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Abstract

Semantic representations of rhythmic structures are important for AI-driven music gen-
eration and choreography. South Asian classical dance, such as Bharatanatyam, relies
on intricate rhythms that guide choreography and improvisation. These rhythms are ex-
pressed through Nattuvangam, a vocal and percussive form that uses rhythmic syllables
(Solkattus) and cymbal cues (Talam). Despite its pedagogical importance, Nattuvangam is
rarely documented in digital form, which limits systematic study and teaching. We present
the first curated dataset of Nattuvangam recordings that capture diverse Solkattu patterns
and cyclic Talam structures. Each clip is analyzed using handcrafted and learned fea-
tures, including onset envelopes, inter-onset intervals, tempograms, and Mel-spectrogram
embeddings. These representations allow machine learning models to identify, cluster, and
retrieve rhythmic motifs across performances. The dataset serves as a pedagogical tool and
supports computational exploration of Solkattu patterns in relation to Talam, revealing
the structural principles underlying Nattuvangam. This work establishes a foundation for
studying Nattuvangam as both a standalone and performative art form, bridging cultural
teaching with AI-based rhythm analysis in low-resource contexts.

Keywords: Nattuvangam, Structured Beats, Low Resource, South Asian Music, Machine
Learning

1. Introduction

The application of deep neural networks to Western music analysis and synthesis has ad-
vanced rapidly, driven by large, well-annotated datasets. In contrast, many global musical
traditions remain low-resource, lacking extensive digital archives and limiting computa-
tional study. A prime example is Nattuvangam Priyadharsini (2017), the intricate rhythmic
art central to South Indian classical dance, Bharatanatyam. Beyond serving as a rhyth-
mic framework, Nattuvangam functions as the sonic backbone of a performance: the Nat-
tuvanar recites rhythmic syllables (solkattus) while striking cymbals (talam), guiding the
dancer, setting the tempo, and weaving complex rhythmic compositions (jathis) Basani and
Himabindu (2025).

Unlike many Western traditions, where rhythm often varies freely, Nattuvangam is highly
structured with precise beat cycles (tala), defined tempos, subdivisions, and hierarchical
accents. Each solkattu fits these cycles, forming complex temporal patterns. Its mathemat-
ical rigor supports dance and improvisation, provides a systematic framework for analysis
and teaching, and presents unique challenges for computational modeling, yet it remains
under-researched. Here are two publicly available videos that illustrate the structure and
performance style of Nattuvangam nat (a,b).

A major impediment to studying Nattuvangam and similar low-resource cultural prac-
tices is the ”annotation bottleneck”. Manually creating structured datasets requires deep
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domain expertise, is time-intensive, and can be inconsistent. To address this, we propose
a hybrid approach that combines traditional signal processing with the reasoning capabili-
ties of Large Language Models (LLMs). Trained on extensive internet corpora, LLMs have
absorbed substantial cultural knowledge from sources such as academic papers, blogs, and
performance descriptions, allowing them to act as ”cultural experts” that assist in scalable
and reproducible annotation of rhythmic syllables (solkattus) within Nattuvangam perfor-
mances. Mention where we got those annotation labels- we researched about it, found
of what characterize the seq. We settled on a set of salient attributes and went on to
annotate.The labels pertain to syllables, beat cycles etc.

In this work, we present a curated dataset of Nattuvangam recordings, systematically
organized and annotated to capture the rich rhythmic structure of this art form. Along-
side dataset creation, we apply classical machine learning approaches to analyze rhythmic
patterns, uncover cyclic temporal structures, and gain insights into the underlying rhythm
organization, leveraging LLMs primarily to guide annotation of solkattus. This dual focus-
dataset curation and pattern analysis-provides a comprehensive foundation for computa-
tional studies of Nattuvangam and enables further exploration of its complex temporal
structures and hierarchical rhythms.

This work offers a generalizable framework for computationally analyzing culturally rich,
data-scarce traditions.

2. Related Works

The computational analysis of music, or Music Information Retrieval (MIR), has a rich
history, with foundational work focusing on understanding musical structure through beat
and downbeat tracking Goto and Muraoka (1994); Dannenberg (2005); Goto and Muraoka
(2021); Dannenberg and Goto (2008). Early approaches laid the groundwork for analyz-
ing rhythmic structure from audio signals, evolving into sophisticated models capable of
recognizing complex rhythmic patterns Krebs et al. (2013). These advances have enabled
high-level tasks such as music genre classification Fu et al. (2011); Cao and Tan (2025), auto-
matic music tagging Lyberatos et al. (2025), and music generation Yuan et al. (2024), often
leveraging deep learning architectures including CNNs, LSTMs, and attention mechanisms
Zhang et al. (2024); Seo et al. (2023); Ajay and Rajan (2023); Du et al. (2024).

A critical limitation of many computational music analysis methods is their reliance on
large, labeled datasets. Low-resource domains, such as Nattuvangam, present a substan-
tial challenge because structured annotationsparticularly of the vocalized rhythmic sylla-
bles (solkattus)are scarce or nonexistent. This scarcity has motivated strategies such as
data augmentation, which expands datasets via pitch shifting or time stretching Sun et al.
(2024); Jiang et al. (2025), and transfer learning, where models pre-trained on high-resource
tasks are adapted to low-resource ones using parameter-efficient techniques such as adapters
Hung et al. (2023); Ali et al. (2024); Mehta et al. (2025). Our work extends this perspec-
tive by combining classical machine learning approaches with the knowledge embedded in
Large Language Models (LLMs) to assist annotation and facilitate the study of low-resource
rhythmic traditions.

Within Indian Classical Music (ICM), prior research has focused predominantly on
melodic analysis, identifying repeating patterns (ragas) using spectral features, matrix pro-
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files, or symbolic methods Thomas et al. (2016); Nuttall et al. (2021); Shirude and Kolhe
(2023), as well as tasks like vocal-instrument separation Murthy et al. (2017). While these
studies demonstrate strong analytical interest in ICM, the rhythmic dimension-particularly
Nattuvangam-remains largely unexplored. This gap stems primarily from the absence of
publicly available, annotated datasets. Our work addresses this by providing a curated
dataset with annotated Solkattus, enabling both musical analysis and pedagogical explo-
ration of rhythm, tempo, and the underlying musical organization of Nattuvangam perfor-
mances.

3. Background: Nattuvangam and Rhythmic Structure in South Asian
Dance

Nattuvangam is the rhythmic and vocal accompaniment for Bharatanatyam, a classical
South Indian dance.It is performed by the nattuvanar, who keeps the beat by striking
small bronze cymbals (talam) and simultaneously reciting rhythmic syllables called solkattu.
These syllables, such as ta di gi na or tha ki ta, indicate the timing and pattern of beats. For
example, when the dancer performs a sequence of fast footwork, the nattuvangam guides
the tempo and emphasizes the correct accents, ensuring the music, rhythm, and dance stay
perfectly synchronized.

3.1. Rhythmic Organization: Tala and Jati

Rhythm in Carnatic music is structured through tala Rao (2023), repeating cycles of an-
gas—laghu (L, variable-length), drutam (D, two beats), and anudrutam (A, one beat).
Seven fundamental talas combine with five jatis of the laghu (tisra=3, chaturasra=4,
khanda=5, misra=7, sankirna=9) to form 35 derived talas. For instance, Triputa tala
with tisra jati becomes Tisra Jati Triputa Tala. These derived talas define the rhythmic
framework for compositions. Table 1 lists their nomenclature.

Tala Tisra (3) Chatusra (4) Khanda (5) Misra (7) Sankirna (9)

Dhruva L3 D L L L4 D L L L5 D L L L7 D L L L9 D L L
Matya L3 D L L4 D L L5 D L L7 D L L9 D L
Rupaka D L3 D L4 D L5 D L7 D L9

Jhampa L3 A D L4 A D L5 A D L7 A D L9 A D
Triputa L3 D D L4 D D L5 D D L7 D D L9 D D
Ata L3 L D D L4 L D D L5 L D D L7 L D D L9 L D D
Eka L3 L4 L5 L7 L9

Table 1: Seven fundamental talas combined with five jatis to form the 35-tala system. Each
jati determines the number of beats in the laghu.

3.2. Solkattu and Rhythmic Encoding

Solkattu consists of spoken syllables such as ta, di, gi, na, and thom, which represent percus-
sive strokes aligned with the tālam. The structure and phonetics of these sequences provide
critical insight into rhythmic perception, articulation, and performance practice Sol.
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Counting solkattu sequences are designed for rapid articulation, clarity, and temporal
precision as shown in Table 2. Dental consonants (e.g., [t], [d]) typically mark the onset
of units, vowels ([a], [i], [u]) encode intrinsic pitch, duration, and intensity, and terminal
retroflexes (e.g., [t.]) add auditory distinction without slowing articulation. The ”•” denotes
a drag of the previous phrase. A key property is permutation flexibility: performers can
start with a base unit (e.g., ta ki t.a) and generate multiple valid sequences for longer phrases
while maintaining rhythmic clarity. This explains some of the variability observed in mean
IOI and spectral flux measures.

Beats Primary Syllables Alternate Combinations
1 ta –
2 ta ka –
3 ta ki t.a –
4 ta ka di mi ta ka di na, ta ka jo n. u
5 ta ka ta ki t.a ta din gi n. a tom
6 ta ri ki t.a ta ka ta ki t.a ta ki t.a, ta din • gi n. a tom
7 ta ka di mi ta ki t.a ta ki t.a ta ka di mi, ta ka ta di gi n. a tom,

ta • din • gi • n. a • tom
8 ta ka di mi ta ka jo n. u ta din • gi • n. a • tom
9 ta ka di mi ta ka ta ki t.a ta ka di ku ta din gi n. a tom, ta • din • gi

• n. a • tom

Table 2: Counting Solkattu and Combinatorial Patterns

The trikāla (third-speed) representation in Table 3 further illustrates temporal scaling:
syllable alignment is systematically maintained across slow, medium, and fast renditions of
a phrase, highlighting how performers adapt rhythmic material to different tempos.

Tempo 1 2 3

Slow ta • • • ki • • • t.a • • •
Medium ta • ki • t.a • ta • ki • t.a •
Fast ta ki t.a ta ki t.a ta ki t.a ta ki t.a

Table 3: Rendering of Tísra Jāti Eka Tāla at Different Tempos

Understanding the phonetic structure and combinatorial flexibility of solkat.t.u is crucial
for appreciating how rhythmic patterns are generated and perceived in Bharatanatyam.
This knowledge informs how we represent, organize, and interpret motion and audio data
in our dataset, ensuring that subsequent analyses remain grounded in practical performance
strategies and meaningful musical structure.

4. Dataset: Creation and Characteristics

4.1. Overview

Our dataset comprises a combination of publicly scraped solkattu recordings and audio from
the Hugging Face repository hf. In total, we collected 31,560 seconds (8.76 hours) of audio,
covering diverse performance styles and recording conditions. All clips were preprocessed,
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standardized to 10-second segments at a 22 kHz sampling rate, and manually curated to
ensure consistency and usability for downstream analysis and modeling.

4.2. Dataset Fields

Each audio segment is annotated with one of seven tala labels corresponding to distinct
rhythmic cycles commonly used in Nattuvangam. Table 4 summarizes the dataset fields,
including identifiers, rhythmic structure, and tempo-related attributes.

Field Description

clip id Unique identifier for each audio segment.
tala type The tala(s) present in the clip; represents

distinct rhythmic cycles. Clips can con-
tain one or multiple talas.

solkattu Vocalized rhythmic syllables correspond-
ing to the tala(s).

temp bpm Approximate tempo of the clip in beats
per minute.

aksharas Number of beat units per tala cycle.
angas Subdivisions within the tala, representing

structural segments.
first solkattu The initial syllable in the tala cycle.
boolean multiple talas Boolean indicator of whether a clip con-

tains multiple overlapping talas.

Table 4: Description of dataset fields used for rhythmic analysis, detailing identifiers, rhyth-
mic structure (tala, solkattu, angas), and tempo-related attributes.

4.3. LLM-based Annotation

The dataset was annotated for tala type, solkattu transcription, aksharas, angas, and tempo
(temp bpm), chosen to capture the hierarchical rhythmic structure of Nattuvangam. Field
selection was guided by prior research, instructional tutorials, and performance analysis.
Initial annotation used a large language model (Gemini) with zero-shot prompting on tex-
tual and acoustic cues, followed by verification and refinement by one of the authors trained
for over two decades in Carnatic music. The prompt used is included in the Appendix A.
This demonstrates how LLMs can support structured annotation of low-resource musical
datasets while preserving musical validity.

5. Experiments

5.1. Features

To study the structure of solkattus and beats, we extracted two feature sets: rhythm-based
features for baseline analysis and learned audio features for expressive modeling. Rhythm-
based features include onset envelopes, tempograms, inter-onset intervals (IOI), and spectral
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flux/energy per beat, capturing beat locations, tempo, micro-timing, and accentuation.
Learned features comprise Mel-spectrograms and optional channels such as onset strength,
capturing frequency-energy patterns over time. Together, these features represent both
coarse and fine-grained temporal and spectral structure underlying tala cycles.

5.2. Experiments

To explore low-resource rhythmic learning, we investigate whether representations learned
from frequent tāla classes (Eka and Triputa) can transfer to underrepresented tālas (the
remaining five rare classes). This simulates a zero-shot transfer scenario, where models
trained on abundant data encode temporal and spectral patterns potentially generalizable
to rare rhythmic forms.

ROCKET + XGBoost Baseline. We first established a baseline using full-sequence
MFCCs processed with ROCKET((RandOm Convolutional KErnel Transform)), a state-
of-the-art time-series feature extractor. Features were classified with XGBoost using a
GroupShuffleSplit to ensure leak-free evaluation. This baseline as in Table 5 provides a
reference for how well models trained on frequent tālas encode discriminative rhythmic
patterns.

Class Precision Recall F1-score

Eka 0.52 0.24 0.33
Triputa 0.73 0.90 0.80

Accuracy 0.70 (Weighted Avg: P=0.66, R=0.70, F1=0.66)

Table 5: Classification Report for ROCKET + XGBoost

The baseline achieves 69.8% accuracy and a weighted F1-score of 0.66. The model
successfully identifies the majority Triputa class (recall 0.90), while Eka shows lower re-
call (0.24), highlighting the challenge of class imbalance and establishing a foundation for
transfer evaluation.

Hybrid Feature Model (MFCC + CLAP(Contrastive Language-Audio Pretrain-
ing)). To enhance feature richness and transferability, we combined MFCC statistics
(mean and standard deviation) with embeddings from a pretrained CLAP model (laion/clap-
htsat-unfused). A Random Forest classifier trained on these hybrid features achieved
76.2% accuracy and a weighted F1-score of 0.73, with improved recognition of the minority
Eka class (F1-score 0.48) as in Table 6.

Figure 1 presents a t-SNE visualization of hybrid test set features, illustrating improved
separability between Eka and Triputa. The clearer clusters suggest that hybrid embed-
dings capture transferable rhythmic representations, supporting the potential for zero-shot
generalization to rare tāla classes.

Key Insights: Models trained on frequent tālas capture transferable rhythmic structures,
supporting low-resource learning for rarer forms. Integrating statistical and learned audio
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Class Precision Recall F1-score

Eka 0.83 0.33 0.48
Triputa 0.75 0.97 0.85

Accuracy 0.76 (Weighted Avg: P=0.78, R=0.76, F1=0.73)

Table 6: Classification Report for Hybrid Features (MFCC + CLAP)

Figure 1: t-SNE embedding of hybrid test set features (MFCC statistics + CLAP embed-
dings). Colors denote tāla class. Hybrid features enhance cluster separability and indicate
transferable rhythmic representations.

features improves minority class detection and reveals generalizable rhythmic patterns. t-
SNE projections show distinct tāla clustering, indicating potential for zero- and few-shot
recognition of underrepresented rhythms.

6. Analysis and Discussion

6.1. Tempo Distribution Across Tāla Types

Figure 2 shows the distribution of standardized tempo (BPM) across canonical Sapta Tālas.
The analysis highlights distinct rhythmic signatures: Chaturasra Jāti Rūpaka Tāla and
Khanda Jāti Eka Tāla exhibit higher medians and broader variance, reflecting flexible pac-
ing, whereas Tisra and Khanda Āta Tālas have lower, tightly constrained tempos, consistent
with longer cycles and denser beat structures. Chaturasra Jāti Triput.a Tāla demonstrates
moderate variability, indicating stylistic diversity across performances. Derived tālas such
as Mísra Chāpu Tāla were excluded to focus on core forms. These patterns explain why
models trained on the frequent Eka and Triput.a classes capture a wide range of rhythmic
dynamics, enabling transfer learning to rarer tālas. In particular, the tempo elasticity in
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Figure 2: Distribution of standardized tempo (BPM) across canonical Sapta Tālas.

these frequent classes provides a rich representation of temporal structure, which comple-
ments feature sets like MFCCs and CLAP embeddings, and informs classifier decisions on
underrepresented rhythmic cycles.

6.2. Temporal Coverage and Structural Consistency of the First Solkattu

Figures 3a and 3b characterize the temporal structure of the first solkattu in our dataset.
The coverage plot (Fig. 3a) shows a strongly bimodal distribution, with clips either omitting
the start of the cycle or containing the full first solkattu. This indicates that most record-
ings capture rhythmically complete phrases, reflecting pedagogical practice where the first
solkattu serves as a foundational template, while partial segments correspond to stylistic
variations or improvisation.

The length ratio distribution (Fig. 3b) reinforces this pattern. The peak near 1 shows
that the first solkattu typically spans nearly the entire cycle, while a secondary peak around
0.5 reflects partial-cycle renditions due to pedagogical exercises or tempo variations. Rare
cases above 1.25 likely result from expressive elongation or annotation inconsistencies.

For modeling, these patterns are informative: (i) the prevalence of full solkattus sup-
ports robust learning of internal rhythmic structure, (ii) partial cycles highlight boundary
variability critical for generalization, and (iii) the bimodality provides a natural supervi-
sory signal for cycle alignment. Together, these insights link musicological understanding
with computational modeling, emphasizing how performance practice shapes data-driven
approaches for tasks such as tala classification, solkattu synthesis, and transfer learning to
rarer talas.

6.3. Spectral Flux at Onsets Across Tālas

Figure 4 presents the distribution of mean spectral flux at onsets across the seven funda-
mental Tālas, capturing the micro-dynamics and timbral intensity of rhythmic articulation.
Triputa and Eka show higher median flux with greater variability and multiple outliers, in-
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Figure 3: (a) Coverage of first Solkattu across the beat cycle. (b) Distribution of first
Solkattu’s length ratio relative to the full cycle. The two plots together illustrate both
completeness and variability in initial rhythmic phrases.

dicating pronounced dynamic accents and expressive emphasis in their Solkat.t.u execution.
In contrast, Jhampa and At.a exhibit lower, tightly clustered flux values, reflecting uniform
energy transitions and consistent onset articulation.

Figure 4: Mean spectral flux at onsets across seven Tālas, highlighting differences in rhyth-
mic intensity and micro-dynamic variation.

These patterns complement the temporal analyses (tempo and IOI), demonstrating that
Tāla characterization is multidimensional: not only does cycle length and timing differ
across Tālas, but the expressive energy profile of each beat varies systematically. For
performers, this informs how different Tālas afford dynamic articulation, while for com-
putational models, spectral flux provides a discriminative feature for classifying rhythmic
intensity, detecting expressive accents, and improving solkattu-based transfer learning from
common to rare Tālas.

6.4. Temporal Spacing and Variability Across Tālas

Figure 5 shows the distribution of mean inter-onset intervals (IOIs) across the seven funda-
mental Tālas, capturing both structural and expressive aspects of rhythmic timing. Dhruva
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and Triputa display higher median IOIs with broader interquartile ranges and pronounced
outliers, reflecting flexible temporal spacing that accommodates expressive elaboration. In
contrast, Jhampa, At.a, and Mātya exhibit tightly clustered IOIs, indicative of metrically
stable execution with less temporal deviation.

Figure 5: Distribution of mean inter-onset intervals (IOIs) across seven Tālas, highlighting
differences in rhythmic pacing and temporal variability.

These patterns have dual significance. For performers, they highlight how certain Tālas
inherently allow expressive timing, while others demand precise adherence to cycle struc-
ture. For computational modeling, IOI distributions serve as a quantitative feature for
discriminating Tālas and capturing temporal dynamics essential for tasks such as solkattu
segmentation, rhythmic synthesis, and transfer learning from common to rarer Tālas. By
linking temporal variability with both musical function and model design, this analysis
underscores the importance of IOI as a rhythm-sensitive feature.

6.5. Latent Structure and Clustering of Rhythmic Features

To systematically explore rhythmic variability across Tālas, we performed unsupervised
analysis on audio clips using mean inter-onset interval (IOI), spectral flux, and tempo.

This approach uncovers latent structure, identifies recurring rhythmic motifs, and ex-
amines how expressive variations manifest across different Tālas. K-means clustering with
PCA projection and t-SNE embeddings capture complementary aspects of the feature space:
global cluster organization and fine-grained local similarities (Fig. 6).

The PCA and K-means results reveal clear rhythmic groupings reflecting each Tāla’s
temporal and dynamic structure. Triputa spans multiple clusters, indicating expressive
diversity and flexible pacing, while Jhampa forms compact clusters with stable timing and
energy contours. Dhruva and Eka occupy slower, irregular regions, and sparse clusters
correspond to outliers with extreme tempo or flux values. These patterns align with IOI
and spectral flux trends (Figs. 5, 4), highlighting onset timing and energy variation as strong
rhythmic discriminators.
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Figure 6: Left: PCA projection of K-means clustered clips based on mean IOI, spectral flux,
and tempo (colors indicate cluster membership). Right: t-SNE embedding of the same clips
colored by fundamental Tāla, highlighting intra- and inter-Tāla rhythmic variability.

The t-SNE projection emphasizes intra- and inter-Tāla variability. Dense Triputa re-
gions reflect rich expressive variation, while compact Eka and Matya clusters suggest rhyth-
mic uniformity. Partial overlaps among Jhampa, Rupaka, and Āta reveal shared temporal
traits, whereas isolated Dhruva points highlight distinctive accentuation and pacing.

Together, these latent structures provide a foundation for generalizable rhythmic mod-
eling. They suggest that models trained on frequent Tālas can transfer to rarer ones and
that learned representations capture both canonical and expressive rhythmic patterns, sup-
porting classification, synthesis, and pedagogy in Solkat.t.u-based performance analysis.

7. Conclusion and Relevance to the Workshop

Our work aligns with the workshop’s focus on human-centric AI for music, addressing
low-resource rhythmic traditions. By analyzing solkattus, we uncover combinatorial and
temporal structures that reveal meaningful patterns in the culturally rich, scarce data of
Nattuvangam.These insights highlight AI’s role as a collaborative tool for understanding,
preserving, and augmenting human musical expertise, benefiting both performers and ed-
ucators. Limitations include dataset size, performer variability, and lack of multimodal
features. Future work could expand the corpus, integrate motion or gesture data, and cap-
ture expressive timing and dynamics to improve interpretability and modeling of complex
rhythmic patterns.Overall, this study demonstrates how AI can uncover structured, inter-
pretable patterns while respecting traditional knowledge, laying the groundwork for richer,
multimodal analyses of rhythmic performance.
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Appendix A. Details of the LLM Annotation Prompt

To facilitate consistent and comprehensive annotation of our Nattuvangam dataset, we
employed Gemini using the following prompt. The LLM was instructed to analyze each
audio clip thoroughly and populate an Excel sheet with relevant rhythmic metadata. This
approach enabled scalable, semi-automated annotation while maintaining accuracy, which
was subsequently verified by domain expertise and extensive reference to tutorials and prior
research.

I will give you audio clips one by one, for each, I want you to analyze the

complete video and maintain an excel sheet where you append each audio file.

For each I want you to append the following information:

clip_id (just the video file name), tala type, solkattu, temp_bpm, aksharas, angas

, first solkattu, boolean_multiple_talas.

A little background for you on the video files. These are Nattuvangam clips I have

scraped which I want to annotate with the fields I have provided you.

If there are multiple talas or any other column needs multiple value, add them as

comma separated value.

I want you to do a deep dive on each file, do not just look at the beginning of

the audio and annotate, look at the whole sample.

Use the standard solkattu for all videos. Please stay consistent.
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