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Abstract

This paper studies zero-shot node classification, which aims to predict new classes (i.e.,
unseen classes) of nodes in a graph. This problem is challenging yet promising in a variety of
real-world applications such as social analysis and bioinformatics. The key of zero-shot node
classification is to enable the knowledge transfer of nodes from training classes to unseen
classes. However, existing methods typically ignore the dependencies between nodes and
classes, and fail to be organically integrated in a united way. In this paper, we present a novel
framework called the Graph Contrastive Embedding Network (GraphCEN) for zero-shot
node classification. Specifically, GraphCEN first constructs an affinity graph to model the
relations between the classes. Then the node- and class-level contrastive learning (CL) are
proposed to jointly learn node embeddings and class assignments in an end-to-end manner.
The two-level CL can be optimized to mutually enhance each other. Extensive experiments
indicate that our GraphCEN significantly outperforms the state-of-the-art approaches on
three challenging benchmark datasets.

1 Introduction

Zero-shot Learning (ZSL) is an important problem in machine learning, which has been extensively studied
in computer vision. It aims at recognizing samples from novel classes that have never appeared in the
training data, whose potential has attracted a lot of research interests in a wide range of tasks, such as image
classification Wang et al. (2021a); Li et al. (2022), object recognition Zablocki et al. (2019) and knowledge
graph completion Geng et al. (2022); Nayak & Bach (2022). To effectively classify those newly emerging
classes, existing ZSL approaches typically transfer knowledge from the classes that have training samples
(i.e., seen classes) to these unseen classes without requiring any explicit labeled data for these unseen classes.
This can be achieved by the guidance of some auxiliary semantic information (e.g., category attributes or
word embeddings), which usually establishes the mathematical relationship between the semantic space and
the embedding space.

Recently, due to the unprecedented success of deep learning, deep neural networks have extended their
excellent representation learning capability from the field of vision to graph-structured data. With the
advancement of graph neural networks (GNNs) Kipf & Welling (2017); Hamilton et al. (2017); Veličković
et al. (2017); Nagarajan & Raghunathan (2023); Ma et al. (2023); Chen et al. (2023), node classification, as
one of the most important problems in graph data analysis, has been widely investigated by various types
of GNNs. The basic idea of node classification is to predict the unlabeled nodes with only a small number
of labeled nodes on the graph, and it is usually assumed that all classes are covered by the classes of labeled
nodes. Nevertheless, the graph typically evolves in dynamic and open environments. When newly emerging
classes come, previously trained GNNs fail to be discriminative to unseen classes, and massive nodes from
novel classes are needed to be collected and labeled. However, it is costly and laborious to annotate enough
samples and retrain the model for all the newly emerging classes. It thus naturally raises a meaningful
question: can we recognize the nodes from novel classes that have never appeared?

Towards this end, zero-shot node classification on graphs has become a promising approach to achieve
the goal. Despite the encouraging achievements of previous GNN methods via message-passing mecha-
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nism Gilmer et al. (2017), they still suffer from three key limitations: (i) Under-explored task on graphs.
Zero-shot node classification is a newly emerging task that remains largely unexplored, while existing GNN
methods for traditional node classification cannot handle this problem. This is because traditional GNNs are
typically trained on a set of labeled nodes and do not have the capability to generalize to unseen classes. (ii)
Inability to explicitly model the dependencies between nodes and classes. As the vast majority
of existing GNNs are typically formalized as semi-supervised learning tasks, and learn a mapping function
to implicitly capture the relationship between nodes and classes, which is often sub-optimal. (iii) Fail to
jointly learn node and class embeddings in a united way. Existing approaches mainly concentrate on
learning effective node embeddings for class assignments, while failing to reward the learning of node embed-
dings from the perspective of classes in turn. As such, we are looking for an approach tailored to zero-shot
node classification that can well model the dependencies between nodes and classes, and meanwhile jointly
learn node and class embeddings in a united way for effective class assignments.

To address the above issues, this work proposes a novel framework called the Graph Contrastive Embedding
Network (GraphCEN) for zero-shot node classification. The key idea of GraphCEN is to exploit the multi-
granularity information to provide sufficient evidence on establishing the relationship between the training
classes and newly emerging classes to link each other. To achieve this goal, GraphCEN first constructs an
affinity graph of classes to incorporate category semantic knowledge, we then leverage GNNs to effectively
integrate the node feature and the class semantics to learn a joint information matrix. Grounded in this, we
introduce two-level contrastive learning (CL) based on the joint information matrix, i.e., a node-level CL and
a class-level CL, respectively. On the one hand, node-level CL is conducted in the row space of the information
matrix to learn node embeddings for effective class assignments. On the other hand, class-level CL is achieved
in the column space of the information matrix to capture compact class embeddings encouraging class-level
consistency. Thus the representation learning and class assignment can be jointly optimized to collaborate
with each other. By incorporating this multi-granularity information, our experiments on multiple real-world
datasets prove that our GraphCEN can substantially improve the performance against existing state-of-the-
art approaches. To summarize, the main contributions of this work are as follows:

• General Aspects: We explore a challenging yet promising problem: zero-shot node classification
on graphs, which is under-explored in graph machine learning and data mining.

• Novel Methodologies: We present a novel framework to explore node- and class-level contrastive
learning based on the joint information matrix. Node-level CL aims to learn effective node embed-
dings, while class-level CL captures discriminative class embeddings.

• Multifaceted Experiments: Experimental results on three benchmark datasets demonstrate that
our proposed GraphCEN outperforms the state-of-the-art approaches. Abundant auxiliary experi-
ments verify the characteristics and superiority of our method.

2 Problem Definition & Preliminary

We first formalize the definition of the graph and define the core problem of our paper: zero-shot node
classification. Subsequently, we introduce several types of data augmentation.

Definition 1: Graph. Let G = (V, E) denote a graph, where V = {v1, · · · , vN } represents the set of nodes,
in which N is the number of nodes. E ⊆ V × V represents the set of edges. We denote the feature matrix as
X ∈ RN×d, where xi ∈ Rd is the feature of the node vi, and d is the dimension of features. A ∈ {0, 1}N×N

describes the adjacency matrix, where aij = 1 if (vi, vj) ∈ E otherwise aij = 0.

Definition 2: Zero-shot Node Classification. Given two disjoint sets of classes: Cs =
{

cs
1, . . . , cs

|Cs|

}
and Cu =

{
cu

1 , . . . , cu
|Cu|

}
denoted as seen classes and unseen classes respectively, where Cs ∪ Cu = C, and

Cs ∩ Cu = ∅. Each class is represented by a semantic description vector sk ∈ Rs, where k = 1, · · · , |C|, and S
forms the matrix of semantic description vectors of all classes. For zero-shot node classification, assuming all
the labeled nodes are from seen classes Cs, the goal of zero-shot node classification is to classify the unlabeled
nodes whose class set is Cu.
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Figure 1: Illustration of the proposed framework GraphCEN.

Graph Augmentations. For contrastive learning, data augmentation is crucial that produces novel rational
data via applying certain transformations without altering the semantics. In particular, in our experiments,
we introduce two types of graph transformations via augmenting topological information of the graphs
respectively, formalized as:

• Edge Dropping. It randomly deletes a certain ratio of edges in the graph to perturb the edge
connectivity pattern where probability follows a default i.i.d. uniform distribution. The underly-
ing assumption is that the semantic information of the graph has certain robustness to the edge
connectivity pattern variances.

• Graph Diffusion. It leverages diffusion Klicpera et al. (2019) to provide a congruent view of the
original graph, which contributes to offering global information. Here we adopt the Personalize
PageRank (PPR) kernel to characterize graph diffusion as.

A′ = α
(

I − (1 − α)D−1/2(A + I)D−1/2
)−1

, (1)

where α is the teleport probability which is set to 0.2 as default. A, D, I represent the adjacency
matrix, the degree matrix and the identity matrix, respectively.

3 Methodology

3.1 Overview

This paper present a novel framework GraphCEN for zero-shot node classification as shown in Figure 1. At
a high level, GraphCEN aims to leverage the multi-granularity information to jointly learn node embeddings
and class assignments in a united fashion. Specifically, GraphCEN first constructs a class affinity graph to
incorporate category semantic knowledge and capture the relations between all classes, and then the joint
information matrix is obtained by combining the node feature and the class semantics via GNNs. Further,
the node- and class-level contrastive learning are respectively conducted in the row and column spaces of the
joint information matrix to learn node and class embeddings for effective class assignments. The two steps
can be jointly trained to collaborate with each other. In the following, we will elaborate on each component
of our GraphCEN in turn.
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3.2 Class Affinity Graph Construction

A key to zero-shot learning (ZSL) is the acquisition of the class semantic descriptions (CSDs), it serves as
the auxiliary data for transferring class semantic knowledge from seen classes to unseen classes. Moreover,
CSDs of categories are independently presented based on their own text descriptions or word embedding. In
other words, the relationship among different classes is ignored. Naturally, how to capture the relationship
between different classes is a key factor for knowledge transfer among all classes.

Therefore, we propose to construct a class affinity graph to capture the relationship among different classes,
such that the semantic information of categories can communicate with each other to allow for semantic
knowledge transfer, thus benefiting the better classification for unseen classes.

Mathematically, we first employ the k-nearest neighbors to construct a class affinity graph GA = (VG, EG).
Denote VG = {v1, · · · , v|C|} the set of nodes, and E the set of edges described by the adjacency matrix As

such that:

As
ij =

{
esi·sj , if sj ∈ N (si)
0, otherwise

, (2)

where i, j = 1, · · · , C, and the · symbol is the inner product. N (s) are neighbors to the target semantic
description vector s derived from Wang et al. (2021b).

In this way, the semantics of each class can efficiently propagate along edges, and thus nodes with similar
classes on the graph have similar embeddings. Moreover, the class affinity graph overcomes the weakness of
the independence of CSDs, and the relationship among all classes can be well captured to provide abundant
prior knowledge, better serving the zero-shot node classification on graphs.

3.3 Information Fusion on Graphs

Existing graph neural networks (GNNs) Kipf & Welling (2017); Veličković et al. (2017) typically model the
mapping function from nodes to classes through message-passing mechanism Gilmer et al. (2017), which
encode the structural and attributive information into node embeddings. The key idea is to learn the
embedding of each node via aggregating its own embeddings and the ones of its neighbors’ along edges. The
whole process can be formalized as:

V = ReLU(ÂXW), (3)

where V ∈ RN×|C| denotes the embedding matrix of nodes. Â = D̃− 1
2 ÃD̃− 1

2 where Ã = A + I and D̃ is
the degree matrix of Ã. W ∈ Rd×|C| is the trainable weight matrix.

However, a vast majority of these GNNs implicitly capture the relationship between nodes and classes via the
mapping function, which often leads to sub-optimal solutions. Hence, we argue that explicitly incorporating
the relations between the classes and modeling the dependencies between nodes and classes is crucial for
effective class assignments. To that effect, on top of the constructed class affinity graph As above, we
integrate the node feature and the class semantics to learn a joint information matrix defined as:

H = ReLU(ÂXW)As, (4)

In this way, we can learn the joint representations of the nodes and the classes H ∈ RN×|C|. Moreover, H
is trainable and can be updated for sufficiently combining both sides to simultaneously keep the relations
between the nodes and between the classes in a united way.

3.4 Two-level Contrastive Learning

Grounded in the joint information matrix of the nodes and the classes defined above, we found a key
observation that the rows and columns of the joint information matrix could be respectively regarded as
the embeddings of nodes and classes. By jointly optimizing the node- and class-level embeddings, we might
learn effective representations for class assignments, which result in better learning performance.
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Inspired by the remarkable success of contrastive learning (CL), which has demonstrated the strong ability
to learn discriminative embeddings from the data itself, we marry this technique into our model for better
representation learning. The underlying concept of CL is to explicitly compare pairs of sample embeddings to
push away embeddings from different samples while pulling together those from augmentations of the same
sample. In view of this, we propose two-level contrastive learning (i.e., node-level and class-level) based on
our joint information matrix to jointly optimize node and class embeddings in a united way.

3.4.1 Node-level Contrastive Learning

As the rows of the joint information matrix (i.e., node embeddings of the graph) could be treated as the
class assignment probabilities since the dimensionality of the rows equals the number of classes. As such,
effective embedding is beneficial for generating a more confident class assignment.

Technically, we first randomly choose one of the two graph augmentations in Section 2 to construct node
pairs. After encoding from our well-designed GNN in Section 3.3 followed by a node head (i.e., multi-layer
perceptron, MLP), we can obtain the augmented joint information matrices Ha and Hb. Therefore, given
2B augmented node embeddings {ha

1 , ..., ha
B , hb

1, ..., hb
B} from the perspective of the rows, where B is the size

of the mini-batch, we expect that the two augmented samples from the same node should be pulled closer,
while different nodes should be pushed away. In other words, there are 2B − 1 pairs for a target node ha

i ,
then we select its corresponding augmented node hb

i to construct a positive pair {ha
i , hb

i } and leave other
2B − 2 pairs to form negative pairs. In this way, the training objective of node-level contrastive learning for
a given node ha

i is formulated as:

La
i = − log esim(ha

i ,hb
i )/τ∑B

j=1

(
esim(ha

i
,ha

j
)/τ + esim(ha

i
,hb

j
)/τ

) , (5)

where τ denotes the temperature parameter and sim(h1, h2) is the cosine similarity h⊤
1 h2

∥h1∥·∥h1∥ .

Also, two augmented nodes are mirrored and can be switched, hence the total node-level contrastive learning
loss is computed over every augmented sample defined as:

LNCL = 1
2B

B∑
i=1

(La
i + Lb

i ). (6)

As such, minimizing LNCL can achieve the goal that the learned node embeddings have clearer boundaries
to distinguish between different sample pairs, such that learned discriminative embeddings are beneficial for
effective class assignments.

3.4.2 Class-level Contrastive Learning

In addition to the node embeddings derived from the rows of the joint information matrix, correspondingly,
with a dimensionality of |C|, the columns of the matrix can be viewed as class embeddings. In other words,
the columns can be interpreted as the distribution of the classes over nodes.

Moreover, the key to zero-shot learning is establishing the mathematical relationship between all classes and
transferring knowledge from the seen classes to the unseen classes. Inspired by this motivation, conducting
CL on class embeddings can make the different category information well capture the inherent characteristics.

Technically, consider the augmented joint information matrices Za ∈ RN×|C| and Zb ∈ RN×|C| encoding from
our well-designed GNN followed by a class head (i.e., MLP). Therefore, Za

i,c can be regarded as the probability
of node i being assigned to class c. Given 2|C| augmented node embeddings {za

1 , ..., za
|C|, zb

1, ..., zb
|C|} from the

perspective of the columns, where each embedding za
i denotes the i-the column of Za, namely, the embedding

of class i under the first graph augmentation. Similarly, we encourage the positive pairs to be similar in the
embedding space while pushing away the negative pairs. Thus we can leverage the idea of CL to define the
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Algorithm 1: Optimization Algorithm of GraphCEN
Input : Graph data G = (V, E , X, A), classes semantic descriptions matrix s, total classes C, seen

classes Cs, trainable weight matrix W, parameter θ in contrastive learning module,
temperature parameter τ and contrastive parameter β

Output: Class assignments for unlabeled nodes from unseen class Cu

Initializing trainable weight matrix W and parameter θ;
while not done do

Construct the class affinity graph GA by Eq. equation 2;
Compute the joint information matrix H by Eq. equation 4;
Sample a mini-batch of nodes from G;
Sample one augmentation from Section 2;
Compute node-level contrastive loss LNCL by Eq. equation 6;
Compute class-level contrastive loss LCCL by Eq. equation 8;
Compute the supervised loss LCE by Eq. equation 10;
Update parameter W and θ by gradient descent to minimize L by Eq. equation 11

end

training objective of class-level contrastive learning as:

L̂a
i = − log esim(za

i ,zb
i )/τ∑|C|

j=1

(
esim(za

i
,za

j
)/τ + esim(za

i
,zb

j
)/τ

) , (7)

By traversing all classes, the total class-level contrastive learning loss is computed as:

LCCL = 1
2|C|

|C|∑
i=1

(L̂a
i + L̂b

i ) − H(Z), (8)

where H(·) represents the entropy function to prevent collapsing into trivial outputs of the same class.

In this way, class-level contrastive learning can reward the optimization of node-level contrastive learning,
and guide the learning of node embeddings for effective class assignments.

3.5 Training and Optimization

To jointly integrate the two-level contrastive learning, we combine the two contrastive losses to collaborate
with each other. And the training objective can be written as:

LCL = LNCL + LCCL. (9)

Moreover, we can also incorporate supervision signals from the labeled nodes from seen classes Cs, where the
cross-entropy loss function can be defined as:

LCE = −
L∑

i=1

|Cs|∑
j=1

Ytrue
ij ln Yij , (10)

where Yij = softmax(ÂXW) denotes the predicting probability of the i-th node belonging to class j, L is
the number of the labeled nodes.

Finally, by combining supervised loss LCE with two-level contrastive loss LCL, the overall loss function of
our GraphCEN can be calculated as:

L = LCE + β · LCL, (11)
where β is the tuning parameter controlling the magnitude of supervised loss and two-level contrastive loss.
We summarize the optimization algorithm for our GraphCEN in Algorithm 1.
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Table 1: The data split of three citation datasets.

Dataset Class Split I [Train/Val/Test] Class Split II [Train/Val/Test]

Cora [3/0/4] [2/2/3]
Citeseer [2/0/4] [2/2/2]
C-M10M [3/0/3] [2/2/2]

3.6 Computational Complexity Analysis

Suppose that N is the number of nodes, |E| is the number of edges, B is the batch size, d is the dimension
of features, and d′ is the dimension of the augmented node embeddings. The complexity of computation of
the joint information matrix is O(|E|d + Nd|C| + N |C|2) based on a sparse adjacency matrix, the complexity
of computation of node-level contrastive loss for each batch is O(B2d′), and the complexity of computation
of class-level contrastive loss for each batch is O(|C|2B). Therefore, the total computational complexity is
O(|E|d + Nd|C| + N |C|2) + O(| N

B |(B2d′ + |C|2B)) = O(|E|d + N(|C|d + Bd′ + 2|C|2)).

4 Experiments

4.1 Experimental Setup

Datasets. For comprehensive comparisons, we conduct extensive experiments on three real-world citation
datasets, which are Cora McCallum et al. (2000), Citeseer Giles et al. (1998) and C-M10M Pan et al. (2016).

In these three datasets, nodes represent different publications, and edges represent the citation relationship
between the linked two publications. For the zero-shot node classification, we follow the same seen/unseen
class split settings introduced in Wang et al. (2021b) to make a fair comparison as shown in Table 1.
Besides, we adopt two kinds of CSDs, i.e., TEXT-CSDs (default) and LABEL-CSDs, generated by Bert-
Tiny as auxiliary data following Wang et al. (2021b), which can provide the semantic information of different
labels. We will further compare the differences between these CSDs in Section 4.5

Baseline Methods. On the one hand, we compare our GraphCEN with various state-of-the-art zero-shot
learning methods including DAP and its variant DAP(CNN) Lampert et al. (2013), ESZSL Romera-Paredes
& Torr (2015), ZS-GCN and its variant ZS-GCN(CNN) Wang et al. (2018), WDVSc Wan et al. (2019), and
Hyperbolic-ZSL Liu et al. (2020), which are primarily proposed for vision domains. On the other hand,
two recent methods designed for zero-shot node classification, DGPN Wang et al. (2021b) and DBiGCN
Yue et al. (2022), are also considered for comparison. In addition, we adopt the RandomGuess as the naive
baseline, which guesses the unseen labels for the unlabeled nodes randomly.

Implementation Details. For our GraphCEN, we adopt the grid search for the parameters un-
der the class split I, and determine the optimal hyper-parameters by the validation classes under
the class split II. The space of hyper-parameters is carefully selected as follows: the learning rate
∈ {0.0005, 0.001, 0.005, 0.01}, the number of hidden units ∈ {32, 64, 128, 256}, the temperature parameter
τ ∈ {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}, the contrastive parameter β ∈ {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}.
Besides, the framework is trained using Adam optimizer Kingma & Ba (2014). In our experiment, we use
accuracy as the common evaluation metric to evaluate the performance.

4.2 Experimental Results

In this section, we evaluate the performance of all the algorithms for zero-shot node classification. The
results are summarized in Table 2. According to the quantitative results, we have the following observations:

• Overall, from the results, it can be observed that our framework GraphCEN achieves the best
performance against other strong baselines on all three datasets under different class split settings.
In particular, GraphCEN outperforms the closest competitor on Cora with 7.43% under the class split
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Table 2: The overall performance (%) on three benchmark datasets for zero-shot node classification. The
best results are shown in boldface and the second-best is underlined.

Cora Citeseer C-M10M

C
la

ss
Sp

lit
I

RandomGuess 25.35 24.86 33.21
DAP 26.56 34.01 38.71
DAP(CNN) 27.80 30.45 32.97
ESZSL 27.35 30.32 37.00
ZS-GCN 25.73 28.62 37.89
ZS-GCN(CNN) 16.01 21.18 36.44
WDVSc 30.62 23.46 38.12
Hyperbolic-ZSL 26.36 34.18 35.80
DGPN 33.76 37.74 41.93
DBiGCN 45.08 38.57 41.11
GraphCEN (Ours) 48.43 40.77 44.17

Improve ↑ +7.43% +5.70% +5.34%

C
la

ss
Sp

lit
II

RandomGuess 32.69 50.48 49.73
DAP 30.22 53.30 46.79
DAP(CNN) 29.83 50.07 46.29
ESZSL 38.82 55.32 56.07
ZS-GCN 29.53 52.22 55.28
ZS-GCN(CNN) 33.20 49.27 51.37
WDVSc 34.13 52.70 46.26
Hyperbolic-ZSL 37.02 46.27 55.07
DGPN 44.24 59.38 60.12
DBiGCN 46.49 58.29 66.23
GraphCEN (Ours) 50.61 60.47 70.83

Improve ↑ +8.86% +1.84% +6.95%

I and 8.86% under the class split II, which demonstrates the excellent capability of our framework
for zero-shot node classification.

• Traditional zero-shot learning methods generally perform worse than the recent methods designed
for zero-shot node classification. Maybe the reason is that traditional zero-shot learning methods are
difficult to capture the characteristics of complex graph-structured data, while DPGN and DBiGCN
excel at exploring the relational information between nodes in graph datasets.

• For all datasets, our proposed GraphCEN outperforms strong baselines DPGN and DBiGCN by a
significant margin, which suggests that not only our approach is more effective in capturing depen-
dencies between nodes and nodes, nodes and classes. The two-level contrastive learning can also
inherently learn the representations with generalization ability from the joint information matrix,
which is more beneficial for the knowledge transfer from seen classes to unseen classes.

4.3 Ablation Study

To provide further insights into the GraphCEN, we conduct the ablation study to evaluate the effectiveness
of the two main components, i.e., node-level and class-level contrast. Next, we explore four different variants
designed as follows:

• M1: Our base model, which trains a GNN solely on labeled data in a fully supervised manner with
training objective LCE.

• M2: It is a variant with only class-level contrast where we optimize the GNN with both training
objectives LCE and LCCL.
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Table 3: Analysis of ablation study. N-level and C-level represent node-level or class-level contrastive loss is
applied, respectively.

Contrastive Item Accuracy (%)
N-level C-level Cora Citeseer C-M10M

M1 45.47 38.18 33.38
M2

√
46.14 38.81 33.47

M3
√

47.96 39.25 36.85
M4

√ √
48.43 40.77 44.17
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(a) Analysis of contrastive weight β.
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(b) Analysis of temperature parameter τ .

Figure 2: Analysis of parameter β and τ in contrastive learning.

• M3: It is another variant with only node-level contrast where we optimize the GNN with both
training objectives LCE and LNCL.

• M4: Our full model, which combines both node-level and class-level contrast with both training
objectives LCE and LCL.

The results of the above four variants are summarized in Table 3. The performance of models M2 and
M3 shows the superiority over model M1 on all datasets, indicating that the introduction of both class-
level contrast and node-level contrast alone can indeed improve overall performance. For all datasets, the
performance of model M4 which incorporates both class-level and node-level contrasts is superior to the
other variants. We can infer that either node-level or class-level contrast is indispensable, which implies that
the combination of both levels leads to more discriminative and generalizable node embeddings for effective
class assignments, thus being beneficial for zero-shot node classification.

4.4 Sensitivity Analysis

In this section, we look into the sensitivity of parameters: contrastive weight β, contrastive temperature τ .

9
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Table 4: Accuracy (%) of zero-shot node classification w.r.t. different CSDs on Cora.

Cora
TEXT-CSDs LABEL-CSDs Decline rate

C
la

ss
Sp

lit
I

DAP 26.56 25.34 -4.59%
ESZSL 27.35 25.79 -5.70%
ZS-GCN 25.73 23.73 -7.77%
WDVSc 30.62 18.73 -38.83%
Hyperbolic-ZSL 26.36 25.47 -3.38%
DGPN 33.76 32.69 -3.17%
DBiGCN 45.08 32.89 -27.04%
GraphCEN (Ours) 48.43 39.63 -18.07%

Table 5: Accuracy (%) of zero-shot node classification w.r.t. different CSDs on Citeseer.

Citeseer
TEXT-CSDs LABEL-CSDs Decline rate

C
la

ss
Sp

lit
I

DAP 34.01 30.01 -11.76%
ESZSL 30.32 28.52 -5.94%
ZS-GCN 28.62 26.11 -8.77%
WDVSc 23.46 19.70 -16.02%
Hyperbolic-ZSL 34.18 21.04 -38.44%
DGPN 37.74 31.05 -17.73%
DBiGCN 38.57 34.18 -11.38%
GraphCEN (Ours) 40.77 38.45 -5.69%

Effect of Contrastive Weight. We first examine the impact of the contrastive weight on two datasets
Cora and Citeseer by varying β from 0.0 to 10.0. As depicted in Figure 2(a), the performance on Cora
improves gradually when β increases from 0.0 to 0.1 and remains stable from 0.2 to 2.0. We attribute this
improvement to the introduction of both class- and node-level contrastive learning. Nevertheless, excessive
contrastive weight on Cora may harm performance due to the neglect of the supervised loss, biasing the
correct direction of gradient learning. Additionally, the performance on Citeseer exhibits a similar trend of
improvement when β increases from 0.0 to 0.2 However, our approach is not sensitive to parameter variations
from 2.0 to 5.0 on Citeseer.

Effect of Contrastive Temperature. We then conduct experiments on datasets Cora and Citeseer to
evaluate the sensitivity to contrastive temperature τ . As shown in Figure 2(b), the accuracy on both datasets
reaches its peak when τ is set to 0.2, and gradually decreases as τ continues to increase. This is because
a higher temperature will result in a softer distribution, where all classes are more likely, while a lower
temperature will result in a sharper distribution, where some classes are much more likely than others. In
other words, a higher temperature would make the model less confident in its predictions, which would result
in lower accuracy.

4.5 Discussion on Different CSDs

Since there are two kinds of CSDs, we can construct the class affinity graph defined in Eq. 2 based on
them. As the two CSDs provide different semantic information for the class affinity graph GA, the model
performance on zero-shot node classification, which is highly dependent on the label semantics, would be
significantly affected by the chosen CSDs. Specifically, the accuracy of zero-shot node classification w.r.t. the
used CSD type is shown in Table 4, 5 and 6. It can be observed that the performance with TEXT-CSDs is
higher than with LABEL-CSDs, which is consistent with previous researches Wang et al. (2021b); Yue et al.
(2022). The result shows the expressiveness of natural language when it comes to representing label-label
relationships. Among the listed models, our GraphCEN achieves the best performance no matter which kind
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Table 6: Accuracy (%) of zero-shot node classification w.r.t. different CSDs on C-M10M.

C-M10M
TEXT-CSDs LABEL-CSDs Decline rate

C
la

ss
Sp

lit
I

DAP 38.71 32.67 -15.60%
ESZSL 37.00 35.02 -5.35%
ZS-GCN 37.89 33.32 -12.06%
WDVSc 38.12 30.82 -19.15%
Hyperbolic-ZSL 35.80 34.49 -3.66%
DGPN 41.93 35.12 -16.24%
DBiGCN 41.11 37.54 -8.68%
GraphCEN (Ours) 44.17 38.68 -12.43%

Ori-Graph

Edge-Drop

Diffusion

Ed
ge-
Dro
p

Ori
-Gr
aph

Dif
fus
ion

Cora

Ed
ge-
Dro
p

Ori
-Gr
aph

Dif
fus
ion

Citeseer

OG

ED

GD

Cora Citeseer

OG ED GD OG ED GD

OG

ED

GD

Figure 3: Analysis of different graph augmentations on datasets Cora and Citeseer. OG, ED, and GD
correspond to original graph, edge dropping, and graph diffusion, respectively.

of CSDs are used, which further demonstrates the robustness of the proposed approach via incorporating
the two-level contrastive learning.

4.6 Analysis of Graph Augmentation

To explore the effect of different graph augmentations, we compare the performance of three strategies, i.e.,
original graph, edge dropping, and graph diffusion. The results on two datasets are reported in Figure 3.
It can be observed that different augmentation strategies exhibit vital effects. GraphCEN with {ED +
GD} obtains the best performance, whereas {OG + OG} (without augmentations) yields the worst results.
Maybe the reason is that different augmentations can maximize the diversity of graph data while preserving
semantics, which better promotes consistency in contrastive learning and enhances generalization for zero-
shot node classification. Moreover, we find that the effect of {GD + GD} is worse than that of {GD + OG}.
The possible reason is the generation of graph diffusion is not random, resulting in the same two augmented
views, which hinders the diversity of the augmentation process, while {ED + ED} with randomness will lead
to different augmented views, and thus performs better than that of graph diffusion. Besides, augmentation
with {ED + OG} is worse than {GD + OG}. The explanation for this is that graph diffusion is likely to
capture the global information instead of exploring from a local view like edge dropping, which results in
inadequate semantic information exploration.

5 Related Work

Node Classification. As one of the most fundamental problems in relational data modeling. Many of the
real-life applications can be boiled down to the problem of semi-supervised node classification. It aims to
predict the unlabeled nodes with only a few labeled nodes on the graph. This problem has been extensively
investigated with graph neural networks (GNNs) Kipf & Welling (2017); Nagarajan & Raghunathan (2023);
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Ma et al. (2023); Prieto et al. (2023); Zhong et al. (2022); Chen et al. (2023); Demirel et al. (2021) and can
generalize well to downstream domains such as social analysis Bhagat et al. (2011) and bioinformatics Yuan
et al. (2021); Gasteiger et al. (2022). Benefiting from the powerful capability to incorporate topological
structure and associated features, GNNs have shown outstanding performance in learning effective node
embeddings. Nevertheless, these methods have the inability to handle zero-shot node classification, while
our proposed GraphCEN models the dependencies between nodes and classes to transfer knowledge from
the seen classes to the unseen classes.

Zero-shot Learning. Our work essentially belongs to zero-shot learning (ZSL), which has been extensively
studied in computer vision. Inspired by human cognitive competence, this topic has recently intrigued vast
interest, with the capability of recognizing new classes during learning by exploiting the intrinsic semantic
relationship between seen and unseen classes, with the guidance of some auxiliary information. Existing ZSL
methods can be divided into two main categories: (i) embedding-based methods Akata et al. (2015); Frome
et al. (2013); Lampert et al. (2013), and (ii) generative-based methods Xian et al. (2018; 2019); Schonfeld
et al. (2019); Guan et al. (2020). For the first category, it aims to learn an embedding mapping function
from visual space to semantic space. For the second category, the basic idea is to apply a generative model to
synthesize features of unseen classes. However, these methods are not tailored to zero-shot node classification,
and fail to be capable of processing complex data structures, such as graph domains. Recently, DGPN Wang
et al. (2021b) and DBiGCN Yue et al. (2022) have been proposed for zero-shot node classification. DGPN
designs the acquisition of high-quality class semantic descriptions (CSDs) and follows the principles of locality
and compositionality, while DBiGCN proposes two dual GCNs with two opposite directions and introduces a
label consistency loss to mutually enhance. Different from them, our proposed model GraphCEN starts from
the relationship between nodes and classes, and utilizes contrastive learning to mine the intrinsic connections
between semantics, thus promoting knowledge transfer more effectively.

Contrastive Learning. Another category of related work is contrastive learning (CL), which has recently
achieved state-of-the-art performance in the direction of self-supervised learning, arousing extensive attention
from researchers. The core idea of CL is based on the task of instance discrimination Wu et al. (2018) and
introducing a point contrastive loss that encourages the matched positive point pairs to be similar in the
embedding space while pushing away the negative pairs Hadsell et al. (2006). Recently, there are many CL
approaches proposed to capture the discriminative representations Chen et al. (2020a); He et al. (2020); Chen
et al. (2020b); Grill et al. (2020). For example, SimCLR Chen et al. (2020a) trains an encoder by adopting
multiple data augmentations and a learnable nonlinear transformation to pull the feature embeddings from
the same images. MoCo He et al. (2020) develops a dynamic dictionary for CL via a moving-averaged encoder.
SupCon Khosla et al. (2020) extends the self-supervised contrastive approach to the fully-supervised setting,
which allows for effective leverage of the label information. Compared with existing CL methods based on
instance discrimination for the vision domain, our work goes further and explores the node- and class-level
CL simultaneously for zero-shot node classification on graphs.

6 Conclusion

In this paper, we develop a novel framework GraphCEN for zero-shot node classification, which explicitly
models the dependencies between nodes and classes to transfer knowledge from seen classes to unseen classes.
We first construct a class affinity graph to capture similar category semantics, and then integrate the class
affinity graph and node features into the joint information matrix via GNNs. Further, we introduce node- and
class-level contrastive learning based on the information matrix for effective class assignments. Experimental
results demonstrate that our proposed GraphCEN consistently outperforms existing state-of-the-art methods.

As our future work, there are several aspects of the proposed model that deserve further investigation: (i)
leveraging the neighbor information of constructed class affinity graph to conduct better contrastive learning;
(2) adopting the unsupervised pre-training techniques to sufficiently explore inherent graph semantics for
better knowledge transfer; (iii) extending our framework to more challenging settings such as generalized
zero-shot learning.
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