s generation capability through
multi-dimensional feedback. This approach demonstrates a strong ability to enhance the generation
of correct code and proves particularly effective in complex tasks.

5.3 QUANTITATIVE EVALUATION ON CODAL-BENCH

In addition to evaluating the functional correctness of the code, we adopt CODAL-Bench, a rigorous
and comprehensive benchmark for LLM consistency in coding preferences to validate the effectiveness
of short-term memory feedback. DeepSeek-Coder-Instruct-6.7B model is used and the results are
illustrated in Figure[3] It is found that there is a noticeable improvement in various coding preferences,
particularly in Code Complexity and Coding Style after implementing the FALCON framework.
This observation is attributed to the inclusion of feedback on these aspects in the short-term memory.
However, the improvement in Instruction Following is not as significant.

9
[w/o FALCON
8 [wFALCON
715725 75 733703 7.06
7] 689] 6.83— 6.7 86
6
531541
@ 5
2
o
Q
wn 4
34
P
1
Instruction Code Code Complexity Code Coding Average

Following Explanation Efficiency Readability Style

Figure 3: Quantitative evaluation on CODAL-Bench

5.4 QUANTITATIVE EVALUATION ON SCICODE

To validate the general-purpose task capabilities of our framework, we also select the SciCode
benchmark, which covers challenging research-level coding problems across natural sciences, in-
cluding mathematics, physics, chemistry, and biology. SciCode decomposes the main problems into
several subproblems, making it a particularly rigorous benchmark of a model’s coding capabilities.
Even the most advanced models nowadays, such as Claude 3.5-Sonnet and ChatGPT-4.0, can only
solve 1.5% and 4.6% of the main problems, respectively. Although Deepseek-Coder-6.7B-instruct
initially demonstrates a low task pass rate on this benchmark, we observe significant performance
improvements on the subproblems after applying our framework due to the utilization of long-term
memory mechanisms.

5.5 QUANTITATIVE EVALUATION ON AGENTBENCH

To further evaluate the performance of our framework, we conduct a systematic assessment on
AgentBench |[Liu et al.| (2023b)), focusing specifically on long-term memory capabilities. Since
our primary focus is on code generation tasks, we select three environments within AgentBench:
Operating System (OS), Database (DB), and Knowledge Graph (KG). In this evaluation, we compare

Under review as a conference paper at ICLR 2025

Table 3: The results of pass@1 on SciCode benchmarks with and without FALCON.

Model Size Method \ Subproblem Main Problem
CodeLlama 70B - 10.4 0
CodeLllama 7B w/o 0.4 0
CodeLlama 7B w 3.5 0

DeepSeek-Coder 6.7B w/o 5.2 0
DeepSeek-Coder 6.7B w 8.3 0

Table 4: Test set results of AGENTBENCH.

Model Size VER (0 1) DB KG
GPT-3.5-turbo - 0613 31.6 15.7 259
GPT-4 - 0613 424 32.0 58.8
Tinyllama 1.1B - 2.8 0 0

Codellama 7B instruct 9.7 2.7 0

Qwen 7B chat 12.5 13.0 7.0
Agentlm 7B chat 14.6 33 9.0
Deepseek-Coder 6.7B instruct 17.4 233 6.8
DeepSeek-Coder (FALCON) 6.7B instruct 22.2 26.7 9.0

proprietary models (such as GPT-4 and GPT-3.5) with open-source models (such as Codellama
and Qwen 2.5) [Liang et al. (2024). The results reveal that the models optimized through our
framework exhibit significant improvements, particularly in the OS environment with an increase of
4.8 percentage points. The experimental results are illustrated in Table]

5.6 ABLATION STUDIES

The Influence of Models. To validate the scalability and robustness of our framework, we conduct
experiments with the larger model, DeepSeek-Coder-Instruct-6.7B, to further evaluate its performance.
Notably, the improvements in introductory-level tasks are significant, which can be attributed to the
use of long-term memory that enhances the quality of generated data and further unlocks the model’s
potential. The results are illustrated in Table[3]

The Influence of Different Feedbacks on Coding Preferences. As shown in Figure |4} ablation
experiments are also conducted to validate the effectiveness of the feedback that we introduce for
coding preferences. It is found that incorporating targeted feedback enhances the model’s performance
concerning its respective coding preferences. Notably, the optimization aiming at increasing code
complexity achieves the best results. Although there are some improvements in coding style and
instruction following, it is worth noting that the enhancement in code instruction following is not
particularly significant, suggesting it as a topic for future investigation.

Table 5: Different large language models as the backbone

Model Size Method | Intro Inter Comp All
CodeT5 770M w/o 385 0.58 0.02 1.12
CodeT5 770M w 8.60 256 1.25 3.50

DeepSeek-Coder 6.7B w/o 16.70 7.20 2.30 8.12
DeepSeek-Coder 6.7B w 2240 8.52 3.70 10.33

Under review as a conference paper at ICLR 2025

DeepSeek-Coder-6.7B-Instruct - 5.31

Coding Style - 5.12

Code Complexity - 5.32

Instruction-Following - 5.52 - .
Coding Style
+Code Complexity 22 20 :
- 6.00
Coding Style
+Instruction-Following S LRk n _5.75
Code Complexity _
+Instruction-Following 6 : -5.50
Coding Style
+Code Complexity - 5.41 7.25] 7.23 7.06 -5.25
+Instruction-Following
Instruction Code Complexity Code Coding Average

Following Explanation Efficiency Readability = Style

Figure 4: Effect of different feedbacks on coding preferences

The Influence of Memory. To validate the impact of long-term and short-term memories on code
generation capabilities, we conduct ablation experiments using CodeT5 as the base model and test
it on the APPS dataset. As shown in Table[6] the experimental results indicate that both long- and
short-term memory feedbacks enhance the model’s code generation performance effectively, while
the short-term memory feedback demonstrates a more significant improvement. This improvement
can be attributed to the effective reward design which plays a positive role in fine-tuning the model.

Table 6: Effect of long and short memories on different performance metrics

Long Memory Short Memory | Intro Inter Comp All
- - 385 058 0.02 1.12

v - 414 074 0.02 128
- v 7.20 1.86 0.70 2.70
v v 8.60 2.56 125 3.50

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose FALCON, a novel framework that enhances automated code generation
by integrating long-term and short-term memory feedbacks within a meta-reinforcement learning
strategy. Long-term memory retains past interactions to improve code quality and reduce repetitive
mistakes, while short-term memory enables immediate adjustments based on recent feedback from
compilers and Al systems. This dual-memory approach addresses limitations in existing models
that struggle to align code generation with user intent, especially in specialized tasks or edge cases.
By incorporating non-differentiable code features like style and complexity into the feedback loop,
FALCON ensures that the generated code is not only functionally correct but also adheres to real-
world programming standards. Extensive evaluations on benchmarks including APPS, HumanEval,
and CODAL-Bench demonstrate that FALCON outperforms existing RL-based methods, achieving
higher functional correctness and better coding style adherence. In future work, we aim to expand
FALCON’s capabilities by incorporating a broader diversity of programming languages and tackling
more complex code generation challenges.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Esmaeilzadeh. Reinforcement learning and
adaptive sampling for optimized dnn compilation, 2019. URL https://arxiv.org/abs/
1905.12799.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuanjing
Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning from
compiler feedback, 2024. URL |https://arxiv.org/abs/2402.01391.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024. URL https
//arxiv.org/abs/2401.08281.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages, 2020. URL https://arxiv.org/abs/2002.08155.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks, 2017. URL https://arxiv.org/abs/1703.03400.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052-2062. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr,
press/v97/fujimotol9a.htmll

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learn-
ing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 21314-21328. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/8636419dealaa9fbd25fc4248e702dad4—-Paper—Conference.pdfl

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022. doi: 10.1126/science.abql158.
URL https://www.science.org/doi/abs/10.1126/science.abgll58.

Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu Shi, Jun Wang, and JingSong Yang. Cmat: A
multi-agent collaboration tuning framework for enhancing small language models, 2024. URL
https://arxiv.org/abs/2404.01663.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng Ye. RLTF:
Reinforcement learning from unit test feedback. Transactions on Machine Learning Research,
2023a. ISSN 2835-8856. URL https://openreview.net/forum?id=hjYmsV6nXZ.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023b. URL https://arxiv.org/abs/
2308.03688.

11

https://arxiv.org/abs/1905.12799
https://arxiv.org/abs/1905.12799
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/1703.03400
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://www.science.org/doi/abs/10.1126/science.abq1158
https://arxiv.org/abs/2404.01663
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688

Under review as a conference paper at ICLR 2025

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation, 2021. URL https://arxiv.org/abs/2102.04664.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730-27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/blefde53be364a73914£f58805a001731-Paper—-Conference.pdf.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code 1llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code
generation using deep reinforcement learning, 2023. URL https://arxiv.org/abs/2301,
13816.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
Codefusion: A pre-trained diffusion model for code generation, 2023. URL https://arxiv,
org/abs/2310.17680.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4al845aa—Paper.pdfl

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin
Jiang, and Qun Liu. Compilable neural code generation with compiler feedback, 2022. URL
https://arxiv.org/abs/2203.05132.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. CoRR, abs/2109.00859,
2021. URL https://arxiv.org/abs/2109.00859.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang,
and Jian-Guang Lou. Large language models meet nl2code: A survey, 2023. URL https:
//arxiv.org/abs/2212.09420.

Menglong Zhang, Fuyuan Qian, and Quanying Liu. Memory sequence length of data sampling
impacts the adaptation of meta-reinforcement learning agents, 2024. URL https://arxiv,
org/abs/2406.123509.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x, 2024. URL https://arxiv,
org/abs/2303.17568.

12

https://arxiv.org/abs/2102.04664
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2203.05132
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2406.12359
https://arxiv.org/abs/2406.12359
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568

Under review as a conference paper at ICLR 2025

A EXAMPLE

We provided an example of code generation with long-term memory. When generating code without
long-term memory, it often results in repetitive ValueError issues. By incorporating long-term
memory to retrieve the most relevant code blocks and embedding them as context during generation,
the quality of the generated code can be significantly improved. We also provided an instance of
using long-term memory in SCICode. In direct generation, there were certain logical issues within
the code, and the coding style lumped all formulas together. However, after employing long-term
memory retrieval for assistance, the code was segmented appropriately and the logic was correctly
implemented.

Generate directly

def solve():
p = stdin.readline().strip()
n = len(p)
ans = (n - 1) * 9 +int(p[0])
foriin range(1, n):

return ans

ValueError: invalid literal for int() with base 10: "

Long-Term Memory

Generate with long-Term Memory |

def solve():
p = stdin.readline().strip()
n =len(p)
ans=(n-1) * 9 +int(p{0])
foriin range(1, n):

return res

Task:You are given
three integers k...
Code: def solve(k, pa,
pb):
dp = [0] * 1001
dp[0] =1
foriinrange(1,
1001):
dp[il =dpli-1] *
pa +dpli- 1] * pb
ans=0
foriin range(k,
1001):
ans +=dpli - k] *
(pb / (pa + pb))
return ans
Compiler Feedback:-
0.6
Coding Style: 2

Complexity : 0
Instruct Feedback: ...

Figure 5: An example of code generation with long-term memory incorporated.

B FEEDBACK ERROR CORRELATION ANALYSIS

We performed an analysis of different feedback types and their associated error categories. We
conducted experiments using CodeT5 as the base model on APPS with individual feedback and
collected the occurrence frequency of various sub-errors. The results are shown in the Figure[7] The
experimental results indicate that compiler feedback significantly reduces Syntax Errors and Index
Errors. However, it also slightly increases the occurrence of Value Errors. This can be attributed to
the corrective nature of compiler feedback on errors. Other feedback types, such as Coding Style,
Instruction Following, and Code Complexity Feedback, can reduce Syntax Errors compared to having
no feedback. However, their reduction is not as significant as that achieved by compiler feedback.
Instruction Following Feedback specifically shows some improvement in reducing Value Errors,
indicating an enhancement in instruction adherence.

C PROMPTS

We have compiled relevant prompt templates for code generation based on long-term memory retrieval
and Al feedback.

Under review as a conference paper at ICLR 2025

Problem Description Generate Directly

Tail Corrections for
Energy with
LJ.Implementing
Python functions
named ‘E_tail" to
calculate the tail
correction for a
system of particles
within a cubic

def E_tail(N, L, sigma, epsilon, rc):
Calculate the volume of the cubic box
V=L**3

return E_tail_LJ

simulation box. With long-Term Memory

This correction
accounts for the
truncation of the
Lennard-Jones
potentials at a
specific cutoff
distance.

def E_tail(N, L, sigma, epsilon, rc):
V=] **3

return E_tail_LJ

Long-Term Memory

def lennard_jones(r, ep5|Ion 1.0, sigma=1.0):

term1 = sigma / r Compiler Feedback:1

Task Description Coding Style: 2

term2 = term1 ** 12
term3 = terml ** 6

Wrap to periodic boundaries
Implementing a Python
function named ‘wrap'...

return 4 * epsilon * (term2 - term3)

Complexity : 2
Instruct Feedback: 2

Percentage (%)

Percentage (%)

o ~ IS o ©
6, O
%%
%,
N

Figure 6: An example of code generation with long-term memory incorporated.

Compiler Feedback

Instruction Following Feedback

S & S 8 s S S S & & &S S &S S & 8
& & < e‘é@ & & < & & o‘é‘o (@‘ (\@‘o&“ £ & Qz@*‘ & &8 & & *@“ «"é* & (é‘o&
& F S & S N & S ¢ S S @ S &

& & & < & 0\4\9 \«“’0 . & o & & K ¢ & &qf‘ zc)(,

& e pC & & <

Coding Style Feedback

Code Complexity Feedback

e

N

l\—l‘__l_l_lkl
2
0

S S & S & S & S & & S & S & & S & & & & & &
0‘ Q@‘ &@ 6‘0 & /é‘ ‘é‘o & (é‘ &0 {y‘ Q‘o ;é‘ Q‘é‘ CEE ‘é‘ & & & ‘é‘ {y‘ (\é‘ &
& S E S & O 5 & & g, S A 5 & PO &
& F & & ¢ < & & o & & & & & & < & & ©° & &
B & A & ¥ s Nl B & IR s N
& 48 < & 4 <

Figure 7: Frequency of sub-errors generated by different feedback types.

Under review as a conference paper at ICLR 2025

Table 7: Code generation template
Instruction:

Please write a Python function based on the task description, referencing the historical
context for inspiration. Ensure that the generated code follows the provided requirements
and avoids the listed errors.

Task: [instruction]

Context of relevant code:

- Historical Task: [Brief description of a similar task]

- Code: [Code snippet]

- Style Score: [Style score]

- Efficiency Score: [Efficiency score]

- Additional Feedback: [Additional comments or issues]
Requirements:

1. Ensure the generated code adheres to best practices for Python, including proper naming
conventions, consistent formatting, and coding standards.

2. Optimize the code for performance, avoiding unnecessary recursion or nested loops.

3. Use built-in or efficient library functions whenever applicable to improve both readability
and performance.

Avoid the following errors:
- [Historical error] — Avoid structural or logical issues found in previous code snippets.

Output: Ensure your response is in the format of ”’python™”.

Table 8: Coding style assessment template.
Coding Style Assessment

Evaluate the coding style of provided code segments. Assess how well the code adheres to
the best practices of the language, focusing on readability, maintainability, and efficiency in
line with the language’s idiomatic style.

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Poor Adherence: The code significantly deviates from standard practices, showing poor
readability, maintainability, and efficiency.

0. Basic Adherence: The code makes some effort to follow language conventions but lacks
consistency in readability, maintainability, or efficiency.

1. Good Adherence: The code generally follows standards, demonstrating adequate
readability, maintainability, and efficiency, though with room for improvement.

2. Excellent Adherence: The code exemplifies best practices, with high readability,
maintainability, and efficiency, fully adhering to idiomatic conventions.

D ERROR CATEGORY

Due to the differences in languages accepted by Compiler Feedback during unit tests for various
language tasks, we have standardized the definition of sub-errors in Compiler Feedback. The
table below outlines our specifications for Python, C, and Java.

15

Under review as a conference paper at ICLR 2025

Table 9: Complexity assessment template.

Complexity Assessment

Evaluate the solutions and code provided by the assistant based on their complexity. Assess
how well the code manages complexity while achieving the desired outcomes.

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Overly Complex: The code is unnecessarily complicated, with a high level of complexity
that makes it hard to understand or maintain.

0. Acceptable Complexity: The code has a reasonable level of complexity, but there may
be opportunities to simplify further.

1. Moderately Simple: The code is simple and well-organized, with minimal complexity
and clear logic.

2. Optimal Simplicity: The code exemplifies the best practices in minimizing complexity
while ensuring functionality.

Table 10: Instruction following assessment template.

Instruction Following Assessment

Evaluate the assistant’s fidelity to provided instructions. Assess how accurately the assistant’s
responses align with user directives, noting any deviations and their justification.

Evaluation Criteria

Precision in Following Instructions: Does the assistant adhere to the specifics of the provided
instructions?

Justification for Deviations: If deviations occur, are they justified by critical necessity or
explicit user request?

Alignment with User Directives: How well do the assistant’s responses match the user’s
specified needs and expectations?

Necessity of Deviations: Are any deviations from instructions made only in situations deemed
absolutely necessary or upon direct user request?

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Non-Compliant: The assistant frequently deviates from instructions without necessity
or user consent.

0. Acceptable: The assistant shows some adherence to instructions but deviates without
strong justification.

1. Compliant with Justified Deviations: The assistant generally follows instructions, with
deviations occurring but justified by necessity or user request.

2. Fully Compliant: The assistant follows instructions closely, with minimal deviations, all
of which are well justified.

16

Under review as a conference paper at ICLR 2025

Table 11: Common Python errors with categories.

Sub-error

Description

Category

Syntax Error

Code contains syntax errors that cause the compi-
lation to fail.

Syntax Error

Indentation Error

Wrong indentation format.

Syntax Error

Index Error Index operation is out of bounds. Runtime Error

Type Error An operation or function was applied to an object Runtime Error
of an inappropriate type.

Value Error An operation or function received an argument Runtime Error
with the correct type but with an inappropriate
value.

EOF Error The input() function encountered an end-of-file Runtime Error

condition (EOF) without reading any data.

Timeout Error

Code execution time exceeds time limit.

Runtime Error

Name Error A local or global name is not defined. Runtime Error

Key Error A mapping (dictionary) key is not found in the set Runtime Error
of existing keys.

Import Error The imported package is not found. Runtime Error

ZeroDivision Error

The second argument of a division or modulo op-
eration is zero.

Runtime Error

Recursion Error

Code execution recursive operation exceeds the
maximum limit.

Runtime Error

Table 12: Common C Language errors with categories.

Sub-error

Description

Category

Segmentation Fault

Accessing memory that the program doesn’t have
permission to access.

Runtime Error

Null Pointer Derefer-
ence

Attempting to dereference a pointer that is NULL.

Runtime Error

Buffer Overflow

Writing data outside the allocated buffer memory.

Runtime Error

Memory Leak

Dynamically allocated memory not being freed.

Runtime Error

Syntax Error

A syntax mistake in the code, such as a missing
semicolon.

Syntax Error

Type Mismatch

Assigning a value of one type to a variable of an-
other type.

Syntax Error

Uninitialized Vari-
able

Using a variable before it has been initialized.

Runtime Error

Undefined Behavior

Code that can exhibit unpredictable behavior de-
pending on compiler or runtime environment.

Runtime Error

Division by Zero

Attempting to divide a number by zero.

Runtime Error

Infinite Loop

A loop that never terminates due to incorrect logic.

Runtime Error

17

Under review as a conference paper at ICLR 2025

Table 13: Common Java Language errors with categories.

Sub-error Description Category
NullPointerException Attempting to access an object with a null reference. Runtime Error
ArrayIndexOutOfBounds- | Accessing an array index that is out of bounds. Runtime Error
Exception

ClassCastException Casting an object to a subclass it is not an instance of. Runtime Error
NumberFormatException Attempting to convert a string to a number, but the string Runtime Error

doesn’t have the appropriate format.
StackOverflowError Recursive method calls that exceed the stack size. Runtime Error

Syntax Error

Any mistake in the code structure such as missing braces or
semicolons.

Syntax Error

ClassNotFoundException

The Java class is not found at runtime.

Runtime Error

Illegal ArgumentException

A method has been passed an illegal or inappropriate argu-
ment.

Runtime Error

ArithmeticException Division by zero or other illegal arithmetic operations. Runtime Error
UnsupportedOperation- When a requested operation is not supported. Runtime Error
Exception

18

	Introduction
	Related Works
	Pre-trained Models for Code Generation
	Reinforcement Learning on code

	Problem Setting
	Methodology
	Task Definition: Code Generation by LLMs
	MRLF: Meta-Reinforcement Learning with Dual Memory Buffers
	Long-Term Memory Feedback
	Short-Term Memory Feedback

	Experiment
	Quantitative Evaluation on APPS
	Quantitative Evaluation on HumanEval and MBPP
	Quantitative Evaluation on CODAL-Bench
	Quantitative Evaluation on SciCode
	Quantitative Evaluation on Agentbench
	Ablation Studies

	Conclusions and Future Work
	Example
	Feedback Error Correlation Analysis
	Prompts
	Error Category

