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Abstract

Rise of Multimodal Large Language Models (MLLMs) represents a paradigm shift
in healthcare, with the potential to revolutionize diagnostics, personalized medicine,
and predictive analytics. In this position paper, we argue that the clinical impact
of MLLMs depends not solely on the models themselves, but critically on an inte-
grated ecosystem of enabling technologies. High-fidelity data curation pipelines,
multimodal data lakes, continuous model monitoring, secure API infrastructures,
workflow orchestration, and EHR/PACS connectors collectively form the foun-
dation for scalable, safe, and trustworthy deployment. We contend that strategic
investment and cross-disciplinary collaboration in these adjacent technologies are
essential for realizing the full potential of MLLMs in real-world clinical settings,
establishing a distinct and emerging sector within digital health.

1 Introduction
Multimodal Large Language Models (MLLMs) are a pivotal advancement in AI for clinical domains,
combining traditional LLM reasoning with the ability to process diverse modalities [26, 64]. They
process heterogeneous inputs, including clinical notes, research literature, medical images (X-
rays, MRIs, pathology slides), time-series EHR or wearable data, audio (heart/lung sounds, patient
interviews), and video from neurological or surgical contexts [46, 66]. Regarded as Foundation
Models, MLLMs enable integrated diagnostics, differentiating asthma, COPD, and pneumonia from
history, imaging, and biometrics [52], and personalized oncology treatments informed by genomic,
dietary, and lifestyle factors [52, 22]. They also advance predictive healthcare through early disease
detection, patient deterioration forecasting, and outbreak monitoring via multimodal fusion of EHRs,
meteorological, and sentiment data [52]. Emerging systems such as XMedGPT exemplify this
paradigm, achieving state-of-the-art performance in cancer recurrence prediction while improving
interpretability with multimodal explanations [65].

Despite their capabilities, real-world deployment of MLLMs in clinical practice faces challenges, as
general-purpose models often lack transparency, domain customization, and explainability needed for
high-risk healthcare [40]. Their black box nature undermines clinician trust and regulatory acceptance
[9, 54], while opaque errors raise ethical and legal accountability concerns [4]. Consequently, focus
and investment are shifting from model development toward workflow integration supported by
robust, interoperable infrastructures [34], encompassing reliable data curation, secure deployment,
continuous monitoring, and regulatory alignment [50]. We posit that enabling technologies, multi-
modal data lakes, workflow middleware, secure API gateways, monitoring platforms, and EHR/PACS
connectors, constitute the emerging Clinical MLLM Adjacent sector, driven by strategic investments
from healthcare leaders like Bayer, Medtronic, and AstraZeneca [67, 36, 17].

In this position paper, we argue that as MLLMs become increasingly commodified with the rise
of accessible models such as GPT-4o and Gemini [12], the locus of clinical innovation will shift
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Figure 1: Emerging Ecosystem of Clinical MLLM Adjacent Technologies: Pillars, Current
Situation, and Recommendations.

toward the surrounding ecosystem. Building resilient, interoperable, and secure infrastructures for
AI deployment will be the key differentiator determining which organizations can scale these tech-
nologies effectively [21]. We reframe the discussion on MLLMs in clinical settings by emphasizing
the strategic role of adjacent technologies (Figure 1). Future success in healthcare AI will hinge on
proactive investment, human-centered design, cross-sector collaboration, and regulatory alignment.
By delineating this emerging ecosystem, we outline a roadmap for stakeholders to enable safe,
equitable, and scalable clinical MLLM deployment.

2 Background: Pillars of the Clinical MLLM Ecosystem
Successful MLLM deployment in healthcare relies on a synergistic suite of adjacent technologies,
forming the critical infrastructure for accurate, reliable, and ethical clinical outcomes, with a detailed
analysis provided in Appendix B.

■ Specialized Data Curation Tools. Data curation underpins clinical MLLMs, transforming hetero-
geneous sources, including EHRs, imaging, literature, and trial data, into high-quality, reproducible
datasets via de-identification, expert annotation, and techniques such as instruction augmentation and
chain-of-thought labeling [28, 61, 62]. Well-curated datasets reduce hallucinations, enhance factual
accuracy, support clinical plausibility, and mitigate bias; yet, curation remains resource-intensive,
limited by annotation bottlenecks, privacy-utility trade-offs, and evolving standards [51, 68, 52].
Platforms like Shaip and Elucidata’s Polly exemplify scalable, compliant pipelines for multimodal
data ingestion, annotation, and harmonization, forming essential infrastructure for MLLM accuracy
and trust [61, 19].

■ Multimodal Data Lakes. Multimodal data lakes unify EHRs, imaging, omics, and clinical notes
within secure, scalable repositories, enabling parallel processing and regulatory compliance under
HITRUST and HIPAA [19]. Traditional warehouses cannot meet cross-modal MLLM demands,
making purpose-built lakes critical for harmonizing data into clinically meaningful representations
[45]. Platforms such as AWS Health (HealthOmics, HealthImaging, HealthLake) and Snowflake’s
AI Data Cloud integrate structured and unstructured data, convert legacy records to FHIR, and
provide secure real-time insights [60, 59, 30]. Despite these advances, challenges in interoperability,
standardization, and governance highlight the central role of data lakes in safe, scalable MLLM
deployment.

■ Robust Model Monitoring Platforms. Monitoring platforms are essential for safe MLLM de-
ployment, providing continuous oversight of performance, reliability, and safety, including detection
of drift, distribution shifts, degradation, and anomalies, while offering actionable remediation in-
sights [3]. They mitigate hallucinations and bias from imbalanced data to ensure equitable behavior
[68, 51]. Explainable AI (XAI) enhances trust and compliance by making outputs interpretable via
SHAP, saliency maps, and example-based explanations [9, 1]. Leading solutions like Fiddler AI,
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Evidently AI, and Cognome’s ExplainerAI™ integrate monitoring, drift detection, bias assessment,
and compliance, safeguarding clinical accuracy and patient safety [3, 2, 15].

■ Secure API Gateways. Secure API gateways enable controlled, scalable MLLM access while
protecting sensitive patient data through zero-trust security, authentication, and authorization [14, 62].
They optimize performance via traffic management, policy enforcement, and caching, yet hetero-
geneous workloads and modalities pose operational challenges [13]. As critical trust boundaries,
gateways enforce encryption, role-based access, de-identification, and logging to ensure compliance
[37, 13]. Platforms like Google Cloud Healthcare API, Apigee, and KrakenD exemplify secure,
auditable, and ethically aligned MLLM integration [14, 37].

■ Workflow Integration Middleware. Workflow integration middleware is essential for clinical
MLLM adoption, enabling secure, seamless data exchange between EHRs, PACS, medical devices,
and cloud systems while supporting incremental IT modernization[49]. It facilitates AI-driven
automation of repetitive tasks, including scheduling, billing, and documentation, thereby reduc-
ing administrative burden, improving resource utilization, and mitigating clinician burnout[63, 48].
Beyond integration, middleware orchestrates AI-managed workflows by coordinating tasks, mon-
itoring performance, and routing outputs based on real-time data, allowing MLLM predictions to
trigger downstream actions[8]. Leading platforms such as Core Mobile PCSIP, Orases, NextGen
Mirth, and Cflow illustrate these capabilities, though effectiveness depends on sustained governance,
interoperability, and alignment with institutional workflows[29, 49, 24].

■ Specialized EHR/PACS Connectors. Specialized EHR/PACS connectors form the clinical data
backbone for MLLMs, enabling standardized, real-time access to EHRs and high-resolution imaging
while integrating DICOM, HL7, and FHIR-compliant data to prevent workflow disruptions[27, 43, 55].
Nevertheless, heterogeneity across vendor systems and evolving standards poses interoperability
challenges requiring continuous governance[27, 16]. Beyond integration, connectors enable AI-
driven workflows by allowing MLLMs to generate structured reports, highlight critical findings, and
automate administrative tasks while preserving clinician oversight[44]. Implementations such as
Medicai, Purview, and Dataloop HL7 FHIR Model V1 demonstrate standardized, bidirectional data
flow, though success depends on robust governance, adherence to evolving standards, and workflow
alignment[43, 53, 18].

3 Emerging Clinical MLLM Adjacent Industry Sector
Colelctive growth and strategic significance of these technologies highlight the emergence of a
distinct Clinical MLLM Adjacent sector with unique market dynamics and adoption challenges.

✓✓ Market Dynamics and Investment Trends. Healthcare AI market is experiencing substantial
growth, projected to increase from USD 21.66 billion in 2025 to USD 110.61 billion by 2030,
reflecting a robust CAGR of 38.6% [25]. Broader estimates place the 2024 market at approximately
USD 29.2 billion, with projections exceeding USD 500 billion over the next decade [6]. This trajectory
is driven by significant public and private investments, accelerated AI adoption, and advancements in
human-aware AI systems [25].
Specific segments exhibit notable activity (Table 1): AI-based clinical trials solutions are valued at
USD 2.88 billion in 2025, growing to USD 17.40 billion by 2034 at a CAGR of 22.13% [57]; AI
in diagnostics is projected to grow from USD 1.97 billion in 2025 to USD 5.44 billion by 2030 at
22.46% CAGR [47]. AI clinical care market is estimated at USD 11.35 billion in 2025 and expected
to reach USD 95.15 billion by 2034 at 26.65% CAGR [23]. The global healthcare API market is
forecasted to grow from USD 1.38 billion in 2025 to USD 1.92 billion by 2033 (CAGR 4.2%) [58],
with alternative estimates placing it at USD 343.8 million by 2033 (CAGR 3.7%) [56]. The healthcare
middleware market is projected from USD 3.0 billion in 2023 to USD 7.06 billion by 2032 at 9.97%
CAGR [31], while the PACS systems market is expected to expand from USD 5.41 billion in 2024 to
USD 7.601 billion by 2033, with departmental PACS growing from USD 2.86 billion to USD 4.71
billion over the same period [32, 33].
Venture capital underscores the sector’s growing importance: digital health funding hit $6.4 billion in
H1 2025, with AI startups receiving 62% ($3.95 billion), raising $34.4 million per round versus $18.8
million for non-AI firms [39]. Mega deals exceeding $100 million increasingly target AI companies,
reflecting investor confidence, while tech giants like Google, Microsoft, IBM, and NVIDIA invest
heavily in healthcare AI models and deployment infrastructure [6]. This funding pattern highlights
that value lies not only in AI models but also in supporting infrastructure, data curation, multimodal
data lakes, secure API gateways, and workflow integration, which enables scalable, compliant
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deployment, creating a distinct market segment. Economically, integrating AI via this infrastructure
enhances diagnostic accuracy, personalizes treatment, improves operational efficiency, and reduces
costs by preventing complications, optimizing resource use, and automating administrative tasks,
freeing clinicians for patient care [35, 48].

✓✓ Regulatory Landscape and Governance Imperatives. The regulatory environment for AI
in healthcare is evolving rapidly, with the FDA regulating AI as a Medical Device (SaMD) and
introducing Predetermined Change Control Plans (PCCPs) to streamline post-market modifications
under rigorous oversight [4, 11]. Compliance with HIPAA, GDPR, and WHO ethical guidance
mandates protections for PHI, bias mitigation, and cybersecurity safeguards [4, 50]. Comprehensive
governance frameworks throughout the MLLM lifecycle enhance data quality, transparency, and
explainability, reducing breaches and fostering trust [50]. Consequently, regulations actively shape
the clinical MLLM adjacent ecosystem, driving demand for monitoring, secure integration, and data
provenance technologies, converting compliance into strategic advantage. Yet, organizations must
balance adherence with operational flexibility to avoid stifling innovation.

✓✓ Challenges and Opportunities for Widespread Adoption. Despite significant investment,
adoption of clinical MLLMs and adjacent technologies faces technical, human, and organizational
barriers, including limited interoperability across EHRs and PACS, diverse data formats, high IT
upgrade costs, and persistent data quality and security issues [27, 10]. Human factors, clinician
resistance, poor UX, and opaque AI outputs, remain major obstacles, contributing to over 63%
of AI project failures [34, 10]. Workforce retraining is required to manage AI outputs effectively,
while ethical considerations such as patient privacy, consent, and liability demand robust governance
[5, 4]. Achieving human-AI symbiosis through human-centered design, explainable AI, and seamless
workflow integration is therefore essential for trust and sustainable clinical transformation [34, 5].

4 Solutions and Recommendations

Realizing the full potential of clinical MLLMs requires a multi-faceted strategy of integrated infras-
tructure, human-centered design, collaboration, and governance, summarized here with full details in
Appendix C.

♦ Strategic Investment in Integrated Infrastructure. Organizations must invest across the MLLM
adjacent ecosystem, as standalone MLLMs offer limited value. Key areas include specialized data
curation, multimodal data lakes [51], and secure API gateways [14], while cloud solutions and
public-private partnerships enhance scalability and efficiency [25].

♦ Human-Centered AI Design. Adoption depends on usability, trust, and explainability [34].
Transparent, workflow-integrated interfaces and XAI ensure clinician understanding, safety, and
regulatory compliance [9], with early engagement and silent trials securing buy-in [10].

♦ Collaboration and Standardization. Interoperability requires collaboration among providers,
vendors, and regulators [27]. Standard protocols (DICOM, HL7, FHIR) and VNAs enable seamless
exchange [43], while clinician-led stewardship ensures applicability and change management [10].

♦ Governance and Compliance. Robust frameworks addressing ethics, privacy, and safety mit-
igate bias, hallucinations, and breaches [4, 51]. Continuous monitoring, validation, PCCPs, clear
accountability, and workforce training support safe and reliable MLLM deployment [20, 3, 62].

5 Concluding Remarks

The position of this paper is that the transformative potential of clinical Multimodal Large Language
Models (MLLMs) depends primarily on the surrounding ecosystem, rather than the models alone,
as adjacent technologies are the key enablers of safe, scalable, and effective deployment. These
enabling technologies, data curation pipelines, multimodal data lakes, secure API gateways, workflow
integration middleware, model monitoring platforms, and EHR/PACS connectors, provide the founda-
tional infrastructure for resilient, interoperable, and auditable AI systems. We argue that realizing the
full clinical value of MLLMs requires a systems-level strategy combining integrated infrastructure,
rigorous governance, cross-sector collaboration, and workforce readiness, alongside human-centered
design and explainability to foster clinician trust and seamless workflow integration. By positioning
adjacent technologies as central to clinical AI, stakeholders can transform isolated MLLMs into
operationally integrated, high-impact tools that advance precision, efficiency, and trust in patient care.
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A Supplementary Material

Table 1: Market Size and Growth Projections for Key Clinical AI Infrastructure Segments (2024–
2034)

Market Segment 2024/2025 Mar-
ket Size ($B)

Projected 2030-2032-
2034 Market Size ($B)

CAGR (%)

AI in Healthcare (Overall) $21.66 (2025) $110.61 (2030) 38.6%
AI in Clinical Trials $2.88 (2025) $17.40 (2034) 22.13%
AI in Diagnostics $1.97 (2025) $5.44 (2030) 22.46%
AI Clinical Care $11.35 (2025) $95.15 (2034) 26.65%
Healthcare API Market $1.38 (2025) $1.92 (2033) 4.2%
Healthcare Middleware Market $4.52 (2024) $8.68 (2032) 7.52%
PACS Systems Market $5.41 (2024) $7.601 (2033) 3.8%
Healthcare Data Monetization
Market

$0.62 (2025) $1.19 (2030) 14.10%

Table 2: Key Regulatory and Ethical Considerations for Clinical MLLM Deployment
Consideration Area Key Regulations/

Guidelines
Impact on MLLM Deployment Adjacent Technology Role

Data Privacy and Se-
curity

HIPAA, GDPR,
WHO Ethics Guid-
ance

Risk of data breaches, unauthorized
access, misuse of PHI.

Secure API Gateways, Data Curation (de-
identification), Multimodal Data Lakes (se-
cure storage)

Algorithmic Bias and
Fairness

WHO Ethics Guid-
ance, FDA SaMD
principles, EU AI Act

Exacerbating health disparities, un-
fair treatment, loss of public trust.

Data Curation (diverse datasets), Model
Monitoring (bias detection), Explainable
AI (fairness analysis)

Transparency and Ex-
plainability

EU GDPR (right to
explanation), FDA
SaMD principles, EU
AI Act

Lack of clinician trust, difficulty
in validating decisions, unclear ac-
countability.

Model Monitoring (XAI platforms, saliency
maps, SHAP values), Workflow Integration
Middleware (context-aware alerts)

Safety and Effective-
ness Monitoring

FDA SaMD/PCCP,
ISO 13485

Potential for patient harm (e.g., hal-
lucinations), model degradation over
time, need for continuous validation.

Model Monitoring (drift detection, halluci-
nation detection, performance monitoring),
Data Curation (ground truth updates)

Medical Liability Evolving legal frame-
works

Unclear accountability for AI-driven
errors, increased legal risk for
providers/developers.

Secure API Gateways (audit logging), Data
Governance (provenance, clear policies),
Model Monitoring (performance logs)

Continuous Learn-
ing/Adaptive AI

FDA Predetermined
Change Control Plans
(PCCP)

Challenges with post-market modifi-
cations, ensuring ongoing safety and
effectiveness, regulatory approval
for updates.

Model Monitoring (re-training practices,
performance evaluation protocols), Data
Curation (high-quality SFT datasets)

B More Details on Pillars of the Clinical MLLM Ecosystem

The effective integration of MLLMs into clinical practice is contingent upon a coordinated ecosystem of adjacent
technologies (Table 3), encompassing data lakes, workflow middleware, secure API gateways, monitoring
frameworks, and interoperable connectors to EHR and PACS systems. Together, these pillars constitute the
infrastructural backbone that enables MLLMs to generate clinically accurate, reliable, and ethically compliant
outputs, while supporting real-time deployment, continuous model monitoring, and adherence to regulatory
and privacy standards. By embedding these technologies into end-to-end healthcare workflows, organizations
can bridge the gap between model capabilities and actionable clinical decision-making, ensuring that the
transformative potential of MLLMs translates into tangible patient benefit.

B.1 Specialized Data Curation Tools

Data curation stands as a foundational pillar in the healthcare AI ecosystem, particularly in the development and
deployment of Multimodal Large Language Models (MLLMs). Given the sheer volume and heterogeneity of data
originating from patient records, clinical trials, imaging archives, and biomedical literature, ensuring data quality,
consistency, and integrity is essential [28]. The process of data curation not only eliminates errors, duplicates,
and inconsistencies but also upholds data provenance, crucial for ensuring transparency, reproducibility, and
accountability throughout the MLLM lifecycle [28].

At the core of effective curation are sophisticated capabilities for de-identification and annotation. These tools
are essential for transforming raw data into usable, privacy-compliant training resources. De-identification
systems must rigorously anonymize Protected Health Information (PHI) across both textual and visual modalities,
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Table 3: Core Functions of Clinical MLLM Adjacent Technologies
Technology Cate-
gory

Key Functions Role in MLLM Success Example Ven-
dors/Standards

Specialized Data
Curation Tools

Data quality, integrity, provenance, de-
identification, annotation, bias mitigation.

Fuels accurate, unbiased MLLM train-
ing; ensures ethical data use.

Shaip, Elucidata Polly

Multimodal Data
Lakes

Unification of diverse structured, unstruc-
tured, and streaming data; scalable storage,
querying.

Enables holistic patient insights for
MLLMs; supports complex multimodal
reasoning.

AWS HealthLake,
Snowflake

Robust Model
Monitoring Plat-
forms

Detects data drift, model degradation,
anomalies; identifies and mitigates hallu-
cination and bias; provides Explainable AI
(XAI).

Ensures continuous performance, safety,
and trustworthiness of MLLMs in pro-
duction.

Fiddler AI, Evidently AI,
Cognome ExplainerAI™

Secure API Gate-
ways

Authentication, authorization, traffic man-
agement, cost control, prompt validation,
policy enforcement.

Provides secure, compliant, and scal-
able access to MLLMs and sensitive
data.

Google Cloud Healthcare
API, Apigee, KrakenD

Workflow Integra-
tion Middleware

Bridges legacy systems with modern AI;
automates tasks, optimizes operational effi-
ciency, reduces cognitive load; orchestrates
processes.

Seamlessly embeds MLLMs into ex-
isting clinical and administrative work-
flows; enhances clinician adoption.

Core Mobile PCSIP,
NextGen Mirth, Cflow,
Lionbridge Aurora AI

Specialized
EHR/PACS Con-
nectors

Facilitates real-time, standardized access to
electronic health records and medical im-
ages; enables AI-driven structured report-
ing.

Provides the comprehensive clinical
data backbone for MLLM training and
inference; transforms clinical documen-
tation.

DICOM, HL7, FHIR,
Medicai, Purview

ensuring compliance with healthcare regulations such as HIPAA while retaining the clinical utility of the data
[61, 62]. In parallel, high-quality annotation, often performed by medical experts, enables the construction of
structured, labeled datasets that are critical for supervised learning and fine-tuning. Recent advancements also
incorporate instruction augmentation and chain-of-thought annotations that enrich multimodal datasets, boosting
the domain-specific reasoning and cross-modal integration capacity of MLLMs [41]. The influence of curated
datasets on MLLM performance cannot be overstated. High-fidelity, well-annotated data is indispensable for
model training, fine-tuning, and post-deployment refinement. It plays a direct role in reducing hallucinations,
improving factual accuracy, and enhancing clinical plausibility in AI-generated outputs [51, 68]. Critically,
data curation also functions as a primary mechanism for addressing algorithmic bias. Biased training data
can perpetuate systemic health disparities, especially when models are deployed across diverse populations.
Through careful dataset construction, including the selection of balanced and representative samples, data
curation mitigates this risk and aligns with broader ethical imperatives in AI development [52, 51].

Thus, data curation is far more than a backend process, it is a strategic endeavor that transforms fragmented and
often siloed medical data into an ethically compliant, clinically relevant, and AI-ready asset. This transformation
is pivotal in enabling MLLMs to operate safely and effectively in healthcare environments, where the cost of
error can be profound. The ongoing nature of curation ensures that datasets evolve alongside clinical standards
and regulatory requirements, reinforcing the trustworthiness and long-term utility of MLLMs [50]. Several
industry leaders exemplify the state of the art in this space. Shaip, for instance, offers extensive pre-processed
datasets, expert annotation and labeling services, and robust de-identification solutions for multimodal medical
data [61]. Elucidata’s Polly platform provides an end-to-end solution, including centralized data ingestion,
metadata harmonization, and scalable annotation engines, all within a secure and compliant framework [19].
These platforms illustrate how specialized data curation tools are becoming critical enablers of MLLM accuracy,
trust, and clinical applicability.

B.2 Multimodal Data Lakes

Multimodal data lakes form the critical architectural backbone for MLLMs in healthcare, designed to unify
and manage the vast and heterogeneous datasets that characterize clinical practice. These platforms seamlessly
integrate structured data such as Electronic Health Records (EHRs) and laboratory results with unstructured and
streaming data, including medical images, clinical notes, audio recordings, video feeds, and omics datasets, all
within a secure and compliant environment [7]. This unified approach facilitates a holistic, longitudinal view
of an individual’s health, moving beyond fragmented information silos to generate richer insights that span
from research settings to bedside care [60]. By aggregating diverse sources, ranging from diagnostic imaging
and wearable sensor data to genetic profiles and patient-reported outcomes, multimodal data lakes empower
MLLMs to achieve deeper, context-aware understanding [45]. This capability mirrors the integrative reasoning
clinicians employ when diagnosing and treating patients, enabling models to correlate findings across modalities:
for example, linking CT scan results with pathology reports, combining audio from telehealth sessions with
clinical documentation, or merging continuous sensor streams from smartwatches or glucose monitors with EHR
data [7]. Such integration is essential for advancing personalized medicine and refining predictive analytics,
ultimately supporting more precise treatment planning and earlier disease detection [52].
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Scalability and Security: Foundations for Clinical Use. The scalability and secure storage capabilities
of multimodal data lakes are paramount to their success. Leading cloud-based platforms such as AWS and
Snowflake provide robust infrastructure to store multi-terabyte datasets in centralized repositories, significantly
reducing data silos and enabling near real-time access to cross-modal information [19]. These platforms offer
elastic computational resources that can support parallel processing of extensive omics and clinical datasets
while ensuring compliance with healthcare regulations through certifications such as HITRUST and adherence
to HIPAA standards [19]. More than mere storage solutions, multimodal data lakes are the essential foundation
that allows MLLMs to realize their full multimodal potential. Traditional data warehouses or disconnected
siloed systems are ill-equipped to meet the dynamic and complex data demands of these models. Data lakes
are purpose-built to harmonize and interconnect disparate data points, creating a unified, intelligent view of
patient information that closely parallels clinical decision-making processes [45]. This capability extends beyond
data availability to encompass data interoperability and accessibility, critical enablers for sophisticated AI
analysis. The concept of any-to-any MLLMs, capable of ingesting and generating outputs across all modalities,
fundamentally depends on data lakes’ ability to ingest, harmonize, and present diverse data types in an AI-
consumable format. Consequently, data readiness emerges as a primary bottleneck in MLLM deployment, often
outweighing challenges related to model architecture or training.

Key providers in this space include AWS for Health, which offers specialized services like AWS HealthOmics
for genomic data and AWS HealthImaging for medical imaging, complemented by an ecosystem of partner
solutions designed to unify and analyze multimodal healthcare data [60]. Additionally, AWS HealthLake
partners facilitate the transformation of legacy healthcare data into standardized formats such as Fast Healthcare
Interoperability Resources (FHIR), while providing tools for efficient health record navigation and visualization
[59]. Snowflake’s AI Data Cloud similarly delivers a unified platform capable of handling unstructured, semi-
structured, and structured data, enabling real-time patient insights and secure collaboration across healthcare
networks [30]. Together, these multimodal data lakes lay the indispensable groundwork for clinical MLLMs,
supporting their integration into healthcare workflows and unlocking new horizons in precision medicine.

B.3 Robust Model Monitoring Platforms

Robust model monitoring platforms are essential for the safe and effective clinical deployment of MLLMs.
Continuous tracking of model performance and behavior in production ensures sustained accuracy, reliability,
and safety over time [3]. Key functionalities include detecting data drift, shifts in input distributions, model
degradation, and anomalies that may impair performance [3]. These platforms provide actionable insights that
allow developers to diagnose issues promptly and maintain optimal model functioning [3].

A critical focus of MLLM monitoring in healthcare is managing hallucinations and bias. MLLMs have a known
tendency for hallucinations, producing medically implausible or inaccurate outputs that risk patient safety
by leading to misdiagnoses or inappropriate treatments [68]. Monitoring platforms assess these risks using
expert-validated case scenarios and systematic annotation methods that categorize hallucinations by anatomical
and pathological types [68]. Additionally, they help detect and mitigate bias arising from training data imbalances
or fine-tuning, ensuring equitable model behavior across diverse patient populations [51].

Explainability and Safety as Core Monitoring Pillars. Explainable AI (XAI) plays an integral role in
effective monitoring by unraveling the black box nature of complex MLLMs, making their decisions interpretable
and trustworthy to clinicians [9]. Techniques such as feature attribution methods (e.g., SHAP values, saliency
maps) and example-based explanations facilitate clinician understanding and confidence in AI outputs [9]. This
transparency is crucial for patient safety, regulatory compliance, such as the EU GDPR right to explanation,
and fostering robust human-AI collaboration [9]. While some advocate prioritizing accuracy over explainability
in urgent clinical scenarios, the consensus for MLLMs emphasizes transparency to build and sustain trust [1].
Beyond traditional performance metrics like accuracy and precision, clinical MLLM monitoring prioritizes
patient safety outcomes. Monitoring must detect specific instances of anatomical and pathological hallucinations,
quantifying their potential harm to patients [68]. This elevates monitoring from a technical exercise to a vital
component of clinical governance, risk management, and ethical AI deployment [9]. The increasing regulatory
focus on XAI and bias mitigation further underscores this transformation [9].

Leading solutions in this space include Fiddler AI’s Observability platform, offering performance monitoring,
drift detection, quality assurance, custom alerts, and specialized NLP and computer vision monitoring [3].
Evidently AI provides an open-source library supporting issue detection, root cause, and behavioral analysis for
ML models [2]. Cognome’s ExplainerAI™ specializes in healthcare AI transparency, integrating with EHRs to
assist in bias detection and regulatory compliance [15]. Additionally, platforms like MLM-Labs and Biologit
address healthcare-specific needs by enabling real-time monitoring of clinical trial data and medical literature
for safety surveillance [38]. Together, these model monitoring platforms form an indispensable safeguard that
ensures MLLMs maintain clinical performance, uphold patient safety, and comply with evolving ethical and
regulatory standards.
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B.4 Secure API Gateways

Secure API gateways are foundational to the integration and deployment of MLLMs in healthcare, acting as
specialized control layers for AI workloads. They provide secure, scalable, and manageable access to MLLMs
and related AI services, an imperative in an industry handling highly sensitive patient data [14]. These gateways
enforce zero-trust security principles, manage authentication and authorization, and serve as critical checkpoints
for all MLLM interactions, safeguarding sensitive data throughout [62]. These platforms deliver a comprehensive
suite of features to enhance security, scalability, and governance. They facilitate seamless AI agent integration by
offering robust authentication, traffic management, detailed analytics, and policy enforcement [14]. Additionally,
API gateways can intelligently route requests to the most appropriate MLLM based on task requirements,
optimize response times through semantic caching, and enforce granular usage limits to control inference costs
[14].

Compliance with stringent healthcare data security standards, such as HIPAA in the U.S., is non-negotiable. API
gateways play a pivotal role in maintaining compliance by implementing strong encryption for data at rest and in
transit, enforcing strict role-based access controls (RBAC), and maintaining exhaustive logs of all interactions
[62]. They also support de-identification of Protected Health Information (PHI), creating a secure, auditable
layer that exposes sensitive ePHI to patient and provider applications while mitigating the risk of breaches and
unauthorized access [13].

API Gateways as Trust Boundaries. In healthcare’s highly regulated environment, API gateways function
not just as technical interfaces but as critical trust boundaries that enforce security, compliance, and ethical AI
use at every interaction point. This elevates MLLM access from a technical challenge to a governance imperative.
While APIs generally facilitate data exchange [13], an AI Gateway specifically adds a tailored control layer for
AI workloads, actively managing how MLLMs access and process sensitive PHI [37]. It enforces zero-trust
policies, prompt validation, and compliance checks, operationalizing the trust boundary concept [37]. By
enabling encryption, RBAC, and detailed audit logging, these gateways empower healthcare organizations to
transition from passive regulatory compliance to proactive risk mitigation at the integration layer [62].

Leading providers in this domain include Google Cloud Healthcare API, which supports industry-standard
protocols like DICOM, FHIR, and HL7v2 for ingesting, storing, and analyzing healthcare data. It is built on a
robust security framework featuring Identity and Access Management (IAM) and comprehensive auditability
via Cloud Logging, and is covered under Google Cloud’s HIPAA Business Associate Addendum (BAA) [13].
Additional examples of API gateways offering advanced AI safety features, latency optimization, cost control,
and governance for LLM interactions include Apigee (part of Google Cloud’s API Management) and KrakenD
[14, 37]. Together, secure API gateways constitute a critical infrastructure layer that enables the safe, compliant,
and efficient integration of MLLMs into healthcare environments, balancing performance demands with stringent
regulatory and ethical requirements.

B.5 Workflow Integration Middleware

Workflow integration middleware is vital for the practical adoption of MLLMs in healthcare, serving as a
bridge that enables seamless and secure data exchange between diverse healthcare software systems. This
includes connecting MLLMs with existing EHRs, PACS, and medical devices [49]. Such middleware supports
the incremental modernization of IT ecosystems, allowing providers to link legacy systems with cloud-based
services without costly infrastructure overhauls [49]. A major advantage of middleware is its capacity to
automate tasks, optimize efficiency, and reduce cognitive burden on healthcare professionals. AI-driven
workflow automation is a priority for providers aiming to enhance operational efficiency and care quality [63].
Middleware enables MLLMs to automate repetitive, data-heavy tasks like appointment scheduling, billing, and
documentation, thereby alleviating administrative workload, improving resource use, and reducing clinician
burnout [63, 48]. Many hospitals still rely on legacy systems incompatible with modern AI or cloud environments
[43]. Middleware effectively bridges this gap by converting file types, managing data transfers, and handling
complex security protocols, minimizing disruptive full-system replacements [27]. This ensures smooth data flow
and interoperability across clinical and administrative domains [49].

From Integration to Orchestration. Workflow integration middleware transforms MLLMs from isolated
AI tools into components of cohesive, AI-orchestrated workflows, acting as the conductor that ensures seamless
data exchange, task automation, and proactive care delivery [8]. Beyond simple integration, middleware coordi-
nates tasks, monitors performance, and routes assignments based on real-time data and rules, enabling MLLM
outputs to trigger downstream actions [8]. This intelligent orchestration addresses operational inefficiencies
and clinician resistance, reduces documentation time, and directly mitigates physician burnout, key factors for
sustainable AI adoption [42, 34]. Leading providers include Core Mobile’s Patient Care Systems Integration
Platform (PCSIP), which unifies diverse patient records and enables department-specific LLM customization
[29]. Orases highlights API- and middleware-driven seamless data transfer within healthcare [49]. NextGen’s
Mirth Integration Engine standardizes clinical data flow and offers advanced alerting for system monitoring [24].
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Additionally, platforms like Cflow and Lionbridge Aurora AI provide sophisticated workflow orchestration to
integrate AI tools for clinical and administrative automation [8].

B.6 Specialized EHR/PACS Connectors

Specialized EHR/PACS connectors serve as the vital clinical data backbone for MLLMs, enabling real-time,
standardized access to electronic health records and medical imaging. These connectors provide MLLMs with
immediate access to comprehensive patient data, including high-resolution medical images in DICOM format
and extensive clinical records in HL7 and FHIR standards [27]. This seamless integration prevents workflow
disruptions by allowing physicians to access imaging studies directly within patient records without navigating
separate systems [43].

Interoperability. Interoperability remains a major challenge in healthcare IT, stemming from diverse vendor
systems and heterogeneous data formats [27]. EHR/PACS connectors address these issues by leveraging
established protocols: DICOM standardizes storage and transfer of medical images [27], HL7 governs exchange
of clinical and administrative data [27], and FHIR, a modern, web-based standard with modular resources and
RESTful APIs, facilitates flexible, semantic data exchange critical for multimodal integration [55]. Adoption of
these standards creates a common language for effective communication between imaging and EHR systems
[27]. Initiatives such as IHE integration profiles (e.g., AIW-I, AIR) further promote standardized AI interaction
with DICOM data, reflecting ongoing efforts toward interoperability [16].

Enabling Intelligent AI-Driven Clinical Workflows. By granting MLLMs integrated access to imaging
and clinical data, these connectors empower advanced applications like structured radiology reporting. This
automation analyzes imaging (e.g., MRI, X-ray) and populates structured templates, reducing manual entry
and error risk [44]. It enhances diagnostic accuracy by highlighting critical findings and supports clinicians
in informed decision-making, while preserving clinician oversight [44]. Additionally, MLLMs can utilize
this data to generate patient-friendly communications, improving engagement and understanding [44]. The
evolution of EHR/PACS connectors marks a shift from passive repositories to active, intelligent participants
within MLLM workflows. They enable continuous data exchange, where MLLMs receive clinical data and feed
back AI-generated insights, such as reports, findings, and administrative elements like billing codes, directly into
EHR/PACS [44]. This bidirectional flow, powered by robust connectors adhering to standards like FHIR, forms
the foundation for truly AI-native clinical documentation and decision support. It transitions healthcare from
manual data entry and fragmented records toward automated, integrated, and intelligent patient data ecosystems.

Notable solutions include Medicai’s PACS integration connecting radiology and imaging departments with
EHR/RIS systems via DICOM and HL7, enabling instant access and workflow optimization [43]. Purview offers
EHR-PACS integration for seamless linkage between EHRs and medical images [53]. The Dataloop HL7 FHIR
Model V1 demonstrates how AI models can leverage these integrated data formats to recognize biomedical
entities in text, illustrating practical MLLM data utilization [18].

C More Details on Solutions and Recommendations

To navigate the complexities and fully realize the potential of clinical MLLMs, a multi-faceted strategic approach
is required, focusing on integrated infrastructure, human-centered design, collaboration, and robust governance.

C.1 Strategic Investment in Integrated Infrastructure

Healthcare organizations and technology providers must prioritize strategic investments in the entire MLLM ad-
jacent ecosystem, recognizing that isolated MLLMs offer limited value without robust supporting infrastructure.
The market trends clearly indicate a significant infrastructure premium in digital health funding, with AI-enabled
solutions and data infrastructure attracting the lion’s share of investment [39]. This investment should compre-
hensively span specialized data curation tools for building high-quality, unbiased, and de-identified datasets
essential for MLLM training and fine-tuning [51]. It must also include multimodal data lakes for unified, scalable
access to diverse clinical data 28, and secure API gateways to ensure compliant and efficient data flow to and
from MLLMs [14]. Developing comprehensive AI adoption roadmaps that explicitly budget for these adjacent
technologies is crucial. Furthermore, fostering public-private partnerships can facilitate the co-development of
shared infrastructure components, accelerating progress and reducing individual organizational burden. Investing
heavily in cloud-based solutions is also recommended for their inherent scalability, cost-efficiency, and remote
access capabilities, which are vital for managing the vast data volumes and computational demands of MLLMs
[25].
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C.2 Prioritizing Human-Centered AI Design and Explainability

All adjacent technologies, particularly those interacting directly with clinicians and patients, must be designed
with a human-centered approach, emphasizing explainability, usability, and trust. Clinician resistance and
workflow disruption represent major impediments to AI adoption, often outweighing technical capabilities [34].
The success of AI in healthcare hinges on a positive human experience, necessitating transparent and intuitive
interfaces that seamlessly integrate into existing clinical workflows [34]. Explainable AI (XAI) is critical
for clinicians to understand and trust MLLM recommendations, which is fundamental for patient safety and
adherence to regulatory mandates [9]. To achieve this, human-centered design principles should be implemented
from the outset of development, ensuring that AI solutions augment, rather than complicate, clinical practice.
Integrating XAI features into model monitoring platforms and directly into MLLM outputs will provide the
necessary transparency. Furthermore, conducting silent trials and actively engaging clinicians early in the design
and implementation phases is vital for mapping existing workflows, identifying pain points, and securing crucial
buy-in from end-users [10].

C.3 Cross-Stakeholder Collaboration and Standardization

Driving widespread adoption of interoperability standards and fostering collaborative ecosystems involving
healthcare providers, technology vendors, regulators, and research institutions is essential. The lack of standard-
ized communication protocols between disparate systems, such as EHRs and PACS, remains a significant hurdle
to seamless MLLM integration [27]. Adopting standardized protocols like DICOM (for imaging), HL7 (for
clinical data exchange), and particularly FHIR (for modern, web-based interoperability) is crucial for seamless
data exchange and MLLM functionality [43].Encouraging the use of vendor-neutral archives (VNAs) can help
overcome vendor lock-in and promote broader data accessibility [43].Collaboration ensures that data curation
efforts align with real-world organizational needs and that AI solutions are developed with practical clinical
applicability.5 Establishing AI stewardship committees with rotating clinician leadership can effectively guide
implementation, manage change, and ensure that technological advancements are aligned with clinical realities
and needs [10].

C.4 Developing Robust Governance and Regulatory Compliance Frameworks

Establishing comprehensive AI data governance frameworks that embed ethical principles, privacy safeguards,
and regulatory compliance throughout the entire MLLM lifecycle is non-negotiable. The sensitive nature of
healthcare data and the adaptive, continuously learning nature of MLLMs necessitate strong governance to miti-
gate risks such as algorithmic bias, hallucinations, and data breaches [4]. Regulatory bodies, including the FDA,
are increasingly focusing on post-market monitoring and predetermined change control plans for AI-enabled
medical devices, underscoring the need for continuous oversight [20]. Implementing robust data governance
policies that cover data quality, privacy (e.g., encryption, role-based access controls, de-identification), and
ethical AI standards is paramount [51]. Organizations must develop internal policies for continuous monitoring
and validation of MLLM performance in production environments to detect and address issues proactively [3].
Ensuring that legal accountability is clearly defined for AI-driven decisions is also critical for building trust and
managing risk [4]. Finally, investing in comprehensive training programs for all staff on safe AI use, HIPAA
compliance, and the limitations and strengths of MLLMs will empower the workforce and foster responsible
adoption [62].
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