
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FALCON: FEEDBACK-DRIVEN ADAPTIVE
LONG/SHORT-TERM MEMORY REINFORCED CODING
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large language models (LLMs) have achieved significant progress in
automated code generation. Despite their strong instruction-following capabilities,
these models frequently struggled to align with user intent in the coding scenario. In
particular, they were hampered by datasets that lacked diversity and failed to address
specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning
(SFT) and reinforcement learning from human feedback (RLHF) led to failures
in generating precise, human-intent-aligned code. To tackle these challenges and
improve the code generation performance for automated programming systems, we
propose Feedback-driven Adaptive Long/short-term memory reinforced Coding
OptimizatioN (i.e., FALCON). FALCON is structured into two hierarchical levels,
from the global level, long-term memory improves code quality by retaining and
applying learned knowledge, while from the local level, short-term memory allows
for the incorporation of immediate feedback from compilers and AI systems.
Additionally, we introduce meta-reinforcement learning with feedback rewards
to solve the global-local bi-level optimization problem and enhance the model’s
adaptability across diverse code generation tasks. Extensive experiments are
conducted and it is found that our technique achieves state-of-the-art performance,
leading other reinforcement learning methods by more than 4.5 percentage points
on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark.
The open-sourced code is publicly available at https://anonymous.4open.
science/r/FALCON-BFE0/README.md.

1 INTRODUCTION

The development of Large Language Models (LLMs) has significantly advanced automated code
generation (Zan et al., 2023). Models like CodeLLaMA (Roziere et al., 2023) and DeepSeek-Coder
(Guo et al., 2024), tailored for code-centric tasks, have demonstrated outstanding performance
across programming challenges. While LLMs excel in instruction-following through tuning (Jiang
et al., 2024), they often misalign with user intent, making feedback-based adjustments critical. For
example, InstructGPT (Ouyang et al., 2022) leverages reinforcement learning with human feedback
(RLHF), and CodeRL (Le et al., 2022) uses compilation feedback to refine model performance.
Similarly, CompCoder (Wang et al., 2022) enhances code compilability with compiler feedback,
and RLTF (Liu et al., 2023a) offers fine-grained feedback on compiler errors. However, current
RL frameworks generate compilation errors and overlook non-differentiable features (e.g. coding
style) that affect the performance significantly (Jiang et al., 2024). To address these challenges, we
propose a reinforcement learning system combining long-term and short-term memory feedback.
From the global level, long-term memory tracks trends over time for higher-quality code retrieval,
while from the local level, short-term memory captures recent errors and immediate feedback. The
main contributions of this paper are as follows:

• Short-Term and Long-Term Memory for Reinforcement Learning: We propose a dual-
memory approach for reinforcement learning in code generation, where short-term memory
enables real-time corrections and long-term memory accumulates knowledge from past runs
to improve code quality and reduce repetitive mistakes.

1

https://anonymous.4open.science/r/FALCON-BFE0/README.md
https://anonymous.4open.science/r/FALCON-BFE0/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Non-Differentiable Code Features into Feedback Loops: Our approach addresses the
limitation of current RL frameworks by integrating non-differentiable code features like
style, readability, and best practices into the feedback loop, ensuring the generated code is
both functionally sound and aligned with real-world programming standards.

• Meta-Reinforcement Learning for Generalization Across Tasks: We enhance the model’s
versatility by incorporating meta-reinforcement learning, allowing it to efficiently generalize
across diverse programming tasks, adapt quickly to new environments, and handle a wide
range of coding challenges with fewer training iterations.

2 RELATED WORKS

2.1 PRE-TRAINED MODELS FOR CODE GENERATION

In recent years, pre-trained language models have made significant progress in the field of code
generation. Trained on large-scale code corpora, these models have demonstrated powerful code
generation capabilities. For example, CodeBERT Feng et al. (2020), a model based on an encoder-
only architecture, has shown impressive results. With the advent of in-context learning methods,
decoder-only Transformer models have become the dominant technology for language modeling
Vaswani et al. (2017). Several models, such as CodeGPT Lu et al. (2021), CodeGeeX Zheng
et al. (2024), and DeepSeek-Coder Guo et al. (2024), use Causal Language Modelling (CLM)
pretraining, while others like CodeT5 Wang et al. (2021) and AlphaCode Li et al. (2022) utilize an
encoder-decoder architecture. Additionally, models like CodeFusion Singh et al. (2023) leverage
diffusion-based techniques for code generation. These pre-trained models exhibit great potential in
code generation tasks, achieving notable improvements in accuracy through various architectures
and training strategies. However, they still face challenges in ensuring the syntactical and functional
correctness of the generated code.

2.2 REINFORCEMENT LEARNING ON CODE

Reinforcement learning (RL) is a method that learns optimal strategies through reward signals from
interacting with the environment Fujimoto et al. (2019). It excels in sequence generation tasks, such
as enhancing performance in translation and summarization models by improving BLEU and ROUGE
scores Ahn et al. (2019). Unlike traditional natural language processing tasks, code generation is more
complex. Beyond syntactical correctness, the generated code must be functionally accurate, meaning
it should compile and perform as expected in various scenarios. Passing unit tests is important for
verifying correctness, safety, and precision, but not sufficient unless the tests are comprehensive and
well-designed. Unit tests must cover diverse use cases and edge cases to ensure the code adheres to
standards and meets requirements. For instance, the RL-based code generation fine-tuning framework,
CodeRL Le et al. (2022), guides fine-tuning by integrating unit test signals with reinforcement learning.
PPOCoder Shojaee et al. (2023) improves on CodeRL by employing Proximal Policy Optimization
to refine the approach, while RLTF Liu et al. (2023a) incorporates specific error information from the
code and multi-granularity feedback alongside an online framework for model training. StepCoder
Dou et al. (2024) enhances the code generation process through compiler feedback and segmental
optimization. However, current RL-based methods still face some limitations. Primarily, these
methods lack detailed feedback on specific types and distributions of programming errors, which is
crucial for identifying patterns, understanding root causes, and creating targeted interventions. This
makes addressing recurring issues difficult. Additionally, the corrective mechanisms are not robust
enough, often failing to provide timely, specific guidance, hindering effective learning. Additionally,
the diversity of input-output examples in existing benchmarks is limited, restricting the model’s
ability to adapt and generalize to different or unseen problems Liu et al. (2023a).

3 PROBLEM SETTING

We aim to enhance the automated code generation capabilities of Large Language Models (LLMs) by
addressing key challenges in accuracy, diversity, error correction, and code quality. Formally, given a
high-level specification D, the task is to generate a sequence of code tokens W = {w1, w2, . . . , wT }

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that maximizes the conditional probability P (W |D, θ), where θ represents the model parameters.
The optimization objective is defined as θ∗ = argmaxθ ED∼D [logP (W |D, θ)].

Challenges. Effective code generation is impeded by several factors. Accuracy requires minimizing
syntactical or logical errors in W to ensure correct functionality. Diversity of input-output examples
X is often limited, restricting the model’s ability to generalize across varied programming tasks.
Efficient error correction mechanisms are necessary to identify and rectify errors in W , ensuring
robust performance. Maintaining high code quality, which encompasses adherence to coding
standards, style guidelines, and managing code complexity C(W), remains a persistent challenge.
Additionally, adaptability refers to the model’s capacity to adapt to new tasks and incorporate
feedback for continuous improvement, which is constrained without robust memory mechanisms.

FALCON Framework. To address these challenges, we propose the FALCON framework. The
framework leverages both a long-term memory bufferMlong = {(Di,Wi, Ti, Fi)}Ni=1 and a short-
term memory buffer Mshort = {(Dj ,Wj , Tj , Fj)}Mj=1 to utilize diverse feedback, enabling fine-
tuning of θ. Formally, FALCON seeks to optimize θ by maximizing a composite reward function
R(W,F) = αT (W) + βS(W) + γC(W) + δE(W), where T (W), S(W), C(W), and E(W)
represent unit test, code style, complexity, and error feedback, respectively. The optimization
objective is defined as θ∗ = argmaxθ ED∼D

[
EW∼P (W |D,θ) [R(W,F)]

]
.

Assumptions. The effectiveness of FALCON is based on the following assumptions: 1. Exchange-
ability of the dataset D = {Di}Ni=1, implying that the order of tasks does not influence model
performance; 2. Independence of feedback signals F given the generated code W ; 3. Sufficient
memory capacity in bothMlong andMshort to store relevant interactions without significant data
loss; and 4. Feedback efficacy, ensuring that integrated feedback mechanisms provide meaningful
and actionable information to guide the optimization of θ.

Optimization Objective. Given a set of tasks T = {Di}Ni=1, the goal is to learn optimal
parameters θ∗ that maximize the expected composite reward across all tasks, formulated as
θ∗ = argmaxθ

1
N

∑N
i=1 R(Wi, Fi), where Wi ∼ P (W |Di, θ) is the generated code for task Di,

and Fi represents the aggregated feedback. The formulation ensures continuous improvement by
leveraging both historical and recent feedback to enhance code generation quality.

4 METHODOLOGY

In this section, we explore the FALCON framework, which integrates comprehensive unit testing
with reinforcement learning, supported by both long-term and short-term memory buffers. During the
code generation process, the system stores task descriptions, generated code, and various feedback
(e.g., compilation results, code style, and complexity) in the long-term memory buffer. By retrieving
this information, the model references high-quality code, avoids past mistakes, and ensures adherence
to required standards. After generating the code, a judge model evaluates it and calculates rewards
based on the feedback, which are then used to update the model’s parameters through reinforcement
learning. All generated code and feedback are stored for future reference and optimization. The
combination of long-term and short-term memory feedback in the FALCON framework allows the
model to not only learn from a wide range of historical data but also adapt quickly to new tasks based
on recent performance. The overall framework is illustrated in Figure 1.

4.1 TASK DEFINITION: CODE GENERATION BY LLMS

The code generation task involves the automated creation of computer code W from a high-level
specification of the desired behavior D. The goal of this process is to enhance the likelihood of gen-
erating code that effectively solves a given problem, which is represented as a conditional probability
P (W |D). This task can be modeled as a sequence-to-sequence problem, aiming to maximize the
conditional probability of generating the correct output given the input and the parameters of the
LLM model, mathematically represented as:

max
θ

P (W |D, θ) = max
θ

T∏
t=1

p(wt|D, θ, w1:t−1) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The overview of the FALCON framework. Detailed feedback process (see Appendix
Figures 5 and 6 for feedback cases). Reinforcement learning updates using feedback to compute RL
loss and optimize the model (see Figure 2 for the detailed meta-reinforcement learning framework).

where θ denotes the parameters of the LLM model. The LLM model is employed to learn the
conditional distribution and is trained on a set of input-output pairs. During the training phase, the
parameters θ are optimized to increase the likelihood of generating accurate outputs for a given input.

4.2 MRLF: META-REINFORCEMENT LEARNING WITH DUAL MEMORY BUFFERS

We propose the MRLF algorithm 1, which involves random task sampling from the task distribution
during training. Previous works have indicated that different data sampling strategies have varying
impacts on model information extraction Zhang et al. (2024). Consequently, we implement both
long and short memory sequences. The long memory strategy stores the solutions generated for
each problem and the compiler feedback results, whereas the short memory sequence selects the
latest samples and unit test feedback from each current iteration. To address repetitive runtime and
compilation errors, the long memory strategy categorizes and stores various errors by their types and
records the corresponding error lines, enabling fine-grained reward allocation.

Algorithm 1 MRLF Algorithm
Require: Task distribution T
Ensure: Updated model parameters θ

1: Initialize LMB, SMB, θ
2: Populate LMB, SMB via few-shot demonstrations
3: repeat
4: Sample batch {Ti} from T
5: for each task Ti do
6: Code Generation: Generate code Ŵ and test results; record in SMB
7: Adaptation: Set θi = θ; sample mini-batch from LMB, SMB
8: Compute inner loss: Linner =

∑
Lj (j ∈ {sl, coarse, error, complexity, style, negative})

9: Update θi: θi ← θi − α∇θiLinner(θi)
10: Evaluation: Assess θi on Ti; document outcomes
11: end for
12: Meta-Update: Lmeta =

∑N
i=1 Linner(θi); refine θ: θ ← θ − β∇θLmeta

13: until Convergence
14: return θ

We initialize two memory buffers (LMB, SMB) and model parameters θ, then randomly sample tasks
from the task distribution, executing steps for each one. First, the corresponding code is generated and
tested, with results stored in SMB. During adaptation, the algorithm extracts experimental data from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LMB and SMB to aid rapid adaptation to the current task. The inner loss function Linner, incorporating
factors like accuracy, complexity, style, and negative examples, is optimized using policy gradient.
In evaluation, the optimized parameters are tested, and results are stored for future use. Finally, the
losses from all tasks are aggregated to compute the meta-loss Lmeta, used to update global parameters
θ. Algorithm 1 summarizes the framework. For inner loop optimization, our method explores the
target space by combining unit test feedback, code complexity, and style norms, using the generated
code ŵ to construct the reinforcement learning loss function as shown below:

Lr1 = −
Efine∑

t=Sfine

Rfine(ŵt) log p(ŵt|D, θ, ŵ1:t−1) (2)

where Rfine(∗) represents the reward coefficient, and Sfine and Efine denote the start and end positions
of the code snippet, respectively. These values are determined based on different types of feedback.
To stabilize the training process, we adopt the supervised learning loss Lsl by minimizing the
cross-entropy loss as shown below:

Lsl = − logP (w | D, θ) = −
T∑

t=1

log p(wt | D, θ, w1:t−1) (3)

Figure 2: The framework integrates meta-reinforcement learning with both long-term and short-term
memory feedback. Long-term memory retrieves historical tasks, while short-term memory provides
AI and compiler feedback to refine code generation.

As depicted in Figure 2, we employ a meta-reinforcement learning framework to optimize code
generation by integrating both long- and short-term memories for enhanced adaptability. From a
global perspective, Long-Term Memory Dlong stores historical tasks, generated codes, and feedback
to provide valuable context. From a local perspective, Short-Term Memory Dshort focuses on recent
feedback to enable real-time adjustments. This approach leverages the MAML framework (Finn
et al., 2017) for efficient task adaptation with minimal updates.

Short-Term Memory Adaptation. Short-Term Memory is utilized to adapt the model locally by
adjusting its parameters based on recent feedback. For each task Ti, the inner loop optimization
updates the parameters:

θ′i = θi − α∇θiLTi(θi) (4)
where α is the learning rate and LTi

is the task-specific loss function.

Global Optimization. The outer loop performs global optimization of the meta-learning parameters
θmeta by aggregating feedback across multiple tasks:

θmeta = θmeta − β∇θmeta

∑
i

LTi(θ
′
i) (5)

where β is the meta-learning rate. This ensures better generalization across tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Final Optimization. The overall framework combines short- and long-term memory feedbacks with
meta-reinforcement learning to achieve coordinated optimization for both global generalization and
local task adaptation:

θfinal = Optimize (θmeta, θ, {θ′i}) (6)

4.3 LONG-TERM MEMORY FEEDBACK

Retrieving information from long-term memory significantly improves code quality. We use the
FAISS framework (Douze et al., 2024) to retrieve relevant historical code, feedback, and evaluation
scores. Task descriptions and feedback are transformed into embedding vectors and then indexed.
During code generation, a query vector from the current task retrieves the top-k most similar historical
data to guide the process and avoid past errors. The prompt template is provided in the appendix.
Consider a set of historical data D = (ti, fi, ei)

n
i=1, where ti represents the task description, fi is

the corresponding feedback, and ei is the evaluation score. We use an embedding function ϕ(·)
to transform these tasks and feedback into embedding vectors vi = ϕ(ti, fi) and index them with
FAISS. During the code generation phase, the current task description tcurrent and feedback f are
transformed into a query vector q = ϕ(tcurrent). We compute the similarity between the query vector
q and the historical vectors vi using cosine similarity cos(q,vi), and retrieve the top-k most similar
historical tasks. The retrieval process can be represented as:

{(ti1 , fi1 , ei1), . . . , (tik , fik , eik)} = Top-k (vi | i = 1, 2, . . . , n) (7)

By referencing these most relevant historical tasks and feedbacks, the system can guide the current
code generation process with past mistakes avoided and ultimate code quality improved.

4.4 SHORT-TERM MEMORY FEEDBACK

During the reinforcement learning phase, we utilize the generated code ŵ to construct the reinforce-
ment learning loss function as follows:

Lr1 = −
Efine∑

t=Sfine

Rfine(ŵt) log p(ŵt|D, θ, ŵ1:t−1) (8)

where Rfine(∗) represents the reward coefficient, and Sfine and Efine denote the start and end positions
of the code snippet, respectively. These values are determined based on different types of feedback.
Compiler Feedback. For compiler feedback, we adopt the same settings as CodeRL:

Rcoarse(Ŵ) =

1.0, if FB(Ŵ) is pass
−0.3, if FB(Ŵ) is failure
−0.6, if FB(Ŵ) is runtime error
−1.0, if FB(Ŵ) is syntax error

(9)

Scoarse = 0, Ecoarse = T

where Rcoarse is based on compiler feedback with the start and end positions set to 0 and T .
Adaptive Feedback. To enhance the model’s efficiency in handling various programming tasks, we
devise a mechanism that dynamically adjusts rewards based on the proportion of passes to failures
in unit tests. This strategy encourages the model not only to pass unit tests but also to learn from
failures, thereby improving its problem-solving capabilities. The reward is calculated as:

Rerror(Ŵ) = −0.3 + 1.3×
Npass

Npass +Nfail
(10)

Coding Style Feedback. To further enhance the quality of the generated code, we employ AI
Feedback to optimize coding style. An evaluation model scores the generated code based on
adherence to the expected coding style standards. The scoring system ranges from -1 to 2, and these
evaluation scores are directly used as reward signals in the reinforcement learning process to guide
the model toward producing higher-quality code. The coding style assessment template is provided
in Table 8.
Complexity Feedback. Just like with coding style, we use AI Feedback to evaluate complexity and
calculate rewards based on the scores. The complexity assessment template is provided in Table 9.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Long-term Error Type Feedback. Introducing a reward mechanism that combines short-term
memory recall error rate, current test error, and long-term memory recall of past task performance
enables the model to dynamically adjust its rewards based on past error patterns, adapt to various
error types and feedback, and ultimately enhance its generalization ability:

Rnegative = −
∑
error

Nerror × Perror (11)

where Nerror represents the short-term memory recall, the frequency of each error type in the generated
code by the model. This is the immediate feedback for the current task. Perror represents the long-term
memory recall, the proportion of each error type. This is the model’s performance statistics on
long-term tasks, providing a cumulative history of various error types. By correct rewarding, the
model can reduce the occurrence of these errors and thereby enhance the accuracy and quality of the
generated code.

5 EXPERIMENT

5.1 QUANTITATIVE EVALUATION ON APPS

To ensure a fair comparison, we use the CodeT5 770M model as our baseline. Our benchmarks
include the latest advancements that integrate reinforcement learning (RL) with large language models
(LLMs), particularly CodeRL, PPOCoder, and RLTF. For evaluation, we apply the same benchmarks
and settings used in these previous works. As shown in Table 1 for the experimental results, our
FALCON approach delivers additional performance improvements and surpasses other RL-based
methods, indicating that RL with appropriate feedback can effectively improve the model output
space and thereby enhance the quality of code generation. In particular, our method achieves the
highest pass@1 rates of 8.60%, 2.56%, and 1.25% in the Introductory, Interview, and Competition
categories, respectively.

Table 1: Quantitative evaluation on the APPS benchmark. “Intro”: introductory, “Inter”: interview,
“Comp”: competition-level tasks. To ensure a fair comparison, we apply these RL-based methods,
including PPOCoder, CodeRL, and RLTF, using the same base model, CodeT5, as a backbone. We
also compare with models that have a larger number of parameters.

Method Size pass@1 pass@5

Intro Inter Comp All Intro Inter Comp All

Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25
GPT-Neo 2.7B 3.90 0.57 0 1.12 5.50 0.80 0 1.58
CodeT5 base 770M 3.85 0.58 0.02 1.05 8.52 1.53 0.25 2.82
PPOCoder 770M 4.06 0.79 0.15 1.32 9.97 2.06 0.70 3.37
CodeRL 770M 7.08 1.86 0.75 2.69 16.37 4.95 2.84 6.81
RLTF 770M 8.40 2.28 1.10 3.27 18.60 5.57 3.70 7.87

Ours 770M 8.60 2.56 1.24 3.50 19.75 5.85 3.57 8.17

5.2 QUANTITATIVE EVALUATION ON HUMANEVAL AND MBPP

To further validate the effectiveness of our
method, we evaluate the zero-shot performance
of the DeepSeek-Coder-Instruct model, trained
with our method on our custom dataset, using the
well-established MBPP and HumanEval bench-
marks. We also compare these results against
other reinforcement learning methods, such as
PPOCoder and RLTF. The experimental results
are illustrated in Table 2.

Table 2: The results of pass@1 on the MBPP and
HumanEval benchmarks.

Model Humaneval MBPP
DeepSeek-Coder-Instruct 73.8 74.9

PPOCoder 76.8 76.2
RLTF 76.8 75.9

Ours 82.9 80.7

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Compared to other reinforcement learning methods, our method consistently achieves the best
performance on both the HumanEval and MBPP benchmarks. The significant advantage of our
method can be attributed to its diversified feedback mechanism. Unlike other methods that may focus
on a single metric, our method continuously optimizes the model’s generation capability through
multi-dimensional feedback. This approach demonstrates a strong ability to enhance the generation
of correct code and proves particularly effective in complex tasks.

5.3 QUANTITATIVE EVALUATION ON CODAL-BENCH

In addition to evaluating the functional correctness of the code, we adopt CODAL-Bench, a rigorous
and comprehensive benchmark for LLM consistency in coding preferences to validate the effectiveness
of short-term memory feedback. DeepSeek-Coder-Instruct-6.7B model is used and the results are
illustrated in Figure 3. It is found that there is a noticeable improvement in various coding preferences,
particularly in Code Complexity and Coding Style after implementing the FALCON framework.
This observation is attributed to the inclusion of feedback on these aspects in the short-term memory.
However, the improvement in Instruction Following is not as significant.

Figure 3: Quantitative evaluation on CODAL-Bench

5.4 QUANTITATIVE EVALUATION ON SCICODE

To validate the general-purpose task capabilities of our framework, we also select the SciCode
benchmark, which covers challenging research-level coding problems across natural sciences, in-
cluding mathematics, physics, chemistry, and biology. SciCode decomposes the main problems into
several subproblems, making it a particularly rigorous benchmark of a model’s coding capabilities.
Even the most advanced models nowadays, such as Claude 3.5-Sonnet and ChatGPT-4.0, can only
solve 1.5% and 4.6% of the main problems, respectively. Although Deepseek-Coder-6.7B-instruct
initially demonstrates a low task pass rate on this benchmark, we observe significant performance
improvements on the subproblems after applying our framework due to the utilization of long-term
memory mechanisms.

5.5 QUANTITATIVE EVALUATION ON AGENTBENCH

To further evaluate the performance of our framework, we conduct a systematic assessment on
AgentBench Liu et al. (2023b), focusing specifically on long-term memory capabilities. Since
our primary focus is on code generation tasks, we select three environments within AgentBench:
Operating System (OS), Database (DB), and Knowledge Graph (KG). In this evaluation, we compare

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The results of pass@1 on SciCode benchmarks with and without FALCON.

Model Size Method Subproblem Main Problem
CodeLlama 70B - 10.4 0
CodeLlama 7B w/o 0.4 0
CodeLlama 7B w 3.5 0

DeepSeek-Coder 6.7B w/o 5.2 0
DeepSeek-Coder 6.7B w 8.3 0

Table 4: Test set results of AGENTBENCH.

Model Size VER OS DB KG
GPT-3.5-turbo - 0613 31.6 15.7 25.9
GPT-4 - 0613 42.4 32.0 58.8
Tinyllama 1.1B - 2.8 0 0
Codellama 7B instruct 9.7 2.7 0
Qwen 7B chat 12.5 13.0 7.0
Agentlm 7B chat 14.6 33 9.0
Deepseek-Coder 6.7B instruct 17.4 23.3 6.8

DeepSeek-Coder (FALCON) 6.7B instruct 22.2 26.7 9.0

proprietary models (such as GPT-4 and GPT-3.5) with open-source models (such as Codellama
and Qwen 2.5) Liang et al. (2024). The results reveal that the models optimized through our
framework exhibit significant improvements, particularly in the OS environment with an increase of
4.8 percentage points. The experimental results are illustrated in Table 4.

5.6 ABLATION STUDIES

The Influence of Models. To validate the scalability and robustness of our framework, we conduct
experiments with the larger model, DeepSeek-Coder-Instruct-6.7B, to further evaluate its performance.
Notably, the improvements in introductory-level tasks are significant, which can be attributed to the
use of long-term memory that enhances the quality of generated data and further unlocks the model’s
potential. The results are illustrated in Table 5.

The Influence of Different Feedbacks on Coding Preferences. As shown in Figure 4, ablation
experiments are also conducted to validate the effectiveness of the feedback that we introduce for
coding preferences. It is found that incorporating targeted feedback enhances the model’s performance
concerning its respective coding preferences. Notably, the optimization aiming at increasing code
complexity achieves the best results. Although there are some improvements in coding style and
instruction following, it is worth noting that the enhancement in code instruction following is not
particularly significant, suggesting it as a topic for future investigation.

Table 5: Different large language models as the backbone

Model Size Method Intro Inter Comp All
CodeT5 770M w/o 3.85 0.58 0.02 1.12
CodeT5 770M w 8.60 2.56 1.25 3.50

DeepSeek-Coder 6.7B w/o 16.70 7.20 2.30 8.12
DeepSeek-Coder 6.7B w 22.40 8.52 3.70 10.33

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Effect of different feedbacks on coding preferences

The Influence of Memory. To validate the impact of long-term and short-term memories on code
generation capabilities, we conduct ablation experiments using CodeT5 as the base model and test
it on the APPS dataset. As shown in Table 6, the experimental results indicate that both long- and
short-term memory feedbacks enhance the model’s code generation performance effectively, while
the short-term memory feedback demonstrates a more significant improvement. This improvement
can be attributed to the effective reward design which plays a positive role in fine-tuning the model.

Table 6: Effect of long and short memories on different performance metrics

Long Memory Short Memory Intro Inter Comp All
- - 3.85 0.58 0.02 1.12
✓ - 4.14 0.74 0.02 1.28
- ✓ 7.20 1.86 0.70 2.70
✓ ✓ 8.60 2.56 1.25 3.50

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose FALCON, a novel framework that enhances automated code generation
by integrating long-term and short-term memory feedbacks within a meta-reinforcement learning
strategy. Long-term memory retains past interactions to improve code quality and reduce repetitive
mistakes, while short-term memory enables immediate adjustments based on recent feedback from
compilers and AI systems. This dual-memory approach addresses limitations in existing models
that struggle to align code generation with user intent, especially in specialized tasks or edge cases.
By incorporating non-differentiable code features like style and complexity into the feedback loop,
FALCON ensures that the generated code is not only functionally correct but also adheres to real-
world programming standards. Extensive evaluations on benchmarks including APPS, HumanEval,
and CODAL-Bench demonstrate that FALCON outperforms existing RL-based methods, achieving
higher functional correctness and better coding style adherence. In future work, we aim to expand
FALCON’s capabilities by incorporating a broader diversity of programming languages and tackling
more complex code generation challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Esmaeilzadeh. Reinforcement learning and
adaptive sampling for optimized dnn compilation, 2019. URL https://arxiv.org/abs/
1905.12799.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuanjing
Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning from
compiler feedback, 2024. URL https://arxiv.org/abs/2402.01391.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024. URL https:
//arxiv.org/abs/2401.08281.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages, 2020. URL https://arxiv.org/abs/2002.08155.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks, 2017. URL https://arxiv.org/abs/1703.03400.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learn-
ing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 21314–21328. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu Shi, Jun Wang, and JingSong Yang. Cmat: A
multi-agent collaboration tuning framework for enhancing small language models, 2024. URL
https://arxiv.org/abs/2404.01663.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng Ye. RLTF:
Reinforcement learning from unit test feedback. Transactions on Machine Learning Research,
2023a. ISSN 2835-8856. URL https://openreview.net/forum?id=hjYmsV6nXZ.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023b. URL https://arxiv.org/abs/
2308.03688.

11

https://arxiv.org/abs/1905.12799
https://arxiv.org/abs/1905.12799
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/1703.03400
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://www.science.org/doi/abs/10.1126/science.abq1158
https://arxiv.org/abs/2404.01663
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation, 2021. URL https://arxiv.org/abs/2102.04664.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code
generation using deep reinforcement learning, 2023. URL https://arxiv.org/abs/2301.
13816.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
Codefusion: A pre-trained diffusion model for code generation, 2023. URL https://arxiv.
org/abs/2310.17680.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin
Jiang, and Qun Liu. Compilable neural code generation with compiler feedback, 2022. URL
https://arxiv.org/abs/2203.05132.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. CoRR, abs/2109.00859,
2021. URL https://arxiv.org/abs/2109.00859.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang,
and Jian-Guang Lou. Large language models meet nl2code: A survey, 2023. URL https:
//arxiv.org/abs/2212.09420.

Menglong Zhang, Fuyuan Qian, and Quanying Liu. Memory sequence length of data sampling
impacts the adaptation of meta-reinforcement learning agents, 2024. URL https://arxiv.
org/abs/2406.12359.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x, 2024. URL https://arxiv.
org/abs/2303.17568.

12

https://arxiv.org/abs/2102.04664
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2203.05132
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2406.12359
https://arxiv.org/abs/2406.12359
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXAMPLE

We provided an example of code generation with long-term memory. When generating code without
long-term memory, it often results in repetitive ValueError issues. By incorporating long-term
memory to retrieve the most relevant code blocks and embedding them as context during generation,
the quality of the generated code can be significantly improved. We also provided an instance of
using long-term memory in SCICode. In direct generation, there were certain logical issues within
the code, and the coding style lumped all formulas together. However, after employing long-term
memory retrieval for assistance, the code was segmented appropriately and the logic was correctly
implemented.

def solve():
p = stdin.readline().strip()
n = len(p)
ans = (n - 1) * 9 + int(p[0])
for i in range(1, n):

suffix = int(p[i + 1:]) if i < n - 1 else 0
ans = max(ans, int(p[i]) * 10 ** (n - i - 1) + int(p[i - 1]) * 10 ** (n - i) + suffix + 1)

return res

def solve():
p = stdin.readline().strip()
n = len(p)
ans = (n - 1) * 9 + int(p[0])
for i in range(1, n):

ans = max(ans, int(p[i]) * 10 ** (n - i - 1) + int(p[i - 1]) * 10 ** (n - i) + int(p[i + 1:]) + 1)
return ans

ValueError: invalid literal for int() with base 10: ''

Generate directly

Generate with long-Term Memory

ValueError: invalid literal for int() with base 10: ''
ValueError: invalid
literal for int() with

base 10: ''

Long-Term Memory

Task:You are given
three integers k…
Code: def solve(k, pa,
pb):

dp = [0] * 1001
dp[0] = 1
for i in range(1,

1001):
dp[i] = dp[i - 1] *

pa + dp[i - 1] * pb
ans = 0
for i in range(k,

1001):
ans += dp[i - k] *

(pb / (pa + pb))
return ans

Compiler Feedback:-
0.6
Coding Style: 2
Complexity : 0
Instruct Feedback: …

Figure 5: An example of code generation with long-term memory incorporated.

B FEEDBACK ERROR CORRELATION ANALYSIS

We performed an analysis of different feedback types and their associated error categories. We
conducted experiments using CodeT5 as the base model on APPS with individual feedback and
collected the occurrence frequency of various sub-errors. The results are shown in the Figure 7. The
experimental results indicate that compiler feedback significantly reduces Syntax Errors and Index
Errors. However, it also slightly increases the occurrence of Value Errors. This can be attributed to
the corrective nature of compiler feedback on errors. Other feedback types, such as Coding Style,
Instruction Following, and Code Complexity Feedback, can reduce Syntax Errors compared to having
no feedback. However, their reduction is not as significant as that achieved by compiler feedback.
Instruction Following Feedback specifically shows some improvement in reducing Value Errors,
indicating an enhancement in instruction adherence.

C PROMPTS

We have compiled relevant prompt templates for code generation based on long-term memory retrieval
and AI feedback.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

def E_tail(N, L, sigma, epsilon, rc):
V = L ** 3
factor = (8 / 3) * np.pi * (N**2 / V) * epsilon * sigma**3
correction = (1/3) * (sigma / rc)**9 - (sigma / rc)**3
E_tail_LJ = factor * correction
return E_tail_LJ

Problem Description

Tail Corrections for
Energy with
LJ.Implementing
Python functions
named `E_tail` to
calculate the tail
correction for a
system of particles
within a cubic
simulation box.
This correction
accounts for the
truncation of the
Lennard-Jones
potentials at a
specific cutoff
distance.

Generate Directly

def E_tail(N, L, sigma, epsilon, rc):
Calculate the volume of the cubic box
V = L ** 3
Calculate the number of particle pairs
N_pairs = N * (N - 1) / 2
Calculate the tail correction
E_tail_LJ = (8/3) * np.pi**2 * N_pairs * epsilon * ((sigma/rc)**9 - (sigma/rc)**3) * V
return E_tail_LJ

With long-Term Memory

Long-Term Memory

Task Description

Wrap to periodic boundaries
Implementing a Python
function named `wrap`…

def lennard_jones(r, epsilon=1.0, sigma=1.0):
term1 = sigma / r
term2 = term1 ** 12
term3 = term1 ** 6
return 4 * epsilon * (term2 - term3)

Compiler Feedback:1
Coding Style: 2
Complexity : 2
Instruct Feedback: 2

…

Figure 6: An example of code generation with long-term memory incorporated.

Figure 7: Frequency of sub-errors generated by different feedback types.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Code generation template

Instruction:

Please write a Python function based on the task description, referencing the historical
context for inspiration. Ensure that the generated code follows the provided requirements
and avoids the listed errors.

Task: [instruction]

Context of relevant code:

- Historical Task: [Brief description of a similar task]

- Code: [Code snippet]

- Style Score: [Style score]

- Efficiency Score: [Efficiency score]

- Additional Feedback: [Additional comments or issues]

Requirements:

1. Ensure the generated code adheres to best practices for Python, including proper naming
conventions, consistent formatting, and coding standards.

2. Optimize the code for performance, avoiding unnecessary recursion or nested loops.

3. Use built-in or efficient library functions whenever applicable to improve both readability
and performance.

Avoid the following errors:

- [Historical error] – Avoid structural or logical issues found in previous code snippets.

Output: Ensure your response is in the format of ”’python”’.

Table 8: Coding style assessment template.

Coding Style Assessment

Evaluate the coding style of provided code segments. Assess how well the code adheres to
the best practices of the language, focusing on readability, maintainability, and efficiency in
line with the language’s idiomatic style.

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Poor Adherence: The code significantly deviates from standard practices, showing poor
readability, maintainability, and efficiency.

0. Basic Adherence: The code makes some effort to follow language conventions but lacks
consistency in readability, maintainability, or efficiency.

1. Good Adherence: The code generally follows standards, demonstrating adequate
readability, maintainability, and efficiency, though with room for improvement.

2. Excellent Adherence: The code exemplifies best practices, with high readability,
maintainability, and efficiency, fully adhering to idiomatic conventions.

D ERROR CATEGORY

Due to the differences in languages accepted by Compiler Feedback during unit tests for various
language tasks, we have standardized the definition of sub-errors in Compiler Feedback. The
table 11 12 13 below outlines our specifications for Python, C, and Java.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Complexity assessment template.

Complexity Assessment

Evaluate the solutions and code provided by the assistant based on their complexity. Assess
how well the code manages complexity while achieving the desired outcomes.

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Overly Complex: The code is unnecessarily complicated, with a high level of complexity
that makes it hard to understand or maintain.

0. Acceptable Complexity: The code has a reasonable level of complexity, but there may
be opportunities to simplify further.

1. Moderately Simple: The code is simple and well-organized, with minimal complexity
and clear logic.

2. Optimal Simplicity: The code exemplifies the best practices in minimizing complexity
while ensuring functionality.

Table 10: Instruction following assessment template.

Instruction Following Assessment

Evaluate the assistant’s fidelity to provided instructions. Assess how accurately the assistant’s
responses align with user directives, noting any deviations and their justification.

Evaluation Criteria

Precision in Following Instructions: Does the assistant adhere to the specifics of the provided
instructions?

Justification for Deviations: If deviations occur, are they justified by critical necessity or
explicit user request?

Alignment with User Directives: How well do the assistant’s responses match the user’s
specified needs and expectations?

Necessity of Deviations: Are any deviations from instructions made only in situations deemed
absolutely necessary or upon direct user request?

Reward Scale: Rate outputs on a scale of -1 to 2

-1. Non-Compliant: The assistant frequently deviates from instructions without necessity
or user consent.

0. Acceptable: The assistant shows some adherence to instructions but deviates without
strong justification.

1. Compliant with Justified Deviations: The assistant generally follows instructions, with
deviations occurring but justified by necessity or user request.

2. Fully Compliant: The assistant follows instructions closely, with minimal deviations, all
of which are well justified.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Common Python errors with categories.
Sub-error Description Category

Syntax Error Code contains syntax errors that cause the compi-
lation to fail.

Syntax Error

Indentation Error Wrong indentation format. Syntax Error

Index Error Index operation is out of bounds. Runtime Error

Type Error An operation or function was applied to an object
of an inappropriate type.

Runtime Error

Value Error An operation or function received an argument
with the correct type but with an inappropriate
value.

Runtime Error

EOF Error The input() function encountered an end-of-file
condition (EOF) without reading any data.

Runtime Error

Timeout Error Code execution time exceeds time limit. Runtime Error

Name Error A local or global name is not defined. Runtime Error

Key Error A mapping (dictionary) key is not found in the set
of existing keys.

Runtime Error

Import Error The imported package is not found. Runtime Error

ZeroDivision Error The second argument of a division or modulo op-
eration is zero.

Runtime Error

Recursion Error Code execution recursive operation exceeds the
maximum limit.

Runtime Error

Table 12: Common C Language errors with categories.
Sub-error Description Category

Segmentation Fault Accessing memory that the program doesn’t have
permission to access.

Runtime Error

Null Pointer Derefer-
ence

Attempting to dereference a pointer that is NULL. Runtime Error

Buffer Overflow Writing data outside the allocated buffer memory. Runtime Error

Memory Leak Dynamically allocated memory not being freed. Runtime Error

Syntax Error A syntax mistake in the code, such as a missing
semicolon.

Syntax Error

Type Mismatch Assigning a value of one type to a variable of an-
other type.

Syntax Error

Uninitialized Vari-
able

Using a variable before it has been initialized. Runtime Error

Undefined Behavior Code that can exhibit unpredictable behavior de-
pending on compiler or runtime environment.

Runtime Error

Division by Zero Attempting to divide a number by zero. Runtime Error

Infinite Loop A loop that never terminates due to incorrect logic. Runtime Error

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 13: Common Java Language errors with categories.
Sub-error Description Category

NullPointerException Attempting to access an object with a null reference. Runtime Error

ArrayIndexOutOfBounds-
Exception

Accessing an array index that is out of bounds. Runtime Error

ClassCastException Casting an object to a subclass it is not an instance of. Runtime Error

NumberFormatException Attempting to convert a string to a number, but the string
doesn’t have the appropriate format.

Runtime Error

StackOverflowError Recursive method calls that exceed the stack size. Runtime Error

Syntax Error Any mistake in the code structure such as missing braces or
semicolons.

Syntax Error

ClassNotFoundException The Java class is not found at runtime. Runtime Error

IllegalArgumentException A method has been passed an illegal or inappropriate argu-
ment.

Runtime Error

ArithmeticException Division by zero or other illegal arithmetic operations. Runtime Error

UnsupportedOperation-
Exception

When a requested operation is not supported. Runtime Error

18

	Introduction
	Related Works
	Pre-trained Models for Code Generation
	Reinforcement Learning on code

	Problem Setting
	Methodology
	Task Definition: Code Generation by LLMs
	MRLF: Meta-Reinforcement Learning with Dual Memory Buffers
	Long-Term Memory Feedback
	Short-Term Memory Feedback

	Experiment
	Quantitative Evaluation on APPS
	Quantitative Evaluation on HumanEval and MBPP
	Quantitative Evaluation on CODAL-Bench
	Quantitative Evaluation on SciCode
	Quantitative Evaluation on Agentbench
	Ablation Studies

	Conclusions and Future Work
	Example
	Feedback Error Correlation Analysis
	Prompts
	Error Category

