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Abstract
In this paper, we consider a model called Online
Capacitated Coverage Maximization, character-
ized by two features: (1) the dynamic arrival of
online agents following a known identical and in-
dependent distribution, and (2) each offline agent
is associated with a specific coverage valuation
over the groundset of online agents. Additionally,
both offline and online agents are assigned inte-
ger capacities, reflecting finite budgets and opera-
tional constraints. We introduce and analyze two
matching policies. The first, a non-adaptive pol-
icy, utilizes offline statistics derived from solving
a benchmark linear program. The second is an en-
hanced version equipped with real-time boostings
and attenuations. We conduct a comprehensive
competitive analysis and characterize the compet-
itive ratio for both policies as functions of two
crucial parameters: a lower bound on the match-
ing capacity among offline agents and an upper
bound on the number of online agents covering
any specific feature for offline agents.

1. Introduction
Matching markets involve heterogeneous agents (typically
from two parties) who are paired for mutual benefits. During
the last decade, matching markets have emerged and prolif-
erated through the Internet. They have evolved into a new
style, called Online Matching Markets (OMMs), with ex-
amples ranging from crowdsourcing to Internet advertising.
There are two features distinguishing OMMs from tradi-
tional matching markets. The first feature is that users from
at least one party join the system dynamically, which are re-
ferred to as online agents (F1). Examples include keywords
in online advertising and workers in Amazon Mechanical
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Turk (AMT). As opposed to online agents, the other party
is called offline agents, such as sponsors in online advertis-
ing and tasks in AMT. The information of offline agents is
known as a priori, and they are assumed static. The second
feature is the real-time decision-making requirement (F2).
It is highly desirable to match each online agent with one
(or multiple) offline agent(s) upon its arrival due to online
agents’ low “patience”. Generally, each match of offline
and online agents contributes a certain amount of revenue to
the system. Consequently, a well-studied topic in OMMs is
to maximize the total revenue, which is modeled as a linear
function over all matches; see, e.g., (Ashlagi et al., 2019;
Bei & Zhang, 2018; Dickerson et al., 2024; 2021).

In this paper, we consider a general setting introduced
by (Xu, 2023b) when the linear-maximization objective is
replaced by a (weighted) coverage maximization. One mo-
tivating example is called online multi-skilled task-worker
assignment problem in crowdsourcing markets, where
each task and worker is associated with a specific set of
skills (Barnabò et al., 2019; Cheng et al., 2016; Anagnos-
topoulos et al., 2012). A natural goal there is to assign each
task a set of workers such that the task has as many skills
covered as possible. In a general scenario, each task-skill
pair is associated with a specific positive weight reflecting
the importance or priority of the skill for the task. In that
case, the resulting objective is formulated as a maximiza-
tion of a weighted coverage function. Similar issues exist
in other gig platforms such as Upwork, where we need to
enlist a diverse team of workers for each project (task) such
that as many expertises are covered as possible that are re-
quested by the project. Observe that the two aforementioned
features (F1 and F2) distinguish our problem from the clas-
sical (offline) coverage maximization and pose significant
challenges in the matching-policy design.

1.1. Main Model

For the ease of presentation, we include a brief descrip-
tion of a slightly simplified version of the model proposed
in (Xu, 2023b), where only the offline side is capacitated.
In Appendix H, we will demonstrate how to generalize the
current techniques and results to the two-sided capacitated
case, which is the exact setting in (Xu, 2023b). Throughout
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this paper, we refer to our model as Online Capacitated
Coverage Maximization (OCCM) using the terminology of
a multi-skilled task-worker matching problem in a typical
crowdsourcing market, where “task” and “worker” refer to
generic offline and online agents, respectively.

Suppose there is a bipartite graph G = (I, J, E), where I
and J denote the set of types of offline tasks and online
workers, respectively. An edge e = (i, j) indicates that
worker (of type) j shows interest in the task (of type) i. We
have a ground set K of K skills, and each task i and worker
j are labeled with a binary vector χi,χj ∈ {0, 1}K , where
χik = 1 and χjk = 1 indicate that skill k is requested by
task i and possessed by worker j, respectively. For each
task-skill pair λ = (i, k), it is associated with a weight
wλ ≥ 0, which captures the value or priority of skill k
to task i. We can simply assume wλ = 0 for all those
pairs λ = (i, k) with χik = 0. Each task i has a matching
capacity bi ∈ Z+, i.e., we can allocate at most bi workers
to it.1 Upon the arrival of an online worker j, an immediate
and irrevocable decision is required: either reject it or assign
it to a task i with (i, j) ∈ E that has remaining capacity.
Our overall goal is to maximize the total weight of covered
skills over all tasks. Below is a detailed description of the
arrival setting of online workers.

KIID Arrivals of Online Workers. We consider a finite
time horizon T . During each time (or round) t ∈ [T ]

.
=

{1, 2, . . . , T}, one single worker (of type) ĵ will be sampled
(or ĵ arrives) with replacement such that Pr[ĵ = j] = rj/T
for all j ∈ J with

∑
j∈J rj/T = 1. Here rj is called

the arrival rate of worker j, which is equal to the expected
number of total arrivals of j during the T rounds. Note
that the arrival distribution {rj/T} is assumed independent
and invariant throughout the online phase. It is commonly
referred to as the known identical independent distributions
(KIID). This is mainly inspired by the fact that we can often
learn the arrival distribution from historical logs (Yao et al.,
2018; Li et al., 2018; Wang et al., 2018). KIID is widely
used in practical applications of OMMs, including rideshare
and crowdsourcing markets (Zhao et al., 2019; Dickerson
et al., 2024; Fata et al., 2019). In this paper, we consider
the integral arrival setting where workers’ arrival rates are
all integers. WLOG we assume that rj = 1 for each j ∈ J
such that T = |J | by creating rj copies for each worker
(type) j.

Consider a matching policy ALG (possibly randomized) and
an allocation X = (Xij) ∈ {0, 1}|E| output by ALG, where
Xij = 1 with e = (i, j) ∈ E means e is matched, i.e., j is
assigned to i.2 For each i ∈ I , let Ni = {j ∈ J, (i, j) ∈ E}

1The matching capacity is motivated by the limited budget
allocated to each task in practice.

2Note that for each task, the weight on each covered skill is
counted only once. That is why we assume WLOG that any policy

be the set of neighbors of i; similarly for Nj with j ∈ J .
We say X is feasible or valid iff

∑
j∈Ni

Xij ≤ bi for
all i ∈ I . We define the utility of task i under X as
wi(x) =

∑
k∈K wik · min(1,

∑
j∈Ni

Xij · χjk), i.e., the
total sum of weights on skills covered under X, and we set
the resulting total utility under X as w(X) =

∑
i∈I wi(X),

i.e., the sum of utilities over all tasks. An input in-
stance of OCCM can be characterized as I = {G =
(I, J, E), {bi, wik,χi,χj |i ∈ I, k ∈ K, j ∈ J}, T}, and
we assume all information there is accessible to the algo-
rithm. Our goal is to design an allocation policy ALG such
that it always outputs a feasible allocation X with E[w(X)]
being as large as possible. Here the expectation is taken
over the randomness in the workers’ dynamic arrivals and
that potentially used in ALG. Throughout this paper, we
assume T ≫ maxi∈I bi ≥ 1,3 and part of our results are
obtained by taking T → ∞, a common practice in study-
ing competitiveness for online-matching algorithms under
KIID (Huang & Shu, 2021; Brubach et al., 2020; Jaillet
& Lu, 2013; Manshadi et al., 2012; Haeupler et al., 2011;
Feldman et al., 2009).

1.2. Preliminaries

Competitive Ratio (CR). CR is a common metric to eval-
uate the performance of online algorithms. Consider an
instance I of OCCM as studied here, for example. Let
ALG(I) = ES∼I [ALG(S)] denote the performance of ALG
on the instance I, where the expectation is taken over
the randomness in the arrival sequence S of online work-
ers and possible randomness in ALG. Let OPT(I) =
ES∼I [OPT(S)] denote the performance of an offline opti-
mal (a.k.a. a clairvoyant optimal), denoted by OPT, where
OPT(S) refers to the value obtained by OPT, which has
the privilege of accessing the full arrival sequence S before
any actions. We say ALG achieves a CR of at least ρ ∈ [0, 1]
if ALG(I) ≥ ρ ·OPT(I) for any input instance I.

Benchmark Linear Program (LP). Throughout this paper,
we denote as OPT a clairvoyant optimal policy (and its
corresponding performance). Let Λ .

= I × K be the col-
lection of all task-skill pairs. For each edge e = (i, j) and
λ = (i, k) ∈ Λ, let xe and yλ be the probabilities that e is
matched (i.e., j is assigned to i) and that λ gets matched or
covered (i.e., skill k is covered for task i) in OPT, respec-
tively.4 Recall that for each node ℓ ∈ I ∪ J , Nℓ is the set of

will match any edge at most once.
3This is motivated by the fact that each task has a limited

number of copies or is allocated a small budget, such that we can
afford to recruit only a small portion of the arriving workers.

4Here we can assume WLOG that each edge gets matched
at most once in OPT since we focus on coverage maximization.
This is one of the key differences of our model from the online b-
matching problem, where matching an edge multiple times yields
the same number of copies of rewards.
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Table 1. A glossary of notations used throughout this paper.

[n] Set of {1, 2, . . . , n} for an integer n. I (J) Set of task (worker) types.
Ni (Nj) Set of neighbors of i ∈ I (j ∈ J). K Set of skills with |K| = K.
λ = (i, k) Pair of task i and skill k. wλ=(i,k) Weight of skill k to task i.
Nλ=(i,k) Set of i’s neighbors covering k. ∆, τ ∆ = maxλ |Nλ|, τ = 1− e−∆.
b Uniform capacity on all tasks. T Total number of online rounds.
ATT-I First type of attenuations. ATT-II Second type of attenuations.
RTB Real-Time boosting. CR Competitive Ratio.
SM-A Non-adaptive policy in Alg. 1. SM-B Adaptive policy in Alg. 2.
e (Italic) Edge e ∈ E. e (Non-italic) Natural base with e ∼ 2.718.
AG AG = η − κ, Adaptivity Gap. Ber(·),Pois(·) Bernoulli and Poisson random variables.

neighbors of ℓ. For each λ = (i, k), let Nλ ⊆ Ni be the set
of i’s neighbors covering skill k and wλ be the weight of
skill k with respect to task i. Set ∆ := maxλ∈Λ |Nλ| and
τ := 1− e−∆, where ∆ is a parameter capturing the max-
imum number of worker types that can cover any specific
skill among all those showing interest in the task.5 Consider
the below LP.

max
∑
λ∈Λ

wλ · yλ (1)

yλ ≤ 1− e−∆ = τ ∀λ ∈ Λ (2)

yλ ≤ xλ :=
∑
j∈Nλ

xij ∀λ = (i, k) ∈ Λ (3)

xi :=
∑
j∈Ni

xij ≤ bi ∀i ∈ I (4)

xj :=
∑
i∈Nj

xij ≤ 1 ∀j ∈ J (5)

0 ≤ xe ≤ 1− 1/e, yλ ≤ 1 ∀e ∈ E, λ ∈ Λ. (6)

We refer to the above LP as LP (1) throughout this paper.

Lemma 1. The optimal value of LP (1) is a valid upper
bound on the performance of a clairvoyant optimal (OPT).

Proof. By definition of {xe, yλ}, we can verify that Objec-
tive (1) encodes the exact expected performance of OPT.
To prove the above lemma, it suffices to show the validity of
all constraints in LP (1) with respect to any policy captured
by {xe, yλ}. Constraint (2) is valid since for each task-skill
pair λ = (i, k), λ will never get covered when none of the
workers in Nλ has ever arrived once, which occurs with
probability equal to e−|Nλ| ≥ e−|∆|. This implies that λ
is covered with probability no more than 1 − e−|∆|. Con-
straint (3) is reasonable since λ = (i, k) gets covered iff at
least one edge e = (i, j) with j ∈ Nλ gets matched, which

5Observe that ∆ ≤ maxi∈I |Ni| ≤ |J | since Nλ ⊆ Ni with
λ = (i, k). In many real-world applications, ∆ typically takes a
small value that can be far less than maxi |Ni|, especially when a
large number of skills involved (Ahmed et al., 2020).

happens with probability at more
∑
j∈Nλ

xij . Constraint (4)
is due to the matching capacity of bi on task i, while Con-
straint (5) follows from that the expected number of arrivals
for each worker (of type) j is one. As for Constraint (6),
observe that e = (i, j) gets matched at most once in OPT,
and it happens only when j arrives at least once that occurs
with probability equal to 1− 1/e.

Connections to Existing Models. We consider the ex-
act model (OCCM) introduced by (Xu, 2023b), which is
featured by (i) each offline agent is associated with a cov-
erage valuation and (ii) both offline and online agents can
each have an arbitrary integer matching capacity. Kapralov
et al. (2013) considered Online Submodular Welfare Max-
imization (OSWM) under the KIID setting, where each
offline agent is associated with a general monotone sub-
modular valuation and each has an unbounded capacity,
while every online agent has a unit capacity. Notably, the
setting of possibly finite capacity among offline agents
makes the model OCCM essentially different from OSWM.
As pointed out in (Xu, 2023b), the natural Greedy (GRY)
turns out to be zero-competitive for OCCM, while GRY is
shown to achieve an optimal competitive ratio of 1 − 1/e
for OSWM (Kapralov et al., 2013). In Table 2, we list
a few other works that have considered online submodu-
lar/coverage maximization under KIID arrival settings.

1.3. Overview of Algorithms and Techniques

Throughout this paper, when we say “at time t,” we mean
“at the very beginning of t before any online actions.” We
propose and carefully analyze two natural policies. The
first one is non-adaptive (SM-A), which is simply guided
by offline statistics through solving the benchmark LP (1);
while the other is a fortified version armed with real-time
boostings (SM-B). For each policy, we give a comprehen-
sive competitive analysis and characterize the final CR as a
function of two key parameters; see details in Section 1.7.

A Non-Adaptive Policy SM-A (Algorithm 1). SM-A sam-
ples a task i upon each arrival of a worker j following a
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Table 2. Comparison of settings in recent works related to online coverage/submodular maximization under the KIID (Known Independent
and Identical Distributions) arrival setting. In the second column, “OBJ” represents the objective type, while “SUB” and “COV” denote
monotone submodular and coverage maximization, respectively. In the third and fourth columns, “b” represents a uniform matching
capacity among offline agents, and “b′” represents an upper bound on the matching capacity among online agents. The entry “N ∪∞”
means any fixed positive integer or infinity. In the fifth column, we classify algorithms into two classes based on whether the sampling
distributions in the online phase are adapted to the arrival time of each online agent. All results in this paper are highlighted in blue.

Models OBJ b b′ Algorithms CR Upper Bounds

(Kapralov et al., 2013) SUB ∞ 1 Greedy (Adaptive) 0.632 0.632

(Dickerson et al., 2019b) SUBa 1 1 Non-Adaptive 0.399 −

(Xu, 2023b) COV N ∪ {∞} N Non-Adaptive 0.580 −
SUB O(1) N 0.436

(This paper) COV N ∪ {∞} N Adaptive

η(τ, b) ≥ 0.602 b

η(1,∞) = 0.632 0.632
η(τ, 1) = 0.692 0.729

η(1− 1/e,∞) = 0.741 0.896

a They considered a slightly different version of the objective, which is to maximize one single monotone submodular
function defined over the groundset of all edges.

b We offer a comprehensive competitive analysis and express the final competitive ratio (CR) as a function η(τ, b),
as defined in (8), where τ = 1 − e−∆ with ∆ being the maximum number of online agents covering any specific
features/skills, and b representing uniform capacity among offline agents. The inequality η(τ, b) ≥ 0.602 holds
for all possible combinations of (τ, b), which suggests a strict improvement over that of 0.580 for online coverage
maximization due to (Xu, 2023b). For the setting of (∆, τ) = (∞, 1) and b = ∞, our result matches the upper bound
of 1− 1/e ∼ 0.632 (Kapralov et al., 2013), which suggests its optimality on that case. We also manage to identify
upper bounds when b = 1 or (∆, τ) = (1, 1− 1/e) based on the benchmark LP; see more details in Appendix F.

static distribution Dj := {x∗ij |i ∈ Nj}, where {x∗ij} is an
optimal solution to benchmark LP (1). Note that Dj is valid
since

∑
i∈Nj

x∗ij ≤ 1 due to Constraint (5) of LP (1). Note
that SM-A shares the essence with those proposed in (Es-
maeili et al., 2023; Xu, 2023b; Dickerson et al., 2019b):
They are all non-adaptive, meaning that the sampling distri-
butions are solely determined by the arriving online agents
themselves and remain unaffected by their arrival time.

An Adaptive Policy SM-B (Algorithm 2). SM-B consists
of two types of attenuations and one type of boostings. We
carefully craft two auxiliary sequences, namely, {ϕt, ψt|t ∈
[T ]} defined in (11), to guide the two types of attenuations.
The first type of attenuation (ATT-I) applies to random
events that tasks stay safe. A task is called safe at time t
iff it has at least one remaining capacity then. The goal of
ATT-I is to ensure that each task i is safe at t, denoted by
(SFit = 1), with probability equal to E[SFit] = ϕt. The idea
of Real-Time Boostings (RTB) is that upon every arrival of
online worker j at time t, we sample one from the set of j’s
safe neighbors at t only, denoted by Nj,t. Specifically, the
boosted sampling distribution upon j’s arrival is captured
as D̃j,t = {x∗ij/

∑
ĩ∈Njt

x∗
ĩj
|i ∈ Njt}. The second type

of attenuation (ATT-II) applies to random events of tasks
getting matched at t after RTB such that each safe task

i ∈ Nj,t gets sampled and matched with j at time t with
probability equal to ψt · x∗ij/T . The improvement of the
performance of SM-B over SM-A comes from the key idea
of RTB. Note that the size of the random set Nj,t gets
reduced as time t since more and more of j’s neighbors have
their capacity exhausted and then become unsafe, which
leads to D̃j,t gets boosted over time. The two types of
attenuations are introduced mainly to make the algorithm
SM-B with boostings function well.

In Appendix A, we utilize the example presented in (Xu,
2023b) to illustrate the distinctions between Greedy (GRY),
which has been established as optimal for Online Submodu-
lar Welfare Maximization (Kapralov et al., 2013), and the
two policies SM-A and SM-B, as studied here.

1.4. Motivation for the Second Algorithm SM-B

Observe that our model captures, as a strictly special case,
edge-weighted online matching when every task and worker
has a unit matching capacity. In the following, we use this
simple model to illustrate the motivation behind SM-B. In
algorithm design for (edge-weighted) online stochastic op-
timization, balancing the performance among all edges is
a vital and challenging issue. In this case, we choose to
lower bound the competitiveness of an algorithm (ALG),
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as mine σe := E[Ye]/y
∗
e , where E[Ye] represents the proba-

bility that edge e is matched in ALG and y∗e is the optimal
solution in an LP benchmark denoting the probability that e
is matched in an OPT.

In most cases, when evaluating a matching policy, we often
encounter a bottleneck scenario where the lowest possible
ratio is achieved, denoted as e∗ = argmineσe, arrives when
e∗ neighbors a few edges with relatively large values of
σe. This phenomenon arises because neighboring edges are
always competing with each other. Consequently, when an
adversary orchestrates a worst-case scenario for e∗, it typi-
cally arranges numerous strong neighbors to “bully” edge
e∗ to an extreme degree. This underscores the importance of
balancing the performance of all edges. Intuitively, by sup-
pressing the performance of neighboring edges of e∗, we can
enhance that of e∗, resulting in improved competitiveness.
This is part of our motivation behind the carefully-designed
attenuations.

In our context, “edges” should be interpreted as task-skill
pairs, and thus, the balancing act involves coordinating
events of all task-skill pairs getting covered. Note that the
event that a given task-skill pair λ = (i, k) gets covered is
jointly determined by two factors. The first is whether task
i is safe when a worker j with skill k arrives. The second
is whether we sample the neighboring task i for worker j
upon its arrival, given that task i is safe. The two types
of attenuation are proposed to target these two events, re-
spectively, ensuring that the overall matching probability of
every task-skill pair getting covered at any time is equal to
a pre-arranged value. From the perspective of worst-case
analysis, we expect that the two types of attenuations will ef-
fectively suppress those strong “neighbors” of the bottleneck
task-skill pair, which in turn boosts the worst performance
and results in higher competitiveness.

1.5. Comparison against the Work by (Ma et al., 2023)

We detail the differences between ours and the work (Ma
et al., 2023) in the following aspects.

Model. Ma et al. (2023) considered an online matching
model under KIID with the objective of maximizing fair-
ness among offline agents. Specifically, they formulated
the objective in the benchmark LP as maxmini∈I(xi :=∑
j∈Ni

xij), which can be interpreted as maximizing the
minimum matching probability among all offline agents.
This objective can be directly reduced to a linear objective
of max ρ together with constraints ρ ≤ xi for all i ∈ I . Ad-
ditionally, Ma et al. (2023) assumed unit matching capacity
for every offline and online agent.

Approach and Analysis. Several features in the model
of (Ma et al., 2023) significantly simplify the matching
algorithm design and analysis compared to ours. First, the

linear objective of maximizing fairness among all offline
agents enables them to conduct a competitive analysis for
each offline vertex. This means they can lower bound the
competitiveness of a policy (ALG) as mini E[Xi]/x

∗
i , where

Xi = 1 indicates that i is matched in ALG and x∗i denotes an
optimal LP solution on i. Furthermore, the benchmark LP
in (Ma et al., 2023) enjoys an exclusive property that allows
them to assume, without loss of generality, that x∗i = ρ∗

for every i ∈ I . This further simplifies the analysis. For
this reason, they introduce a single layer of attenuation,
which targets offline agents only and ensures that every
agent is safe equal to a preset value. In contrast, we conduct
an analysis for each task-skill pair, which requires us to
introduce two layers of attenuations targeting two kinds
of events: whether a task is safe at any time and whether
a task gets sampled upon a worker’s arrival, respectively.
Moreover, we have to carefully correlate the two layers of
attenuations so that they can work properly under real-time
boostings. Second, Ma et al. (2023) assumed unit capacity
for all offline and online agents. Therefore, the single-layer
attenuation sequence there involves only one factor of time.
In contrast, the two-layer attenuation sequences here involve
both time and capacity. Meanwhile, in order to incorporate
the two parameters into the final competitiveness result, we
have to resort to more advanced math tools such as ordinary
differential equations, which are absent in (Ma et al., 2023)
since they just need to give a parameter-free analysis.

1.6. Comparison against the Work of (Xu, 2023b)

We consider the exact model (OCCM) introduced by Xu
(2023b). That being said, Xu (2023b) presented only one
non-adaptive algorithm, which shares the essence with
SM-A in Algorithm 1. They conducted a parameter-free
competitive analysis and showed that SM-A achieves a com-
petitiveness of 0.580. This result is recovered by our analy-
sis; see details in the paragraph titled “Remarks on Theo-
rem 1” below the statement of Theorem 1.

Note that for the same algorithm SM-A, Xu (2023b) ana-
lyzed its competitiveness directly by focusing on the worst-
scenario setting (τ = 1 and b = 3) since they did not need
to conduct a parameter-dependent analysis as we do here.
In contrast, we analyze SM-A by casting it as a strictly spe-
cial case of another adaptive algorithm (SM-B); see details
in the proof of Theorem 1 in Appendix C. In other words,
we do not analyze SM-A directly; instead, we obtain the
competitiveness function κ(τ, b) of SM-A as a byproduct
while evaluating the exact competitiveness function η(τ, b)
for SM-B. The competitive analysis of SM-B is much more
complicated than that analysis of SM-A in (Xu, 2023b): It is
caused not only by the adaptivity and the two layers of atten-
uations in SM-B (note that SM-A is non-adaptive with no at-
tenuations and it has a lower competitiveness, i.e., κ ≤ η in
Theorem 3), but also by the need for a parameter-dependent
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analysis. Consequently, we introduce more advanced tech-
niques, such as second-order ordinary differential equations,
which are completely absent in (Xu, 2023b).

1.7. Main Contributions

Recall that ∆ = maxλ∈Λ |Nλ| and τ = 1 − e−∆. For
the ease of presentation, we assume every task takes a uni-
form capacity bi = b with b ≪ T .6 Below are our main
theoretical results.

Theorem 1. [Section 2 and Appendix C] The non-adaptive
algorithm SM-A (Algorithm 1) achieves a competitive ratio
(CR) of κ(τ, b), where

κ(τ, b) =

∫ 1

0

dz Pr
[
Pois

(
(b− τ)z

)
≤ b− 1

]
e−z·τ . (7)

Remarks on Theorem 1. Note that the non-adaptive algo-
rithm SM-A shares the essence with that in (Xu, 2023b).
Numerical values in Table 4 in Appendix E suggest that
κ(τ, b) ≥ κ(1, 3) ∼ 0.580 for any τ ∈ [0, 1] and b ≥ 1,
where the worst setting arrives at (∆, τ) = (∞, 1) and
b = 3. This recovers the competitiveness result claimed
in (Xu, 2023b). In Appendix C, we present a simple proof
of Theorem 1 by casting κ as a special case of η, which cap-
tures the CR of the adaptive algorithm SM-B (as shown in
Theorem 2 below). Thus, our analysis offers an alternative
competitive analysis to that in (Xu, 2023b).

Theorem 2. [Section 3 and Appendix B] The adaptive al-
gorithm SM-B (Algorithm 2) achieves a competitive ratio
(CR) of η(τ, b), where

η(τ, b) =

∫ 1

0

dz ·
(
h′(z) · e−τ ·h(z)·

· Pr
[
Pois

(
(b− τ) · h(z)

)
≤ b− 1

])
, (8)

and where h(z) is the function satisfying

h′′ = (h′)3hb−1e−bh−1 bb

(b− 1)!
, h(0) = 0, h′(0) = 1.

(9)

For each given integer b ≥ 1, we can get an analytical form
of h(z); see the example when b = 2 in Equality (16) in
Section 3.1. More examples of h are offered in Appendix E.

6When tasks take distinct capacities, our results continue to
hold after resetting b := mini bi and assuming b takes a reasonably
large value. Note that the CR functions of κ and η in (7) and (8)
are not universally increasing over all positive integers of b, but
they are indeed when b is slightly large, e.g., b ≥ 10. In practical
settings, b typically takes a small finite value since each task is
allocated a small budget that can afford to recruit a certain number
of workers.

Theorem 3. [Section D] (1) For any given b ≥ 1, both
κ(τ, b) and η(τ, b) are non-increasing over τ ∈ [0, 1];
(2) For any given b ≥ 1 and τ ∈ [0, 1], η(τ, b) ≥
0.602 and η(τ, b) ≥ κ(τ, b) = (1 − e−τ )/τ − Θ(b−1/2),
where Θ(b−1/2) = c · b−1/2(1 + o(1)) with c ∈
[
√
1/(2πe2),

√
2/π] being a constant and o(1) vanishing

as b→ ∞.

Remarks on Theorem 3. (1) The second claim in Theo-
rem 3 implies that both SM-A and SM-B achieve a CR of
at least (1− eτ )/τ when b→ ∞, which further approaches
1− 1/e when (∆, τ) → (∞, 1). Meanwhile, Kapralov et al.
(2013) offered an instance of Online Capacitated Cover-
age Maximization (OCCM) under KIID showing that no
algorithm can beat 1 − 1/e when both b and ∆ go to un-
bounded. This suggests the optimality of both SM-A and
SM-B when b and ∆ are both unrestricted. (2) The inequal-
ity η(τ, b) ≥ 0.602 holds for all possible combinations of
(τ, b), which suggests a strict improvement on that of 0.580
for OCCM due to (Xu, 2023b).

We acknowledge the challenges in deriving a universal hard-
ness result (upper bound) for Online Capacitated Cover-
age Maximization (OCCM) as a function of (τ, b) for any
τ ∈ [0, 1] and b ∈ Z+. This is in contrast to what we
have accomplished in lower bounding the CR for SM-A and
SM-B. Nevertheless, we initiate the hardness analysis with
a special case when (∆, τ) = (1, 1− 1/e).

Theorem 4. [Appendix F] For OCCM with (∆, τ) =
(1, 1 − 1/e), no algorithm can achieve a competitive ra-
tio better than η̄(b) using LP (1) as a benchmark, where

η̄(b) :=E
[
min

(
1,

1

2b

2b∑
j=1

min(2,Pois(1))
)]
. (10)

Remarks on Theorem 4. (1) We can verify that η̄(1) =
1− 2/e2 ∼ 0.729 and η̄(∞) = limb→∞ η̄(b) = 2− 3/e ∼
0.896.(2) The above hardness result suggests that OCCM
(with ∆ = 1) differs significantly from classical online
b-matching problems. There are a few studies showing
that the same non-adaptive policy SM-A achieves a CR of
1 − o(1) for online b-matching under KIID using an even
weaker benchmark than LP (1), where o(1) is a vanishing
term when b→ ∞ (Brubach et al., 2016; Xu, 2023a). This
contrasts with the fact that no algorithm can achieve a CR
better than η̄(∞) ∼ 0.896 for OCCM, even as b → ∞.
We provide further clarification on the differences between
OCCM (with ∆ = 1) and online b-matching problems in
Appendix G.

Numerical Evaluations of the Adaptivity Gap. Inspired
by works investigating adaptivity gaps for (offline) stochas-
tic optimization problems (Bradac et al., 2019; Dean et al.,
2008), we study the issue in the context of online optimiza-
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tion. Let AG = η − κ, which is referred to as Adaptivity
Gap that captures the improvement in competitive ratio (CR)
brought by real-time boostings. We numerically evaluate
κ, η, and AG, when parameters (τ, b) take different values;
see details in Table 3. Due to the space limit, we list only
a few examples and defer a full version to the Appendix.
Throughout the main body of the paper, we maintain the
accuracy to the third decimal place for fractional values.

Table 3. Values of (κ,AG) under different settings of (τ, b) with
τ = 1 − e−∆ and AG = η − κ. For example, when (∆, τ) =
(1, 0.632) and b = 1, (κ,AG) = (0.632, 0.060) with η = κ +
AG = 0.692. Kapralov et al. (2013) considered the setting of
(∆, τ) = (∞, 1), b = ∞ only and showed that Greedy (GRY)
achieves an optimal CR of 1− 1/e ∼ 0.632 for general monotone
submodular valuation. The same optimal CR is recovered by SM-A
and SM-B for coverage valuation; see the result in the lower-right
corner marked in blue.

b
τ

0.632(∆ = 1) 0.950(∆ = 3) 1(∆ = ∞)

1 (0.632, 0.060) (0.632, 0.060) (0.632, 0.060)
3 (0.647, 0.030) (0.589,0.025) (0.580,0.024)
5 (0.663, 0.024) (0.595,0.018) (0.585,0.017)
∞ (0.741, 0) (0.646,0) (0.632,0)

Remarks on Results in Table 3. (1) For each row with a
given b value, we see that (i) both κ(τ, b) and η(τ, b) are
non-increasing over τ ∈ [0, 1], which is consistent with
Claim (1) of Theorem 3, and (ii) all AG = η − κ take
non-negative values, which is in line with Claim (2) of
Theorem 3. (2) For each column with a given τ ∈ [0, 1],
AG keeps decreasing from AG = 0.0603 at b = 1 to 0
at b = ∞. This suggests that the advantage brought by
real-time boostings to SM-B diminishes when b increases.
(3) The setting of (∆, τ) = (∞, 1) and b = ∞ is exactly
what considered by (Kapralov et al., 2013), where they
have shown GRY obtains an optimal CR of 1 − 1/e. The
same result is recovered by both SM-A and SM-B (see the
result marked in blue). Our results suggest that the opti-
mality of the golden barrier of 1− 1/e applies only when
(∆, τ) = (∞, 1) and b = ∞. In other words, we can well
overcome the barrier when either ∆ < ∞ (a finite value
with τ = 1− e−∆ < 1) or b < ∞; see, e.g., SM-B attains
a CR of η(τ, b = ∞) = (1 − e−τ )/τ > 1 − 1/e when
τ = 1 − e−∆ < 1 with ∆ < ∞. (4) As noted before,
both parameters b and ∆ generally take small finite values
in real-world settings since each task is allocated a small
budget that can afford to recruit a limited number of work-
ers, while each given skill is typically covered by a small
number of workers in a diverse workforce. This suggests
the superiority of SM-A and SM-B over GRY in practice,
where the former two can well beat the golden barrier of
1 − 1/e, while the latter has no theoretical guarantee in
CR. The example in Figure 1 in Appendix A with b = 1

and (∆, τ) = (1, 1− 1/e) highlights the gap: GRY is zero-
competitive, while SM-A and SM-B achieve CRs of at least
0.632 and 0.632 + 0.060 = 0.692, respectively, as shown
in the upper-left corner of Table 3.

Other Related Work. We acknowledge that the idea of
real-time boosting (RTB) has already been proposed and
implemented as heuristics for various real-world online-
matching markets such as ride-hailing and crowdsourcing
markets (Dickerson et al., 2019a; 2024). However, very few
of them have ever analyzed the performance theoretically.
Recently, the idea of RTB has been formally investigated
in the context of fairness maximization (Ma et al., 2023) in
online matching with all the offline and online agents having
a unit matching capacity. The analysis there is very different
from here since they focus on the framework of online
matching with linear objectives only (instead of coverage
functions) and there are no sequence-guided attenuations as
proposed here.

Weighted coverage studied here is one classical representa-
tive of a more general class of functions, called monotone
submodular. As for the online setting (where at least part
of agents arrive dynamically), Dickerson et al. (2019b) con-
sidered a variant of the online matching model under KIID,
whose objective is to maximize a single monotone submod-
ular function over the set of all matched edges. They gave a
0.399-competitive randomized matching policy. There are
several works of online submodular maximization on other
arrival settings; see, e.g., (Esfandiari et al., 2016) (maximiza-
tion of two monotone submodular functions under adversar-
ial), (Korula et al., 2018) (random order), and (Chan et al.,
2017; Rawitz & Rosén, 2021; Ausiello et al., 2012) (adver-
sarial under preemption). As for the offline setting, submod-
ular maximization and its variants have been extensively
studied; see a few recent examples (Breuer et al., 2020;
Fahrbach et al., 2019; Badanidiyuru et al., 2020; Karimi
et al., 2017; Wei et al., 2014; Hassani et al., 2017).

2. A Non-Adaptive Sampling Policy: SM-A
For self-completeness, we state the non-adaptive policy
(SM-A) formally in Algorithm 1. As noted before, SM-A
appears as a basic module in several other works before.

3. An Adaptive Sampling Policy: SM-B
The adaptive policy SM-B, as formally described in Algo-
rithm 2, takes two auxiliary sequences as input parameters,
which are defined in Equation (11). Let Ber(·) denote a
Bernoulli random variable.

ϕ1 = ψ1 = 1, (11)

ϕt = Pr
[ t−1∑
ℓ=1

Ber
(b · ψℓ

T

)
≤ b− 1

]
, ∀2 ≤ t ≤ T ;

7
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Algorithm 1 A non-adaptive sampling policy (SM-A)
1: Offline Phase:
2: Solve LP (1) for an optimal solution {x∗e|e ∈ E}.
3: Online Phase:
4: for t = 1, 2, . . . , T do
5: Let an online worker (of type) j arrive at time t.
6: Sample a task i ∈ Nj following a static distribu-

tion Dj := {x∗ij |i ∈ Nj}, which is valid since∑
i∈Nj

x∗ij ≤ 1 due to Constraint (5) of LP (1).
7: If i is safe at t (i.e., i’s capacity remains), then assign

j to i; otherwise, reject j.
8: end for

ψt =
1

1− 1/e+ ϕt/e
, ∀2 ≤ t ≤ T.

In Equation (11), the term
∑t−1
ℓ=1 Ber

(
b·ψℓ

T

)
represents the

sum of t− 1 independent Bernoulli random variables, each
with a mean of b · ψℓ

T , for 1 ≤ ℓ ≤ t − 1. Using the
above definition, we can sequentially compute the values of
{ϕt, ψt|t ∈ [T ]} for any given integer b ≥ 1. In Section 3.1,
we propose an Ordinary Differential Equation (ODE)-based
approach for the computation of {ϕt, ψt|t ∈ [T ]}.

Lemma 2. SM-B parameterized with {ϕt, ψt} is valid.

Proof. Recall that {ϕt, ψt} are used to guide the two types
of attenuations (ATT-I and ATT-II) such that (1) each task
is safe at t with probability equal to ϕt after ATT-I and (2)
each safe task i gets matched by a neighbor j with probabil-
ity equal to ψt · x∗ij/T after real-time boosting (RTB) and
ATT-II. For each task i, let αit be the probability that task i
is safe at t before ATT-I; and for each edge e = (i, j) ∈ E,
let βe,t·x∗e be the probability that i is sampled in RTB before
ATT-II, which excludes that j arrives at t and i is safe then.
We show αit ≥ ϕt and βe,t ≥ ψt for every i ∈ I, e ∈ E
and t ∈ [T ] over the induction on t ∈ {1, 2, . . . , T}.

Consider the base case t = 1. We see that αit = 1 = ϕt for
each i ∈ I . Focus on a given edge e = (i, j). Observe that
Njt = Nj when t = 1 since all neighbors of i are safe then.
Thus, e gets sampled with probability equal to

βe,t · x∗e :=
x∗e∑

ī∈Njt
x∗
īj

=
x∗e∑

ī∈Nj
x∗
īj

≥ x∗e,

where the last inequality follows from Constraint (5) of
LP (1), i.e.,

∑
ī∈Nj

x∗
īj
≤ 1. Thus, βe,t ≥ 1 = ψt at t = 1.

Now assume αiℓ ≥ ϕℓ and βe,ℓ ≥ ψℓ for every i ∈ I, e ∈
E and ℓ ∈ [t] and we show the case ℓ = t + 1. Our
induction assumption means that SM-B can function well
at least by (the beginning of time) t + 1. This allows us
to assume that for every i ∈ I, e ∈ E and ℓ ∈ [t], (1)
each task i is safe at ℓ equal to ϕℓ after ATT-I, denoted by
E[SFit] = ϕℓ; and (2) each edge e = (i, j) gets matched
during ℓ with probability equal to E[Me,ℓ] = ψℓ ·x∗e/T after

RTB and ATT-II, assuming i is safe at ℓ. Consider a given
task i ∈ I . From our analysis, assuming i is safe at ℓ, i
gets matched once during ℓ ∈ [t] iff one neighbor j ∈ Ni

arrives and matched i, which occurs with probability equal
to

∑
j∈Ni

ψℓ · x∗ij/T ≤ ψℓ · b/T due to Constraint (4) of
LP (1). Note that by definition, i stays safe at t+ 1 (before
ATT-I) if the total number of matching times before t+ 1
is no more than b− 1. Thus,

αi,t+1 ≥ Pr
[ t∑
ℓ=1

Ber
(b · ψℓ

T

)
≤ b− 1

]
= ϕt+1.

Now assume that after ATT-I, every task i ∈ I stays safe
with probability equal to ϕt+1, denoted by E[SFi,t+1] =
ϕt+1. Consider a given edge e = (i, j). Observe that i gets
sampled in RTB when j arrives at t+ 1 with probability

βe,t+1 · x∗e := E

[
x∗e∑

ī∈Nj,t+1
x∗
īj

∣∣∣ SFi,t+1 = 1

]

≥ x∗e
x∗e +

∑
ī∈Nj ,̄i ̸=i x

∗
īj
· ϕt+1

(12)

≥ x∗e
x∗e + (1− x∗e) · ϕt+1

(13)

≥ x∗e
(1− 1/e) + ϕt+1/e

= x∗e · ψt+1, (14)

where Inequality (12) is due to Jensen’s inequality; Inequal-
ity (13) follows from Constraint (5) of LP (1) and Inequal-
ity (14) from Constraint (6) of LP (1) (i.e., x∗e ≤ 1− 1/e)
and the fact ϕt+1 ∈ [0, 1]. Thus, we claim βe,t+1 ≥ ψt+1

and complete the induction.

Implementations of ATT-I and ATT-II. Recall that αit
is the probability that task i is safe at t before ATT-I, and
βe,t · x∗e is the probability that i is sampled in RTB when j
arrives at t. From Lemma 2, we see αit ≥ ϕt and βe,t ≥ ψt
for every i ∈ I, e ∈ E and t ∈ [T ]. By Monte-Carlo
simulating SM-B recursively to time t, we can get a sharp
estimate of all values {αit, βe,t|i ∈ I, e ∈ E} for each
given t ∈ [T ].7 For ATT-I, by independently relabeling
each safe task i as “safe” and “unsafe” with probability
ϕt/αit and 1 − ϕt/αit, respectively, we achieve the goal
that each task i survives to be safe with probability equal
to ϕt. Similarly, for ATT-II, we can match edge e = (i, j)
with probability ψt/βe,t (and reject i otherwise) after i gets
sampled in RTB. In that way, we achieve our goal that each
e is sampled and matched during t with probability equal to
ψt · x∗e .

7We can obtain an estimate with multiplicative error of ϵ
under confidence of (1 − δ) by choosing a sample size of
Θ((1/ϵ2) · ln(1/δ)). By taking ϵ = 1/poly(N), where N is
the input size, we can ensure ϵ brings just lower-order terms in the
final competitive ratios.
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Algorithm 2 An adaptive policy SM-B parameterized with auxiliary sequences {ϕt, ψt}, as defined in Equation (11).
1: Offline Phase:
2: Solve LP (1) for an optimal solution {x∗e|e ∈ E}.
3: Online Phase:
4: for t = 1, 2, . . . , T do
5: The first type of attenuations (ATT-I): Apply simulation-based attenuations such that each task is safe at (the

beginning of) t with probability equal to ϕt. � A task being safe means its capacity remains then.�
6: Let an online worker (of type) j arrive at t, and Nj,t be the set of safe neighbors at t.
7: Adaptive Boosting (RTB): Sampling a safe neighbor i following a boosted distribution D̃j,t = {x∗ij/

∑
ī∈Njt

x∗
īj
|i ∈

Njt}.
8: The second type of attenuations (ATT-II): Match i and j with a certain attenuation factor such that each safe

neighbor i ∈ Nj,t gets sampled and matched with j during t with probability equal to ψt · x∗ij .
� Details of ATT-I and ATT-II are offered in the paragraph titled “Implementations of ATT-I and ATT-II.” The

probability of (ψt · x∗ij) in ATT-II captures the event that i gets sampled and matched with j during time t, which
conditions on i is safe and j arrives at time t.�

9: end for

3.1. An Ordinary Differential Equation (ODE)-Based
Approach to Computing {ϕt, ψt} when T → ∞

For each t ∈ [T ], let Φ(t/T ) := ϕt and Ψ(t/T ) := ψt,
where Φ(z) and Ψ(z) are the two continuous functions
over z ∈ [0, 1] with Φ(0) = Ψ(0) = 1 and Ψ = 1/(1 −
1/e + Φ/e). Let h(z) =

∫ z
0
dζ · Ψ(ζ) for z ∈ [0, 1]. In

the following, we aim to derive analytical forms of Φ and
Ψ when T → ∞. Consider a given integer b ≥ 1. Let
Xt :=

∑t−1
ℓ=1 Ber

(
bψℓ

T

)
. By definition of {ϕt, ψt} in (11),

ϕt+1 = Pr[Xt ≤ b− 2] + Pr[Xt = b− 1](1− b · ψt/T ),
ϕt = Pr[Xt ≤ b− 2] + Pr[Xt = b− 1].

Thus,

ϕt+1 − ϕt = (−bψt/T ) · Pr[Xt = b− 1]

⇔(ϕt+1 − ϕt) · T = (−bψt) Pr[Xt = b− 1]

⇔(ϕt+1 − ϕt) · T = (−bψt) Pr
[∑
ℓ<t

Ber
(
bψℓ/T

)
= b− 1

]
⇔(ϕt+1 − ϕt) · T = (15)

(−bψt)
(
Pr

[
Pois

(∑
ℓ<t

bψℓ/T
)
= b− 1

]
+O(b/T )

)
⇔Φ′(z) = (−bΨ(z)) · Pr

[
Pois

(
b · h(z)

)
= b− 1

]
(
where z = t/T, h(z) =

∫ z
0
dζ ·Ψ(ζ), T → ∞

)
⇔(−e) ·Ψ−2 ·Ψ′ = (−bΨ) · Pr

[
Pois

(
b · h

)
= b− 1

]
(
since Ψ = 1/(1− 1/e+Φ/e)

)
⇔h′′ = (h′)3 · hb−1 · e−b·h−1bb/(b− 1)!.

In Equality (15), we use the Poisson approximation of a
series of Bernoulli trials due to (Serfling, 1978). Observe
that h(0) = 0 and h′(0) = 1 since Ψ(0) = 1. Thus, for each
given integer b ≥ 1, we can solve h(z) from the differential

equation as shown in (9), which is re-stated as below,

h′′ = (h′)3·hb−1·e−b·h−1·bb/(b−1)!, h(0) = 0, h′(0) = 1.

Since h(z) =
∫ z
0
dζ · Ψ(ζ), we can get Ψ(z) = h′(z) and

Φ through Equality Ψ = 1/(1− 1/e+ Φ/e). Below is an
example of h(z) when b = 2.

h(z) = IV
[ (e− 1) · z̃

e
− 1 + z̃

e2z̃+1

]
(z − 1/e), (16)

where IV[f ] means the inverse function of f . Thus, the
above expression means that when b = 2, h(z) = z̃ with

f(z̃) :=
(e− 1) · z̃

e
− 1 + z̃

e2z̃+1
= z − 1/e.

See more examples of h on other b values in Appendix E.

4. Conclusions and Future Work
In this paper, we proposed a model of online coverage max-
imization (OCCM), which is featured by that each offline
agent is associated with a coverage valuation. We care-
fully analyzed two LP-based sampling policies; one is non-
adaptive, while the other is adaptive armed with boostings.
For each policy, we characterized the final CR as a func-
tion of two parameters, a uniform matching capacity among
tasks and an upper bound on the number of online agents
covering any feature for any given offline agent.

Our work opens a few new directions. The first is general-
izing the current techniques to the case when each offline
agent is associated with a generic monotone submodular
function. Since coverage valuation is perhaps the most
fundamental representation of a monotone submodular, we
believe our techniques could offer useful insights into that
setting. The second goal is to identify some real datasets and
numerically evaluate the performance of the two policies
against Greedy among others.
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A. Illustrating the Differences Between GRY, SM-A, and SM-B: An Example due to (Xu, 2023b)
Xu (2023b) presented an example (see Figure 1) to show that Greedy (GRY) achieves a competitive ratio of zero for
OCCM. We use the same example to highlight the differences between GRY and the two policies SM-A (Algorithm 1) and
SM-B (Algorithm 2), as studied here.

1 1

2

n

w = 1

ϵ

ϵ

ϵ

I J
I = {1}, J = [n];

T = |J | = K = n;

bi = bj = 1,∀i, j;
wi=1,k=1 = 1;

w1,k = ϵ, 2 ≤ k ≤ n;

GRY = ϵ · (1− 1/n) + 1/n;

OPT = 1− 1/e+ ϵ/e.

y∗i=1,k=1 = 1− 1/e, y∗12 = 1/e;

y∗1,k = 0,∀3 ≤ k ≤ n;

x∗ij = y∗i,k=j ,∀i, j;

SM-A = (1− 1/e)2 +
ϵ(1− 1/e)

e
.

SM-A/OPT ∼ 0.6321.

SM-B/OPT ≥ 0.6924.

Figure 1. An example highlighting the difference between Greedy (GRY) and the two policies SM-A (Algorithm 1) and SM-A (Algo-
rithm 2) proposed here. There are n = |J | worker types and K = n skills such that each worker (of type) j possesses one single skill
k = j ∈ [n], and there is one single task i = 1 with a unit matching capacity such that wik = 1 for k = 1 and wik = ϵ > 0 for
2 ≤ k ≤ n. We can verify that (1) GRY yields an expected utility of no more than ϵ+ 1/n since it matches whatever arrives at t = 1
and then stops. In contrast, an offline optimal (OPT) achieves a total of 1− 1/e+ ϵ/e in expectation, which matches i = 1 with j = 1
if it arrives at least once (with probability 1− 1/e) and with any other arriving j ̸= 1 otherwise. Thus, we claim that GRY achieves a
CR no more than (ϵ + 1/n)/(1 − 1/e), which approaches zero when n → ∞, ϵ → 0. (2) An optimal solution to benchmark LP (1)
can be as follows: x∗i=1,j=1 = y∗i=1,k=1 = 1− 1/e, x∗i=1,j=2 = y∗i=1,k=2 = 1/e, and x∗i=1,j = y∗i=1,k = 0 for all 3 ≤ j, k ≤ n with
an optimal value Val(LP -(1)) = 1− 1/e+ ϵ/e. (3) SM-A will match j = 1 and j = 2 with respective probabilities 1− 1/e and 1/e
non-adaptively when each arrives (with probability 1/n) during each time, yielding an expected utility of (1 − 1/e)(1 − 1/e + ϵ/e).
This indicates that SM-A achieves a CR of 1− 1/e on the instance. (4) SM-B will match j = 1 and j = 2 with respective probabilities
(1− 1/e) · ψt and (1/e) · ψt when each arrives (with probability 1/n) at time t ∈ [T ] given i is not matched then, where {ψt|t ∈ [T ]} is
an increasing sequence with ψ1 = 1 and ψT ≥ 1/

(
1− 1/e+ (1− 1/e)/e

)
as specified in (11). This yields an improved CR of at least

0.6321 + 0.0603 = 0.6924 for SM-B.

B. Proof of Theorem 2
B.1. An Auxiliary Balls-and-Bins Model for Competitive Analysis

Consider a given task-skill pair λ = (i, k) ∈ Λ and recall that Nλ is the set of neighbors of i covering skill k. Thus, skill k is
covered for i iff one neighbor j ∈ Nλ is matched before the capacity b of task i gets exhausted. Note that during each round
t, SM-B matches a neighbor j ∈ Nλ with probability

∑
j∈Nλ

ψt · x∗ij/T = ψt · x∗λ/T := ψt · p/T (after RTB and ATT-II),
where p = x∗λ. Meanwhile, SM-B matches a neighbor j ∈ (Ni−Nλ) with probability

∑
j∈(Ni−Nλ)

ψt ·x∗ij/T := ψt · q/T
with q =

∑
j∈(Ni−Nλ)

x∗ij . By the nature of SM-B, it keeps on sampling neighbors from Nλ and (Ni−Nλ) with respective
probabilities ψt · p/T and ψt · q/T during each round until either b neighbors are matched or we reach the last round
T . Observe that (1) p + q ≤ b from Constraint (4) and (2) p = x∗λ ≥ y∗λ by Constraint (3) of LP-(1). For λ = (i, k),
let Yλ = 1 indicate at least one neighbor from Nλ gets matched in the end, which suggests skill k is covered for task i.
For fixed values of b and y∗λ, we see E[Yλ]/y

∗
λ gets minimized when p = y∗λ. Thus, assume WLOG that p+ q = b 8 and

p = y∗λ ≤ 1− e−∆ = τ , where the last inequality is due to Constraint (2).

Let us treat task i as a bin with a capacity b and neighbors from Nλ and Ni − Nλ as two types of balls. Then we can
rephrase the above sampling process of SM-B alternatively as a Balls-and-Bins model as follows.

A Balls-and-Bins Model (BBM). Suppose we have one single bin and two types of balls, namely type A and type B. We
have T rounds and during each round t ∈ [T ], at most one single ball will get sampled (with replacement) such that it is from
type A with probability ψt · p/T and from type B with ψt · q/T , and with probability 1− (p+ q)/T , no ball gets sampled.
Here we assume T ≫ b ≥ 1, 0 ≤ p, q ≤ b, p + q = b, and p ≤ τ . Each bin has a capacity of b such that the sampling
process will stop either the bin has b balls (copies of each type will be counted) or we reach the last round t = T . Let Y = 1

8We can create virtual neighbors of i to make p+ q = b, which have the same impact as ATT-I.
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indicate that at least one ball of type A gets sampled by the termination of BBM. We aim to prove that E[Y ]/p ≥ η(τ, b),
where η is as defined in (8).

B.2. A Key Lemma and Its Proof

For each task-skill pair λ = (i, k), let Yλ = 1 indicate that skill k is covered for task i in SM-B.

Lemma 3. E[Yλ]/y
∗
λ ≥ η(τ, b) for every λ ∈ Λ, where η(τ, b) is as defined in (8) and {y∗λ} is part of an optimal solution to

LP (1).

Proof. Let Y (t) = 1 indicate that one ball of type A gets sampled for the first time during t ∈ [T ]. Thus, Y =∑T
t=1 Y (t). Observe that Y (t) = 1 iff (1) no ball of type A has ever been sampled before t, which occurs with probability∏
ℓ<t(1− ψt · p/T ); (2) one ball of type A gets sampled at t with probability ψt · p/T ; and (3) the bin has a capacity no

more than b − 1 at (the beginning of) t, which happens with probability Pr
[∑t−1

ℓ=1 Ber
(

(b−τ)·ψℓ

T−ψℓ

)
≤ b − 1

]
. The last

probability conditions on no ball of type A gets sampled during each time 1 ≤ ℓ < t, which suggests a ball of type B gets
sampled during ℓ with a probability (ψℓ · q/T )/(1− ψℓ · p/T ) = (ψℓ · (b− τ))/(T − ψℓ · p).

E[Y ]/p =

T∑
t=1

E[Y (t)]/p =

T∑
t=1

ψt
T

t−1∏
ℓ=1

{(
1− p · ψℓ

T

)
· Pr

[ t−1∑
ℓ=1

Ber
( (b− p) · ψℓ
T − p · ψℓ

)
≤ b− 1

]}

=

T∑
t=1

ψt
T

∏
ℓ<t

{(
1− p · ψℓ

T

)
·
(
Pr

[
Pois

(∑
ℓ<t

(b− p) · ψℓ
T

)
≤ b− 1

]
−O(b/T )

)}

=

∫ 1

0

dz ·

{
Ψ(z) · e−p·h(z) · e−(b−p)·h(z) ·

b−1∑
ℓ=0

(b− p)ℓ · hℓ(z)
ℓ!

}
(

where z = t/T and T → ∞, and recall that Ψ(t/T ) = ψt and h(z) =
∫ z
0
dζ ·Ψ(ζ)

)
=

∫ 1

0

dz ·

{
h′(z) · e−b·h(z) ·

b−1∑
ℓ=0

(b− p)ℓ · hℓ(z)
ℓ!

}

≥
∫ 1

0

dz ·

{
h′(z) · e−b·h(z) ·

b−1∑
ℓ=0

(b− τ)ℓ · hℓ(z)
ℓ!

} (
since p ≤ 1− e−∆ = τ

)
=

∫ 1

0

dz · h
′(z)

eτ ·h(z)
· Pr

[
Pois((b− τ) · h(z)) ≤ b− 1

]
= η(τ, b).

B.3. Proof of Theorem 2

Proof. By the linearity of expectation, we have

E[SM-B] =
∑
λ∈Λ

wλ · E[Yλ] ≥ η(τ, b)
∑
λ∈Λ

wλ · y∗λ = η(τ, b) · Val(LP (1)) ≥ η(τ, b) ·OPT,

where Val(LP (1)) and OPT denote the optimal value of LP (1) and the performance of a clairvoyant optimal, respectively.
The last inequality above follows from Lemma 1. Thus, we establish the competitiveness of η(τ, b) for SM-B.

C. Proof of Theorem 1
Proof. We can cast SM-A as a special case of SM-B with no RTB, ATT-II, or ATT-I as follows. For SM-A, we see that
(1) during each time t when a worker j arrives, each neighbor i ∈ Nj gets sampled and matched with probability equal
to ψ̃t · x∗ij with ψ̃t = 1, conditioning on j arrives and i is safe then; and (2) each i is safe at t with probability equal to
ϕ̃t = Pr[

∑t−1
ℓ=1 Ber(b/T ) ≤ b− 1] in the worst scenario when x∗i = b. Thus, we can analyze SM-A in the same way as we
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did for SM-B but with {ϕ̃t, ψ̃t} redefined as below,

ϕ̃1 = 1, (17)

ψ̃t = 1,∀1 ≤ t ≤ T

ϕ̃t = Pr
[ t−1∑
ℓ=1

Ber
(b · ψ̃ℓ

T

)
≤ b− 1

]
,∀1 ≤ t ≤ T.

Consider a given task-skill pair λ = (i, k). Similar to SM-B, assume that we have one single bin with capacity b and
two types of balls, which get sampled with probability p/T = y∗λ/T and (b − p)/T , respectively. We aim to show that
E[Y ]/p ≥ κ(τ, b), where Y = 1 indicates that a ball of type I gets sampled at least once before either the bin exhausts
capacity or it reaches the last round T . Observe that in our case, Ψ̃(z) = 1, where Ψ̃(t/h) = ψ̃t = 1 as defined in (17).
Thus, h̃(z) =

∫ z
0
dζ · Ψ̃(ζ) = z for z ∈ [0, 1]. Following the same analysis we did to E[Y ]/p as shown in SM-B, we see

that E[Y ]/p ≥ η(τ, b) = κ(τ, b), where h(z) appearing in η(τ, b) is replaced by the updated version h̃(z) = z.

Remarks. We emphasize that dual sequences {ϕ̃t, ψ̃t} in Equation (17) serve an essentially different purpose from {ϕt, ψt}
in Equation (11), though the two look similar. For SM-B, we introduce the dual sequences in (11) to guide the two types of
attenuations, which have a direct impact on how SM-B operates. In contrast, we create the dual sequences in (17) here just
to facilitate the online analysis of SM-A, which have no effect on the matching policy itself.

D. Proof of Theorem 3
We split the main Theorem 3 into the following three lemmas.

Lemma 4. For any given b ≥ 1, both κ(τ, b) and η(τ, b) are non-increasing over τ ∈ [0, 1].

Lemma 5. For any given b ≥ 1 and τ ∈ [0, 1], η(τ, b) ≥ 0.602 and η(τ, b) ≥ κ(τ, b).

Lemma 6. κ(τ, b) = (1 − e−τ )/τ − Θ(b−1/2), where Θ(b−1/2) = c · b−1/2(1 + o(1)) with c ∈ [
√

1/(2πe2),
√

2/π]
being a constant and o(1) vanishing as b→ ∞.

D.1. Proof of Lemma 4

Proof. Note that for any τ ∈ [0, 1] and b ≥ 1,

κ(τ, b) =

∫ 1

0

dz · e−τ ·z · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
=

∫ 1

0

dz · e−τ ·z ·
b−1∑
ℓ=0

e−(b−τ)·z (b− τ)ℓzℓ

ℓ!

=

∫ 1

0

dz ·
b−1∑
ℓ=0

e−b·z
(b− τ)ℓzℓ

ℓ!
.

Observe that each term in the above summation is decreasing over τ ∈ [0, 1] for any given b ≥ 1. So is κ(τ, b). Following
the same analysis, we can prove it for the function η.

D.2. Proof of Lemma 5

As for the first claim η(τ, b) ≥ 0.602 for any τ ∈ [0, 1] and b ≥ 1: It suffices to show that η(1, b) ≥ 0.602 for any b ≥ 1 by
Lemma 4. We can employ techniques similar to those presented in (Xu, 2023b). Specifically, we can manually compute
and verify that η(1, b) ≥ 0.602 for small b values (as shown in Table 4 in Appendix E) and then apply Chernoff bound to
establish η(1, b) ≥ 0.602 for large b values.

As for the second claim: Intuitively, for any given pair of parameters (τ, b) with τ ∈ [0, 1] and b ≥ 1, the policy with
real-time boostings (SM-B) should outperform the counterpart (SM-A) without boostings, which suggests η(τ, b) ≥ κ(τ, b).
We offer a rigorous proof as follows.

Proof. Consider a given τ ∈ [0, 1]. Let g(z) be a generic function, which is continuous and has the first order of derivative
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over z ∈ [0, 1]. Define

Γ(τ, b, g) =

∫ 1

0

dz · g′(z) · e−τ ·g(z) · Pr
[
Pois

(
(b− τ) · g(z)

)
≤ b− 1

]
=

∫ 1

0

dz ·

{
g′(z) · e−b·g(z) ·

b−1∑
ℓ=0

(b− τ)ℓ · gℓ(z)
ℓ!

}
.

Note that when g(z) = h(z) =
∫ z
0
dζ ·Ψ(ζ), where Ψ(t/T ) = ψt ≥ 1 for any ζ ∈ [0, 1] with {ψt} as defined in (11), we

have Γ(τ, b, h) = η(τ, b). In this case, we have h(z) ≥ z for z ∈ [0, 1] and h(0) = 0 and h(1) ≥ 1. Meanwhile, when
g(z) = h̃(z) = z for z ∈ [0, 1], we have Γ(τ, b, h̃) = κ(τ, b). Define

Γℓ(τ, b, g) =

∫ 1

0

dz · g′(z) · e−b·g(z) · (b− τ)ℓ · gℓ(z)
ℓ!

,

such that Γ(τ, b, g) =
∑b−1
ℓ=0 Γℓ(τ, b, g). In the following, we prove that Γℓ(τ, b, h) ≥ Γℓ(τ, b, h̃) by induction over

ℓ = 0, 1, . . . , b− 1, which leads to the claim that η(τ, b) = Γ(τ, b, h) ≥ Γ(τ, b, h̃) = κ(τ, b).

Consider the base case ℓ = 0. Thus,

Γ0(τ, b, h) =

∫ 1

0

dz · h′(z) · e−b·h(z) = 1

b

(
1− e−b·h(1)

)
≥ 1

b

(
1− e−b·h̃(1)

)
=

∫ 1

0

dz · h̃′(z) · e−b·h̃(z) = Γ0(τ, b, h̃),

where the inequality above is due to h(1) ≥ 1 = h̃(1). Now assume that Γℓ(τ, b, h) ≥ Γℓ(τ, b, h̃) for all 0 ≤ ℓ ≤ b− 2, and
we show the case for ℓ = b− 1. Note that when ℓ = b− 1,

Γℓ(τ, b, h) · (ℓ!/(b− τ)ℓ) =

∫ 1

0

dz · h′(z) · e−b·h(z) · hℓ(z)

=
−e−b·h(1) · hℓ(1)

b
+
ℓ

b

∫ 1

0

dz · e−b·h(z) · hℓ−1(z) · h′(z)

≥ −e−b·h̃(1) · h̃ℓ(1)
b

+
ℓ

b

∫ 1

0

dz · e−b·h̃(z) · h̃ℓ−1(z) · h̃′(z) = Γℓ(τ, b, h̃) · (ℓ!/(b− τ)ℓ), (18)

which suggests that Γℓ(τ, b, h) ≥ Γℓ(τ, b, h̃). Inequality (18) follows from (1) the function e−b·x ·xℓ is decreasing over x ≥ 1,
h(1) ≥ h̃(1) ≥ 1, and parameters ℓ and b satisfies ℓ ≤ b−1; and (2) the inductive assumption that Γℓ′(τ, b, h) ≥ Γℓ′(τ, b, h̃)
for all 0 ≤ ℓ′ ≤ b− 2.

D.3. Proof of Lemma 6

Proof. Consider a given τ ∈ [0, 1]. We first prove that κ(τ, b) ≥ (1− e−τ )/τ −Θ(b−1/2).

κ(τ, b) =

∫ 1

0

dz · e−z·τ · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
=

∫ 1

0

dz · e−z·τ ·
(
1− Pr

[
Pois

(
(b− τ) · z

)
≥ b

])
≥

∫ 1

0

dz · e−z·τ
(
1− exp

(−b · (1− z)2

2

))(
by the upper tail bound of Poisson distribution (Canonne, 2020)

)
= (1− e−τ )/τ −

∫ 1

0

dξ · e−(1−ξ)·τ · exp
(−b · ξ2

2

)
(setting 1− z = ξ)

≥ (1− e−τ )/τ −
∫ 1

0

dξ · exp
(−b · ξ2

2

)
= (1− e−τ )/τ −

√
π

2

1√
b
(1 + o(1)),

(
where o(1) is vanishing when b→ ∞

)
.
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Now we show that κ(τ, b) ≤ (1− e−τ )/τ −Θ(b−1/2).

κ(τ, b) =

∫ 1

0

dz · e−τ ·z · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
≤

∫ 1

0

dz · e−τ ·z · Φ
(b− 1− (b− τ) · z√

(b− τ) · z

)(
where Φ(·) is the CDF of the standard normal distribution

)
(19)

≤
∫ 1

0

dz · e−τ ·z · Φ
( b · (1− z)√

(b− τ) · z

)
= (1− e−τ )/τ − e−τ√

2π

1√
b
(1 + o(1))

(
where o(1) is vanishing when b→ ∞

)
≤ (1− e−τ )/τ − 1√

2πe2
1√
b
(1 + o(1)).

Note that in Inequality (19), we treat Pois((b− τ) · z) as the sum of T i.i.d. Bernoulli random variables each with mean
(b− τ) · z/T , and then we apply Slud’s Inequality (Slud, 1977) with T → ∞. The last equality is obtained by applying
techniques similar to the previous case of lower bounding κ(τ, b).

E. Numerical Evaluation of κ(·, ·) and η(·, ·)
For any given pair of parameters (τ, b), we can directly compute the value following its definition in (7). Thus, we focus
on the computation of the functions h and η. Throughout this paper, by default, we maintain the accuracy of numerical
values to the fourth decimal place. Due to the space limit, we offer numerical evaluations of κ and η when b and ∆ each
take values in 1, 2, 3, 4, 5,∞ only; see Table 4.

E.1. When b = 1: κ(τ, 1) = 1− 1/e ∼ 0.6321, η(τ, 1) ∼ 0.6924.

In this case, we see

κ(τ, b) =

∫ 1

0

dz · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
· e−z·τ =

∫ 1

0

dz · e−z = 1− 1/e.

η(τ, b) =

∫ 1

0

dz · h′(z) · e−τ ·h(z) · Pr
[
Pois

(
(b− τ) · h(z)

)
≤ b− 1

]
=

∫ 1

0

dz · e−h(z) · h′(z) = 1− e−h(1).

Observe that the differential equation on h in (9) is reduced to h′′ = (h′)3 · e−h−1, h(0) = 0, h′(0) = 1 when b = 1. We
can solve from it that

h(1) = 1− (e− 1) · IV[z̃ · ez̃]
( 1

e(e− 1)

)
,

where IV[f ](z) = z̃ such that f(z̃) = z for a function f . Substituting the value h(1) back to η, we get η(τ, b) = 1−e−h(1) ∼
0.6924. We see that both κ and η have no dependence on τ when b = 1.

E.2. When b = ∞: κ(τ,∞) = η(τ,∞) = (1− e−τ )/τ .

From Lemma 6, we see that when b = ∞ and any τ ∈ [0, 1],

κ(τ, b) = (1− e−τ )/τ.

Now we focus on the computation of η(τ,∞). Observe that Ψ(z) = ψt ∈ [1, 1/(1− 1/e) ∼ 1.582] with z = t/T and {ψt}
defined in (11). Thus, we claim that h(z) ∈ [z, z/(1− 1/e)] for any z ∈ [0, 1]. Recall that h(0) = 0 and h′(0) = 1, which
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satisfies the below equation

h′′ = (h′)3 · hb−1 · e−b·h−1 bb

(b− 1)!

= (h′)3 · hb−1 · e−b·h · b
e
· eb√

2πb

(
by applying Stirling’s formula to b!

)
= (h′)3 · e−b·h+b+(b−1) lnh ·

√
b

2π

1

e
= (h′)3 · h−1 · eb·(1+lnh−h) ·

√
b

2π

1

e
.

We can verify that for any h ∈ (0, 1), 1 + lnh − h < 0, which implies h′′ = 0 when b → ∞. Thus, we claim that
h′ = 1 = Ψ(z) and h(z) = z when b→ ∞ and h ∈ (0, 1). By continuity of h, we have h(z) = z for z ∈ [0, 1]. Therefore,

η(τ, b) =

∫ 1

0

dz · h′(z) · e−τ ·h(z) · Pr
[
Pois

(
(b− τ) · h(z)

)
≤ b− 1

]
=

∫ 1

0

dz · e−τ ·z · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
= (1− e−τ )/τ,

(
after taking b→ ∞

)
.

Thus, we see that κ(τ,∞) = η(τ,∞) = (1− e−τ )/τ .

E.3. When 2 ≤ b <∞

κ(τ, b) =

∫ 1

0

dz · Pr
[
Pois

(
(b− τ) · z

)
≤ b− 1

]
· e−z·τ =

∫ 1

0

dz ·
b−1∑
ℓ=0

e−b·z · (b− τ)ℓ · zℓ

ℓ!
.

η(τ, b) =

∫ 1

0

dz · h′(z) · e−τ ·h(z) · Pr
[
Pois

(
(b− τ) · h(z)

)
≤ b− 1

]
=

∫ 1

0

dz ·
b−1∑
ℓ=0

h′(z) · e−b·h(z) · (b− τ)ℓ · hℓ(z)
ℓ!

,

where h can be solved from the differential equation in (9) as follows:

h(z) = IV
[(
1− e−1

)
· z̃ − e−2z̃−1 · (1 + z̃)

]
(z − 1/e) b = 2

= IV
[(
1− e−1

)
· z̃ − e−3z̃−1 ·

(
1 + 2z̃ +

3z̃2

2

)]
(z − 1/e) b = 3

= IV
[(
1− e−1

)
· z̃ − e−4z̃−1 ·

(
1 + 3z̃ + 4z̃2 +

8z̃3

3

)]
(z − 1/e) b = 4

= IV
[(
1− e−1

)
· z̃ − e−5z̃−1 ·

(
1 + 4z̃ +

15

2
z̃2 +

25z̃3

3
+

125

24
z̃4
)]

(z − 1/e) b = 5

Remarks on the results of Table 4. (1) For each row with a given b value, both κ(τ, b) and η(τ, b) are decreasing over
τ ∈ [0, 1], which is consistent with Theorem 3. (2) The adaptivity gap AG(τ, b) = η(τ, b)− κ(τ, b) is a constant of 0.0603
at b = 1 and 0 at b = 1, respectively; and in both cases, AG is irrespective of τ ∈ [0, 1]. Additionally, for each given
τ ∈ [0, 1], AG keeps decreasing from AG = 0.0603 at b = 1 to 0 at b = ∞.

F. Proof of Theorem 4
Proof. Consider the example shown in Figure 2. In this scenario, there are two offline tasks, each with a capacity of b, and a
total of |J | = n = 2b worker types, each with a unit capacity. There are K = n = 2b skills, and each worker of type j
possesses a single skill k = j ∈ [n] that applies to both tasks. Thus, for each pair λ = (i, k), we have Nλ = {j = k}, and
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Table 4. Values of κ(τ, b) and η(τ, b) for different parameters (τ, b) with τ = 1− e−∆. All fractional values are rounded to the fourth
decimal place.

(κ, η)
∆ = 1 2 3 4 5 · · · ∞
τ = 0.6321 0.8647 0.9502 0.9817 0.9933 · · · 1

b = 1 (0.6321, 0.6924) (0.6321, 0.6924) (0.6321, 0.6924) (0.6321, 0.6924) (0.6321, 0.6924) · · · (0.6321, 0.6924)
2 (0.6355, 0.6733) (0.6009,0.6350) (0.5882,0.6209) (0.5836,0.6157) (0.5818,0.6138) · · · (0.5808,0.6127)
3 (0.6472, 0.6771) (0.6042,0.6303) (0.5889,0.6137) (0.5834,0.6077) (0.5813,0.6055) · · · (0.5802,0.6042)
4 (0.6562, 0.6816) (0.6087,0.6305) (0.5921,0.6128) (0.5861,0.6063) (0.5839,0.6040) · · · (0.5826,0.6026)
5 (0.6631, 0.6855) (0.6127,0.6318) (0.5952,0.6132) (0.5889,0.6066) (0.5867,0.6042) · · · (0.5853,0.6027)

· · · · · · · · · · · · · · · · · · · · · · · ·
∞ (0.7412, 0.7412) (0.6694,0.6694) (0.6455,0.6455) (0.6370,0.6370) (0.6339,0.6339) · · · (0.6321,0.6321)

1

2

1

2

n

w = 1
I J

I = {1, 2}, J = [n];

|J | = n = K = 2b;

bi=1 = bi=2 = b;

bj = 1,∀j;
wλ = 1,∀λ = (i, k);

x∗ij = 1/2,∀(i, j);
y∗i,k = 1/2,∀(i, k);
Val(LP -(1)) = 2b;

OPT = E
[
min

(
2b,

2b∑
j=1

min(2,Pois(1))
)]
.

Figure 2. An example illustrating the upper bounds on Competitive Ratio (CR) for Online Capacitated Coverage Maximization (OCCM)
with (∆, τ) = (1, 1− 1/e) due to Benchmark LP (1).

the maximum value of ∆ = maxλ |Nλ| is equal to 1. We set wλ = 1 for all λ = (i, k). We can verify that: (1) An optimal
solution to LP (1) is as follows: x∗ij = y∗ik = 1/2 for all (i, j) and (i, k), with an optimal value of Val(LP -(1)) = 2b. (2)
Both an offline optimal policy and an online optimal policy, denoted by OPT, operate in the same way. They assign each
arriving worker j to task i = 1 for the first arrival and to task i = 2 for the second one, ignoring all future arrivals of j. The
expected performance is given by OPT = E

[
min

(
2b,

∑2b
j=1 min(2,Pois(1))

)]
. Thus, we claim that any optimal policy

can never achieve a competitive ratio better than

OPT

Val(LP -(1))
=

E
[
min

(
2b,

∑2b
j=1 min(2,Pois(1))

)]
2b

= E
[
min

(
1,

1

2b

2b∑
j=1

min(2,Pois(1))
)]

:= η̄(b).

G. Further Remarks on the Differences between OCCM and Online b-Matching
When every task takes a unit matching capacity (b = 1), our model (OCCM) is reduced to the well-studied online (bipartite)
matching under KIID; see the survey book (Mehta, 2013) for different variants of online matching problems. In this case,
each edge e = (i, j) is associated with a positive weight that captures the total utility of all skills covered by j. Note that it
may be tempting to cast online b-matching (under KIID) as a special case of OCCM as follows. Consider a special setting
of OCCM, where every task takes a uniform capacity of b and for each task i, every neighbor worker j ∈ Ni possesses a set
of skills disjoint from each other such that the total weight of skills covered by j for i is equal to the edge weight wij . In this
way, we see that for any S ⊆ Ni, assigning S to i yields a total utility equal to the sum of all edge weights involving i and S.
Unfortunately, the reduction above is not correct. For every single edge e with weight we, matching e for ℓ times could yield
a total weight of ℓ · we in online b-matching, while it can return at most a utility of we in OCCM.

H. Generalization from One-Sided Capacitated to Two-Sided Capacitated Case
Recall that in the current setting of OCCM, every online agent has a unit matching capacity. Now, we consider the two-sided
capacitated case when each online agent (of type) j has a matching capacity bj ∈ Z+, the exact setting considered in (Xu,
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2023b). The updated benchmark LP is as follows.

max
∑
λ∈Λ

wλ · yλ

yλ ≤ 1− e−∆ = τ ∀λ ∈ Λ

yλ ≤ xλ :=
∑
j∈Nλ

xij ∀λ = (i, k) ∈ Λ

xi :=
∑
j∈Ni

xij ≤ bi ∀i ∈ I

xj :=
∑
i∈Nj

xij ≤ bj ∀j ∈ J (20)

0 ≤ xe ≤ 1− 1/e, yλ ≤ 1 ∀e ∈ E, λ ∈ Λ.

The only change made to the previous benchmark LP (1) pertains to Constraint (20), where the right-hand-side value of 1
has been replaced with bj . The result of Lemma 1 is also applicable in this context. The validity of Constraint (20) can be
justified as follows: For each online agent j, the expected number of arrivals is 1, and upon each arrival, it can be matched
with up to bj different offline agents. Consequently, the expected total number of matches for each agent j should not exceed
bj .

We can employ the same Dependent-Rounding (DR)-based approach outlined in (Xu, 2023b) to address the challenges
arising from the requirement of multiple matchings for each arrival of an online agent. Specifically, we can adapt SM-A and
SM-B to accommodate the non-unit matching capacities for each online agent as follows. All edits added to the previous
versions are marked in purple.

Algorithm 3 The modified version of the non-adaptive sampling policy (SM-A) for the two-sided capacitated case.
1: Offline Phase:
2: Solve LP (1) for an optimal solution {x∗e|e ∈ E}.
3: Online Phase:
4: for t = 1, 2, . . . , T do
5: Let an online worker (of type) j arrive at time t.
6: Apply Dependent Rounding (DR) (Gandhi et al., 2006) to the static vector x∗

j :=
(
x∗ij |i ∈ Nj

)
, and let Xj =

(Xij |i ∈ Nj) be the rounded binary vector.
7: If Xij = 1 and i is safe at t (i.e., i’s capacity remains), then assign j to i; otherwise, reject j.
8: end for

Algorithm 4 The modified version of the adaptive policy SM-B parameterized with auxiliary sequences {ϕt, ψt}, as defined
in Equation (11).

1: Offline Phase:
2: Solve LP (1) for an optimal solution {x∗e|e ∈ E}.
3: Online Phase:
4: for t = 1, 2, . . . , T do
5: The first type of attenuations (ATT-I): Apply simulation-based attenuations such that each task is safe at (the

beginning of) t with probability equal to ϕt. � A task being safe means its capacity remains then.�
6: Let an online worker (of type) j arrive at t, and Nj,t be the set of safe neighbors at t.
7: Adaptive boosting (RTB): Apply Dependent Rounding to the boosted vector x∗

jt :=
(
x∗ij ·bj/

∑
ĩ∈Njt

x∗
ĩj
| i ∈ Njt

)
.

Let Xjt = (Xijt|i ∈ Ni) be the rounded binary vector.
8: The second type of attenuations (ATT-II): If Xijt ≥ 1, match i and j with a certain attenuation factor such that

each safe neighbor i ∈ Nj,t gets sampled and matched with j during t with probability equal to ψt · x∗ij .
9: end for

Remarks on Algorithms 3 and 4. (1) For Algorithm 3: Due to the degree-preservation property of DR, it is guaranteed that,
with probability one,

∑
i∈Nj

Xij ≤
∑
i∈Nj

x∗ij ≤ bj . This ensures that an agent j is assigned to at most bj neighbors upon
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every arrival in the updated version of SM-A, as each assignment requires Xij = 1. The same analysis leads to the validity
of Algorithm 4. (2) DR maintains the marginal distribution, such that E[Xij ] = x∗ij and enforces negative correlations
among {Xij |i ∈ Nj}. These two properties ensure that all previous analyses for SM-A continue to be applicable here. The
same applies to SM-B.
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