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ABSTRACT

Monotonic multi-layer perceptrons (MLPs) are crucial in applications requiring
interpretable and trustworthy machine learning models. This particularly applies
to domains, in which decisions must adhere to specific input-output relationships.
Traditional approaches that build monotonic MLPs with universal approximation
guarantees often rely on constrained weights and bounded activation functions,
which suffer from optimization issues. In this work, we prove that non-negative
constrained weights MLPs with activations that saturate on alternating sides are
universal approximators for the class of monotonic functions. Given this new re-
sult, we show that non-positive constrained weights MLPs with convex monotone
activations, contrary to their non-negative constrained counterpart, are universal
approximators. Despite such guarantees, we also show that such classes of MLPs
are hard to optimize. Therefore, we propose a novel parameterization that elim-
inates the need for weight constraints. This approach allows the networks to dy-
namically adjust activations based on weight signs, which enhances optimization
stability and performance. Experiments demonstrate that our approach maintains
theoretical guarantees and outperforms existing monotonic architectures in ap-
proximation accuracy.

1 INTRODUCTION

Monotonic neural networks represent a pivotal shift in deep learning. They bridge the gap between
high-capacity non-linear models and the need for interpretable, consistent outputs in various ap-
plications. Monotonic MLPs preserve input-output monotonic relationships, which makes them
particularly suitable for domains that require justified and transparent decisions (Gupta et al., 2016;
Nguyen & Martinez, [2019). In general, the enforcement of constraints on the model architecture
guarantees certain desired properties, such as fairness or robustness.

Furthermore, explicitly designing the model with inductive biases that exploit prior knowledge has
been shown to be fundamental for efficient generalization (Dugas et al., |2000; [Milani Fard et al.,
2016; |You et al., 2017)). For this reason, the use of monotonic networks can both help for perfor-
mance improving (Mitchell, |1980) and for data efficiency (Velickovicl [2019).

Recent works in this field usually fall into one of the following two categories: ‘soft monotonicity’
and ‘hard monotonicity’. Soft monotonicity employs optimization constraints (Gupta et al., [2019;
Sill & Abu-Mostafal|1996)), usually as additional penalty terms in the loss. This class of approaches
benefits from its simple implementation and cheap computation. They exploit the power of Multi-
Layer Perceptrons (MLPs) to be able to approximate arbitrary functions. However, they often suffer
from in-distribution guarantees since penalties are usually applied to dataset samples. For this rea-
son, they struggle to generalize the constraint out-of-distribution. Hard monotonicity instead gives
guarantees by construction by imposing constraints in the model architecture (Wehenkel & Louppe,
2019; |Nolte et al.| 2023). Such guarantees usually come at the cost of effectiveness, leading to
vanishing gradient dynamics due to the usage of sigmoid-like activations or dead neuron dynamics
due to the usage of ReLU6. The simplest way to do so is to constrain the MLP weights to be non-
negative and to use monotonic activations (Daniels & Velikova, 2010). The proposed methods in the
literature that exploit this parametrization (Daniels & Velikova, 2010; [Wehenkel & Louppel [2019)
require the usage of bounded activations, such as sigmoid and hyperbolic tangent. Even though the
usage of bounded activations with MLPs with constrained weights allows proving their universal ap-
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proximation abilities for monotonic functions,they are also well-known to be hard to optimize due
to vanishing gradients. This shortcoming is even more evident in monotonic NNs with non-negative
weights, where bounded activations make the initialization even more crucial for optimization. As
discussed in Section [A.1] poor initialization may lead to saturated activations at the beginning of
training, thus slowing it down significantly. Indeed, most recent advances in NNs use activations
in_the family of rectified linear functions,_such as the popular Re 1.1 activation (Vaswanil 2017: [He,
et al.,|2016). However, ReLU activations are problematic for non-negative-weight MLPs as they can
only approximate convex monotonic functions (Daniels & Velikova, |2010; Mikulincer & Reichman)
2022). Indeed, any non-negative-weight MLP that uses a convex activation can only approximate
convex functions, which severely limits its application. For this reason, many approaches in the
literature still rely on including bounded activations like sigmoid, which are known to be universal
approximators for the class of monotonic functions (Daniels & Velikoval 2010).

The primary aim of this work is to extend the theoretical basis of monotonic-constrained MLPs,
by showing that using activations that saturate on one side, such as ReLU, it is still possible to
achieve universal approximation. To showcase that these new findings are not just theoretical tools,
we create a new architecture that only uses saturating activations with comparable performances to
state-of-the-art architectures. Our contributions can be summarized as follows:

* We show that constrained MLPs that alternate left-saturating and right-saturating mono-
tonic activations are universal approximators for the class of monotonic functions. We also
demonstrate that this can be achieved with a constant number of layers, which matches the
best-known bound for threshold-activated networks.

* Contrary to the non-negative-constrained formulation, we prove that an MLP with 2n layers
(n > 2), non-positive-constrained weights, and ReLU activation is a universal approxima-
tor. More generally, this holds true for any saturating monotonic activation.

* We propose a simple parametrization scheme for monotonic MLPs that (i) can be used
with saturating activations (ii) does not require constrained parameters, thus making the
optimization more stable and less sensitive to initialization (iii) does not require multiple
activations, and (iv) does not require any prior choice of alternation of any activation and
its point reflection.

Our approach will focus primarily on ReLLU activations, which are widely used in the latest advance-
ments in deep learning. However, the results apply to the broader family of monotonic activations
that saturate on at least one side. This includes most members of the family of ReLU-like activations
such as exponential, ELU (Clevert et al., 2016)), SeLU (Klambauer et al.,|2017), SReLU (Jin et al.,
2016), and many more.

2 RELATED WORK

Monotonicity in neural network architectures is an active area of research that has been addressed
both theoretically and practically. Prior work can be broadly classified into two categories: archi-
tectures designed with built-in constraints (hard monotonicity) and those employing regularization
and heuristic techniques to enforce monotonicity (soft monotonicity). Our contribution falls into the
former category, but without the complexity that comes from existing methods.

2.1 HARD MONOTONICITY

Hard-monotonicity aims at building MLPs with provably monotonicity for any point of the input
space. They do so by constructing the MLP so that only monotonic functions can be learned. Ini-
tial attempts were Deep Lattice Networks (You et al.l [2017) and methods constraining all weights
to have the same sign exemplify this approach (Dugas et al., 2009; Runje & Shankaranarayanal
2023; Kim & Lee) 2024). However, constraining the parameters to be non-negative violates the
original MLP formulation, thus invalidating the universal approximation theorem. Indeed, the ar-
chitecture’s universal abilities are proven only under the condition that the threshold function is
used as activation and that the network is at least 4 layers deep (Runje & Shankaranarayana, [2023).
Furthermore, the non-negative parameter constraint also creates issues from an initialization stand-
point, as the assumption for popular initializers might be violated for positive semidefinite matrixes.
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Only recently, new architectures have been proposed with novel techniques: adapting the Deep
Lattice framework to MLPs (Yanagisawa et al., 2022), working with multiple activations (Runje
& Shankaranarayana, 2023)), constraining the Lipschitz constant (Raghu et al., 2017). However,
Runje & Shankaranarayanal (2023) requires the usage of multiple activations, and an a priori split
of the layer neurons between them, which might be sub-optimal or require additional tuning, and
Nolte et al.| (2023) relies on very specific activations to control such property, as reported by the
authors. In contrast, our work aims to overcome these drawbacks by enhancing flexibility without
compromising the monotonicity constraint.

2.2  SOFT MONOTONICITY

Soft-monotonicity aims to build monotonic MLPs by working on the training instead of architecture,
either using heuristics or regularizations. Techniques such as the point-wise penalty for negative gra-
dients (Gupta et al.,|2019;S1ll & Abu-Mostafa,|1996) and using Mixed Integer Linear Programming
(MILP) for certification (Liu et al.,[2020) have been proposed. These methods maintain considerable
expressive power but do not guarantee monotonicity. Additionally, the computational expense re-
quired for certifications, such as those using MILP or Satisfiability Modulo Theories (SMT) solvers,
can be prohibitively high.

3 MONOTONE MLP

A function f:R? — R is said to be monotone non-decreasing with respect to x;, if given
29,2} € R,i € [1,d], has the following property:

0 1 0 1
x; <a; = flar, .o xp, 0 xq) < flar, .25, xg) (D
And similarly, a function f : R¢ — R is said to be monotone non-increasing with respect to ; if:
0 1 0 1
x; <ap = flag,..., 27, xq) > flog, .o, x5, .., 2q). ()

Observation 1. Given f(x),g(xz) monotonic non-decreasing, and h(x),u(x) monotonic non-
increasing, f o g is monotonic non-decreasing, f o h is monotonic non-increasing, and wo h is
monotonic non-decreasing.

In this work, we will only focus on parametrizing non-decreasing functions, as the monotonicity can
be reversed by simply inverting the sign of the input

An MLP is defined as a parametrized function fy obtained as composition of alternating affine
transformations lfg” and non-linear activations Ug>:

fo(z) =1y ooy ...o5 " oly 3)

A straightforward approach to building a provable monotonic MLP that respects Equation [T} is to
impose constraints on its weights and activations, forcing each term in Equation [3]to be monotonic.
Indeed, monotonic activations are, by definition, monotonic. Instead, for affine transformations
Iy (z) = W9z + b, we only need to enforce the Jacobian to be non-negative, which is simply the
matrix W,

To optimize the MLP with unconstrained gradient-based approaches, the non-negative weight con-
straint is obtained using reparametrization, i.e., Iy (z) = g(W®)x 4 b? for some differentiable
g : R = R, . Typical reparametrizations use absolute value or squaring.

3.1 KNOWN UNIVERSAL APPROXIMATION CONDITIONS

Despite their surprising performances, one critical flaw of existing MLP architectures based on
weight constraints is the narrow choice of activation functions. Constrained MLPs have been shown
to be universal function approximators for monotonic functions, provided the activation is chosen
to be the threshold function, and the number of hidden layers is larger than the dimension of the
input variable (Daniels & Velikova, |2010). Just recently, this result has been drastically improved to

'In the rest of the paper we will use “monotonic” as shorthand for “monotonic non-decreasing”, unless
otherwise explicitly specified.
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Figure 1: Constructions of Heavyside function using a composition of ReL.U and its point reflection
ReLU’ transformations

a constant bound which proves that four layers are sufficient to have universal approximation prop-
erties (Mikulincer & Reichman, [2022). Therefore, practical implementation still resorts to bounded
activations such as sigmoid, tanh, or ReLU6. To understand why this is the case, consider:

Proposition 1. The composition of monotonic convex functions is itself monotonic convex.

Since affine transformations are simultaneously convex and concave, if the activation is chosen to
be a monotonic convex function, then the constrained MLP will only be able to approximate mono-
tonic convex functions. Therefore, the use of convex activations like ReLLU in a constrained MLP
severely limits the expressivity of the network. Despite this clear disadvantage, there is interest in
ReLU-activated monotonic MLPs due to their properties and their performances shown in the un-
constrained case (Glorot & Bengiol 2010; Hein et al., [2019). Runje & Shankaranarayana (2023))
propose a way to introduce RELU activation in the network. The architecture uses multiple ac-
tivation functions derived from a primitive activation o(z), its point reflection ¢'(z) = —o(—2),
and, in particular, a bounded sigmoid-like activation. While the ReL.U activations are ignored in the
subsequent theoretical analysis, this last bounded activation function is used to ensure the universal
approximation property. Moreover, the bound on the required number of layers is obtained from
the result in|Daniels & Velikoval (2010), which scales linearly with the number of input dimensions.
However, wewill show that the additional bounded activation is not necessary and that the bound
can be improved to the current best known, which is constant with respect to the input dimensions.

3.2 UNIVERSAL APPROXIMATION THEOREM FOR NON-THRESHOLD ACTIVATIONS

To have a bound on the minimum number of layers required to guarantee universal approximation
with ReL.U and its point reflection, we can limit and observe that we can approximate the Heavyside
function arbitrarily well with two layers, as shown in Fi gureﬂ} With such observation, we can lever-
age the result of Daniels & Velikova) (2010). However, such a bound outlines a linear dependence
between input size and the required layers. Further information can be found in Appendix [A.1]

Instead, in this section, we will derive a tighter bound, compared to the one proposed by Runje
& Shankaranarayanal (2023)), that instead matches the bound derived in Mikulincer & Reichman
(2022) while applying to a broader class of activation functions. This result proves that ReLU-
activated constrained MLPs can be as expressive as the logistic variants. More generally, we will
show that alternating monotonic activations that saturate on different sides in an MLP are sufficient
to ensure universal approximation capabilities with 3 hidden layers.

Definition 1. Given an activation function o : R — R, consider:

= I — = i . 4
o(400) Jm o(x) o(—00) i o(x) 4)
We will say that o is right-saturating if o (+00) € R, and it is left-saturating if o(—o0) € R, that is,
if the corresponding limit exists and is finite. We will denote the set of right-saturating activations
as ST and the set of left-saturating activations as S~.

Proposition 2. For every MLP with non-negative weights and activation o(x), and for any
a € Ry, b € R, there exists an equivalent MLP with non-negative weights and activation ao(x) + b.
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In the following proofs, thanks to Proposition [2] we will only consider activations that saturate to
zero. The main result we will prove is the following:

Theorem 1. An MLP gy : R® — R with non-negative weights and 3 hidden layers can interpo-
late any monotonic non-decreasing function f(x) on any set of n points, provided that the activa-
tion functions are monotonic non-decreasing and alternate saturation sides. That is, in addition to
monotonicity, either of the following holds:

oV eS8, o? eS8, 0¥ eSS cVeSt,o? eS8, 0% e St (5)

The first step is proving that hidden units in the first layer can approximate piecewise constant
functions on specific half-spaces.

Lemma 1. Consider an arbitrary hyperplane defined by o™ (v — 3) =0, a € R‘j_ and B € RY, and
the open half-spaces AT = {z : T (x — 8) > 0}, A~ = {z: o (z — B) < 0}. The i-th neuron
in the first hidden layer of an MLP with non-negative weights can approximate ||

oW (+00), ifze AT
h(z) ~ { oV (—00), ifr € A~
a®(0), otherwise

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, setting the parameters to w = Ao’ and b = Aa’'3 and taking the limit we have that:

h'(z) ~ lim o (wz +b) = /\lil}rl o ()\aT (z - B))
—+oo

A—r+00
The limit is either 0¥ (+00), 0¥ (—oc) or ¢V (0) depending on the sign of o (z — f3), proving that:

oW (+00), ifal (x—pB)>0
h(z) ~ { oV (—00), ifal (z—B) <0
a(0), ifal (z—-8)=0

O

The second step is proving that one hidden layer can perform intersections of sub-spaces under
specific conditions. In our construction, these will be either half-spaces or intersections of specific
half-spaces.

Lemma 2. Consider the intersection A = (\\_, A, for Ay, ..., A, subsets of Re. For any v in
the image of o, a single unit in the k-th hidden layer of an MLP with non-negative weights can
approximate:

B () A
WO (@) ~ 7 1a2)
provided that h! " (x) =~ 0 for v € A;, and either:
e o eS8 and b "(x) <Oforxz ¢ A;
« o™ eSTandhl V(zx) > 0forx & A,

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, setting the weights to w = A17" and taking the limit we have that:

B o T (®) k—1) T ®) k-1
W)~ dim o (wh'V(2) +0) = lim_o <b+ /\;hi (x)>
Note that in any case, if z € ()_; A;, then A>_. hl ’(x) ~ 0, and the limit simply reduces to
o™ (b). On the other hand, for z ¢ (:__; A;, the limit can be either ¢* (+00) depending on the sign
of h{ " (z). When o € S~ and h{' " "(z) < 0, the limit is simply ¢ (—00) = 0. Similarly, when
o™ € 8T and h{' () > 0 the limit is ¢ (+00) = 0.

?Note that o (£00) need not be finite.
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In both cases, for any + in the image of ¢ we can find a bias value b so that:

| ® (b) =~ ifz e N, A
() ~ ~1 =7 ’ S
(@) = yla(z) {C,m (£oo) =0, otherwise

Thanks to Lemma [I|and Lemma [2] we can now prove the main result, that is Theorem|[I}

Proof of Theorem[I} We will only prove the case ¢ € §7, c® € §*, ¢ € §~. The proof for the
opposite case follows the same structure and is reported in[A.2)]

Assume, without loss of generality, that the points z,...,x, are ordered so that
i1 <iz = f(x;,) < f(xs,), with ties resolved arbitrarly. We will proceed by construction, layer
by layer.

Layer 1 Since the function to interpolate is monotonic, for any couple of points
11 <ig: f(xs,) < f(x;,) it is possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by AZ Jix and A} Jir» such that z;, € A Jins Tiy € AT

12/1;1 °
Using Lemma[I] we can ensure that it is possible to have:
M (z) = oW (—oc0) =0, ifze A,
@)~ o (-o0) ot ©
hy'(x) =~ oM (4+00) > 0, otherwise

K3
Layer 2 Let us construct the set A" =, ;_; A7 Note that the sets A;" always contain z; and
do not contain any x; for j > 4. Using Equation @ we can apply Lemma which ensures that it is
possible to have the followinﬂ
(
frre
2
hi (x)

0, ifz g AY
~® < 0, otherwise

- @)
Layer 3 Consider A = ._
can once again apply Lemma which ensures that it is possible to have the followinéz_f]:

(@) =~ 791 0 () )

; AY, where A} is the complement of A}’ Using Equation (7| we

Now, we will show that A} represents a level set, i.e. x; € AY <= f(z;) > f(x;). To do so,
consider that A = |, ;
largest point contained in A(jz), [1(2-3) cannot contain x; or any point larger than z;. This shows that
AY contains exactly the points {x; : f(z;) > f(x;)}.

AP Since z; € A}, then x; € A} for j < 4. Similarly since ; is the

Layer 4 To conclude the proof, simply take the weights at the fourth layer to be :
fl@) =b flze) = fz1) f(@n) = f(@n-1)
y® ’ y® R y®

Since the points are ordered, this ensures that w contains all non-negative terms, when bias term b is
taken to be b < f(x1). Defining f(xo) = b, the output of the MLP can be expressed as:

go(x) = w'h (@) +b=b+ zn: (f(2j) = Fl2j-1)) 1L yo (@) ©)
j=1
Evaluating Equation [9]at any of the points x;, it rfeduces to the telescopic sum:
go(x:) = f(z1) + Y (flag) = flaj—1)) = flas) (10)
j=2
Thus proving that the network correctly intZ:rpolates the target function. O

*In this case v < 0 since we are considering the case where o saturates right.
*In this case v* > 0 since we are considering the case where o saturates left.
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3.3 NON-POSITIVE CONSTRAINED MONOTONIC MLP

Consider the simple modification to the standard constrained MLP approach described in Equation
[3l However, instead of constraining the weights to be non-negative, they are constrained to be non-
positive. This simple modification might seem inconsequential. However, we will show that this
structure can create more expressive networks than the original, given an even number of layers or,
equivalently, an odd number of hidden layers. Indeed, we will show that a non-positive constrained
MLP with 3 hidden layers satisfies the conditions of Theorem [T} as long as the activation function
saturates on at least one side. This also includes convex activations like ReL.U, which provably do
not yield universal approximators in the non-negative constrained weight setting.

Note that an MLP defined according to Equation [3]is still monotone for an even number of non-
positively constrained layers and monotonic activations, by Observation Therefore, it is still
possible to construct provably monotonic networks using non-positive weight constraints.

A first crucial observation is that imposing non-positive constraints in two adjacent layers with an
activation function in between is equivalent to imposing non-negative constraints in the two layers
and using a point-reflected activation function between them.

Proposition 3. An MLP with o () activation at layer k, where ij) <0, W;;* V< 0Vi, ] is equiv-
alent to an MLP where W, > 0, W5"" > 0Yi, j, and activation at layer k o' (x) = —o®(—x).

From this, it follows that an MLP with an even number of layers, non-positive weights, and activation
o at all layers is equivalent to an MLP with non-negative weights that alternate activations between
o’ and 0. This equivalence can be achieved using Proposition [3|by “flipping” the weight constraints
two layers at a time, which also changes the activations at even-numbered layers from o to ¢”.

The second observation is that both o and ¢’ are monotonic functions but saturate in opposite direc-
tions.

Proposition 4. [f o(x) is monotonic non-decreasing, then its point reflection o' (x) is also monotonic
non-decreasing. If o(x) saturates, then o' (x) also saturates but in the opposite direction.

Therefore, provided that ¢ is a saturating activation, an MLP with at least 4 layers, non-negative
weights, and alternating activation o and ¢’ is a universal monotonic approximator, from Theorem
[I] Due to the equivalence in Proposition[3] this also shows that:

Proposition 5. If o € S~ U ST, an MLP with 4 layers, non-positive weights and activation o, is a
universal approximator for the class of monotonic functions.

Similarly, we can apply the observations of this section to show that the structure proposed in|Runje
& Shankaranarayanal (2023) can produce universal monotonic approximators using only point re-
flections without the need for the third activation class.

While using Theorem [1| allows us to prove that a broad class of constrained MLP architectures
are universal monotonic approximators, it does not necessarily translate into MLPs that are easily
optimizable. One simple observation that shows how this class of functions is not easily optimizable
is considering the computation for an arbitrary input x and a newly initialized MLP with ReLU
activation. If x > 0, then —|W|x < 0, and thus ReLU(—|W|x) = 0. If x <0, then —|W |z > 0,
and thus ReLU(—|W|z) > 0. However, the second layer will saturate for the same reason as before.
To allow an efficient and effective optimization, we must carefully tune the bias term to avoid having
a 0 gradient. For this reason, we will propose an architecture not influenced by this problem in the
following sections.

4 ADDRESSING THE WEIGHT CONSTRAINT

Historically, the first works that proposed a monotonic neural network formulation relied on the
fact that forcing the parameters of the network to be non-negative, specifically the matrixes W in
the affine transformations, combined with bounded activations, is a sufficient condition to guaran-
tee that the overall induced function is monotonic (Daniels & Velikova, [2010; [Sill & Abu-Mostafa,
1996). Recently, Runje & Shankaranarayanal (2023) showed a way to build effective monotonic
MLPs with such a technique by exploiting multiple activations. However, even though using con-
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strained weights and bounded activation is easy to implement and can be optimized with any un-
constrained gradient optimizer, it might lead to vanishing gradient dynamics. Instead, we will show
how to address this issue while also tackling the necessity of alternate activations to have universal
approximation capabilities, working on the architecture of the MLP.

4.1 VANISHING GRADIENT IN CONSTRAINED MLPS WITH BOUNDED ACTIVATIONS

As reported in Section 3] a naive approach to ensure monotonicity is to have monotonic activations
and to impose monotonicity to the weights, constraining them to be non-negative. For this rea-
son, such networks’ affine transformations are usually parametrized as [(z) = g(W)x + b, for some
transformation g : R — R . Note that the bias can be any value, as it is a constant and thus does
not affect the gradient.

Such networks employed bounded activations, like sigmoid, tanh, or ReLU6, to have convex-
concave activations. This peculiarity makes them very sensitive to initialization and can potentially
lead to vanishing gradient dynamics(Glorot & Bengiol [2010). To see why constraining weights to
be non-negative exacerbates this condition, consider a monotonic MLP with sigmoidal activations,
initialized with random weights according to known, widely used initializers, such as Glorot, where
each matrix is sampled from a symmetric distribution around zero with some variance. Instead, bi-
ases are initialized to zero, as usually done. Let’s assume to use g(z) = |x|, but the same reasoning
can be applied to any other mapping g. At this point, the MLP comprises layers of the following
form o(x) = o(|W|x + b). Now, let’s consider the second layer of such MLP. Since the first layer
has applied the sigmoid activation, then ¢ (x) € (0,1). Because of this, |IW®|c®(z) will be a
product of all non-negative terms. Therefore, its result can become significantly large. Then, when
applying the sigmoid activation of the second layer, it will most likely saturate due to the large
positive values returned from the affine transformation. Going on with this reasoning for multiple
layers, such behavior will be exacerbated. Appendix shows one example of such behavior for a
very simple function. The same behavior occurs for ReLU6 MLPs, where the gradient might even
become exactly 0, and for tanh MLPs if, for example, the dataset is normalized, which is one of the
most commonly used data-preprocessing.

One possible solution might beusing BatchNormalization layers (Ioffe, 2015). BatchNorm has al-
ready shown its effectiveness in tackling initialization and optimization problems. Indeed, Batch-
Norm is comprised only of the following transformation:

x — E[z]
\/ Var[z] + €
Considering that +/Var[z] +e€ >0, forcing >0 by construction, for example, using
~ = SoftPlus(v’), makes such operation monotonic. Usually, it is initialized as 8 = 0 and v = 1.
For this reason, if used as a pre-activation layer, it might address exploding pre-activation values,
standardizing them around zero. However, the investigation of this approach falls out of the scope
of this work, and it’s left as a future line of research.

BN(z) = v+8

4.2 RELAXING WEIGHT CONSTRAINTS WITH ACTIVATION SWITCHES

Assuming we used the weight-constrained formulation for the construction proposed in Section [3.3]
we would still be left to decide the sequence of activations that should be used for the MLP, which
might be unclear or necessitate further hyperparameters-tuning. On the other hand, Observation
[I] and Proposition [3| suggest that a monotonically non-increasing operation followed by a second
monotonically non-increasing operation ensures that the overall computation in Equation [3| stays
monotonic. We will exploit this property to build a monotonic MLP that requires no weight con-
straint or handpicked activation alternation.

Let’s thus consider a single layer of a monotonic ReLU MLP, f(z) = o(|W|z + b), where o can
be either ReLU(x) or ReLU’(z). Instead of constraining weights, we can separate W in two parts,
W+ = max(W,0) and W~ = min(W, 0). Given these two matrices, we can proceed with two sep-
arate affine transformations and use the appropriate activation to even the number of monotonically
non-increasing terms in Equation [3] Given such a setting, we can parametrize the whole layer as
follows, and we will refer to it as pre-activation formulation:

f(z) = ReLU(W Tz + b) — ReLU(W ~x + b) (11)

FIX

FIX

FIX

FIX
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Algorithm 1 Forward pass of a Monotonic

: @ > ® “ ReLU MLP with post-activation switch
z —|:: D>y Input: data x € R?, weight matrix
@ - ® A W € R4%" bias vectors b € R, activa-
: T ; tion function o
i Output: prediction § € RY
max (0, W) min (0, W) ; W := max(W,0)
' W~ := min(W,0)
2t i=Wto(z)
z7 =W~ o(—x)
W b g=z"+z"+0b

Figure 2: On the left, the computation graph of a single layer of a ReLU monotonic NN with the
proposed learned activation via weight sign. On the right is the corresponding algorithm pseudocode.

Alternatively, it can be done in the opposite order, from the second layer onwards, and we will call
it post-activation formulation:

f(z) = WTReLU(z) + W~ ReLU(—z) + b (12)

In Figure [2| we report only the post-activation switch’s pseudocode and computation graph since
it will be the formulation that will also be employed for the experimental part of the paper. The
pre-activation corresponding algorithm and computational graph can be found in Appendix [A.3]
Exploiting these formulations, we gain two nice properties. The first one is the relaxation of the
weight constraint, no longer needing the g(W) transformation. The second property is that the
network can learn the activation it needs by changing the sign of the parameters.Thus, there is no
need to alternate activations and their point-reflected counterparts manually and, in case, tune such
configuration. To conclude, we must show that such a parametrization still allows the MLP to be a
universal approximator. To do so, consider a 4-layer MLP with layers formulated as in Equation [I2]
with W® >0, W® <0, W® >0, W® < 0. Then, just by rearranging the signs from the negative
weight matrixes to the activation functions, we end up with a non-negative constrained MLP with
alternating activations, thus showing that Theorem [T holds.

Indeed, the simplicity of the approach can be appreciated: it shares most of the usual steps of the
forward pass of an unconstrained MLP and does not require additional special care for initializations.
The only additional cost of the proposed method is the double matrix multiplication required by the
weight splitting. However, since the two are completely independent, they can be easily performed
in parallel.

5 EXPERIMENTS

In the previous sections, we studied the proposed method’s theoretical properties. In this section,
we aim to analyze the method’s performance compared to other alternatives that give monotonic
guarantees. We test our approach starting from the code provided by Runje & Shankaranarayana
(2023), guaranteeing a fair comparison of our results and those reported in the original work, which
thus will be used as a benchmark for this work. The first dataset used is COMPAS (Fabris et al.,
2022)). COMPAS is a dataset comprised of 13 features, 4 of which have a monotonic dependency on
the classification. A second classification dataset considered is the Heart Disease dataset. It consists
of 13 features, 2 of which are monotonic with respect to the output. Lastly, we also test our method
on the Loan Defaulter dataset, comprised of 28 features, 5 of which have a monotonic dependency
on the prediction. To test on a regression task, we use the AutoMPG dataset comprised of 7 features,
3 of which are monotonically decreasing with respect to the output. A second dataset for regression
is the Blog Feedback dataset (Buza, [2013)). Contrary to all other datasets, this dataset is composed
of a very small portion of monotonic covariates, only accounting for 2.8% of the whole dataset.
Indeed, the dataset comprises of 276 features, only 8 of which are monotonic with respect to the
output. Furthermore, most of these features are very sparse.

FIX

FIX
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Table 1: Test metrics across different datasets.

Method COMPAS Blog Feedback Loan Defaulter AutoMPG Heart Disease
(Test Accuracy) (Test RMSE) (Test Accuracy) (Test MSE) (Test Accuracy)

Isotonic 67.6% 0.203 62.1% - -
XGBoost 68.5% £+ 0.1% 0.176 £ 0.005 63.7% £+ 0.1% - -
Certified 68.8% £ 0.2% 0.159 £ 0.001 65.2% £+ 0.1% - -
COMET - - - 8.81 +1.81 86% + 3%
DLN 67.9% + 0.3% 0.161 £ 0.001 65.1% + 0.2% | 13.34 +2.42 86% + 2%
Min-Max Net 67.8% £ 0.1% 0.163 £ 0.001 64.9% +0.1% | 10.14 +1.54 75% + 4%
Constrained MNN | 69.2% + 0.2% 0.154 +0.001 | 65.3% +0.1% | 8.37+0.08 89% + 0%
Scalable MNN 69.3% +0.9% | 0.150+0.001 | 65.0% +0.1% | 7.44+1.20 88% + 4%
Ours 69.3% +0.3% | 0.158 +0.001 | 65.3% +0.1% | 7.67+1.73 94% + 3%

We compare our method with several other approaches that give monotonic guarantees by con-
struction. In particular, we compare it to XGBoost(Chen & Guestrin, 2016) as a baseline, Deep
Lattice Network (You et al.,[2017)), Min-Max Networks (Daniels & Velikoval [2010), Certified Net-
works (Liu et al.} [2020), COMET (Sivaraman et al.,[2020), Constrained Monotonic Neural Networks
(Runje & Shankaranarayanal 2023), and Scalable Monotonic Neural Networks (Kim & Lee, |2024)).
In Table [I} we report the final test set metrics, comparing the proposed methods with the results
obtained from Runje & Shankaranarayanal (2023)), with missing entries for metrics not reported by
the authors. We employed an MLP as shown by |Runje & Shankaranarayanal (2023)), composed
of 3 layers for non-monotonic features and 4 subsequent monotonic layers, except for the Blog
Feedback dataset, for which smaller layers have been used, to avoid overfitting. Specifically, the
post-activation formulation reported in Algorithm [I| has been used for all results. The proposed
method matches or surpasses the performances of other recently proposed approaches, except for
the case of the Blog Feedback dataset. Such results are obtained with minimal modifications to the
architecture used by |Runje & Shankaranarayanal (2023). However, for the Blog Feedback dataset,
given the small number of monotonic features compared to the overall dataset, the performances on
this dataset might be influenced more by the architecture or regularization than the inductive bias
induced by the monotonic layers. Indeed, running the benchmark only considering the monotonic
feature still leads to an average 0.160 £ 0.001 RMSE.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we proved that MLPs with non-negative constrained weights and alternating activations
that saturate at least on one side are universal approximators for the class of monotonic functions.
In addition, we show that a specific case of such a setting is defined by a network with mono-
tonic convex activation and constrained non-positive weights. We then use this result to present
a new parametrization that relaxes the need for activation alternation and weight constraint while
still allowing for monotonic convex activation, which was impossible earlier. With this parametriza-
tion, the layer can choose which activation to use based on the parameters’ signs. We then use
our monotone fully connected layer to build MLPs, we show that we can achieve state-of-the-art
performances. Even though this work proves that any monotonic saturating activation can be used
to build monotonic MLPs, it’s still an open question whether non-saturating activations, such as
Leaky-ReL.U, can be used to build monotonic MLPs. After that, activation must only be monotonic
to be used in monotonic MLPs. Furthermore, batch normalization has proven highly effective in the
unconstrained case. Still, it has never been used as a possible solution to the initialization problem
for the monotonic case.
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7 ETHICAL CONSIDERATIONS

The use of the COMPAS dataset in this research acknowledges its status as a common benchmark
within the field of machine learning fairness studies (Angwin et al., 2022; Dressel & Farid, [2018]).
Recognizing the complexities and potential ethical challenges associated with such datasets, we
emphasize a commitment to responsible research practices. We prioritize transparency and ethical
rigor throughout our study to ensure that the methodologies employed and the conclusions drawn
contribute constructively to the ongoing discourse in Al ethics and fairness. This approach under-
lines our dedication to advancing machine learning applications in a manner that is conscious of
their broader societal impacts.

8 REPRODUCIBILITY

In the Appendix [A.6] and [A.5] we report all necessary information for reproducibility of the results
in Table([T]and further information on the dataset employed in this work. Furthermore, the code used
to obtain the results in Table[I]is provided.
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A APPENDIX

The appendix is structured in the following way:

* Section[A.T} in this section, we show the arguably simplest though loosest bound to prove
that non-negative constrained MLPs with ReLU and ReL.U’ activations are universal ap-
proximators.

* Section[A.2} in this section we prove the results of Theorem [I]for the opposite alternation
case.

* Section [A.3} as reported in Section 4] we propose two possible parametrizations, a pre-
activation switch, and a post-activation switch. In Appendix [A.3] the pseudocode and the
computational graph of the two can be found.

* Section [A.4} in this section we will compare the proposed method to the bounded-
activation counterpart, showing how the formulation with sigmoidal activation suffers from
vanishing gradients.

* Sections and[A.6} in these sections, we report further information regarding how the
results have been obtained and about the datasets employed for this work.

* Section[A.7} since Theorem [T]only requires the non-linearity to be saturating, in this sec-
tion we report a brief overview of other activations that can be applied with the proposed
method, in order underline how it is more general than just using ReLU activations.

* Section[A.8 the proof provided for Theorem [I]is different to the ones previously proposed
in literature. However, it still ends with the result of requiring 4 layers to be a universal
approximator, as previously shown in Mikulincer & Reichman| (2022) for the heavy-side
function. For readers that are already familiar with such proof, we also report in Appendix
M a proof very similar to the one in |Mikulincer & Reichman|(2022)), trying to reuse as
much as possible the original structure.

A.1 NAIVE BOUND FOR UNIVERSAL APPROXIMATION OF ALTERNATING MLPS

A simpler, though looser, bound to prove that MLPs with alternating ReLU and its point reflection
ReLU’ activations are a universal monotonic function approximator can be achieved building on the
proof of [Mikulincer & Reichman|(2022). Two simple observations are sufficient.

Remark 1. the composition of ReLU and its point reflections ReLU () = —ReLU(—x) can ap-
proximate the threshold function 1> arbitrarily well:

liI_E ReLU(ReLU' (az) + 1) = 14>0(2) (13)
a—r+00 -

linILl ReLU' (ReLU(ax) — 1) = 1,>0(z) — 1 (14)
a—r 100 -

A representation of Equation [[3]is provided in Figure[T]

The reason why we can approximate non-convex functions using only ReLU-like activations is
reported in Proposition [T} However, considering Observation [ we can see how this limitation can
be addressed.

Remark 2. The formulas in Equation can be implemented with a 2-layer constrained MLP,
alternating ReLU and ReLU’ activations.

This is enough to leverage the existing results for threshold threshold-activated MLP (Mikulincer,
& Reichman|, 2022). This includes the best-known bound on the number of the required hidden
layers, which, however, doubles from 3 to 6 due to the need for two ReL.U layers for the Heavyside
approximation. However, this naive bound is unnecessarily loose, as shown in Theorem|I]

14
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A.2 PROOF FOR OPPOSITE ALTERNATION OF ACTIVATION FOR THEOREM [I]

In this section, we will conclude the proof of Theorem |1} considering the case with activations that
alternate in the opposite direction than the one reported in the main text. Indeed, in Section [3.2]
we proved the result for the case with 0 € §~,0® € §T,0® € §~, while in this section we will
prove the case with 0¥ € §T,0® € §=,0® € ST. The proof is extremely similar, with just a few
opposite signs due to the opposite alternation. Thus, most constructions will be shared.

Proof of Theorem[I|with opposite alternation. Assume, without loss of generality, that the points
Z1,..., %, are ordered so that i1 < i = f(w;,) < f(x;,), with ties resolved arbitrarly. We will
proceed by construction, layer by layer.

Layer 1 Since the function to interpolate is monotonic, for any couple of points
i1 <2 : f(xs,) < f(xs,) it is possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by AZ Jia and A; Jiv? such that v;, € A; . ,x;, € AT

iz /i1 iz/i1”
Using Lemma[I} we can ensure that it is possible to have:
{@%mzamHuﬂ:Q ifz e AT

il (15)

h{(z) ~ oW (—o0) < 0, otherwise

Layer 2 Let us construct the set A7 = (.., A;r/].. Note that the sets A}’ always contain z; and
do not contain any x; for j < i. Using Equation[I3} we can apply Lemma[2] which ensures that it is
possible to have the followinﬂ

0 ifz e Af)

9 ~ 0, / 16
R (x) ~~4® >0, otherwise o

Layer 3 Consider Ay = .., A}, where A is the complement of A}. Using Equationwe
can once again apply Lemma which ensures that it is possible to have the followinﬂ
hf’) (.’E) ~ ’y(S)II.Ais) (SC) (17)

Now, we will show that A} represents a level set, i.e. x; € AY <= f(z;) < f(x;). To do so,
5 AB) (2) . 2) 103) . . L. . .
consider that A;” =, ;- Aq‘ . §}nce x; € A;, thenz; € A;” for j > 4. Similarly since z; is the
smallest point contained in A(jZJ , A;” cannot contain x; or any point smaller than z;. This shows that

A contains exactly the points {z; : f(z;) < f(z;)}.

Layer 4 To conclude the proof, simply take the weights at the fourth layer to be :

f(@1) — flz2) f(@n-1) = flzn) flan) =0
~® o y® ’ ~®
Note that compared to Equation|[8] here ¥ is now negative, and the terms in the numerators’ differ-
ence are reversed. Since the points are ordered, this ensures that w contains all non-negative terms,

when bias term b is taken to be b > f(x,,). Defining f(x,41) = b, the output of the MLP can be
expressed as:

go(w) = wThO (@) +b=b+ > (f(2)) = f(wj41)) T ;0 () (18)
i=1 ’
Evaluating Equation [T8]at any of the points z;, it reduces to the telescopic sum:
n—1
go(x1) = Flan) + D (F;) = f(wj51)) = flwi) (19)
j=i
Thus proving that the network correctly interpolates the target function. O

>In this case v > 0 since we are considering the case where o saturates left.
®In this case ¥¥ < 0 since we are considering the case where o saturates right.
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A.3 ALGORITHMS

In Section i} we show how we can parametrize the activation switch using the sign of the weights.
For such a mechanism, we propose two different parametrizations, one where the switch is applied
post-activation and another one pre-activation. In Figure 2] we report both the pseudo-code and
the computational graph for the post-activation formulation. For completeness, in this section, we
also report the pre-activation pseudo-code and computational graph, and for readability and to ease
the comparison, we report them side by side, reporting again the post-activation formulation also
reported in the main text. In particular, in Figure 3| we report the two pseudocode side-by-side, and
in Algorithm[A.3] the relative pseudocodes.

Figure 3: Computation graph of a single layer of a ReLU monotonic NN with the proposed learned
activation via weight sign. The left plot reports the computational graph of the pre-activation, and
the right plot shows the post-activation switch.

Algorithm 2 Forward pass of a Monotonic ReLU Algorithm 3 Forward pass of a Monotonic ReLU
MLP with pre-activation switch MLP with post-activation switch

Input: data z € R™, weight matrix Input: data z € R", weight matrix
W e RhMxhi-1 piag vectors be RM, ac- W e RMxhi-1 bpjas vectors b€ R, ac-

tivation function o tivation function o

Output: prediction § € R~ Output: prediction ) € R
W := max(W,0) W := max(W,0)

W~ := min(W,0) W~ := min(W,0)

2t =Wtz +b 2t i=Wto(x)

27 =W-z+b z7 =W~ o(—x)
g:=0(z")—0o(z7) gi=2T+2"+b
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A.4 TOY EXAMPLE

To showcase the effectiveness of the proposed method to the bounded-activation counterpart, in
Figure ] we compare them on a simple synthetic example. In particular, the models are asked to ap-
proximate f(x) = cos(z) + x, a simple 1D monotonic function with multiple saddle points. For this
reason, it is fundamental for the approximation model to be very flexible. To showcase the different
performances, we will test 4 models. The first model to test is an unconstrained NN, which shows
that an unconstrained model can learn such a function. The second model is a monotonic NN with
non-negative and ReL.U activations, which shows that, as shown in theory, it cannot approximate
nonconvex function. The third model is a monotonic NN with non-negative and sigmoid activations.
This model, instead, is shown to be a universal approximator for monotonic functions but suffers
from vanishing gradients. Lastly, the fourth model is the proposed parametrization, specifically the
post-activation setting, as described in Section[d.2]

In Figure [ can be seen how the model with non-negative and ReLU activations cannot learn the
function as predicted by theory since the function that is asked to learn is non-convex. Instead,
both the sigmoid model and our proposed approach successfully approximate it. Still, the sigmoid
function struggles to be optimized due to the complications of using sigmoid activations. Instead,
the proposed method exploits rectified linear activations, which, under a regime where the number
of dead neurons is not too high, is much easier to optimize, as explained in the original work that
introduced such activation |Glorot & Bengio| (2010) and |Raghu et al.[(2017).

Such difference is also evident in analyzing the Negative Log Likelihood (NLL) loss of the training.
We report in Figure @] the various training losses obtained with two different sizes of layers. The
naive monotonic ReLLU, which cannot approximate such a function, is indeed the worst. However,
even though the sigmoid monotonic NN is a universal approximator, it is the slowest to learn, proba-
bly due to the vanishing gradient problem. Instead, the proposed method that uses ReLU activations
is the fastest to converge, almost catching the unconstrained model in the setting with more neurons.
Generally speaking, as also reported at the end of Section [3.3] MLPs with constrained weights,

fix)

(f(x) = y)?
=
5]

-2 0 2 4 6 8 10 -2 0 2 4 6 8 10 0 200 400 600 800 1000
X x Gradient steps

— f(x) =x+ cos(x) —— Unconstrained Monotonic ReLU —— Monotonic Sigmoid —— Monotonic Split ReLU (ours)

Figure 4: First plot, approximation of f(x) using MLPs with layers of 128 neurons. Second plot,
approximation of f(z) using MLPs with layers of 256 neurons. Last plot, training losses of the
different methods (full lines represent versions with 128 neurons, dashed lines represent versions
with 256 neurons).

require a careful initialization to avoid non-optimizable configurations. The proposed method in
Section[A3]alleviates this behavior but is not indifferent to it.

In order to showcase the vanishing gradient problem exacerbated by the non-negatively constraining,
in Figure [5] we create a 128-neuron wide MLP with varying numbers of hidden layers, and we
compare the average gradient of the output with respect to the parameters on the same function
approximation problem presented earlier in Figure[d] It can be observed how the sigmoid monotonic
MLP, even with a small number of layers, has one order of magnitude less gradient magnitude; in
particular, it has an average gradient of 0.0019 for 4 layers and 0.00099 for 10 layers. Instead, the
ReLU monotonic MLP has an exploding gradient due to the accumulation of activations induced by
the pairing of ReLU-activation and positive weight; in particular, it starts from a gradient magnitude
of 3.54 for 4 layers and goes to 3311.00 for 10 layers. Finally, the proposed approach keeps the
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gradient magnitude in a reasonable magnitude range, starting from a gradient of 0.010 for 4 layers
and going to 1.259 for 10 layers. Results are averaged over 20 different random initializations, and
plot shows +1¢. In order to better analyze the optimization problems of these architectures, we also
report in Figure[6] the distributions of the gradients of a 6-layers MLP with the various architectures.
It can be seen that the sigmoid MLP has extremely low gradients for the initial layers, leading to
slow learning. On the other hand, the ReLU MLP has exploding gradients for the final layers.

Average gradient w.r.t. network parameters with default initialization

, ] ¢ RelU constrained MLP
10 Sigmoid constrained MLP
—»%— Proposed approach
10° 4
102 4
z 104
S
s 00
107 4
1072 4
1073 4
T T T T T T
4 5 6 7 8 9
Layers MLP

Figure 5: Average gradient from monotonic MLPs varying the number of layers. Data is shown in

the log scale for the y-axis.
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Figure 6: Distribution of gradients from monotonic MLPs for each layer (layer O is the final one,

layer 6 is the first after the input).
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A.5 DATASET DESCRIPTION

For this work, the code was heavily based on the code provided by Runje & Shankaranarayana
(2023) in order to ensure that the used dataset matched exactly. For this reason, we will report a
short description of the employed dataset, but for a further and more detailed description, refer to
the original work (Runje & Shankaranarayanal |[2023).

« COMPAS: This dataset is a binary classification dataset composed of criminal records,
comprised of 13 features, 4 of which are monotonic.

* Blog Feedback: This dataset is a regression dataset comprised of 276 features, 8 of which
are monotonic, aimed at predicting the number of comments within 24h.

* Auto MPG: This dataset is a regression dataset aimed at predicting the miles-per-gallon
consumption and is comprised of 7 features, 3 of which are monotonic.

» Heart Disease: This dataset is a classification dataset composed of 13 features, 2 of which
are monotonic, aimed at predicting a possible heart disease.

* Loan Defaulter: This dataset is a classification dataset composed of 28 features, 5 of which
are monotonic, and is aimed at predicting load defaults.

A.6 EXPERIMENTS DESCRIPTION

Following are the specifications used to obtain the results reported in Table[2] The experiments were
developed in PyTorch (version 2.4.0). The training was performed using the Adam optimizer imple-
mentation from the PyTorch Library. The MLPs comprised 4 layers of PyTorch Linear, followed
by 4 monotonic layers built with the post-activation proposed method, as reported in Algorithm
All non-linear activations used were ReLU, except for the classification datasets where sigmoid was
used for the last layer. No hyperparameter tuning was performed except for the Blog FeedBack
dataset, for which we used a similar architecture employed in |Runje & Shankaranarayanal (2023)
due to severe overfitting in the non-monotonic section of the MLP.

Table 2: Hyper-parameters used for results reported in Table|I]

Hyper-parameter COMPAS | Blog Feedback | Loan Defaulter ‘ AutoMPG ‘ Heart Disease
Learning-rate 107 1072 1074 1073 10~*
Epochs 50 50 50 50 50
Batch-size 256 256 256 8 8

Free layers size 32 4 32 16 32
Monotonic layers size 32 12 32 16 32
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A.7 EXTENSION TO OTHER ACTIVATIONS

In the rest of the paper, for all the practical examples, we assumed that ReLU was the activation
chosen for the MLP. However, the results in Sections [3.3] and ff.2] only require that the activation
function saturates in at least one of the two sides, other than being monotonic. If ReLU falls in
such a category, it is not the only one, and many other widely used ReLU-like activations satisfy the
minimal assumptions of Theorem [T} For this reason, we will now analyze many other activations
and report whether they comply with our construction. In particular, we report in Table [3| multiple
widely used activations. With them, we also report the respective gradients, whether they are non-
decreasing and saturating, and whether they can be used for the proposed approach.

It can be seen that the proposed method allows the usage of most of today’s widely used activa-
tions. However, it is crucial to notice that even though the proposed method allows for saturating
activations, it also can be used with bounded activations, such as sigmoid and tanh, but that might
bring almost no additional advantage over the weight-constrained counterpart. Any activation that
saturates at least one side can be used, given that it is monotonic. Still, the real advantage comes
from activations that saturate only one side.

Table 3: Widely used activations with corresponding their properties, and whether they can be used
or not.

Name Function Gradient Monotone | Saturates || Usable
> S
ReLU T 1fac7(') 1 1fx7(.) v v v
0 otherwise 0 otherwise
if x > 1 ifz>
LeakyReLU v ife=0 ifz 20 /! X X
ax  otherwise «  otherwise
T ifz >0 .
= 1 ifz>0
PReLU {am otherwise { . ! 4 '
«  otherwise
(a learnable)
6 ifx>6 0 ifx>6
ReLU6 r if0<z<6 1 ifo<xz<6 v v v
0 otherwise 0 otherwise
i > ifx >
ELU T } 1fx_p 1 i 1fm_q ! v /!
a(e® —1) otherwise ae®  otherwise
i > i >
SELU ALY ifr=0 )1 ife=0 /1 v e
a(e” —1) otherwise ae”  otherwise
)
GeLU z®(x) @(x)ﬁe 2 X v X
SiLU/Swish zo(z) e X v X
. . 1 -z
SlngId m uéﬁ |/ !/ \/
T_ et _e— T 2
Tanh Free 1- (?) v v d
Exp e’ e’ v v 4
: ; 1
SOftSlgn \x‘l+l W |/ !/ \/
Softplus log(1 4 €%) % v v v
LogSigmoid —log(l1+e7%) H% v v v

L: true only if parametrized in such a way to guarantee o > 0
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A.8 ALTERNATIVE PROOF OF THEOREM/I]

In this section, we will construct a proof similar to the one proposed by Mikulincer & Reichman|
(2022) to prove the constant bound of required layers for a constrained MLP with Heavyside activa-
tions.

First layer construction First, let us show that the network can represent piece-wise functions at
the first hidden layer.

Lemma 3. Consider an hyperplane defined by o™ (x — 3) =0, a € R’j_ and 3 € R¥, and the open
half-spaces:

AT ={z:a (z - B) >0}, (20)
A” ={z:a" (z - B) <0} Q1
A single neuron in the first hidden layer of an MLP with non-negative weights can approximate ﬂ

o(+00), ifze At
hV(x) =~ oV (—00), ifx e A”
a®(0), otherwise

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration.
Then, for any A € R, setting the parameters to w = Aa’ and b = Aa” 3 we have that:

h=0c" (wz+b)=0c" (A (z—B))
in the limit, we get:

K(z)~ lim oV (Aa” (z—B))

A——+o0

The limit is either 0 (4+-00), o¥(—o0) or 0V(0) depending on the sign of o’ (z — 3), proving that

o (+00), ifat (xz—B)>0
hY(x) = { oW (—00), ifal (z—B)<0
a(0), ifa® (z—B)=0

O

For an easier interpretation of the just state construction, we show in Figure [7] some samples from
the family of functions that can be learned with this first hidden layer.

EERREEENE
SSSSSSISS] B NN

Figure 7: Examples of learnable functions at the first hidden layer.

"Note that o (£00) needs not be finite.
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Second layer construction Using Lemmal[3] we can show that alternating saturation directions in
the activations is sufficient to represent indicator functions of intersections and unions of positive
half-spaces.

Lemmad4. Ifo® € S*,0® € 8, there exists a rescaling factor v € R, such that a single unit in
the second hidden layer of an MLP with non-negative weights, can approximate:

h(z)(x) ~ 4yl an (.13)

forany A" =(N_, Af.

Similarly, if oV € 8=, 0% € ST, it can approximate
h?(x) ~ +y1av(x) — v
forany AY = J_, Af.

Proof. Denote by w the weights and by b the bias associated to the hidden unit in consideration at
the second layer. For any A € R , setting the weights to w = A17 we have that

h(z) = o (wh® +b) = o® (b +A> h;”)

Taking the limit, the result only depends on the sign of Y, h{". Using Lemma we can ensure that
it is possible to have

h(‘l)

K3

(z) {o’“)(—koo), ifz e Af
x) ~ . Z
oV (—00), ifz e A;
From here, there are two cases, depending on the saturation of the activations. We will only prove

the case when the activations saturate to zero to avoid needlessly complicated formulas. However,
the result holds even in the general case.

If we assume oV € ST, 0® € §™:
For ze€(_, Af, we have h(z)=0"(+00)=0, while for z¢&(_, A7 have
h{(x) < " (+00) = 0. Therefore

. @) =~ ifze N, A
1 h(Z) o ’ 1=1*%
Ao () {0(2) (—o0) =0, otherwise

where + can be any element of the image of ¢®, which is a non negative function. Therefore for
AN =N, AS

i=1""

h® (.’E) ~ ’y]]_Am (LC)

If instead we assume 0’ € S7,0® € ST:
Forz € (N, A;, we have h{’(z) = 0 (—00) = 0, while for z € |JI_, A; have h’(z) > 0.

@ = — i " +
lim h(z)(x) 0-‘ (b) Y ifr g UZ:l AZ )
A= oo o® (+00) =0, otherwise

where —v can be any element of the image of ¢'?, that is now a non positive function. Therefore for
AY =, A
i=1""1

h(z) = —y(1 = 1a0(z)) = vLav(2) — 7
O

For a more intuitive understanding of the class of functions that such constructed second layer can
learn, in Figure 8] we report some samples from that class of functions.
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Figure 8: Examples of learnable indicator functions at the second hidden layer.

Third layer construction Finally, let us show that a hidden unit in the third layer can perform
union and intersection operations when the second-layer representations are indicator functions of
sets.

Lemma 5. If b}’ (z) = v1,4,, there exists a rescaling factor § € R such that a single unit in the
third hidden layer of an MLP with non-negative weights, can approximate:

h(:z)($> ~ +5]1A(m)
forany A =\J!_, A; when ¥ € S, and forany A = J;_, A; if o® € S~

We are finally ready to prove the main result.

Proof of Theorem([l] Since the function to interpolate is monotonic, for any couple of points
xiy < X4yt f(25,) < f(xy,) itis possible to find a hyperplane with non-negative normal, with pos-
itive and negative half spaces denoted by A:; ;, and A SJin such that z;, € A} Jivs Tin € Af

1,2/1,1

Let us now construct the sets:

n _
AD = ﬂ A}, (22)
Jix;<z;
U _
]wj>w1

This ensures that 2; < x; = z; & A” . Also, since Am, is obtained from the intersection of
positive half-spaces, Lemma [4] ensures a "hidden unit at the second hidden layer is able to learn
h®(z) = Lap (x). Now note that Az, = ;.4 (, D> F () Aj} contains only and all points z; such

that f(z;) > f(z;). Moreover, from Lemma we know that hidden units in the third layer can
approximate 14, .

As per the previous layers, we show in Figure 0] some samples of functions that the third layer,
constructed as just reported, can learn.

hhAhhh
hhhbhhh

Figure 9: Examples of learnable functions at the third hidden layer.
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Fourth layer construction To conclude the proof, take the last layer parameters to be

wy’ = f(xiv1) — f(z;),b" = f(z1). This produces the following function approximation

flx) = f(z1) + Z La,, (f(zit1) — f(21))

. f(z) evaluated at any of the points x; provides a telescopic sum where all the terms elide, leaving

f(x;) = f(x;). For the opposite activation pattern, the same result can be obtained in a similar
fashion considering intersections of AY =J.._ __ AT . instead. O
i Jixi>xi “Ti/g
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