
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNBOUNDED ACTIVATIONS FOR CONSTRAINED
MONOTONIC NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Monotonic multi-layer perceptrons (MLPs) are crucial in applications requiring
interpretable and trustworthy machine learning models. This particularly applies FIX
to domains, in which decisions must adhere to specific input-output relationships.
Traditional approaches that build monotonic MLPs with universal approximation
guarantees often rely on constrained weights and bounded activation functions,
which suffer from optimization issues. In this work, we prove that non-negative
constrained weights MLPs with activations that saturate on alternating sides are
universal approximators for the class of monotonic functions. Given this new re- FIX
sult, we show that non-positive constrained weights MLPs with convex monotone
activations, contrary to their non-negative constrained counterpart, are universal
approximators. Despite such guarantees, we also show that such classes of MLPs
are hard to optimize. Therefore, we propose a novel parameterization that elim-
inates the need for weight constraints. This approach allows the networks to dy- FIX
namically adjust activations based on weight signs, which enhances optimization
stability and performance. Experiments demonstrate that our approach maintains
theoretical guarantees and outperforms existing monotonic architectures in ap- FIX
proximation accuracy.

1 INTRODUCTION

Monotonic neural networks represent a pivotal shift in deep learning. They bridge the gap between FIX
high-capacity non-linear models and the need for interpretable, consistent outputs in various ap-
plications. Monotonic MLPs preserve input-output monotonic relationships, which makes them
particularly suitable for domains that require justified and transparent decisions (Gupta et al., 2016;
Nguyen & Martı́nez, 2019). In general, the enforcement of constraints on the model architecture
guarantees certain desired properties, such as fairness or robustness. FIX

Furthermore, explicitly designing the model with inductive biases that exploit prior knowledge has
been shown to be fundamental for efficient generalization (Dugas et al., 2000; Milani Fard et al.,
2016; You et al., 2017). For this reason, the use of monotonic networks can both help for perfor-
mance improving (Mitchell, 1980) and for data efficiency (Veličković, 2019). FIX

Recent works in this field usually fall into one of the following two categories: ‘soft monotonicity’
and ‘hard monotonicity’. Soft monotonicity employs optimization constraints (Gupta et al., 2019;
Sill & Abu-Mostafa, 1996), usually as additional penalty terms in the loss. This class of approaches
benefits from its simple implementation and cheap computation. They exploit the power of Multi- FIX
Layer Perceptrons (MLPs) to be able to approximate arbitrary functions. However, they often suffer FIX
from in-distribution guarantees since penalties are usually applied to dataset samples. For this rea-
son, they struggle to generalize the constraint out-of-distribution. Hard monotonicity instead gives
guarantees by construction by imposing constraints in the model architecture (Wehenkel & Louppe,
2019; Nolte et al., 2023). Such guarantees usually come at the cost of effectiveness, leading to
vanishing gradient dynamics due to the usage of sigmoid-like activations or dead neuron dynamics
due to the usage of ReLU6. The simplest way to do so is to constrain the MLP weights to be non- FIX

FIXnegative and to use monotonic activations (Daniels & Velikova, 2010). The proposed methods in the
literature that exploit this parametrization (Daniels & Velikova, 2010; Wehenkel & Louppe, 2019)
require the usage of bounded activations, such as sigmoid and hyperbolic tangent. Even though the
usage of bounded activations with MLPs with constrained weights allows proving their universal ap-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

proximation abilities for monotonic functions,they are also well-known to be hard to optimize due FIX
to vanishing gradients. This shortcoming is even more evident in monotonic NNs with non-negative FIX
weights, where bounded activations make the initialization even more crucial for optimization. As
discussed in Section 4.1, poor initialization may lead to saturated activations at the beginning of
training, thus slowing it down significantly. Indeed, most recent advances in NNs use activations FIX
in the family of rectified linear functions, such as the popular ReLU activation (Vaswani, 2017; He FIX
et al., 2016). However, ReLU activations are problematic for non-negative-weight MLPs as they can
only approximate convex monotonic functions (Daniels & Velikova, 2010; Mikulincer & Reichman,
2022). Indeed, any non-negative-weight MLP that uses a convex activation can only approximate FIX
convex functions, which severely limits its application. For this reason, many approaches in the FIX
literature still rely on including bounded activations like sigmoid, which are known to be universal
approximators for the class of monotonic functions (Daniels & Velikova, 2010). NEW

The primary aim of this work is to extend the theoretical basis of monotonic-constrained MLPs,
by showing that using activations that saturate on one side, such as ReLU, it is still possible to
achieve universal approximation. To showcase that these new findings are not just theoretical tools,
we create a new architecture that only uses saturating activations with comparable performances to
state-of-the-art architectures. Our contributions can be summarized as follows:

• We show that constrained MLPs that alternate left-saturating and right-saturating mono-
tonic activations are universal approximators for the class of monotonic functions. We also
demonstrate that this can be achieved with a constant number of layers, which matches the
best-known bound for threshold-activated networks. FIX

• Contrary to the non-negative-constrained formulation, we prove that an MLP with 2n layers
(n ≥ 2), non-positive-constrained weights, and ReLU activation is a universal approxima- FIX
tor. More generally, this holds true for any saturating monotonic activation.

• We propose a simple parametrization scheme for monotonic MLPs that (i) can be used
with saturating activations (ii) does not require constrained parameters, thus making the
optimization more stable and less sensitive to initialization (iii) does not require multiple
activations, and (iv) does not require any prior choice of alternation of any activation and
its point reflection.

Our approach will focus primarily on ReLU activations, which are widely used in the latest advance-
ments in deep learning. However, the results apply to the broader family of monotonic activations
that saturate on at least one side. This includes most members of the family of ReLU-like activations
such as exponential, ELU (Clevert et al., 2016), SeLU (Klambauer et al., 2017), SReLU (Jin et al.,
2016), and many more.

2 RELATED WORK
NEW

Monotonicity in neural network architectures is an active area of research that has been addressed
both theoretically and practically. Prior work can be broadly classified into two categories: archi-
tectures designed with built-in constraints (hard monotonicity) and those employing regularization
and heuristic techniques to enforce monotonicity (soft monotonicity). Our contribution falls into the
former category, but without the complexity that comes from existing methods.

2.1 HARD MONOTONICITY

Hard-monotonicity aims at building MLPs with provably monotonicity for any point of the input
space. They do so by constructing the MLP so that only monotonic functions can be learned. Ini-
tial attempts were Deep Lattice Networks (You et al., 2017) and methods constraining all weights
to have the same sign exemplify this approach (Dugas et al., 2009; Runje & Shankaranarayana,
2023; Kim & Lee, 2024). However, constraining the parameters to be non-negative violates the
original MLP formulation, thus invalidating the universal approximation theorem. Indeed, the ar-
chitecture’s universal abilities are proven only under the condition that the threshold function is
used as activation and that the network is at least 4 layers deep (Runje & Shankaranarayana, 2023).
Furthermore, the non-negative parameter constraint also creates issues from an initialization stand-
point, as the assumption for popular initializers might be violated for positive semidefinite matrixes.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Only recently, new architectures have been proposed with novel techniques: adapting the Deep
Lattice framework to MLPs (Yanagisawa et al., 2022), working with multiple activations (Runje
& Shankaranarayana, 2023), constraining the Lipschitz constant (Raghu et al., 2017). However,
Runje & Shankaranarayana (2023) requires the usage of multiple activations, and an a priori split
of the layer neurons between them, which might be sub-optimal or require additional tuning, and
Nolte et al. (2023) relies on very specific activations to control such property, as reported by the
authors. In contrast, our work aims to overcome these drawbacks by enhancing flexibility without
compromising the monotonicity constraint.

2.2 SOFT MONOTONICITY

Soft-monotonicity aims to build monotonic MLPs by working on the training instead of architecture,
either using heuristics or regularizations. Techniques such as the point-wise penalty for negative gra-
dients (Gupta et al., 2019; Sill & Abu-Mostafa, 1996) and using Mixed Integer Linear Programming
(MILP) for certification (Liu et al., 2020) have been proposed. These methods maintain considerable
expressive power but do not guarantee monotonicity. Additionally, the computational expense re-
quired for certifications, such as those using MILP or Satisfiability Modulo Theories (SMT) solvers,
can be prohibitively high.

3 MONOTONE MLP

A function f : Rd → R is said to be monotone non-decreasing with respect to xi, if given
x0
i , x

1
i ∈ R, i ∈ [1, d], has the following property:

x0
i ≤ x1

i ⇒ f(x1, . . . , x
0
i , . . . , xd) ≤ f(x1, . . . , x

1
i , . . . , xd) (1)

And similarly, a function f : Rd → R is said to be monotone non-increasing with respect to xi if:

x0
i ≤ x1

i ⇒ f(x1, . . . , x
0
i , . . . , xd) ≥ f(x1, . . . , x

1
i , . . . , xd). (2)

Observation 1. Given f(x), g(x) monotonic non-decreasing, and h(x), u(x) monotonic non-
increasing, f ◦ g is monotonic non-decreasing, f ◦ h is monotonic non-increasing, and u ◦ h is
monotonic non-decreasing.

In this work, we will only focus on parametrizing non-decreasing functions, as the monotonicity can
be reversed by simply inverting the sign of the inputs1.

An MLP is defined as a parametrized function fθ obtained as composition of alternating affine
transformations l(i)θ and non-linear activations σ(i)

θ :

fθ(x) = l(1)θ ◦ σ(1)

θ . . . σ(n− 1)

θ ◦ l(n)θ . (3)

A straightforward approach to building a provable monotonic MLP that respects Equation 1 is to
impose constraints on its weights and activations, forcing each term in Equation 3 to be monotonic. FIX
Indeed, monotonic activations are, by definition, monotonic. Instead, for affine transformations FIX
l(i)θ (x) = W (i)x+ b(i), we only need to enforce the Jacobian to be non-negative, which is simply the
matrix W (i).

To optimize the MLP with unconstrained gradient-based approaches, the non-negative weight con-
straint is obtained using reparametrization, i.e., l(i)θ (x) = g(W (i))x+ b(i) for some differentiable
g : R → R+. Typical reparametrizations use absolute value or squaring.

3.1 KNOWN UNIVERSAL APPROXIMATION CONDITIONS

Despite their surprising performances, one critical flaw of existing MLP architectures based on
weight constraints is the narrow choice of activation functions. Constrained MLPs have been shown
to be universal function approximators for monotonic functions, provided the activation is chosen
to be the threshold function, and the number of hidden layers is larger than the dimension of the
input variable (Daniels & Velikova, 2010). Just recently, this result has been drastically improved to FIX

1In the rest of the paper we will use ”monotonic” as shorthand for ”monotonic non-decreasing”, unless
otherwise explicitly specified.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 2 0 2 4
x

4

2

0

2

4
f(x

)

ReLU(x)

4 2 0 2 4
x

4

2

0

2

4

f(x
)

ReLU′(x)

4 2 0 2 4
x

0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50

f(x
)

ReLU(ReLU′( x) + 1)
= 10
= 1
= 0.5

4 2 0 2 4
x

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25
0.50

f(x
)

ReLU′(ReLU( x) 1)
= 10
= 1
= 0.5

Figure 1: Constructions of Heavyside function using a composition of ReLU and its point reflection
ReLU’ transformations

a constant bound which proves that four layers are sufficient to have universal approximation prop-
erties (Mikulincer & Reichman, 2022). Therefore, practical implementation still resorts to bounded
activations such as sigmoid, tanh, or ReLU6. To understand why this is the case, consider:

Proposition 1. The composition of monotonic convex functions is itself monotonic convex.

Since affine transformations are simultaneously convex and concave, if the activation is chosen to FIX
be a monotonic convex function, then the constrained MLP will only be able to approximate mono-
tonic convex functions. Therefore, the use of convex activations like ReLU in a constrained MLP
severely limits the expressivity of the network. Despite this clear disadvantage, there is interest in
ReLU-activated monotonic MLPs due to their properties and their performances shown in the un-
constrained case (Glorot & Bengio, 2010; Hein et al., 2019). Runje & Shankaranarayana (2023) FIX
propose a way to introduce RELU activation in the network. The architecture uses multiple ac-
tivation functions derived from a primitive activation σ(x), its point reflection σ′(x) = −σ(−x),
and, in particular, a bounded sigmoid-like activation. While the ReLU activations are ignored in the FIX
subsequent theoretical analysis, this last bounded activation function is used to ensure the universal
approximation property. Moreover, the bound on the required number of layers is obtained from
the result in Daniels & Velikova (2010), which scales linearly with the number of input dimensions.
However, wewill show that the additional bounded activation is not necessary and that the bound FIX
can be improved to the current best known, which is constant with respect to the input dimensions.

3.2 UNIVERSAL APPROXIMATION THEOREM FOR NON-THRESHOLD ACTIVATIONS

To have a bound on the minimum number of layers required to guarantee universal approximation
with ReLU and its point reflection, we can limit and observe that we can approximate the Heavyside
function arbitrarily well with two layers, as shown in Figure 1. With such observation, we can lever-
age the result of Daniels & Velikova (2010). However, such a bound outlines a linear dependence
between input size and the required layers. Further information can be found in Appendix A.1.

Instead, in this section, we will derive a tighter bound, compared to the one proposed by Runje
& Shankaranarayana (2023), that instead matches the bound derived in Mikulincer & Reichman
(2022) while applying to a broader class of activation functions. This result proves that ReLU-
activated constrained MLPs can be as expressive as the logistic variants. More generally, we will
show that alternating monotonic activations that saturate on different sides in an MLP are sufficient
to ensure universal approximation capabilities with 3 hidden layers.

Definition 1. Given an activation function σ : R → R, consider:

σ(+∞) := lim
x→+∞

σ(x) σ(−∞) := lim
x→−∞

σ(x). (4)

We will say that σ is right-saturating if σ(+∞) ∈ R, and it is left-saturating if σ(−∞) ∈ R, that is,
if the corresponding limit exists and is finite. We will denote the set of right-saturating activations
as S+ and the set of left-saturating activations as S−.

Proposition 2. For every MLP with non-negative weights and activation σ(x), and for any
a ∈ R+, b ∈ R, there exists an equivalent MLP with non-negative weights and activation aσ(x) + b.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the following proofs, thanks to Proposition 2, we will only consider activations that saturate to
zero. The main result we will prove is the following:
Theorem 1. An MLP gθ : Rd → R with non-negative weights and 3 hidden layers can interpo-
late any monotonic non-decreasing function f(x) on any set of n points, provided that the activa-
tion functions are monotonic non-decreasing and alternate saturation sides. That is, in addition to
monotonicity, either of the following holds: FIX

σ(1) ∈ S−, σ(2) ∈ S+, σ(3) ∈ S− σ(1) ∈ S+, σ(2) ∈ S−, σ(3) ∈ S+ (5)

The first step is proving that hidden units in the first layer can approximate piecewise constant
functions on specific half-spaces.
Lemma 1. Consider an arbitrary hyperplane defined by αT (x− β) = 0, α ∈ Rd

+ and β ∈ Rd, and
the open half-spaces A+ = {x : αT (x− β) > 0}, A− = {x : αT (x− β) < 0}. The i-th neuron
in the first hidden layer of an MLP with non-negative weights can approximate 2:

h(1)

i (x) ≈


σ(1)(+∞), if x ∈ A+

σ(1)(−∞), if x ∈ A−

σ(1)(0), otherwise

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, setting the parameters to w = λαT and b = λαTβ and taking the limit we have that:

h(1)

i (x) ≈ lim
λ→+∞

σ(1) (wx+ b) = lim
λ→+∞

σ(1)
(
λαT (x− β)

)
The limit is either σ(1)(+∞), σ(1)(−∞) or σ(1)(0) depending on the sign of αT (x− β), proving that:

h(1)

i (x) ≈


σ(1)(+∞), if αT (x− β) > 0

σ(1)(−∞), if αT (x− β) < 0

σ(1)(0), if αT (x− β) = 0

The second step is proving that one hidden layer can perform intersections of sub-spaces under
specific conditions. In our construction, these will be either half-spaces or intersections of specific
half-spaces.
Lemma 2. Consider the intersection A =

⋂n
i=0 Ai, for A1, . . . , An subsets of Rd. For any γ in

the image of σ(k), a single unit in the k-th hidden layer of an MLP with non-negative weights can
approximate:

h(k)

j (x) ≈ γ1A(x)

provided that h(k − 1)

i (x) ≈ 0 for x ∈ Ai, and either:

• σ(k) ∈ S− and h(k − 1)

i (x) < 0 for x ̸∈ Ai

• σ(k) ∈ S+ and h(k − 1)

i (x) > 0 for x ̸∈ Ai

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, setting the weights to w = λ1T and taking the limit we have that:

h(k)

j (x) ≈ lim
λ→+∞

σ(k) (wh(k − 1)(x) + b) = lim
λ→+∞

σ(k)

(
b+ λ

n∑
i=0

h(k − 1)

i (x)

)
Note that in any case, if x ∈

⋂n
i=1 Ai, then λ

∑
i h

(k − 1)

i (x) ≈ 0, and the limit simply reduces to
σ(k) (b). On the other hand, for x ̸∈

⋂n
i=1 Ai, the limit can be either σ(k) (±∞) depending on the sign

of h(k − 1)

i (x). When σ(k) ∈ S− and h(k − 1)

i (x) < 0, the limit is simply σ(k) (−∞) = 0. Similarly, when
σ(k) ∈ S+ and h(k − 1)

i (x) > 0 the limit is σ(k) (+∞) = 0.

2Note that σ(1)(±∞) need not be finite.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In both cases, for any γ in the image of σ(k) we can find a bias value b so that:

h(k)

j (x) ≈ γ1A(x) =

{
σ(k) (b) = γ, if x ∈

⋂n
i=1 Ai,

σ(k) (±∞) = 0, otherwise

Thanks to Lemma 1 and Lemma 2, we can now prove the main result, that is Theorem 1.

Proof of Theorem 1. We will only prove the case σ(1) ∈ S−, σ(2) ∈ S+, σ(3) ∈ S−. The proof for the
opposite case follows the same structure and is reported in A.2

Assume, without loss of generality, that the points x1, . . . , xn are ordered so that
i1 < i2 =⇒ f(xi1) ≤ f(xi2), with ties resolved arbitrarly. We will proceed by construction, layer
by layer.

Layer 1 Since the function to interpolate is monotonic, for any couple of points
i1 < i2 : f(xi1) < f(xi2) it is possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by A+

i2/i1
and A−

i2/i1
, such that xi1 ∈ A−

i2/i1
, xi2 ∈ A+

i2/i1
.

Using Lemma 1, we can ensure that it is possible to have:{
h(1)

i (x) ≈ σ(1)(−∞) = 0, if x ∈ A−
j/i

h(1)

i (x) ≈ σ(1)(+∞) > 0, otherwise
(6)

Layer 2 Let us construct the set A(2)

i =
⋂

j:j>i A
−
j/i. Note that the sets A(2)

i always contain xi and
do not contain any xj for j > i. Using Equation 6, we can apply Lemma 2, which ensures that it is
possible to have the following3: {

h(2)

i (x) ≈ 0, if x ̸∈ A(2)

i

h(2)

i (x) ≈ γ(2) < 0, otherwise
(7)

Layer 3 Consider A(3)

i =
⋂

j:j<i Ā
(2)

j , where Ā(2)

j is the complement of A(2)

j . Using Equation 7 we
can once again apply Lemma 2, which ensures that it is possible to have the following4:

h(3)

i (x) ≈ γ(3)
1
A

(3)
i
(x) (8)

Now, we will show that A(3)

i represents a level set, i.e. xj ∈ A(3)

i ⇐⇒ f(xj) ≥ f(xi). To do so,
consider that Ā(3)

i =
⋃

j:j<i A
(2)

j . Since xj ∈ A(2)

j , then xj ∈ Ā(3)

i for j < i. Similarly since xj is the
largest point contained in A(2)

j , Ā(3)

i cannot contain xi or any point larger than xi. This shows that
A(3)

i contains exactly the points {xj : f(xj) ≥ f(xi)}.

Layer 4 To conclude the proof, simply take the weights at the fourth layer to be :

w =

[
f(x1)− b

γ(3)
,
f(x2)− f(x1)

γ(3)
, . . . ,

f(xn)− f(xn−1)

γ(3)

]
Since the points are ordered, this ensures that w contains all non-negative terms, when bias term b is
taken to be b ≤ f(x1). Defining f(x0) = b, the output of the MLP can be expressed as:

gθ(x) = wTh(3)(x) + b = b+

n∑
j=1

(f(xj)− f(xj−1))1A
(3)
j
(x) (9)

Evaluating Equation 9 at any of the points xi, it reduces to the telescopic sum:

gθ(xi) = f(x1) +

i∑
j=2

(f(xj)− f(xj−1)) = f(xi) (10)

Thus proving that the network correctly interpolates the target function.
3In this case γ(2) < 0 since we are considering the case where σ(2) saturates right.
4In this case γ(3) > 0 since we are considering the case where σ(3) saturates left.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 NON-POSITIVE CONSTRAINED MONOTONIC MLP

Consider the simple modification to the standard constrained MLP approach described in Equation
3. However, instead of constraining the weights to be non-negative, they are constrained to be non- FIX
positive. This simple modification might seem inconsequential. However, we will show that this
structure can create more expressive networks than the original, given an even number of layers or,
equivalently, an odd number of hidden layers. Indeed, we will show that a non-positive constrained
MLP with 3 hidden layers satisfies the conditions of Theorem 1, as long as the activation function
saturates on at least one side. This also includes convex activations like ReLU, which provably do FIX
not yield universal approximators in the non-negative constrained weight setting.

Note that an MLP defined according to Equation 3 is still monotone for an even number of non-
positively constrained layers and monotonic activations, by Observation 1. Therefore, it is still
possible to construct provably monotonic networks using non-positive weight constraints.

A first crucial observation is that imposing non-positive constraints in two adjacent layers with an
activation function in between is equivalent to imposing non-negative constraints in the two layers
and using a point-reflected activation function between them.

Proposition 3. An MLP with σ(k)(x) activation at layer k, where W (k)

ij ≤ 0,W (k + 1)

ij ≤ 0 ∀i, j is equiv-
alent to an MLP where W (k)

ij ≥ 0,W (k + 1)

ij ≥ 0∀i, j, and activation at layer k σ′(k)(x) = −σ(k)(−x).

From this, it follows that an MLP with an even number of layers, non-positive weights, and activation
σ at all layers is equivalent to an MLP with non-negative weights that alternate activations between
σ′ and σ. This equivalence can be achieved using Proposition 3 by “flipping” the weight constraints
two layers at a time, which also changes the activations at even-numbered layers from σ to σ′.

The second observation is that both σ and σ′ are monotonic functions but saturate in opposite direc-
tions.

Proposition 4. If σ(x) is monotonic non-decreasing, then its point reflection σ′(x) is also monotonic
non-decreasing. If σ(x) saturates, then σ′(x) also saturates but in the opposite direction.

Therefore, provided that σ is a saturating activation, an MLP with at least 4 layers, non-negative
weights, and alternating activation σ and σ′ is a universal monotonic approximator, from Theorem FIX
1. Due to the equivalence in Proposition 3, this also shows that: FIX
Proposition 5. If σ ∈ S− ∪ S+, an MLP with 4 layers, non-positive weights and activation σ, is a
universal approximator for the class of monotonic functions.

Similarly, we can apply the observations of this section to show that the structure proposed in Runje
& Shankaranarayana (2023) can produce universal monotonic approximators using only point re-
flections without the need for the third activation class.

While using Theorem 1 allows us to prove that a broad class of constrained MLP architectures
are universal monotonic approximators, it does not necessarily translate into MLPs that are easily
optimizable. One simple observation that shows how this class of functions is not easily optimizable
is considering the computation for an arbitrary input x and a newly initialized MLP with ReLU
activation. If x ≥ 0, then −|W |x ≤ 0, and thus ReLU(−|W |x) = 0. If x ≤ 0, then −|W |x ≥ 0,
and thus ReLU(−|W |x) ≥ 0. However, the second layer will saturate for the same reason as before.
To allow an efficient and effective optimization, we must carefully tune the bias term to avoid having
a 0 gradient. For this reason, we will propose an architecture not influenced by this problem in the
following sections.

4 ADDRESSING THE WEIGHT CONSTRAINT

Historically, the first works that proposed a monotonic neural network formulation relied on the
fact that forcing the parameters of the network to be non-negative, specifically the matrixes W in
the affine transformations, combined with bounded activations, is a sufficient condition to guaran-
tee that the overall induced function is monotonic (Daniels & Velikova, 2010; Sill & Abu-Mostafa,
1996). Recently, Runje & Shankaranarayana (2023) showed a way to build effective monotonic
MLPs with such a technique by exploiting multiple activations. However, even though using con-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

strained weights and bounded activation is easy to implement and can be optimized with any un-
constrained gradient optimizer, it might lead to vanishing gradient dynamics. Instead, we will show
how to address this issue while also tackling the necessity of alternate activations to have universal
approximation capabilities, working on the architecture of the MLP.

4.1 VANISHING GRADIENT IN CONSTRAINED MLPS WITH BOUNDED ACTIVATIONS

As reported in Section 3, a naive approach to ensure monotonicity is to have monotonic activations
and to impose monotonicity to the weights, constraining them to be non-negative. For this rea-
son, such networks’ affine transformations are usually parametrized as l(x) = g(W )x+ b, for some
transformation g : R → R+. Note that the bias can be any value, as it is a constant and thus does
not affect the gradient.

Such networks employed bounded activations, like sigmoid, tanh, or ReLU6, to have convex-
concave activations. This peculiarity makes them very sensitive to initialization and can potentially
lead to vanishing gradient dynamics(Glorot & Bengio, 2010). To see why constraining weights to FIX
be non-negative exacerbates this condition, consider a monotonic MLP with sigmoidal activations,
initialized with random weights according to known, widely used initializers, such as Glorot, where
each matrix is sampled from a symmetric distribution around zero with some variance. Instead, bi-
ases are initialized to zero, as usually done. Let’s assume to use g(x) = |x|, but the same reasoning
can be applied to any other mapping g. At this point, the MLP comprises layers of the following
form σ(x) = σ(|W |x+ b). Now, let’s consider the second layer of such MLP. Since the first layer
has applied the sigmoid activation, then σ(1)(x) ∈ (0, 1). Because of this, |W (2)|σ(1)(x) will be a
product of all non-negative terms. Therefore, its result can become significantly large. Then, when
applying the sigmoid activation of the second layer, it will most likely saturate due to the large
positive values returned from the affine transformation. Going on with this reasoning for multiple
layers, such behavior will be exacerbated. Appendix A.4 shows one example of such behavior for a
very simple function. The same behavior occurs for ReLU6 MLPs, where the gradient might even FIX
become exactly 0, and for tanh MLPs if, for example, the dataset is normalized, which is one of the
most commonly used data-preprocessing.

One possible solution might beusing BatchNormalization layers (Ioffe, 2015). BatchNorm has al- FIX
ready shown its effectiveness in tackling initialization and optimization problems. Indeed, Batch-
Norm is comprised only of the following transformation:

BN(x) =
x− E[x]√
Var[x] + ϵ

· γ + β

Considering that
√

Var[x] + ϵ > 0, forcing γ ≥ 0 by construction, for example, using
γ = SoftPlus(γ′), makes such operation monotonic. Usually, it is initialized as β = 0 and γ = 1.
For this reason, if used as a pre-activation layer, it might address exploding pre-activation values,
standardizing them around zero. However, the investigation of this approach falls out of the scope
of this work, and it’s left as a future line of research.

4.2 RELAXING WEIGHT CONSTRAINTS WITH ACTIVATION SWITCHES

Assuming we used the weight-constrained formulation for the construction proposed in Section 3.3,
we would still be left to decide the sequence of activations that should be used for the MLP, which
might be unclear or necessitate further hyperparameters-tuning. On the other hand, Observation
1 and Proposition 3 suggest that a monotonically non-increasing operation followed by a second
monotonically non-increasing operation ensures that the overall computation in Equation 3 stays
monotonic. We will exploit this property to build a monotonic MLP that requires no weight con-
straint or handpicked activation alternation. FIX

Let’s thus consider a single layer of a monotonic ReLU MLP, f(x) = σ(|W |x+ b), where σ can
be either ReLU(x) or ReLU′(x). Instead of constraining weights, we can separate W in two parts,
W+ = max(W, 0) and W− = min(W, 0). Given these two matrices, we can proceed with two sep-
arate affine transformations and use the appropriate activation to even the number of monotonically
non-increasing terms in Equation 3. Given such a setting, we can parametrize the whole layer as
follows, and we will refer to it as pre-activation formulation:

f(x) = ReLU(W+x+ b)− ReLU(W−x+ b) (11)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 Forward pass of a Monotonic
ReLU MLP with post-activation switch

Input: data x ∈ Rd, weight matrix
W ∈ Rd×d′

, bias vectors b ∈ Rd′
, activa-

tion function σ
Output: prediction ŷ ∈ Rd′

W+ := max(W, 0)
W− := min(W, 0)
z+ := W+σ(x)
z− := W−σ(−x)
ŷ := z+ + z− + b

Figure 2: On the left, the computation graph of a single layer of a ReLU monotonic NN with the
proposed learned activation via weight sign. On the right is the corresponding algorithm pseudocode.

Alternatively, it can be done in the opposite order, from the second layer onwards, and we will call
it post-activation formulation:

f(x) = W+ReLU(x) +W−ReLU(−x) + b (12)

In Figure 2, we report only the post-activation switch’s pseudocode and computation graph since
it will be the formulation that will also be employed for the experimental part of the paper. The
pre-activation corresponding algorithm and computational graph can be found in Appendix A.3.
Exploiting these formulations, we gain two nice properties. The first one is the relaxation of the
weight constraint, no longer needing the g(W ) transformation. The second property is that the
network can learn the activation it needs by changing the sign of the parameters.Thus, there is no FIX
need to alternate activations and their point-reflected counterparts manually and, in case, tune such
configuration. To conclude, we must show that such a parametrization still allows the MLP to be a
universal approximator. To do so, consider a 4-layer MLP with layers formulated as in Equation 12
with W (1) ≥ 0,W (2) ≤ 0,W (3) ≥ 0,W (4) ≤ 0. Then, just by rearranging the signs from the negative
weight matrixes to the activation functions, we end up with a non-negative constrained MLP with
alternating activations, thus showing that Theorem 1 holds.

Indeed, the simplicity of the approach can be appreciated: it shares most of the usual steps of the
forward pass of an unconstrained MLP and does not require additional special care for initializations.
The only additional cost of the proposed method is the double matrix multiplication required by the
weight splitting. However, since the two are completely independent, they can be easily performed
in parallel.

5 EXPERIMENTS

In the previous sections, we studied the proposed method’s theoretical properties. In this section, FIX
we aim to analyze the method’s performance compared to other alternatives that give monotonic
guarantees. We test our approach starting from the code provided by Runje & Shankaranarayana
(2023), guaranteeing a fair comparison of our results and those reported in the original work, which
thus will be used as a benchmark for this work. The first dataset used is COMPAS (Fabris et al.,
2022). COMPAS is a dataset comprised of 13 features, 4 of which have a monotonic dependency on
the classification. A second classification dataset considered is the Heart Disease dataset. It consists
of 13 features, 2 of which are monotonic with respect to the output. Lastly, we also test our method
on the Loan Defaulter dataset, comprised of 28 features, 5 of which have a monotonic dependency
on the prediction. To test on a regression task, we use the AutoMPG dataset comprised of 7 features,
3 of which are monotonically decreasing with respect to the output. A second dataset for regression
is the Blog Feedback dataset (Buza, 2013). Contrary to all other datasets, this dataset is composed
of a very small portion of monotonic covariates, only accounting for 2.8% of the whole dataset.
Indeed, the dataset comprises of 276 features, only 8 of which are monotonic with respect to the
output. Furthermore, most of these features are very sparse.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Test metrics across different datasets.

Method COMPAS
(Test Accuracy)

Blog Feedback
(Test RMSE)

Loan Defaulter
(Test Accuracy)

AutoMPG
(Test MSE)

Heart Disease
(Test Accuracy)

Isotonic 67.6% 0.203 62.1% - -

XGBoost 68.5%± 0.1% 0.176± 0.005 63.7%± 0.1% - -

Certified 68.8%± 0.2% 0.159± 0.001 65.2%± 0.1% - -

COMET - - - 8.81± 1.81 86%± 3%

DLN 67.9%± 0.3% 0.161± 0.001 65.1%± 0.2% 13.34± 2.42 86%± 2%

Min-Max Net 67.8%± 0.1% 0.163± 0.001 64.9%± 0.1% 10.14± 1.54 75%± 4%

Constrained MNN 69.2%± 0.2% 0.154± 0.001 65.3%± 0.1% 8.37± 0.08 89%± 0%

Scalable MNN 69.3%± 0.9% 0.150± 0.001 65.0%± 0.1% 7.44± 1.20 88%± 4%

Ours 69.3%± 0.3% 0.158± 0.001 65.3%± 0.1% 7.67± 1.73 94%± 3%

We compare our method with several other approaches that give monotonic guarantees by con-
struction. In particular, we compare it to XGBoost(Chen & Guestrin, 2016) as a baseline, Deep
Lattice Network (You et al., 2017), Min-Max Networks (Daniels & Velikova, 2010), Certified Net-
works (Liu et al., 2020), COMET (Sivaraman et al., 2020), Constrained Monotonic Neural Networks
(Runje & Shankaranarayana, 2023), and Scalable Monotonic Neural Networks (Kim & Lee, 2024).
In Table 1, we report the final test set metrics, comparing the proposed methods with the results
obtained from Runje & Shankaranarayana (2023), with missing entries for metrics not reported by
the authors. We employed an MLP as shown by Runje & Shankaranarayana (2023), composed
of 3 layers for non-monotonic features and 4 subsequent monotonic layers, except for the Blog
Feedback dataset, for which smaller layers have been used, to avoid overfitting. Specifically, the
post-activation formulation reported in Algorithm 1 has been used for all results. The proposed
method matches or surpasses the performances of other recently proposed approaches, except for
the case of the Blog Feedback dataset. Such results are obtained with minimal modifications to the
architecture used by Runje & Shankaranarayana (2023). However, for the Blog Feedback dataset,
given the small number of monotonic features compared to the overall dataset, the performances on
this dataset might be influenced more by the architecture or regularization than the inductive bias
induced by the monotonic layers. Indeed, running the benchmark only considering the monotonic
feature still leads to an average 0.160± 0.001 RMSE.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we proved that MLPs with non-negative constrained weights and alternating activations
that saturate at least on one side are universal approximators for the class of monotonic functions. FIX
In addition, we show that a specific case of such a setting is defined by a network with mono-
tonic convex activation and constrained non-positive weights. We then use this result to present
a new parametrization that relaxes the need for activation alternation and weight constraint while
still allowing for monotonic convex activation, which was impossible earlier. With this parametriza-
tion, the layer can choose which activation to use based on the parameters’ signs. We then use FIX
our monotone fully connected layer to build MLPs, we show that we can achieve state-of-the-art
performances. Even though this work proves that any monotonic saturating activation can be used
to build monotonic MLPs, it’s still an open question whether non-saturating activations, such as
Leaky-ReLU, can be used to build monotonic MLPs. After that, activation must only be monotonic FIX
to be used in monotonic MLPs. Furthermore, batch normalization has proven highly effective in the
unconstrained case. Still, it has never been used as a possible solution to the initialization problem
for the monotonic case.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICAL CONSIDERATIONS
NEW

The use of the COMPAS dataset in this research acknowledges its status as a common benchmark
within the field of machine learning fairness studies (Angwin et al., 2022; Dressel & Farid, 2018).
Recognizing the complexities and potential ethical challenges associated with such datasets, we
emphasize a commitment to responsible research practices. We prioritize transparency and ethical
rigor throughout our study to ensure that the methodologies employed and the conclusions drawn
contribute constructively to the ongoing discourse in AI ethics and fairness. This approach under-
lines our dedication to advancing machine learning applications in a manner that is conscious of
their broader societal impacts.

8 REPRODUCIBILITY

In the Appendix A.6 and A.5, we report all necessary information for reproducibility of the results
in Table 1 and further information on the dataset employed in this work. Furthermore, the code used
to obtain the results in Table 1 is provided.

REFERENCES

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data and
analytics, pp. 254–264. Auerbach Publications, 2022.

Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning and knowledge
discovery, pp. 145–152. Springer, 2013.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In ICLR, 2016.

Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. IEEE
Transactions on Neural Networks, 21(6):906–917, 2010.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science
advances, 4(1):eaao5580, 2018.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
second-order functional knowledge for better option pricing. Advances in neural information
processing systems, 13, 2000.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
functional knowledge in neural networks. Journal of Machine Learning Research, 10(6), 2009.

Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and Gian Antonio Susto. Algorithmic
fairness datasets: the story so far. Data Mining and Knowledge Discovery, 36(6):2074–2152,
2022.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and Kartik Yellepeddi. How
to incorporate monotonicity in deep networks while preserving flexibility? in NeurIPS, 2019.

Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander
Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated in-
terpolated look-up tables. Journal of Machine Learning Research, 17(109):1–47, 2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 41–50,
2019.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. in ICML, 2015.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan. Deep
learning with s-shaped rectified linear activation units. In Proceedings of the AAAI conference on
artificial intelligence, volume 30, 2016.

Hyunho Kim and Jong-Seok Lee. Scalable monotonic neural networks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=DjIsNDEOYX.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances
in Neural Information Processing Systems, 33:15427–15438, 2020.

Dan Mikulincer and Daniel Reichman. Size and depth of monotone neural networks: interpolation
and approximation. Advances in Neural Information Processing Systems, 35:5522–5534, 2022.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexi-
ble monotonic functions with ensembles of lattices. Advances in neural information processing
systems, 29, 2016.

Tom M Mitchell. The need for biases in learning generalizations. Technical Report CBM-TR-117,
Carnegie Mellon University, 1980.

An-phi Nguyen and Marı́a Rodrı́guez Martı́nez. Mononet: towards interpretable models by learning
monotonic features. In NeurIPS, 2019.

Niklas Nolte, Ouail Kitouni, and Mike Williams. Expressive monotonic neural networks. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=w2P7fMy_RH.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. In Inter-
national Conference on Machine Learning, pp. 29338–29353. PMLR, 2023.

Joseph Sill and Yaser Abu-Mostafa. Monotonicity hints. Advances in neural information processing
systems, 9, 1996.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck.
Counterexample-guided learning of monotonic neural networks. Advances in Neural Informa-
tion Processing Systems, 33:11936–11948, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Veličković. The resurgence of structure in deep neural networks. PhD thesis, University of
Cambridge, 2019.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. Advances in
neural information processing systems, 32, 2019.

12

https://openreview.net/forum?id=DjIsNDEOYX
https://openreview.net/forum?id=DjIsNDEOYX
https://openreview.net/forum?id=w2P7fMy_RH
https://openreview.net/forum?id=w2P7fMy_RH


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical lattice layer for par-
tially monotone neural networks. Advances in Neural Information Processing Systems, 35:11092–
11103, 2022.

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
partial monotonic functions. Advances in neural information processing systems, 30, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

The appendix is structured in the following way:

• Section A.1: in this section, we show the arguably simplest though loosest bound to prove
that non-negative constrained MLPs with ReLU and ReLU’ activations are universal ap-
proximators.

• Section A.2: in this section we prove the results of Theorem 1 for the opposite alternation
case.

• Section A.3: as reported in Section 4, we propose two possible parametrizations, a pre-
activation switch, and a post-activation switch. In Appendix A.3, the pseudocode and the
computational graph of the two can be found.

• Section A.4: in this section we will compare the proposed method to the bounded-
activation counterpart, showing how the formulation with sigmoidal activation suffers from
vanishing gradients.

• Sections A.5 and A.6: in these sections, we report further information regarding how the
results have been obtained and about the datasets employed for this work.

• Section A.7: since Theorem 1 only requires the non-linearity to be saturating, in this sec-
tion we report a brief overview of other activations that can be applied with the proposed
method, in order underline how it is more general than just using ReLU activations.

• Section A.8: the proof provided for Theorem 1 is different to the ones previously proposed
in literature. However, it still ends with the result of requiring 4 layers to be a universal
approximator, as previously shown in Mikulincer & Reichman (2022) for the heavy-side
function. For readers that are already familiar with such proof, we also report in Appendix
A.8 a proof very similar to the one in Mikulincer & Reichman (2022), trying to reuse as
much as possible the original structure.

A.1 NAIVE BOUND FOR UNIVERSAL APPROXIMATION OF ALTERNATING MLPS

A simpler, though looser, bound to prove that MLPs with alternating ReLU and its point reflection
ReLU’ activations are a universal monotonic function approximator can be achieved building on the
proof of Mikulincer & Reichman (2022). Two simple observations are sufficient.
Remark 1. the composition of ReLU and its point reflections ReLU′(x) = −ReLU(−x) can ap-
proximate the threshold function 1x≥0 arbitrarily well:

lim
α→+∞

ReLU(ReLU′(αx) + 1) = 1x≥0(x) (13)

lim
α→+∞

ReLU′(ReLU(αx)− 1) = 1x≥0(x)− 1 (14)

A representation of Equation 13 is provided in Figure 1.

The reason why we can approximate non-convex functions using only ReLU-like activations is
reported in Proposition 1. However, considering Observation 4, we can see how this limitation can
be addressed.
Remark 2. The formulas in Equation 13 can be implemented with a 2-layer constrained MLP,
alternating ReLU and ReLU’ activations.

This is enough to leverage the existing results for threshold threshold-activated MLP (Mikulincer
& Reichman, 2022). This includes the best-known bound on the number of the required hidden
layers, which, however, doubles from 3 to 6 due to the need for two ReLU layers for the Heavyside
approximation. However, this naive bound is unnecessarily loose, as shown in Theorem 1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF FOR OPPOSITE ALTERNATION OF ACTIVATION FOR THEOREM 1

In this section, we will conclude the proof of Theorem 1, considering the case with activations that
alternate in the opposite direction than the one reported in the main text. Indeed, in Section 3.2
we proved the result for the case with σ(1) ∈ S−, σ(2) ∈ S+, σ(3) ∈ S−, while in this section we will
prove the case with σ(1) ∈ S+, σ(2) ∈ S−, σ(3) ∈ S+. The proof is extremely similar, with just a few
opposite signs due to the opposite alternation. Thus, most constructions will be shared.

Proof of Theorem 1 with opposite alternation. Assume, without loss of generality, that the points
x1, . . . , xn are ordered so that i1 < i2 =⇒ f(xi1) ≤ f(xi2), with ties resolved arbitrarly. We will
proceed by construction, layer by layer.

Layer 1 Since the function to interpolate is monotonic, for any couple of points
i1 < i2 : f(xi1) < f(xi2) it is possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by A+

i2/i1
and A−

i2/i1
, such that xi1 ∈ A−

i2/i1
, xi2 ∈ A+

i2/i1
.

Using Lemma 1, we can ensure that it is possible to have:{
h(1)

i (x) ≈ σ(1)(+∞) = 0, if x ∈ A+
j/i

h(1)

i (x) ≈ σ(1)(−∞) < 0, otherwise
(15)

Layer 2 Let us construct the set A(2)

i =
⋂

j:j<i A
+
i/j . Note that the sets A(2)

i always contain xi and
do not contain any xj for j < i. Using Equation 15, we can apply Lemma 2, which ensures that it is
possible to have the following5: {

h(2)

i (x) ≈ 0, if x ∈ A(2)

i

h(2)

i (x) ≈ γ(2) > 0, otherwise
(16)

Layer 3 Consider A(3)

i =
⋂

j:j>i Ā
(2)

j , where Ā(2)

j is the complement of A(2)

j . Using Equation 16 we
can once again apply Lemma 2, which ensures that it is possible to have the following6:

h(3)

i (x) ≈ γ(3)
1
A

(3)
i
(x) (17)

Now, we will show that A(3)

i represents a level set, i.e. xj ∈ A(3)

i ⇐⇒ f(xj) ≤ f(xi). To do so,
consider that Ā(3)

i =
⋃

j:j>i A
(2)

j . Since xj ∈ A(2)

j , then xj ∈ Ā(3)

i for j > i. Similarly since xj is the
smallest point contained in A(2)

j , Ā(3)

i cannot contain xi or any point smaller than xi. This shows that
A(3)

i contains exactly the points {xj : f(xj) ≤ f(xi)}.

Layer 4 To conclude the proof, simply take the weights at the fourth layer to be :

w =

[
f(x1)− f(x2)

γ(3)
, . . . ,

f(xn−1)− f(xn)

γ(3)
,
f(xn)− b

γ(3)

]
Note that compared to Equation 8, here γ(3) is now negative, and the terms in the numerators’ differ-
ence are reversed. Since the points are ordered, this ensures that w contains all non-negative terms,
when bias term b is taken to be b ≥ f(xn). Defining f(xn+1) = b, the output of the MLP can be
expressed as:

gθ(x) = wTh(3)(x) + b = b+

n∑
j=1

(f(xj)− f(xj+1))1A
(3)
j
(x) (18)

Evaluating Equation 18 at any of the points xi, it reduces to the telescopic sum:

gθ(xi) = f(xn) +

n−1∑
j=i

(f(xj)− f(xj+1)) = f(xi) (19)

Thus proving that the network correctly interpolates the target function.
5In this case γ(2) > 0 since we are considering the case where σ(2) saturates left.
6In this case γ(3) < 0 since we are considering the case where σ(3) saturates right.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 ALGORITHMS

In Section 4, we show how we can parametrize the activation switch using the sign of the weights.
For such a mechanism, we propose two different parametrizations, one where the switch is applied
post-activation and another one pre-activation. In Figure 2, we report both the pseudo-code and
the computational graph for the post-activation formulation. For completeness, in this section, we
also report the pre-activation pseudo-code and computational graph, and for readability and to ease
the comparison, we report them side by side, reporting again the post-activation formulation also
reported in the main text. In particular, in Figure 3, we report the two pseudocode side-by-side, and
in Algorithm A.3, the relative pseudocodes.

Figure 3: Computation graph of a single layer of a ReLU monotonic NN with the proposed learned
activation via weight sign. The left plot reports the computational graph of the pre-activation, and
the right plot shows the post-activation switch.

Algorithm 2 Forward pass of a Monotonic ReLU
MLP with pre-activation switch

Input: data x ∈ Rn, weight matrix
W ∈ Rhl×hl−1 , bias vectors b ∈ Rhl , ac-
tivation function σ
Output: prediction ŷ ∈ RhL

W+ := max(W, 0)
W− := min(W, 0)
z+ := W+x+ b
z− := W−x+ b
ŷ := σ(z+)− σ(z−)

Algorithm 3 Forward pass of a Monotonic ReLU
MLP with post-activation switch

Input: data x ∈ Rn, weight matrix
W ∈ Rhl×hl−1 , bias vectors b ∈ Rhl , ac-
tivation function σ
Output: prediction ŷ ∈ RhL

W+ := max(W, 0)
W− := min(W, 0)
z+ := W+σ(x)
z− := W−σ(−x)
ŷ := z+ + z− + b

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 TOY EXAMPLE

To showcase the effectiveness of the proposed method to the bounded-activation counterpart, in
Figure 4 we compare them on a simple synthetic example. In particular, the models are asked to ap-
proximate f(x) = cos(x) + x, a simple 1D monotonic function with multiple saddle points. For this
reason, it is fundamental for the approximation model to be very flexible. To showcase the different
performances, we will test 4 models. The first model to test is an unconstrained NN, which shows
that an unconstrained model can learn such a function. The second model is a monotonic NN with
non-negative and ReLU activations, which shows that, as shown in theory, it cannot approximate
nonconvex function. The third model is a monotonic NN with non-negative and sigmoid activations.
This model, instead, is shown to be a universal approximator for monotonic functions but suffers
from vanishing gradients. Lastly, the fourth model is the proposed parametrization, specifically the
post-activation setting, as described in Section 4.2.

In Figure 4 can be seen how the model with non-negative and ReLU activations cannot learn the
function as predicted by theory since the function that is asked to learn is non-convex. Instead,
both the sigmoid model and our proposed approach successfully approximate it. Still, the sigmoid
function struggles to be optimized due to the complications of using sigmoid activations. Instead,
the proposed method exploits rectified linear activations, which, under a regime where the number
of dead neurons is not too high, is much easier to optimize, as explained in the original work that
introduced such activation Glorot & Bengio (2010) and Raghu et al. (2017).

Such difference is also evident in analyzing the Negative Log Likelihood (NLL) loss of the training.
We report in Figure 4 the various training losses obtained with two different sizes of layers. The
naive monotonic ReLU, which cannot approximate such a function, is indeed the worst. However,
even though the sigmoid monotonic NN is a universal approximator, it is the slowest to learn, proba-
bly due to the vanishing gradient problem. Instead, the proposed method that uses ReLU activations
is the fastest to converge, almost catching the unconstrained model in the setting with more neurons.
Generally speaking, as also reported at the end of Section 3.3, MLPs with constrained weights,

2 0 2 4 6 8 10
x

2

0

2

4

6

8

f(x
)

2 0 2 4 6 8 10
x

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

(f(
x)

y)
2

0 200 400 600 800 1000
Gradient steps

10 2

10 1

100

101

102

103

NL
L

f(x) = x + cos(x) Unconstrained Monotonic ReLU Monotonic Sigmoid Monotonic Split ReLU (ours)

Figure 4: First plot, approximation of f(x) using MLPs with layers of 128 neurons. Second plot,
approximation of f(x) using MLPs with layers of 256 neurons. Last plot, training losses of the
different methods (full lines represent versions with 128 neurons, dashed lines represent versions
with 256 neurons).

require a careful initialization to avoid non-optimizable configurations. The proposed method in
Section A.3 alleviates this behavior but is not indifferent to it.

In order to showcase the vanishing gradient problem exacerbated by the non-negatively constraining,
in Figure 5 we create a 128-neuron wide MLP with varying numbers of hidden layers, and we
compare the average gradient of the output with respect to the parameters on the same function
approximation problem presented earlier in Figure 4. It can be observed how the sigmoid monotonic
MLP, even with a small number of layers, has one order of magnitude less gradient magnitude; in
particular, it has an average gradient of 0.0019 for 4 layers and 0.00099 for 10 layers. Instead, the
ReLU monotonic MLP has an exploding gradient due to the accumulation of activations induced by
the pairing of ReLU-activation and positive weight; in particular, it starts from a gradient magnitude
of 3.54 for 4 layers and goes to 3311.00 for 10 layers. Finally, the proposed approach keeps the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

gradient magnitude in a reasonable magnitude range, starting from a gradient of 0.010 for 4 layers
and going to 1.259 for 10 layers. Results are averaged over 20 different random initializations, and
plot shows ±1σ. In order to better analyze the optimization problems of these architectures, we also
report in Figure 6 the distributions of the gradients of a 6-layers MLP with the various architectures.
It can be seen that the sigmoid MLP has extremely low gradients for the initial layers, leading to
slow learning. On the other hand, the ReLU MLP has exploding gradients for the final layers. NEW

4 5 6 7 8 9
Layers MLP

10 3

10 2

10 1

100

101

102

103

104

|df
(x

)
d

|N
1

Average gradient w.r.t. network parameters with default initialization
ReLU constrained MLP
Sigmoid constrained MLP
Proposed approach

Figure 5: Average gradient from monotonic MLPs varying the number of layers. Data is shown in
the log scale for the y-axis.

27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5
log(|df (x)

d i
|)

0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid MLP

layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
log(|df (x)

d i
|)

0.0

0.2

0.4

0.6

0.8

1.0
ReLU MLP

layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6

15 10 5 0 5
log(|df (x)

d i
|)

0.0

0.2

0.4

0.6

0.8

1.0
Proposed MLP

layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6

Figure 6: Distribution of gradients from monotonic MLPs for each layer (layer 0 is the final one,
layer 6 is the first after the input).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 DATASET DESCRIPTION

For this work, the code was heavily based on the code provided by Runje & Shankaranarayana
(2023) in order to ensure that the used dataset matched exactly. For this reason, we will report a
short description of the employed dataset, but for a further and more detailed description, refer to
the original work (Runje & Shankaranarayana, 2023).

• COMPAS: This dataset is a binary classification dataset composed of criminal records,
comprised of 13 features, 4 of which are monotonic.

• Blog Feedback: This dataset is a regression dataset comprised of 276 features, 8 of which
are monotonic, aimed at predicting the number of comments within 24h.

• Auto MPG: This dataset is a regression dataset aimed at predicting the miles-per-gallon
consumption and is comprised of 7 features, 3 of which are monotonic.

• Heart Disease: This dataset is a classification dataset composed of 13 features, 2 of which
are monotonic, aimed at predicting a possible heart disease.

• Loan Defaulter: This dataset is a classification dataset composed of 28 features, 5 of which
are monotonic, and is aimed at predicting load defaults.

A.6 EXPERIMENTS DESCRIPTION

Following are the specifications used to obtain the results reported in Table 2. The experiments were
developed in PyTorch (version 2.4.0). The training was performed using the Adam optimizer imple-
mentation from the PyTorch Library. The MLPs comprised 4 layers of PyTorch Linear, followed
by 4 monotonic layers built with the post-activation proposed method, as reported in Algorithm 1.
All non-linear activations used were ReLU, except for the classification datasets where sigmoid was
used for the last layer. No hyperparameter tuning was performed except for the Blog FeedBack
dataset, for which we used a similar architecture employed in Runje & Shankaranarayana (2023)
due to severe overfitting in the non-monotonic section of the MLP.

Table 2: Hyper-parameters used for results reported in Table 1

Hyper-parameter COMPAS Blog Feedback Loan Defaulter AutoMPG Heart Disease

Learning-rate 10−4 10−2 10−4 10−3 10−4

Epochs 50 50 50 50 50

Batch-size 256 256 256 8 8

Free layers size 32 4 32 16 32

Monotonic layers size 32 12 32 16 32

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.7 EXTENSION TO OTHER ACTIVATIONS

In the rest of the paper, for all the practical examples, we assumed that ReLU was the activation
chosen for the MLP. However, the results in Sections 3.3 and 4.2 only require that the activation
function saturates in at least one of the two sides, other than being monotonic. If ReLU falls in
such a category, it is not the only one, and many other widely used ReLU-like activations satisfy the
minimal assumptions of Theorem 1. For this reason, we will now analyze many other activations
and report whether they comply with our construction. In particular, we report in Table 3 multiple
widely used activations. With them, we also report the respective gradients, whether they are non-
decreasing and saturating, and whether they can be used for the proposed approach.

It can be seen that the proposed method allows the usage of most of today’s widely used activa-
tions. However, it is crucial to notice that even though the proposed method allows for saturating
activations, it also can be used with bounded activations, such as sigmoid and tanh, but that might
bring almost no additional advantage over the weight-constrained counterpart. Any activation that
saturates at least one side can be used, given that it is monotonic. Still, the real advantage comes
from activations that saturate only one side.

Table 3: Widely used activations with corresponding their properties, and whether they can be used
or not.

Name Function Gradient Monotone Saturates Usable

ReLU

{
x if x ≥ 0

0 otherwise

{
1 if x ≥ 0

0 otherwise
✓ ✓ ✓

LeakyReLU

{
x if x ≥ 0

αx otherwise

{
1 if x ≥ 0

α otherwise
✓1 ✗ ✗

PReLU

{
x if x ≥ 0

αx otherwise
(α learnable)

{
1 if x ≥ 0

α otherwise
✓1 ✓ ✓1

ReLU6


6 if x ≥ 6

x if 0 ≤ x ≤ 6

0 otherwise


0 if x ≥ 6

1 if 0 ≤ x ≤ 6

0 otherwise
✓ ✓ ✓

ELU

{
x if x ≥ 0

α(ex − 1) otherwise

{
1 ifx ≥ 0

αex otherwise
✓1 ✓ ✓1

SELU λ

{
x if x ≥ 0

α(ex − 1) otherwise
λ

{
1 if x ≥ 0

αex otherwise
✓1 ✓ ✓1

GeLU xΦ(x) Φ(x) 1√
2π

e
−x2

2 ✗ ✓ ✗

SiLU/Swish xσ(x) ex(x+ex+1)

(ex+1)2
✗ ✓ ✗

Sigmoid 1
1+e−x

e−x

(1+e−x)2
✓ ✓ ✓

Tanh ex−e−x

ex+e−x 1−
(

ex−e−x

ex+e−x

)2

✓ ✓ ✓

Exp ex ex ✓ ✓ ✓

SoftSign x
|x|+1

1
(|x|+1)2

✓ ✓ ✓

Softplus log(1 + ex) ex

ex+1
✓ ✓ ✓

LogSigmoid − log(1 + e−x) 1
1+ex

✓ ✓ ✓

1: true only if parametrized in such a way to guarantee α ≥ 0

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 ALTERNATIVE PROOF OF THEOREM 1

In this section, we will construct a proof similar to the one proposed by Mikulincer & Reichman
(2022) to prove the constant bound of required layers for a constrained MLP with Heavyside activa-
tions.

First layer construction First, let us show that the network can represent piece-wise functions at
the first hidden layer.

Lemma 3. Consider an hyperplane defined by αT (x− β) = 0, α ∈ Rk
+ and β ∈ Rk, and the open

half-spaces:

A+ = {x : αT (x− β) > 0}, (20)

A− = {x : αT (x− β) < 0}. (21)

A single neuron in the first hidden layer of an MLP with non-negative weights can approximate 7:

h(1)(x) ≈


σ(1)(+∞), if x ∈ A+

σ(1)(−∞), if x ∈ A−

σ(1)(0), otherwise

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, for any λ ∈ R+, setting the parameters to w = λαT and b = λαTβ we have that:

h = σ(1) (wx+ b) = σ(1)
(
λαT (x− β)

)
in the limit, we get:

h(1)(x) ≈ lim
λ→+∞

σ(1)
(
λαT (x− β)

)
The limit is either σ(1)(+∞), σ(1)(−∞) or σ(1)(0) depending on the sign of αT (x− β), proving that

h(1)(x) ≈


σ(1)(+∞), if αT (x− β) > 0

σ(1)(−∞), if αT (x− β) < 0

σ(1)(0), if αT (x− β) = 0

For an easier interpretation of the just state construction, we show in Figure 7 some samples from
the family of functions that can be learned with this first hidden layer.

Figure 7: Examples of learnable functions at the first hidden layer.

7Note that σ(1)(±∞) needs not be finite.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Second layer construction Using Lemma 3, we can show that alternating saturation directions in
the activations is sufficient to represent indicator functions of intersections and unions of positive
half-spaces.

Lemma 4. If σ(1) ∈ S+, σ(2) ∈ S−, there exists a rescaling factor γ ∈ R+ such that a single unit in
the second hidden layer of an MLP with non-negative weights, can approximate:

h(2)(x) ≈ +γ1A∩(x)

for any A∩ =
⋂n

i=1 A
+
i .

Similarly, if σ(1) ∈ S−, σ(2) ∈ S+, it can approximate

h(2)(x) ≈ +γ1A∪(x)− γ

for any A∪ =
⋃n

i=1 A
+
i .

Proof. Denote by w the weights and by b the bias associated to the hidden unit in consideration at
the second layer. For any λ ∈ R+ , setting the weights to w = λ1T we have that

h(2)(x) = σ(2) (wh(1) + b) = σ(2)

(
b+ λ

∑
i

h(1)

i

)

Taking the limit, the result only depends on the sign of
∑

i h
(1)

i . Using Lemma 3, we can ensure that
it is possible to have

h(1)

i (x) ≈
{
σ(1)(+∞), if x ∈ A+

i

σ(1)(−∞), if x ∈ A−
i

From here, there are two cases, depending on the saturation of the activations. We will only prove
the case when the activations saturate to zero to avoid needlessly complicated formulas. However,
the result holds even in the general case.

If we assume σ(1) ∈ S+, σ(2) ∈ S−:
For x ∈

⋂n
i=1 A

+
i , we have h(1)

i (x) = σ(1)(+∞) = 0, while for x ̸∈
⋂n

i=1 A
+
i have

h(1)

i (x) < σ(1)(+∞) = 0. Therefore

lim
λ→+∞

h(2)(x)

{
σ(2) (b) = γ, if x ∈

⋂n
i=1 A

+
i ,

σ(2) (−∞) = 0, otherwise

where γ can be any element of the image of σ(2), which is a non negative function. Therefore for
A∩ =

⋂n
i=1 A

+
i

h(2)(x) ≈ γ1A∩(x).

If instead we assume σ(1) ∈ S−, σ(2) ∈ S+:
For x ∈

⋂n
i=1 A

−
i , we have h(1)

i (x) = σ(1)(−∞) = 0, while for x ∈
⋃n

i=1 A
−
i have h(1)

i (x) > 0.

lim
λ→+∞

h(2)(x)

{
σ(2) (b) = −γ, if x ̸∈

⋃n
i=1 A

+
i ,

σ(2) (+∞) = 0, otherwise

where −γ can be any element of the image of σ(2), that is now a non positive function. Therefore for
A∪ =

⋃n
i=1 A

+
i

h(2)(x) ≈ −γ(1− 1A∪(x)) = γ1A∪(x)− γ

For a more intuitive understanding of the class of functions that such constructed second layer can
learn, in Figure 8, we report some samples from that class of functions.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 8: Examples of learnable indicator functions at the second hidden layer.

Third layer construction Finally, let us show that a hidden unit in the third layer can perform
union and intersection operations when the second-layer representations are indicator functions of
sets.
Lemma 5. If h(2)

i (x) = γ1Ai
, there exists a rescaling factor δ ∈ R+ such that a single unit in the

third hidden layer of an MLP with non-negative weights, can approximate:

h(3)(x) ≈ +δ1A(x)

for any A =
⋃n

i=1 Ai when σ(3) ∈ S+, and for any A =
⋃n

i=1 Ai if σ(3) ∈ S−

We are finally ready to prove the main result.

Proof of Theorem 1. Since the function to interpolate is monotonic, for any couple of points
xi1 < xi2 : f(xi1) < f(xi2) it is possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by A+

i2/i1
and A−

i2/i1
, such that xi1 ∈ A−

i2/i1
, xi2 ∈ A+

i2/i1
.

Let us now construct the sets:

A∩
xi

=
⋂

j:xj<xi

A+
i/j (22)

A∪
xi

=
⋃

j:xj>xi

A+
i/j (23)

This ensures that xj < xi =⇒ xj ̸∈ A∩
xi

. Also, since A∩
xi

is obtained from the intersection of
positive half-spaces, Lemma 4 ensures a hidden unit at the second hidden layer is able to learn
h(2)(x) ≈ 1A∩

xi
(x). Now note that Axi =

⋃
j:f(xj)>f(xi)

A∩
xj

contains only and all points xj such
that f(xj) ≥ f(xi). Moreover, from Lemma 5, we know that hidden units in the third layer can
approximate 1Axi

.

As per the previous layers, we show in Figure 9 some samples of functions that the third layer,
constructed as just reported, can learn.

Figure 9: Examples of learnable functions at the third hidden layer.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Fourth layer construction To conclude the proof, take the last layer parameters to be
w(4)

i = f(xi+1)− f(xi), b
(4) = f(x1). This produces the following function approximation

f̄(x) = f(x1) +
∑
i

1Axi
(f(xi+1)− f(xi))

. f̄(x) evaluated at any of the points xi provides a telescopic sum where all the terms elide, leaving
f̄(xi) = f(xi). For the opposite activation pattern, the same result can be obtained in a similar
fashion considering intersections of A∪

xi
=
⋃

j:xj>xi
A+

i/j instead.

24


	Introduction
	Related work
	Hard Monotonicity
	Soft Monotonicity

	Monotone MLP
	Known universal approximation conditions
	Universal approximation theorem for non-threshold activations
	Non-positive constrained monotonic MLP

	Addressing the weight constraint
	Vanishing Gradient in Constrained MLPs with bounded activations
	Relaxing weight constraints with activation switches

	Experiments
	Conclusions and future works
	Ethical Considerations
	Reproducibility
	Appendix
	Naive bound for universal approximation of alternating MLPs
	Proof for opposite alternation of activation for Theorem 1
	Algorithms
	Toy example
	Dataset description
	Experiments description
	Extension to other activations
	Alternative proof of Theorem 1


