
Scaling Safe Multi-Agent Control for Signal
Temporal Logic Specifications

Joe Eappen, Zikang Xiong, Dipam Patel, Aniket Bera, Suresh Jagannathan
Purdue University

West Lafayette, IN 47907, United States
{jeappen,xiong84,dipam,aniketbera,sjaganna}@purdue.edu

Abstract: Existing methods for safe multi-agent control using logic specifications
like Signal Temporal Logic (STL) often face scalability issues. This is because
they rely either on single-agent perspectives or on Mixed Integer Linear Program-
ming (MILP)-based planners, which are complex to optimize. These methods
have proven to be computationally expensive and inefficient when dealing with a
large number of agents. To address these limitations, we present a new scalable
approach to multi-agent control in this setting. Our method treats the relationships
between agents using a graph structure rather than in terms of a single-agent per-
spective. Moreover, it combines a multi-agent collision avoidance controller with
a Graph Neural Network (GNN) based planner, models the system in a decen-
tralized fashion, and trains on STL-based objectives to generate safe and efficient
plans for multiple agents, thereby optimizing the satisfaction of complex temporal
specifications while also facilitating multi-agent collision avoidance. Our experi-
ments show that our approach significantly outperforms existing methods that use
a state-of-the-art MILP-based planner in terms of scalability and performance.

Keywords: Multi-Robot Systems, Path Planning for Multiple Mobile Robots,
Collision Avoidance, Specification-Guided Learning, Deep Learning Methods

1 Introduction

Learning-based methods have shown promise in multi-agent systems (MAS) for tasks such as colli-
sion avoidance, path planning, and task allocation [1, 2, 3, 4]. Extensions have also been developed
to handle complex temporal tasks that may be described using formal languages such as Signal
Temporal Logic (STL) [5, 6] and other temporal logics [7, 8, 9]; unfortunately, these methods have
well-known limitations in terms of scalability and performance.

Signal Temporal Logic (STL) is a formal language for specifying complex temporal tasks that can
be used to describe the behavior of agents in a multi-agent system. In many settings, including
autonomous vehicles [10], drones [11], and robotic swarms [12], it is essential to ensure that the
agents satisfy complex temporal tasks such as sequentially visiting a series of locations while avoid-
ing collisions with each other and the environment. Once the user has specified the task in STL, the
task can be synthesized using formal methods [13, 14, 15] in certain environments; however, these
methods often struggle to scale to complex specifications and environments. In response to these
challenges, Mixed Integer Linear Programming (MILP)-based planners [16, 17] have been devel-
oped that can be used to plan over a range of STL specifications but still encounter difficulties with
collision avoidance when a modest number such as 5 agents are considered (Table 1).

Inspired by recent progress in learning-based planners [18, 19, 20], we propose a novel approach
to planning for multi-agent systems with STL specifications that can scale beyond these limitations
demonstrated on up to 32 agents. More specifically, we introduce a Graph Neural Network (GNN)
based planner using Neural Ordinary Difference Equations (ODEs) [18] (Fig. 1, Sec. 4.2) trained

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

ODEPlanner

Update
GNN

0

1
2

MLP

0

1
2

+

Sensing
Radius

Agent Goal Path

1

1
1

A

B

C

Sequence Spec.: ♢[0,10]A ∧ (♢[10,20]B ∧♢[20,30]C)

Final Position
Initial Position

0

1
2
3

4
56 7

0

1

2

3 4
5

6

7

Figure 1: (Left) GNN-ODE Planner Architecture for Multi-Agent Systems with STL Specifica-
tions. The planner πϕi

g generates a sequence of goals for agent i given the initial state of the system
G(0). The safety controller πi ensures that the agents do not collide while following the generated
goals. A GNN encodes the graph representing the collective initial state of the system to yield an
initial goal gi(0) (red) for each agent i. This goal gi(0) is fed into a Multi-Layer Perceptron (MLP)
network to generate a new goal gi(1) (blue) which is fed back into the MLP network in a feedback
loop. This is repeated for T − 1 steps to generate a sequence of goals for the agent. The losses
LSTL and Lach are detailed in Sec. 4.1 and are used to update our planner. (Middle) Real world
experiments on N = 5 drones. (Right) An example trajectory for N = 8 agents for a seq spec
requiring agents to visit A then B and finally C in order.

end-to-end on an STL objective to generate safe and robust plans for multiple agents that can be
realized using a learnable MA collision avoidance controller ([21], Sec. 4.3). To scale up, we use
the ODE-based component to plan general paths that satisfy the given task while using a GNN to
model agent interactions in a scalable manner to achieve coordination between the agents as they
determine which ODE-generated goal trajectory to follow. Our loss components (Sec. 4.1) allow
the planner to find paths that satisfy the STL objective while also being achievable in the presence
of collision avoidance maneuvers and agent-to-agent interactions.

Our contributions are as follows: 1) We propose a novel scalable GNN-based planner (GNN-ODE)
trained on an STL objective to generate safe and achievable plans for multiple agents. 2) We demon-
strate the effectiveness of our approach on a range of STL specifications and show that our method
can scale to a large number of agents and complex specifications beyond existing methods that use
a state-of-the-art MILP-based planner with an average 65% improved success rate.

1.1 Related Work

Symbolic methods have been part of a recent resurgence as neuro-symbolic algorithms [22, 23]
which aspire to combine the generalizability of neural methods with the ability of most symbolic
systems to be interpretable and modifiable by human users. Notably, there have been efforts to in-
tegrate temporal logic constraints within learning-enabled controllers. In the field of Reinforcement
Learning (RL), some examples of this are TLTL [24], which defines a reward function from a logic
specification and reward shaping mechanisms, [25, 26] which create automata modeling a similar
specification and augment RL-based algorithms used for control. This has been extended to the
Multi-agent domain, which had recent work [27, 9] showing possibilities of coordinating multiple
agents with diverging objectives, as well as the benefits of distributing specifications among agents
in terms of scalability.

A key aspect of scaling control to higher-dimensional environments and robots involves efficiently
incorporating a high-level planner. This involves decomposing complex logic planning from control
tasks, allowing each component to focus on its specific role. The high-level planner focuses on
logic-level planning, ensuring that the robot’s actions adhere to complex specifications, such as those
defined by STL. In contrast, the low-level controller acts as a tracker, executing the high-level plan
accurately. Modern control methods have demonstrated this benefit as well from the burgeoning

2

progress in Hierarchical RL [28, 29, 30, 31, 25] methods as well as the successful integration of
classical planners with advanced control schemes, including RL controllers [32].

Symbolic techniques have appeared in robot motion planning as well with the use of Signal Tem-
poral Logic (STL) to specify objectives for multi-robot systems, which can then be solved by MILP
solvers [16], graph-based algorithms [33] or sampling-based methods [34, 35]. Collision avoidance
in these multi-robot systems is a challenging problem since one must also achieve the underlying
objectives as well and a myriad of techniques [36, 37, 38, 21, 39] have attempted to handle this for
general robot motion planning tasks. These existing methods, however, have not considered the gen-
erality of symbolic methods in specifying these objectives or quickly fail to scale as the specification
dimension, robot complexity and number of agents increases.

2 Background

Multi Agent Systems with Partial Observability We can represent a multi-agent system with
N agents {1, 2, . . . N}. Each agent has its own state si(t) ∈ Si ⊂ Rn, can take an action
ui(t) ∈ Ui ⊂ Rm, and the collective behavior of the agents is governed by a dynamics func-
tion si(t + 1) = fi(si(t), ui(t)). For simplicity, we assume all agents have the same dynamics
function fi = f , state space Si = S, and action space Ui = U . A trajectory τ is a sequence
of states τ = (s̄(0), s̄(1), . . . , s̄(Th)) where Th is the time horizon, s̄(t) = (s1(t), . . . sN (t)),
ū(t) = (u1(t), . . . uN (t)) and a policy πi is a function that maps the state of agent i to an ac-
tion ui = πi(si). The state of the system is partially observable, meaning that each agent can only
observe its own state and the states of other agents within its sensing range.

Signal Temporal Logic Signal Temporal Logic (STL) integrates both first-order logic and time-
dependent modifications of linear temporal logic operators. The essential logical operators include
∧ (and), ¬ (not), ∨ (or), and ⇒ (implies). Time-dependent operators are ♢[a,b] (eventually between
times a and b), □[a,b] (globally between times a and b), and U[a,b] (until between times a and b).
STL formulas are defined as:

ϕ := P | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ♢[a,b]ϕ | □[a,b]ϕ | ϕ U[a,b]ψ,

where P is a predicate function mapping states to real values. Quantitative semantics [13, 40] of
STL evaluate a robustness value, ρ(ϕ, τ), which measures how strongly a state trace τ satisfies or
violates ϕ. This robustness metric is differentiable, allowing for direct optimization of STL formulas
through differentiable planners like neural networks.

Multi-agent Specification With regards to multi-agent systems withN agents, the MA-STL spec-
ification Ψ is composed from N individual STL specifications

∧N
i=1 ϕi where ϕi associates an STL

specification for a single agent with index i. The MA-STL specification Ψ is satisfied if all individual
STL specifications are satisfied and the agents do not collide.

Graphical Representation for Multi-Agent Systems Graph Neural Networks (GNNs) are adept
at modeling multi-agent systems by representing agents and obstacles as vertices within a graph
G = (V,E). Each vertex in V = Va ∪ Vo corresponds to either an agent or a static obstacle.
Edges E encapsulate direct interactions between vertices, with specific emphasis on agent-to-agent
and agent-to-obstacle connections. We adopt a distance-based adjacency criterion where an edge
(vi, vj) ∈ E exists if the Euclidean distance between vertices vi and vj does not exceed a predefined
threshold R, for capturing the local topology of agents within this range [38]. A GNN processes
the graph to produce a global embedding representing the collective state of the system. This global
state is further processed through specialized readout functions ri, tailored to extract and map the
global embedding to a specific set of actions ui for each agent [39, 21, 38].

Barrier Certificates Barrier certificates [41] are a useful technique to avoid robot collisions in
MA systems [42] by forcing the state of the entire system to stay within the safe region. For a state
space S ⊂ Rn, let Su ⊂ S be the unsafe set and Ss = S\Su the safe set, which contains the set

3

of initial conditions S0 ⊂ Ss. Also, define the space of control actions as U ⊂ Rm. For a dynamic
system ṡ(t) = f(s(t), u(t)), a control barrier function h : Rn 7→ R satisfies:

h(s) ≥ 0 ∀s ∈ S0, h(s) < 0 ∀s ∈ Su, ∇sh · f(s, u) + α(h(s)) ≥ 0 ∀s ∈ s | h(s) ≥ 0. (1)

For a control policy (π : S → U) and CBF (h), if (s(0) ∈ s | h(s) ≥ 0) and the above conditions
are satisfied with (u = π(x)), then (s(t) ∈ s | h(s) ≥ 0) for all t ∈ [0,∞). This implies that the
state never enters the unsafe set (Su) under π (see [41]).

Learning-based approaches for barrier certificates [37, 39, 38, 21] have been shown to scale in the
number of agents beyond existing methods for known systems. Notably, a graphical perspective of
the agents and their interactions can be used to model the system in a scalable manner (Sec. 4.3).

3 Problem Statement
Consider a MA-STL specification Ψ on N agents N = {1, 2, . . . , N}, where each agent is at a
position pi(t) ∈ P ⊂ R

n with n being 2 or 3 for 2D or 3D environments respectively. Assume
that each state si(t) of agent i can be directly mapped to its position pi(t), say the first n elements
of si(t) by a function filterpi : S → P. Similar to Zhang et al. [21], we include a LiDAR
based observation of nrays > 0 for each agent measuring the distance to the nearest obstacle in
the environment with a sensing radius R > 0. The j-th ray of agent i is denoted as yi,j(t), where
yi,j(t) ∈ R+ is the distance to the nearest obstacle in the direction of the j-th ray at time t.

The MA-STL motion planning problem We now establish the problem of motion planning for
MA-STL in multi-agent systems. Essentially, the objective is to identify a set of reference goals that
when followed satisfy a given MA-STL specification, while ensuring that there are no collisions
between the agents. Suppose there areN agents involved, and the time bound is denoted by Th. The
planner πϕi

g generates a sequence of goals τgi = (gi(0), gi(1), . . . , gi(T)) for agent i with a given
plan length T < Th. Each agent has a size radius represented by r, where r > 0. This means that
when an agent is at position p ∈ W , it is entirely contained within a ball of radius r centered at p,
denoted as Br(p). With these considerations, we can define the planning problem as follows:

Definition 1 (Motion Planning in MA-STL) For a given MA-STL specification Ψ =
∧N

i=1 ϕi and
a set of N agents N , the motion planning problem is finding a distributed control policy πi and a
planner πϕi

g for each agent i such that the following conditions are satisfied for closed-loop trajec-
tories of agents in N with length Th:

• (Safety - Agents) For all t ∈ [0, Th], and for all i, j ∈ N where i ̸= j, ||pi(t)−pj(t)|| ≥ 2r.

• (Safety - Obstacles) For all t ∈ [0, Th], and for all i ∈ N , yi,j(t) ≥ 2r for all j ∈ [nrays].

• (STL Satisfaction) There exists t0, t1, . . . , tT such that ti ∈ {0, . . . , Th} and t0 < t1 <
. . . < tT such that the closed-loop trajectories τ = (s(t0), s(t1), . . . , s(tT)) of the agents
satisfy the MA-STL specification Ψ i.e. ρ(Ψ, τ) ≥ 0.

• (Achievability) For all i ∈ N , given the goal trajectory τgi of length T from πϕi
g , the gap

Dτgi
(τi) =

∑T
t′=0

∥∥filterpi
(si(tt′))− filterpi

(gi(t
′))

∥∥
2
< ϵ for a small ϵ ∈ R+.

N Spec. 1 / Spec. 2 Planning Time (s)
3 1 seq / 2 seq 11 / 292
5 1 seq / 2 seq 211 / -

Table 1: Planning when considering disjoint time
or space [16], a PWL plan with K = 6 segments
(1 seq) / K = 10 segments (2 seq). The X
seq spec. has X sequential waypoints.

Scaling STL for Multi-agent Systems
Given an MA-STL specification Ψ on a sys-
tem of N -agents we would like to provide a
decentralized algorithm to execute a policy sat-
isfying the specification with high probability.
While we might assume a plan-then-execute
technique [16] that finds a Piece-Wise Linear
(PWL) path for each agent with K segments,
such an approach quickly fails to scale with
specification complexity and number of agents
when considering collisions between agents at planning time. We posit this is primarily due to
its collision avoidance mechanism that introduces O(CN

2 ∗ K2) new variables, which quickly
blows up (where CN

2 = N(N − 1)/2). Consider two goal regions A and B and a sequential
STL specification requiring agents to visit A (viz. 1 seq) or to visit A then B (viz. 2 seq) while

4

avoiding collisions. Table 1 demonstrates this by timing out (over 50 minutes) for a simple STL
specification with N = 5 agents in a 2-D environment with Single Integrator dynamics as well as
all specifications and number of agents considered in this work (Sec. 5, App. B) .

Accounting for collision-avoidance independent of the objective is not novel [37, 39], but, as we
argue in this paper, in order to satisfy an STL specification, one must account for the temporal
nature of the specification simultaneously with performing any collision-avoidance maneuvers. An
alternative, as we propose, is to plan for the objectives while adjusting for collision avoidance by
means of an iterative training procedure involving the safety controller (such as GCBF+) and the
planner.

4 Approach

Our approach integrates planning, control, and safety mechanisms in an end-to-end differentiable
learning framework. We first introduce a differentiable STL framework using a neural network
planner to maximize STL robustness (Sec. 4.1). For efficient multi-agent planning, we employ
GNNs to model agent relationships and generate decentralized goal sequences (Sec. 4.2). To ensure
collision avoidance, we define a safe set of states using GCBFs for robust control (Sec. 4.3). Finally,
we discuss the training of our integrated system (Sec. 4.4).

4.1 Differentiable Signal Temporal Logic for Planning

Signal Temporal Logic (STL) provides a robustness metric for a given trajectory that quantifies
the level of satisfaction of a specification ϕ defined using the STL language (Sec. 2). Consider a
NN planner πϕi

g that takes as input the current state of the system and outputs a sequence of goals
τgi = (gi(0), gi(1), . . . , gi(T)) for agent i with specification ϕi. We can define a loss function that
attempts to maximize the STL robustness score for the specification ϕ, given the waypoints from the
planner. Prior work [19, 40] has used the differentiability of this score function to directly regularize
a planner’s waypoints for use by a given low-level controller πi(si|gi) which is goal-conditioned,
i.e. targeted to reach the goal gi given the current state si of agent i.

For the planner architecture, similar to Xiong et al. [19], we consider using πϕi
g to predict the devi-

ation between subsequent waypoints ∆gi. Based on this, to maximize the probability of satisfying
the STL specification given a controller πi, we define the loss function as:

L
π
ϕi
g ,πi

= E
si∼S0,τgi∼π

ϕi
g (si),

τi∼πi(si,gi)

−λSTLρ(ϕi, τgi)︸ ︷︷ ︸
LSTL

+λachDτgi
(τi)︸ ︷︷ ︸

Lach

 (2)

Here we consider two loss components, the first being the STL robustness score ρ(ϕi, τgi) of the
planned waypoints τgi and the second being the tracking error Dτgi

(τi) of the controller πi with
respect to the planned waypoints. The coefficients λSTL, λach > 0 are hyperparameters that control
the relative importance of the two loss components (LSTL and Lach) in the overall loss function.
The STL Loss LSTL captures our objective, maximizing the STL robustness score of the planned
waypoints τgi with respect to the specification ϕi. The achievable loss Lach on the other hand ensures
that the controller πi can track the planned waypoints τgi using a distance metric Dτgi

(τi) (Defn.
1) that extracts the positions from τi using filterpi and minimizes a normed distance between the
two, i.e. Dτgi

(τi) =
∑T

t=0 ∥filterpi
(si(kt))− filterpi

(gi(t))∥2 where k > 0, k ∈ Z
+ is a

fixed goal sampling rate during training such that kT = Th. In this paper, we consider the same
specification ϕi = ϕ and use the same planner for all agents. This enables easy generalization to
different numbers of agents during testing and allows for a more scalable approach to planning. We
leave the question of how to support different specifications among agents for future work. This
leads to our overall loss function for the planner and controller as Lπϕ

g ,π
=

∑N
i=1 Lπ

ϕi
g ,πi

.

4.2 GNNs for Planning in Multi-Agent Systems

Graphical models can be useful to scale collision avoidance in multi-agent systems [39, 21, 38] by
modeling the system in a decentralized manner. Notably, by representing the agents as nodes and

5

their interactions as edges, we can use Graph Neural Networks (GNNs) to process a graphical view
of the system as described in Sec. 2 (Fig. 1).

To handle the planning problem in multi-agent systems we describe the planner πϕ
g . We choose a

GNN-based planner that takes as input the initial state of the system G(0) and outputs an initial goal
gi(0) for agent i taking into account the relative positions of the agents. Next we feed this goal gi(0)
into a 2-layer MLP to predict the deviation ∆gi. This process is repeated for T − 1 steps to generate
a sequence of goals for the agent given the initial state. By using this GNN-based structure, we can
get this sequence of goals τgi for each agent i in a single forward pass of the planner πϕ

g .

As highlighted in Sec. 2, MA-STL can be thought of as independent single-agent STL specifications
on the agents, albeit with an additional constraint on avoiding collisions between the agents. While
collision avoidance during planning time is expensive (Sec. 3), we can attempt to plan for the
objectives for a subset of the agents and use this plan with a safety scheme during run-time. Along
these lines, during deployment, we use the GNN-ODE (Fig. 1) to generate a sequence of waypoints
that we sequentially visit in a decentralized manner using the GCBF+ controller (Sec. 4.3). One
should note this would not be straightforward if we had defined arbitrary STL specifications in the
joint space of agents involving global coordination or synchronization of objectives [43, 9].

However, because this may detract from the overall objective due to collision avoidance maneuvers
causing deadlocks, we update the planner iteratively by sampling the environment as detailed in Sec.
4.1 with the STL robustness score. In a sense, we “co-learn” the safety (GCBF+ controller, πi) and
objective (GNN-ODE, πϕi

g) behavior which is a recurrent theme in recent work [19, 32] related to
the safety of controllers in complex systems.

4.3 Collision Avoidance in MA Systems

Following [21], we define the safe set Ss ⊂ SN of an N -agent MAS as the set of MAS states s̄ that
satisfy the safety properties in Problem 1, i.e.,

Ss :=
{
s̄ ∈ SN

∣∣∣ (∥yi,j∥ > r, ∀i ∈ N ,∀j ∈ nrays

)∧(
min

i,j∈N ,i̸=j
∥pi − pj∥ > 2r

)}
. (3)

Then, the unsafe, set of the MAS Su = SN \Ss is defined as the complement of Ss. We now define
the notion of a GCBF[21]:

Definition 2 (GCBF) A continuously differentiable function h : SM → R is termed as a Graph
CBF (GCBF) if there exists an extended class-K∞ function α and a control policy πi : SM → U
for each agent i ∈ Va of the MAS such that, for all s̄ ∈ SN with N ≥M ,

ḣ(s̄Ni) + α(h(s̄Ni)) ≥ 0, ∀i ∈ Va (4)

where for uj = πj(s̄Nj
) and set of neighbours Ni of agent i in the MAS within sensing radius R,

we have

ḣ(s̄Ni
) =

∑
j∈Ni

∂h(s̄Ni)

∂sj
f(sj , uj), (5)

From this definition, as a consequence of the results in Zhang et al. [21], if we find a control policy
πi and GCBF h such that Eq. (4) holds for all agents i and all states s̄ ∈ Ss , then the MAS will
never enter the unsafe set Su under the control policy πi.

4.4 End-to-End Differentiable Learning for MA-STL

By using the learning framework described in Sec. 4.2 and the safety mechanism in Sec. 4.3, we
can train the planner and controller in an end-to-end differentiable manner using the loss function
in Eq. (2) (Sec. 4.1). We use an iterative training loop to sample trajectories from the environment
at different starting conditions and update the planner πϕ

g for a trained common GCBF+ controller
πi = π using the loss Lπϕ

g ,π
.

5 Experiment Setup

Our experiments aim to validate the following two questions:

6

Metric Planning Time (s) ↓ Finish Rate (%) ↑ Safety Rate (%) ↑ Success Rate (%) ↑ TtR (steps) ↓
Planner GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPY GNN-ODE STLPYSpec N

B
ra

nc
h 8 0.05 22.48 100.00 100.00 100.00 85.00 100.00 85.00 712.50 357.00

16 0.04 43.80 100.00 99.00 100.00 53.75 100.00 52.50 745.12 429.81
32 0.03 87.92 95.00 96.00 92.50 20.00 88.12 18.12 820.90 572.39

C
ov

er 8 0.02 10.40 100.00 95.00 100.00 97.50 100.00 95.00 1062.00 429.76
16 0.02 20.14 100.00 78.00 96.25 87.50 96.25 76.25 1124.25 536.33
32 0.03 40.19 99.00 80.00 85.00 56.88 84.38 53.75 1252.59 708.22

L
oo

p 8 0.02 26.16 100.00 98.00 100.00 82.50 100.00 80.00 1874.00 1095.29
16 0.02 52.79 100.00 99.00 97.50 67.50 97.50 66.25 1927.50 1301.54
32 0.04 111.62 99.00 100.00 86.25 38.75 85.62 38.75 2110.88 1598.19

Se
q.

8 0.07 3.46 95.00 98.00 95.00 100.00 95.00 97.50 988.64 637.11
16 0.07 6.96 90.00 89.00 93.75 90.00 86.25 85.00 1173.44 785.97
32 0.08 13.62 89.00 84.00 76.25 64.38 66.88 59.38 1277.91 1013.90

Table 2: Performance of the two planning schemes with the number of agents (N) and specification
complexity for the DubinsCar Environment. We note an average 65% improved success rate and
highlight the best result in bold.

• How scalable is a neural STL planner over competing methods in terms of the number of
agents and specification complexity?

• How do the distinct components of our planner (GNN and ODE) help with scalability?

To demonstrate the robustness of our method to various specifications and agent models we execute
our experiments on the following robot benchmarks: 2D single integrator dynamics (App. C.1), 2D
non-linear Dubins Car model (Table 2), 2D Double Integrator dynamics (App. C.3) and a real-world
3D drone quadcopter setup moving in a fixed 2D plane (App. C.4).

Our framework1 was built using JAX [44] based off GCBF+ [21] (Sec. 4.3) with all comparisons
using this underlying collision avoidance controller. To demonstrate the effectiveness of our method,
we compare it against a state-of-the-art MILP-based planner (STLPY [17], Table 2) and an ablation
of our planner without the GNN component (labeled ODE, Table 3).

We evaluate the planner on a range of specifications: seq, cover, loop and branch. These STL
specifications can be drawn to parallels in the real-world. A seq task is akin to a set of drones that
need to visit a series of locations in a specific order at given time intervals for logging time-sensitive
information. The cover task depicts a scenario where each drone measures a different sensor reading
but must all cover the same locations within a time interval to consolidate information. The loop task
captures a set of surveillance drones patrolling the same areas. Lastly, consider a scenario where
drones are grouped into two separate rooms with two goals present in each. Here a branch task
could represent a common specification applied to each agent that they must visit the goals of a
particular room. For a more formal description of the specifications, refer to Appendix B.

We sampled 30 random initial seeds for each experiment and report the mean planning time (in
seconds), the percentage of runs in which the specification was satisfied (Finish Rate), the percentage
of runs where the agent was safe (i.e. did not collide), the percentage of successful runs for each
specification where the STL specification was satisfied and no collisions occurred, and time-to-reach
(TtR) in number of steps (i.e. how long it took for the successful runs to complete the task).

6 Results

Our results (Table 2) demonstrate how differentiable STL can be used to ensure agents achieve
complex objectives while avoiding collisions in multi-agent systems.

Scalability in number of agents We first evaluate the scalability of our approach in the number
of agents (N) for the non-linear DubinsCar environment. From the results, we observe that the
success rate decreases gradually as the number of agents increases, which is expected as the number
of agents increases the complexity of the problem. The results show that the single agent view
of STLPY proves unsuccessful especially in the N = 32 case where agent interactions are more
prevalent. Notably our approach has a planning time that is 70-1000x faster than the MILP-based
planner (STLPY) and does not blow up when considering a larger number of agents N .

1Code: https://github.com/jeappen/mastl-gcbf

7

https://github.com/jeappen/mastl-gcbf

Metric Finish Rate (%) ↑ Safety Rate (%) ↑ Success Rate (%) ↑ TtR (steps) ↓

Spec N
Percentage

Change ODE
Percentage

Change ODE
Percentage

Change ODE
Percentage

Change ODE

B
ra

nc
h 8 -2.00 98.00 0.00 100.00 -2.50 97.50 -26.01 527.21

16 -4.00 96.00 -2.50 97.50 -6.25 93.75 -24.86 559.88
32 0.00 95.00 -8.78 84.38 -7.08 81.88 -18.18 671.66

C
ov

er 8 0.00 100.00 0.00 100.00 0.00 100.00 -28.19 762.57
16 0.00 100.00 0.00 96.25 0.00 96.25 -28.58 802.95
32 0.00 99.00 7.35 91.25 7.40 90.62 -28.48 895.88

L
oo

p 8 0.00 100.00 0.00 100.00 0.00 100.00 -16.30 1568.57
16 0.00 100.00 -11.54 86.25 -11.54 86.25 -17.11 1601.03
32 0.00 99.00 0.00 86.25 0.74 86.25 -13.85 1818.59

Se
q.

8 -26.32 70.00 5.26 100.00 -26.32 70.00 31.34 1298.50
16 -32.22 61.00 -1.33 92.50 -28.99 61.25 15.30 1352.94
32 -47.19 47.00 26.23 96.25 -28.98 47.50 7.54 1374.23

Table 3: Considering an ablation without the GNN module for the DubinsCar Environment at vari-
ous scales and reporting the percentage change in values. Planning times are comparable.

Scalability in specification complexity For certain specifications such as branch and loop, we
observe that the MILP planner computation time is significant which can add up over different agent
initializations. In contrast, our planner is able to generate a solution for all the specifications quickly
and consistently for different agent initial positions, motivating our learning-based approach. We
further note the effect in TtR when using our algorithm. We rationalize this trade-off because our
method finds longer paths that allow goals to be reached by the GCBF+ controller, which is trained
to avoid other agents. This inherently reduces the number of collisions which is often a greater
priority. From our ablation study (Table 3) we note the impact of the GNN module especially in
terms of a 28% impact in success rate for certain specifications such as seq which require increased
coordination among agents. We can further reason that the impact in cover and loop of the GNN
module is not as great since agents are not required to reach the goals within a strict order and thus
require less coordination. With regards to the lower TtR of the successful runs, the lack of a GNN
module may yield plans that can satisfy the specification efficiently but fail in terms of coordination
between agents (affecting the overall success rate).

7 Limitations

Model-based learning While a model-free approach to collision-avoidance [45, 32] would be
more amenable to handle unknown environment dynamics, our approach is inherently model-based
(as is GCBF [38, 21], MACBF [37] and CAM [39]). This is primarily due to the underlying con-
troller and GCBF (akin to a barrier certificate), using the next state of the system while calculating
the derivative for use in the loss function.

Map Complexity, Homogeneity Additionally, since the approach is decentralized, complex maps
requiring communication and coordination between agents may cause safety issues. As mentioned
in [21], it may be hard in dense regions to act in a decentralized manner thus necessitating the use
of inter-agent communication. We have considered the homogeneous case in this work, where all
agents have the same dynamics and STL specifications. However, in the heterogeneous case, agents
may have different dynamics and STL specifications thus needing a more complex controller and
a planner capable of generalizing to multiple goal positions or STL specifications. Our planner
does not consider obstacles directly, although as demonstrated in the Appendix (Tables 5, 6, 7),
the GCBF+ controller to an extent provides inherent collision avoidance capabilities. Finally, the
approach is limited by the complexity of the environment and the number of agents. While we have
shown that the approach scales well with the number of agents, the complexity of the environment
and the number of obstacles may cause the planner to fail to find a achievable plan.

8 Conclusion

In this work, we have presented a novel approach to planning for multi-agent systems with Sig-
nal Temporal Logic specifications. Primarily we have shown that by using a differentiable STL
robustness metric, we can optimize for the satisfaction of complex temporal specifications given a
controller with MA collision avoidance capabilities. We demonstrate that by training a GNN-ODE
planner with a carefully constructed loss function we can overcome the limitations of the plan-then-
execute approach and scale to complex specifications and large numbers of agents.

8

References
[1] K. Garg, S. Zhang, O. So, C. Dawson, and C. Fan. Learning Safe Control for Multi-Robot

Systems: Methods, Verification, and Open Challenges, Nov. 2023. URL http://arxiv.
org/abs/2311.13714. arXiv:2311.13714 [cs, eess, math].

[2] T. Huang, S. Koenig, and B. Dilkina. Learning to resolve conflicts for multi-agent path finding
with conflict-based search. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(13):11246–11253, May 2021. doi:10.1609/aaai.v35i13.17341. URL https://ojs.aaai.
org/index.php/AAAI/article/view/17341.

[3] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti. Primal2: Pathfinding via reinforcement
and imitation multi-agent learning - lifelong. IEEE Robotics and Automation Letters, 6(2):
2666–2673, 2021. doi:10.1109/LRA.2021.3062803.

[4] Y. Li, X. Zhang, T. Zeng, J. Duan, C. Wu, D. Wu, and X. Chen. Task placement and re-
source allocation for edge machine learning: A gnn-based multi-agent reinforcement learning
paradigm. IEEE Transactions on Parallel and Distributed Systems, 34(12):3073–3089, dec
2023. ISSN 1558-2183. doi:10.1109/TPDS.2023.3313779.

[5] J. Wang, S. Yang, Z. An, S. Han, Z. Zhang, R. Mangharam, M. Ma, and F. Miao. Multi-
agent reinforcement learning guided by signal temporal logic specifications. arXiv preprint
arXiv:2306.06808, 2023.

[6] A. L. Forsberg, A. Nikou, A. V. Feljan, and J. Tumova. Multi-agent transformer-accelerated rl
for satisfaction of stl specifications, 2024.

[7] N. Zhang, W. Liu, and C. Belta. Distributed control using reinforcement learning with
temporal-logic-based reward shaping. In R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg,
M. Schwager, and M. Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dy-
namics and Control Conference, volume 168 of Proceedings of Machine Learning Research,
pages 751–762. PMLR, 23–24 Jun 2022. URL https://proceedings.mlr.press/v168/
zhang22b.html.

[8] L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge. Multi-Agent Reinforcement
Learning with Temporal Logic Specifications. arXiv:2102.00582 [cs], Feb. 2021. URL
http://arxiv.org/abs/2102.00582. arXiv: 2102.00582.

[9] J. Eappen and S. Jagannathan. DistSPECTRL: Distributing specifications in multi-agent re-
inforcement learning systems. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022. ISBN 978-3-031-
26412-2.

[10] C. E. Tuncali, G. Fainekos, D. V. Prokhorov, H. Ito, and J. Kapinski. Requirements-driven
test generation for autonomous vehicles with machine learning components. IEEE Transac-
tions on Intelligent Vehicles, 5:265–280, 2019. URL https://api.semanticscholar.org/
CorpusID:199442111.

[11] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam. Fly-by-logic: Control of multi-drone
fleets with temporal logic objectives. 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pages 186–197, 2018. URL https://api.semanticscholar.
org/CorpusID:263896988.

[12] R. Yan, Z. Xu, and A. A. Julius. Swarm signal temporal logic inference for swarm behavior
analysis. IEEE Robotics and Automation Letters, 4:3021–3028, 2019. URL https://api.
semanticscholar.org/CorpusID:195832808.

[13] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166.
Springer, 2004.

[14] J. Gutierrez, L. Hammond, A. W. Lin, M. Najib, and M. Wooldridge. Rational Verification for
Probabilistic Systems. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, pages 312–322, 11 2021. doi:10.24963/kr.2021/30.
URL https://doi.org/10.24963/kr.2021/30.

9

http://arxiv.org/abs/2311.13714
http://arxiv.org/abs/2311.13714
http://dx.doi.org/10.1609/aaai.v35i13.17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
https://ojs.aaai.org/index.php/AAAI/article/view/17341
http://dx.doi.org/10.1109/LRA.2021.3062803
http://dx.doi.org/10.1109/TPDS.2023.3313779
https://proceedings.mlr.press/v168/zhang22b.html
https://proceedings.mlr.press/v168/zhang22b.html
http://arxiv.org/abs/2102.00582
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:199442111
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:263896988
https://api.semanticscholar.org/CorpusID:195832808
https://api.semanticscholar.org/CorpusID:195832808
http://dx.doi.org/10.24963/kr.2021/30
https://doi.org/10.24963/kr.2021/30

[15] J. Tumova and D. V. Dimarogonas. Multi-agent planning under local ltl specifications and
event-based synchronization. Automatica, 70(C):239–248, aug 2016. ISSN 0005-1098. doi:10.
1016/j.automatica.2016.04.006. URL https://doi.org/10.1016/j.automatica.2016.
04.006.

[16] D. Sun, J. Chen, S. Mitra, and C. Fan. Multi-agent motion planning from signal temporal logic
specifications. IEEE Robotics and Automation Letters, 7(2):3451–3458, 2022.

[17] V. Kurtz and H. Lin. Mixed-integer programming for signal temporal logic with fewer binary
variables. IEEE Control Systems Letters, 2022.

[18] P. Das, A. Dasgupta, and D. Dalal. ODEsolvers are also wayfinders: Neural ODEs for multi-
agent pathplanning. In The Symbiosis of Deep Learning and Differential Equations III, 2023.
URL https://openreview.net/forum?id=rnhkE2vb4r.

[19] Z. Xiong, D. Lawson, J. Eappen, A. H. Qureshi, and S. Jagannathan. Co-learning planning and
control policies constrained by differentiable logic specifications. In 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[20] F. Nawaz, T. Li, N. Matni, and N. Figueroa. Learning complex motion plans using neural odes
with safety and stability guarantees. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2024.

[21] S. Zhang, O. So, K. Garg, and C. Fan. GCBF+: A Neural Graph Control Barrier Function
Framework for Distributed Safe Multi-Agent Control, Jan. 2024. URL http://arxiv.org/
abs/2401.14554. arXiv:2401.14554 [cs, math].

[22] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue. Neurosym-
bolic programming. Foundations and Trends® in Programming Languages, 7(3):158–243,
2021. ISSN 2325-1107. doi:10.1561/2500000049. URL http://dx.doi.org/10.1561/
2500000049.

[23] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[24] X. Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3834–
3839. IEEE, 2017.

[25] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Reward machines: Exploiting
reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,
73:173–208, 2022.

[26] K. Jothimurugan, R. Alur, and O. Bastani. A composable specification language for reinforce-
ment learning tasks. In NeurIPS. 2019.

[27] C. Neary, Z. Xu, B. Wu, and U. Topcu. Reward machines for cooperative multi-agent rein-
forcement learning. In AAMAS, 2021. ISBN 9781450383073.

[28] J. Yang, I. Borovikov, and H. Zha. Hierarchical cooperative multi-agent reinforcement learning
with skill discovery. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1566–1574, 2020.

[29] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In NeurIPS, 2018.

[30] B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia. Deep integration of physical
humanoid control and crowd navigation. In Motion, Interaction and Games, 2020. ISBN
978-1-4503-8171-0.

[31] A. Vezhnevets, Y. Wu, M. Eckstein, R. Leblond, and J. Z. Leibo. Options as responses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 9733–9742. PMLR, 2020.

10

http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1016/j.automatica.2016.04.006
https://openreview.net/forum?id=rnhkE2vb4r
http://arxiv.org/abs/2401.14554
http://arxiv.org/abs/2401.14554
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049
http://dx.doi.org/10.1561/2500000049

[32] Z. Xiong, J. Eappen, A. H. Qureshi, and S. Jagannathan. Model-free neural lyapunov control
for safe robot navigation. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5572–5579, 2022. doi:10.1109/IROS47612.2022.9981632.

[33] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu. Planning of heterogeneous multi-agent
systems under signal temporal logic specifications with integral predicates. IEEE Robotics
and Automation Letters, 6(2):1375–1382, 2021. doi:10.1109/LRA.2021.3057049.

[34] Y. Kantaros and M. M. Zavlanos. Stylus*: A temporal logic optimal control synthesis algo-
rithm for large-scale multi-robot systems. The International Journal of Robotics Research,
39(7):812–836, 2020. doi:10.1177/0278364920913922. URL https://doi.org/10.1177/
0278364920913922.

[35] C. I. Vasile, X. Li, and C. Belta. Reactive sampling-based path planning with temporal logic
specifications. The International Journal of Robotics Research, 39(8):1002–1028, 2020. doi:
10.1177/0278364920918919. URL https://doi.org/10.1177/0278364920918919.

[36] J. Chen, J. Li, C. Fan, and B. C. Williams. Scalable and safe multi-agent motion planning
with nonlinear dynamics and bounded disturbances. In Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2021), 2021.

[37] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent control with decen-
tralized neural barrier certificates. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.

[38] S. Zhang, K. Garg, and C. Fan. Neural Graph Control Barrier Functions Guided Distributed
Collision-avoidance Multi-agent Control. Aug. 2023. URL https://openreview.net/
forum?id=VscdYkKgwdH.

[39] C. Yu, H. Yu, and S. Gao. Learning control admissibility models with graph neural networks
for multi-agent navigation. In 6th Annual Conference on Robot Learning, 2022. URL https:
//openreview.net/forum?id=xC-68ANJeK_.

[40] K. Leung, N. Aréchiga, and M. Pavone. Backpropagation through signal temporal logic spec-
ifications: Infusing logical structure into gradient-based methods. Int. Journal of Robotics
Research, 2022.

[41] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic
programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):3861–
3876, 2017. doi:10.1109/TAC.2016.2638961.

[42] L. Wang, A. D. Ames, and M. Egerstedt. Safety Barrier Certificates for Collisions-Free Multi-
robot Systems. IEEE Transactions on Robotics, 33(3):661–674, June 2017. ISSN 1941-0468.
doi:10.1109/TRO.2017.2659727. Conference Name: IEEE Transactions on Robotics.

[43] A. T. Buyukkocak, D. Aksaray, and Y. Yazıcıoğlu. Planning of heterogeneous multi-agent
systems under signal temporal logic specifications with integral predicates. IEEE Robotics
and Automation Letters, 6(2):1375–1382, 2021. doi:10.1109/LRA.2021.3057049.

[44] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[45] S. Wang, L. Fengb, X. Zheng, Y. Cao, O. O. Oseni, H. Xu, T. Zhang, and Y. Gao. A pol-
icy optimization method towards optimal-time stability. In 7th Annual Conference on Robot
Learning, 2023. URL https://openreview.net/forum?id=rOCWUmMBSnH.

[46] C. Dawson and C. Fan. Robust counterexample-guided optimization for planning from differ-
entiable temporal logic. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 7205–7212, 2022. doi:10.1109/IROS47612.2022.9981382.

11

http://dx.doi.org/10.1109/IROS47612.2022.9981632
http://dx.doi.org/10.1109/LRA.2021.3057049
http://dx.doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1177/0278364920918919
https://doi.org/10.1177/0278364920918919
https://openreview.net/forum?id=P6_q1BRxY8Q
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=VscdYkKgwdH
https://openreview.net/forum?id=xC-68ANJeK_
https://openreview.net/forum?id=xC-68ANJeK_
http://dx.doi.org/10.1109/TAC.2016.2638961
http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/LRA.2021.3057049
http://github.com/google/jax
https://openreview.net/forum?id=rOCWUmMBSnH
http://dx.doi.org/10.1109/IROS47612.2022.9981382

Contents

1 Introduction 1

1.1 Related Work . 2

2 Background 3

3 Problem Statement 4

4 Approach 5

4.1 Differentiable Signal Temporal Logic for Planning 5

4.2 GNNs for Planning in Multi-Agent Systems . 5

4.3 Collision Avoidance in MA Systems . 6

4.4 End-to-End Differentiable Learning for MA-STL 6

5 Experiment Setup 6

6 Results 7

7 Limitations 8

8 Conclusion 8

A Implementation Details 13

A.1 Environment Details . 13

B STL Specifications 14

C Additional Experiments (including Obstacles) 14

C.1 SingleIntegrator Environment . 14

C.2 DubinsCar Environment . 14

C.3 DoubleIntegrator Environment . 15

C.4 Real-world Drone Experiments . 15

D Additional Baselines 16

D.1 Following a single common plan . 16

D.2 Centralized Planner . 17

D.3 Signal Specification (demonstrating Until, U) . 17

12

A Implementation Details

Node features and edge features Following Zhang et al. [21], the node features vi ∈ Rρv encode
information specific to each node in our graph observation. Here, we set ρv = 3 and use the node
features vi to one-hot encode the type of the node as either an agent node, goal node or LiDAR ray
hitting point node. The edge features eij ∈ Rρe , where ρe > 0 is the edge dimension, are defined as
the information shared from node j to the agent at node i, which depends on the states of the nodes
i and j. Since the safety objective depends on the relative positions, one component of the edge
features is pij = pj − pi. The remaining edge features can be set depending on system dynamics,
such as, relative velocities for double integrator dynamics.

Computation Resources All training procedures were ran on an AWS g4dn.xlarge instance or
equivalent with 4 Intel Xeon-based CPU Cores and 16 GB of RAM with an Nvidia T4 GPU.

Evaluation Details Since we consider objectives that require agents to navigate close to one an-
other at/near termination subsequently blocking the goal locations (A,B,C,D in Table 4), safety rates
were reported until the point an agent had completed their plan. This can be thought of as an al-
ternative to the agents navigating to a ‘safe’ position upon completing their specification/plan. In
a drone setting, we captured this behavior by landing the drones at an agent-specific location upon
completing their specification.

Planner Details For all plans, at any time step t, planning step t′, each agent i proceeded to
the next waypoint gi(t′ + 1) only when they reached goal gi(t′) within some threshold distance
rgoal = 0.3 at a time t ≥ k(t′+1) where k is the goal sampling interval (Sec. 4.1). This allowed all
agents to reach the waypoints in the plan without a strict time restriction on the plan duration. The
asynchronous nature of our plans (among agents) fits our problem description (Defn. 1), specifically
the STL Satisfaction criteria. We leave the setting where agents follow a synchronized plan to future
work. For a given plan of length T with goal sample interval k (values in Table 4), the maximum
trajectory length horizon during evaluation Th was 5kT .

A.1 Environment Details

Here, we provide the details of each experiment environment as taken from Zhang et al. [21]. We
used a common simulation time step δt = 0.03 across all three environments.

SingleIntegrator We use single integrator dynamics as the base environment to verify the correct-
ness of the implementation and to show the performance of the methods when there are no control
input limits. The dynamics is given as ẋi = vi, where xi = [pxi , p

y
i]

⊤ ∈ R2 is the position of the
i-th agent and vi = [vxi , v

y
i]

⊤ its velocity. In this environment, we use eij = xj − xi as the edge
information.

DoubleIntegrator We use double integrator dynamics for this environment. The state of agent i
is given by xi = [pxi , p

y
i , v

x
i , v

y
i]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, and [vxi , v
y
i]

⊤ is the
velocity. The action of agent i is given by ui = [axi , a

y
i]

⊤, i.e., the acceleration. The dynamics
function is given by:

ẋi = [vxi , v
y
i , a

x
i , a

y
i]

⊤ (6)

In this environment, we use eij = xj − xi as the edge information.

DubinsCar We use the standard Dubin’s car model in this environment. The state of agent i is
given by xi = [pxi , p

y
i , θi, vi]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, θi is the heading, and
vi is the speed. The action of agent i is given by ui = [ωi, ai]

⊤ containing angular velocity and
acceleration magnitude. The dynamics function is given by:

ẋi = [vi cos(θi), vi sin(θi), ωi, ai]
⊤ (7)

We use eij = ej(xj) − ei(xi) as the edge information, where ei(xi) =
[pxi , p

y
i , vi cos(θi), vi sin(θi)]

⊤.

13

B STL Specifications

We formally define the Signal Temporal Logic (STL) specifications used in the experiments in Table
4. The specifications include a sequential waypoint task (seq), a coverage task (cover), a loop task
(loop), and a branching task (branch). The specifications are defined over a time horizon T and are
satisfied if the agents satisfy the corresponding STL formula. We use four markers A, B, C, and
D to represent rectangular predicates centered around x-y coordinates [0, 0], [2, 2], [2, 0], and [0, 2],
respectively. The predicates are defined as pi = dist(si, pi) ≤ 1.0 where dist(si, pi) is the L1-norm
(| · |1) distance between the agent i’s state si and the predicate pi.

Spec. Description Formula T k
seq Sequence of goals ♢[0,T/3](A) ∧ ♢[T/3,2T/3](B) ∧ ♢[2T/3,T](C) 15 20

cover Coverage over goals ♢[0,T](A) ∧ ♢[0,T](B) ∧ ♢[0,T](C) 15 20
loop Loop over goals □[0,T/2]

(
♢[0,T/2](A) ∧ ♢[0,T/2](B) ∧ ♢[0,T/2](C)

)
30 20

signal Loop then move to final (loopU[0,1]Ψ1) ∧ ♢[0,T](D) 30 20
branch Branching

(
♢[0,T](A) ∧ ♢[0,T](B)

)
∨
(
♢[0,T](C) ∧ ♢[0,T](D)

)
20 10

Table 4: STL specifications used in the experiments. T and k are the specification lengths and goal
sample intervals respectively.

C Additional Environments (including Obstacles)

In Tables 5, 6 and 7 we show results for the various environments and obstacle scenarios. While
our GNN-ODE has an initial GNN module which can observe these obstacles, and is also trained
to generate initial goals that are ‘achievable’, the GNN-ODE is inherently limited to only consider
obstacles within the sensing radius R of the agents at planning time (i.e. t = 0). As in Zhang
et al. [21], the GCBF+ controller is trained to avoid obstacles. Thus, with a robust plan, we can
achieve reasonably high success rates in this setting as well due to the run-time collision avoidance
maneuvers. Planning times are nearly similar to the results in Sec. 6 (Table 2) likely because
our learning-based planners do not use environment dynamics at inference time and should have a
similar computation cost after training is complete. For this reason, to avoid clutter, we omit this
column in the following tables. We include results from the ODE ablation of our method as shown
in Table 3 under the column ‘ODE’. Additional simulation videos are hosted online2.

C.1 SingleIntegrator Environment

In Table 5 we contain the results for various combinations of specifications, 8 sampled obstacle
positions (marked ’Y’ if present, ’N’ otherwise), and number of agents in the SingleIntegrator En-
vironment. We observe that the GNN-ODE planner outperforms the other planners in terms of
planning time and success rate across all the specifications and obstacles. We note the average im-
provement in success rate of 10% for our GNN-ODE planner over the MILP planner which is not
as large as the improvement in the non-linear DubinsCar environment (Table 2, 6). This is due to
the SingleIntegrator environment being less constrained and the MILP planner being able to find a
feasible solution more easily.

C.2 DubinsCar Environment

In Table 6 we contain the results for various combinations of specifications, 8 sampled obstacle po-
sitions (marked ’Y’ if present, ’N’ otherwise), and number of agents in the DubinsCar Environment.
On average, with obstacles present as well we get a 69% improvement in success rate for our GNN-
ODE planner over the MILP planner, primarly due to the non-linear dynamics of the DubinsCar
environment being challenging for the collision avoidance controller.

2Site: https://jeappen.github.io/mastl-gcbf-website/

14

https://jeappen.github.io/mastl-gcbf-website/

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h

N
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1000.75 396.50 257.25
16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1214.50 443.00 280.87
32 98.00 100.00 99.00 100.00 100.00 98.75 97.50 100.00 97.50 664.71 1005.81 320.23

Y
8 100.00 93.00 98.00 100.00 100.00 95.00 100.00 92.50 92.50 1015.75 408.95 292.57
16 99.00 96.00 94.00 97.50 100.00 95.00 96.25 96.25 88.75 1168.80 471.30 314.99
32 97.00 98.00 94.00 98.12 100.00 92.50 95.00 97.50 86.88 1812.59 1018.77 356.09

C
ov

er

N
8 98.00 100.00 95.00 100.00 100.00 100.00 97.50 100.00 95.00 884.86 653.00 342.93
16 99.00 100.00 90.00 100.00 100.00 100.00 98.75 100.00 90.00 1024.40 758.25 364.56
32 98.00 98.00 96.00 100.00 100.00 97.50 98.12 97.50 93.12 1409.89 1237.41 447.66

Y
8 95.00 95.00 88.00 100.00 100.00 97.50 95.00 95.00 87.50 1068.46 744.83 356.17
16 96.00 98.00 91.00 100.00 100.00 97.50 96.25 97.50 91.25 1040.65 1043.66 386.12
32 96.00 98.00 91.00 100.00 99.38 96.88 96.25 97.50 88.75 1491.06 1297.69 488.79

L
oo

p

N
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1890.25 2506.00 751.00
16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1445.75 2120.12 855.38
32 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2332.19 2635.75 1062.25

Y
8 100.00 100.00 90.00 95.00 100.00 92.50 95.00 100.00 82.50 1434.00 2112.25 841.32
16 99.00 96.00 93.00 96.25 100.00 96.25 95.00 96.25 88.75 2091.53 2315.44 927.83
32 99.00 99.00 96.00 96.25 99.38 96.25 95.00 98.75 91.88 2453.19 2769.78 1137.71

Se
qu

en
ce

N
8 100.00 53.00 90.00 100.00 100.00 100.00 100.00 52.50 90.00 905.50 1072.30 434.44
16 99.00 41.00 73.00 100.00 100.00 100.00 98.75 41.25 72.50 761.08 1119.07 470.17
32 98.00 33.00 66.00 100.00 100.00 100.00 98.12 33.12 65.62 897.41 1464.39 661.21

Y
8 98.00 45.00 88.00 100.00 100.00 100.00 97.50 45.00 87.50 731.43 1239.50 470.39
16 98.00 36.00 62.00 100.00 100.00 100.00 97.50 36.25 62.50 1030.83 1272.50 548.39
32 98.00 28.00 74.00 100.00 100.00 99.38 98.12 28.12 73.12 1186.13 1649.19 797.86

Table 5: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the SingleIntegrator Environment.

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h N 8 100.00 98.00 100.00 100.00 100.00 85.00 100.00 97.50 85.00 1768.75 525.57 357.00

16 100.00 96.00 99.00 100.00 97.50 53.75 100.00 93.75 52.50 1856.12 565.09 429.81
32 95.00 94.00 96.00 92.50 86.25 20.00 88.12 82.50 18.12 820.90 674.52 572.39

Y 8 100.00 100.00 95.00 97.50 97.50 67.50 97.50 97.50 62.50 728.50 562.79 373.89
16 99.00 95.00 95.00 92.50 90.00 47.50 91.25 86.25 45.00 1828.95 595.29 474.16
32 95.00 85.00 90.00 86.88 74.38 32.50 81.88 63.75 25.00 841.66 708.91 586.89

C
ov

er N 8 100.00 100.00 95.00 100.00 100.00 97.50 100.00 100.00 95.00 1062.00 754.57 429.76
16 100.00 100.00 78.00 96.25 97.50 87.50 96.25 97.50 76.25 1127.00 802.70 536.33
32 99.00 99.00 80.00 85.00 92.50 56.88 84.38 91.88 53.75 1252.59 883.31 708.22

Y 8 98.00 98.00 93.00 97.50 95.00 92.50 95.00 92.50 85.00 1094.07 821.71 460.30
16 96.00 93.00 85.00 98.75 92.50 76.25 95.00 85.00 67.50 1135.61 867.24 571.55
32 93.00 93.00 78.00 81.25 83.12 53.75 75.62 76.88 49.38 1251.20 972.33 674.09

L
oo

p N 8 100.00 100.00 98.00 100.00 100.00 82.50 100.00 100.00 80.00 1874.00 1570.07 1092.79
16 100.00 100.00 100.00 100.00 86.25 76.25 100.00 86.25 76.25 1963.12 1601.03 1251.62
32 98.00 99.00 100.00 100.00 86.25 38.75 97.50 86.25 38.75 1936.27 1818.59 1598.19

Y 8 95.00 88.00 78.00 100.00 60.00 92.50 95.00 55.00 70.00 1894.33 4554.25 1310.58
16 96.00 91.00 90.00 90.00 28.75 66.25 88.75 22.50 57.50 1969.37 4481.38 1378.32
32 89.00 91.00 88.00 80.62 13.75 31.25 76.25 8.12 24.38 2138.35 4274.29 1672.91

Se
qu

en
ce N 8 98.00 70.00 98.00 97.50 100.00 100.00 95.00 70.00 97.50 1246.43 1298.50 637.11

16 95.00 70.00 89.00 96.25 100.00 90.00 92.50 70.00 85.00 1188.14 1577.48 785.97
32 89.00 70.00 84.00 76.25 77.50 64.38 66.88 63.75 59.38 1277.91 1715.05 1013.90

Y 8 95.00 62.00 80.00 100.00 92.50 95.00 95.00 57.50 80.00 1572.68 1537.60 671.38
16 89.00 60.00 75.00 86.25 75.00 81.25 78.75 50.00 70.00 1175.86 1640.81 839.37
32 78.00 62.00 68.00 77.50 53.75 53.75 61.25 39.38 41.88 1293.39 1802.09 1042.54

Table 6: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the DubinsCar Environment with obstacles.

C.3 DoubleIntegrator Environment

In Table 7 we contain the results for various combinations of specifications, 8 sampled obstacle (Obs)
positions (marked ’Y’ if present, ’N’ otherwise), and number of agents (N) in the DoubleIntegrator
Environment. The average improvement in success rate of 11% for our GNN-ODE planner over the
MILP planner is similar to the SingleIntegrator environment (Table 5) due to GCBF+controller being
more effective at collision avoidance with the linear dynamics of the DoubleIntegrator environment.

C.4 Real-world Drone Experiments

The experimental validation of this methodology involved deploying a fleet of 5 DJI Tello Ryze
drones to track the trajectories generated via the Dubins Car model. The drones were configured in

15

Metric Finish Rate ↑ Safety Rate ↑ Success Rate ↑ TtR ↓
Planner GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPY GNN-ODE ODE STLPYSpec Obs N

B
ra

nc
h N 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1384.75 536.00 379.50

16 100.00 100.00 91.00 100.00 100.00 100.00 100.00 100.00 91.25 1768.38 1577.50 474.44
32 99.00 91.00 73.00 100.00 100.00 100.00 99.38 90.62 72.50 2510.85 2206.44 617.02

Y 8 100.00 100.00 98.00 97.50 100.00 100.00 97.50 100.00 97.50 2774.50 533.50 390.57
16 99.00 99.00 94.00 98.75 98.75 100.00 97.50 97.50 93.75 2923.95 1594.28 533.49
32 99.00 91.00 68.00 96.25 93.75 98.12 95.00 85.62 67.50 2543.79 2263.78 666.90

C
ov

er N 8 100.00 100.00 93.00 100.00 100.00 100.00 100.00 100.00 92.50 1681.00 738.00 572.20
16 100.00 100.00 89.00 100.00 100.00 100.00 100.00 100.00 88.75 2127.43 894.50 645.93
32 96.00 75.00 76.00 100.00 100.00 100.00 95.62 75.00 76.25 2201.11 1542.29 877.32

Y 8 100.00 100.00 90.00 100.00 100.00 97.50 100.00 100.00 87.50 1649.50 767.50 498.07
16 99.00 100.00 89.00 98.75 98.75 100.00 97.50 98.75 88.75 2123.30 926.75 756.73
32 95.00 79.00 78.00 95.00 96.25 98.75 90.62 76.25 77.50 1630.34 1625.60 949.62

L
oo

p N 8 95.00 98.00 100.00 100.00 100.00 100.00 95.00 97.50 100.00 1951.71 2716.54 1219.75
16 98.00 99.00 100.00 100.00 100.00 100.00 97.50 98.75 100.00 2612.70 3273.04 1781.62
32 98.00 93.00 96.00 100.00 100.00 100.00 98.12 93.12 96.25 3271.47 5260.64 2703.45

Y 8 95.00 98.00 100.00 100.00 95.00 100.00 95.00 92.50 100.00 2533.32 2785.64 1229.75
16 96.00 99.00 98.00 100.00 96.25 97.50 96.25 95.00 95.00 2713.48 3431.33 1830.21
32 98.00 93.00 97.00 98.75 80.62 93.75 96.25 75.62 90.62 3353.94 5251.58 2850.15

Se
qu

en
ce N 8 100.00 80.00 85.00 100.00 100.00 100.00 100.00 80.00 85.00 1565.50 1162.35 693.67

16 99.00 88.00 70.00 100.00 100.00 100.00 98.75 87.50 70.00 1667.12 1472.54 926.60
32 81.00 49.00 28.00 100.00 100.00 100.00 80.62 48.75 28.12 1929.73 1979.83 912.03

Y 8 100.00 88.00 80.00 100.00 100.00 100.00 100.00 87.50 80.00 1552.75 1380.57 846.60
16 100.00 84.00 60.00 100.00 98.75 97.50 100.00 82.50 60.00 1684.75 1574.84 960.90
32 84.00 51.00 34.00 99.38 93.12 93.75 83.12 49.38 33.12 1969.68 2003.38 930.35

Table 7: Performance of different planner modules with the scalability in the number of agents (N)
and specification complexity for the DoubleIntegrator Environment.

WiFi mode to enable swarm behavior which was facilitated through the open-source DJITelloPy 3

library.

Each Tello drone is equipped with an Inertial Measurement Unit (IMU), a forward-facing camera,
and a downward-facing camera. The latter is useful for precise hovering and position estimation
using the Vision Positioning System (VPS). However, this system is inaccurate and unreliable as
the drones do not possess other sensors like lidar or depth cameras. To mitigate drift and correct
the position estimate errors, ArUco tags were utilized to make the trajectory following robust for
each drone. This ensured the swarm of drones could accurately follow the designated trajectory as
evidenced in the simulation results.

D Additional Baselines

We focus on the most complex non-linear environment as presented in the main paper (DubinsCar)
and have presented the results over 30 initial seeds in Table 8 and 9 and included bar charts with
error bars for the main experiments in Figures 2 and 3. We chose this format as including all values
in the tables created excessive clutter.

D.1 Following a single common plan

Since the tasks are homogenous, one might attempt to follow a common plan among agents with a
formation. To compare this, we include results on a common shared plan generated by the STLPY
solver [17] (marked STLPY (S)) for the specifications considered in Table 8 and 9. The initial
starting state of this plan was near the first predicate in each specification (viz. goal A).

An obvious benefit of a single plan generated by the STLPY solver is a reduced planning time.
Using a single common plan also enforced a rudimentary level of coordination among agents as
evident in the branch task reducing the number of crossing paths (present in the earlier individually
generated STLPY plans). However, in long horizon specifications such as loop and signal this effect
is detrimental causing increased safety violations (leading to a low overall success rate) due to a lack
of a more informed coordination among agents. We posit the fixed predicate sizes further play a role
in preventing this coordination scheme to succeed.

3https://github.com/damiafuentes/DJITelloPy

16

Planning Time (s) ↓ Success Rate ↑ TtR ↓
Planner CE [46] GNN-ODE ODE STLPY STLPY (S) CE [46] GNN-ODE ODE STLPY STLPY (S) CE [46] GNN-ODE ODE STLPY STLPY (S)Spec N

B
ra

nc
h 8 8.29 0.01 0.01 22.48 1.53 87.50 100.00 98.75 85.00 100.00 598.21 708.25 518.89 357.00 520.00

16 16.73 0.02 0.02 43.80 1.55 80.00 100.00 96.67 52.50 99.17 638.81 740.77 556.64 429.81 582.44
32 35.62 0.03 0.03 87.92 1.52 65.62 85.10 81.35 18.12 83.23 757.52 823.10 651.32 572.39 695.18

C
ov

er 8 16.20 0.02 0.01 10.40 2.56 95.00 100.00 98.75 95.00 100.00 1044.00 1056.25 758.04 429.76 845.00
16 30.73 0.02 0.02 20.14 2.58 76.25 97.50 97.08 76.25 87.71 1159.90 1113.79 795.49 536.33 989.38
32 63.98 0.03 0.02 40.19 2.61 52.50 81.77 89.38 53.75 54.90 1319.63 1241.27 893.52 708.22 1218.61

L
oo

p 8 23.41 0.02 0.01 26.16 4.37 12.50 99.58 97.50 80.00 85.83 1757.25 1762.04 4192.00 1095.29 1179.33
16 52.27 0.02 0.02 52.79 4.38 7.50 98.96 96.25 66.25 59.38 2884.33 1819.61 4139.50 1301.54 1379.57
32 107.17 0.03 0.03 111.62 4.41 6.25 97.60 72.50 38.75 26.35 3111.50 1951.11 4478.88 1598.19 1940.58

Se
qu

en
ce 8 16.35 0.02 0.01 3.46 0.66 95.00 97.92 77.50 97.50 100.00 1044.00 1069.44 1296.13 637.11 850.75

16 29.80 0.02 0.02 6.96 0.68 80.00 89.38 72.50 85.00 94.58 1156.38 1169.49 1337.42 785.97 957.92
32 63.99 0.03 0.03 13.62 0.68 48.12 61.88 49.58 59.38 63.23 1307.78 1226.14 1376.86 1013.90 1234.37

Si
gn

al 8 56.59 0.02 0.01 13.60 17.87 0.00 100.00 100.00 97.92 100.00 - 2338.50 4179.25 976.53 1137.25
16 110.95 0.02 0.02 23.97 18.21 0.00 100.00 91.25 91.88 93.33 - 2352.67 4314.25 1116.07 1331.53
32 228.49 0.03 0.03 47.99 18.25 0.62 76.25 67.50 50.31 47.81 1761.00 2479.90 4664.87 1290.72 1831.21

Table 8: Performance of STLPY [17]: (multi-agent), STLPY(S) [17] : STLPY with a single com-
mon plan, CE [46] : Centralized Counterexample guided planner and our approaches (ODE, GNN-
ODE). vs the number of agents (N) and specification complexity for the DubinsCar Environment.
The results are averaged over 30 seeds and we highlight the best result in bold.

D.2 Centralized Planner

We found that the challenges in scalable collision avoidance modeling with the PWL MA-STL
planner [16] (discussed in Section 3) were also present in other centralized STL planning strategies
[46]. Namely, directly adding predicates for collision avoidance into the STL specification proved
intractable for optimization over the long planning horizons considered due to an O(CN

2 ∗ K2)
variable blowup for N agents and planning horizon K. To address this following our proposed
method, we attempt planning for the joint multi-agent task without considering collisions during
planning, while introducing run-time collision avoidance schemes like GCBF+. As a result, in the
simulation step of [46] (Alg. 1, line 4), the GCBF+policy would be incorporated into the rollout.
However, in our experiments, we found that the gradient vanishes too quickly (within 50 time steps)
to meaningfully differentiate through the trajectory, which spans over 200 time steps for all our tasks
(Table 4, Appendix B). Consequently, the algorithm in [46] cannot directly handle the longer-range
STL tasks considered in our work. Additionally, we noted that the proposed approach was not robust
to many initial starting positions, often leading to unfruitful plans.

To build a centralized planner with [46], we opted to run the proposed method without incorporating
collision avoidance during planning time simulations. This choice allowed us to achieve longer opti-
mization horizons within a limited initial starting position range. The resulting plans were executed
using the trained GCBF+ controller. The results, as shown marked CE in 8 and 9 for the DubinsCar
Environment, indicate that the proposed approach performed demonstrably worse than ours and the
other compared methods (note Success Rate). The planning time of this centralized approach scaled
linearly with the number of agents since agent-agent interactions were not considered. These results
further point to the importance of an achievability loss (Lach, Sec. 4.1) when planning in the pres-
ence of run-time collision avoidance. This outcome reinforces the notion that current methods for
centralized planning in multi-agent STL requires further advancements to effectively handle scalable
collision avoidance.

D.3 Signal Specification (demonstrating Until, U)

In Table 8 we include a signal specification demonstrating the Until operator. This is a variant of our
loop specification (Table 4, Appendix B) called signal with an additional predicate Ψ1 representing
reaching goal A twice. If loop is represented as Φ1, and Ψ2 represents reaching a new goal D, the
signal specification is (Φ1U[0,1]Ψ1)∧Ψ2 i.e. loop A, B, and C until A is reached twice, then reach
D.

17

Finish Rate ↑ Safety Rate ↑
Planner CE [46] GNN-ODE ODE STLPY STLPY (S) CE [46] GNN-ODE ODE STLPY STLPY (S)Spec N

B
ra

nc
h 8 88.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 85.00 100.00

16 80.00 100.00 98.00 99.00 100.00 97.50 100.00 98.54 53.75 99.58
32 76.00 98.00 94.00 90.00 95.00 88.75 87.19 85.21 32.50 86.88

C
ov

er 8 100.00 100.00 99.00 95.00 100.00 95.00 100.00 100.00 97.50 100.00
16 96.00 100.00 99.00 78.00 100.00 80.00 97.50 98.33 87.50 87.71
32 98.00 99.00 98.00 80.00 99.00 53.75 81.98 91.04 56.88 55.21

L
oo

p 8 12.00 100.00 100.00 98.00 100.00 100.00 100.00 97.50 82.50 85.83
16 10.00 99.00 100.00 99.00 99.00 53.75 100.00 96.25 67.50 59.79
32 11.00 99.00 100.00 100.00 99.00 28.12 98.85 72.50 38.75 27.29

Se
qu

en
ce 8 100.00 99.00 78.00 98.00 100.00 95.00 99.17 99.17 100.00 100.00

16 96.00 95.00 73.00 89.00 100.00 83.75 93.54 97.50 90.00 94.58
32 98.00 68.00 51.00 84.00 98.00 48.12 86.15 93.75 64.38 64.27

Si
gn

al 8 0.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 98.75 100.00
16 0.00 100.00 100.00 97.00 100.00 57.50 100.00 91.25 95.00 93.54
32 1.00 90.00 97.00 64.00 97.00 17.50 83.12 68.12 75.94 48.85

Table 9: Finish Rate and Safety Rate of STLPY [17]: (multi-agent), STLPY(S) [17] : STLPY with
a single common plan, CE [46] : Centralized Counterexample guided planner and our approaches
(ODE, GNN-ODE). vs the number of agents (N) and specification complexity for the DubinsCar
Environment. Note that a successful trajectory is both finishing the task and being safe. While
STLPY and other single agent planning schemes may reach the goal quickly, safety is violated
(shown in the Safety Rate). The results are averaged over 30 seeds and we highlighted the best
result in bold.

18

Figure 2: We provide bar plots with error bars notating the standard deviations of the metrics
considered. These are complementary to Table 8 and Table 9.

19

Figure 3: We provide bar plots with error bars notating the standard deviations of the metrics
considered. These are complementary to Table 8 and Table 9.

20

	Introduction
	Related Work

	Background
	Problem Statement
	Approach
	Differentiable Signal Temporal Logic for Planning
	GNNs for Planning in Multi-Agent Systems
	Collision Avoidance in MA Systems
	End-to-End Differentiable Learning for MA-STL

	Experiment Setup
	Results
	Limitations
	Conclusion
	Implementation Details
	Environment Details

	STL Specifications
	Additional Experiments (including Obstacles)
	SingleIntegrator Environment
	DubinsCar Environment
	DoubleIntegrator Environment
	Real-world Drone Experiments

	Additional Baselines
	Following a single common plan
	Centralized Planner
	Signal Specification (demonstrating Until, U)

