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ABSTRACT

Anomaly detection in time series data is pivotal across various domains. The in-
herent challenge of scarce labeled data for anomaly detection has increased the
attention toward unsupervised learning methods, in particular autoencoders and
variations thereof. While these unsupervised approaches have shown promise,
those that solely rely on reconstruction error often miss subtle anomalies, espe-
cially in high-dimensional or multivariate datasets. Motivated by this challenge,
we introduce a novel approach that utilizes a layer of Radial Basis Function (RBF)
neurons within the deep learning architectures. This RBF layer fits a nonparamet-
ric density in the hidden representation. When the neural network is trained on
(predominantly) normal data, then a high RBF output indicates a high density,
which in turn implies a high similarity with the normal data. Combining the RBF
similarity score with the reconstruction error results in a unique anomaly score
that we named the SimRec score. While our method can be adapted to a wide
range of architectures, we focus on LSTM and Transformer models. We evaluate
our approach on three real-world benchmark datasets, with results indicating sig-
nificant improvements over the baselines. Our findings underscore the potential
of the SimRec score in capturing subtle anomalies that might be overlooked by
scores based on reconstruction error alone, offering a more robust and compre-
hensive solution for anomaly detection in time series data.

1 INTRODUCTION

Anomalies in time series data, such as unexpected deviations or patterns, can signify critical issues
in various application domains, ranging from fraudulent financial transactions to life-threatening
health conditions. Hence, accurate anomaly detection is important. Given the rarity of anomalies
and, thus, the lack of sufficient labeled data, fully supervised prediction methods are less suited.
Therefore, unsupervised learning methods have gained increasing attention. These methods offer
advantages over supervised approaches as they do not rely on explicitly labeled examples of the
anomalies. This makes them more adaptable to the complex and rare nature of anomalies, as well as
better suited for detecting unknown or unexpected anomalies/Chandola et al.|(2009)); |Ghorbani et al.
(2023)).

Various classic unsupervised anomaly detection techniques, such as clustering-based methods like
One-Class Support Vector Machine (OC-SVM) [Scholkopf et al.[(1999) or Support Vector Data De-
scription (SVDD) [Tax & Duin| (2004), as well as density-estimation approaches, like Local Outlier
Factor (LOF) Breunig et al.[(2000), have been widely used in different domains. While these meth-
ods can be adapted to handle time series data, they face inherent challenges due to the temporal
dependencies, high dimensionality, and the complex generalization requirements of such data|Mejri
et al.| (2022). Recent advances in deep learning have shown promising results for anomaly detec-
tion in time series data [Choi et al.| (2021). Architectures such as Transformers, Long Short Term
Memory (LSTM), and LSTM-autoencoders are capable of capturing temporal patterns [Tuli et al.
(2022); Hundman et al.| (2018); |/Audibert et al.| (2020a). These models can automatically learn and
extract hierarchical and non-linear features, which enables them to effectively handle the challenges
of temporal dependencies and high dimensionality in time series data. These models are originally
constructed for prediction and reconstruction tasks, but can be extended to perform anomaly detec-
tion.



Under review as a conference paper at ICLR 2024

Building on these advancements, a variety of effective anomaly detection methods have been devel-
oped Zhou et al.| (2019); [Li et al.| (2021)); |Park et al.| (2018)); |[Ding et al.[(2023). When categorizing
these studies based on the anomaly criteria score, most of them are centered around Reconstruc-
tion Error (RE). For instance, OmnyAnomaly from Su et al.| (2019) proposes a stochastic recurrent
neural network model to capture uncertainties in time series data using reconstruction probabil-
ity. The USAD method by [Audibert et al.| (2020b)) utilizes a unique architecture that combines the
strengths of autoencoders to identify subtle and complex anomalies using the RE metric. Further-
more, STAD-GAN from [Zhang et al.| (2023) introduces an innovative self-training Generative Ad-
versarial Network approach, enhancing robustness against anomalies using the RE metric. However,
it is important to note that not all these studies use pure RE as the sole anomaly score.

Relying on the reconstruction error during the unsupervised learning step poses some challenges
for anomaly detection, especially in high-dimensional or multivariate time series data. One primary
concern is the smoothing effect, where models, particularly those based on deep learning architec-
tures, tend to average out anomalies during the reconstruction process. This effect can lead to a
reduced sensitivity, causing subtle anomalies to be overlooked. This challenge is exacerbated in
multivariate time series, where anomalies in one dimension might be overshadowed by dominant
patterns in other dimensions or diluted during the reconstruction process. Such an effect can result
in missing anomalies that deviate only in a subset of dimensions. This is illustrated in Figure [T]a.
Here, the original signal (indicated by the solid line) contains two anomalies: a subtle anomaly
at time point to and a significant anomaly at time point ¢;. The reconstructed signal is slightly
smoothed, and by using the reconstruction error alone, the subtle anomaly stays below the detection
threshold (see Figure[I]b).
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Figure 1: Challenges with traditional reconstruction-based methods and the proposed RBF kernel
solution.(a) Original time series data with both subtle and significant anomalies, showing the averag-
ing effect in reconstructed signal. (b) Reconstruction error plot using traditional methods, highlight-
ing the challenges in detecting subtle anomalies due to the averaging effect. (c) Model illustration
with the RBF kernel integration. The 2D scatter plot displays normal data, subtle and significant
anomalies, as well as the RBF center with its influence radius. This highlights RBF kernel’s ability
to detect deviations from the 'normal’ patterns. (d) Anomaly score plot using the combined anomaly
score, showcasing enhanced detection capabilities, particularly for subtle anomalies.
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Efforts have been made to enhance the efficacy of unsupervised anomaly detection by adding prop-
erty scores to the conventional reconstruction error anomaly score. For instance, the Anomaly Trans-
former Xu et al.|(2021) introduced the concept of Association Discrepancy, emphasizing that each
time point in a series can be described by its associations with all other time points. This innovative
approach combines the association discrepancy and reconstruction error to enhance anomaly detec-
tion. Notably, while the improved performance of the Anomaly Transformer indirectly underscores
the limitations of relying solely on the reconstruction error, their method is specifically tailored for
the Transformer architecture and might not serve as a general solution for diverse architectures.

To extend the applicability of an Association Descrepancy-type of anomaly detection to other deep
learning methods and deal with the challenges of using RE as the anomaly score, there might still
be untapped potential in exploring specialized non-linear transformations, such as the Radial Basis
Function (RBF) kernel [Orr et al.| (1996), for more effective anomaly detection in time series data.
The RBF kernel generates a similarity score that measures how close a given data point is to a refer-
ence point or center | Vert et al.| (2004). This can be particularly advantageous for anomaly detection,
where anomalies can be intuitively thought of as data points that deviate (are far away) from *normal’
patterns. In this context, anomalies would result in lower similarity scores when evaluated using the
RBF kernel, offering a direct measure of deviation. We believe that the RBF similarity computed
within a hidden representation of a deep network could offer increased sensitivity to subtle anoma-
lies that might be missed by reconstruction error alone. This is shown in Figure[T}c, where an RBF
kernel is fitted on the normal data in the hidden representation. A well-optimized representation al-
lows for the detection of both the subtle and the significant anomalies. By combining the traditional
reconstruction error with the RBF similarity score, we create a comprehensive anomaly metric that
not only captures deviations from expected patterns but also ensures that subtle anomalies, which
might be smoothed out or averaged during reconstruction, are still flagged based on their deviation
from the norm. This combined anomaly score is shown in Figure[T]d. The anomaly scores for both
anomalies are now above the detection threshold.

In this paper, we focus on incorporating the RBF kernel in LSTM and Transformers baseline models,
chosen for their proven efficacy in modeling sequential data, handling temporal dependencies, and
widely used in the field. Our goal is to create a new unique anomaly score, which we named SimRec
score, using both the RBF Similarity score and Reconstruction error. This new score offers a more
robust and comprehensive metric for anomaly detection. In summary, this paper offers the following
contributions:

* We present SimRec score, a composite anomaly score that effectively addresses the short-
comings of solely relying on the reconstruction error by incorporating an RBF similarity
score.

* While we focus on LSTM and Transformer models, the design of SimRec score is generic
and can be applied to a wide range of deep learning architectures.

* We have evaluated our method on various benchmark datasets and shown the superiority of
SimRec score in detecting anomalies.

2 METHODOLOGY

Assume that the observed time series dataset consists of N parts (samples) with the length 7". Each
part of this time series is denoted by X; = {wiﬂg};";l where x; ; represents the observed time point

for i-th sample at time ¢, having d dimensions, i.e., ©;; € R<. Qur task is to determine if a given
x; + shows any anomalous behavior or not.

2.1 RADIAL BASIs FUNCTION (RBF) KERNEL

In the context of our study, the RBF mechanism is integrated into the deep learning framework
through a specific layer of RBF neurons. This layer is designed to operate on the hidden represen-
tations generated by the preceding layer. The primary role of this single RBF layer is to compute a
measure of similarity of a data point with a set of centers (reference points in the learned hidden rep-
resentation). This similarity is captured using the RBF kernel, which is mathematically represented
as:
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RBF(h,c) = exp <;EV||h - c||2> (1)

Where h represents the hidden representation derived from the preceding layer and ¢ denotes the
center of the RBF, which is a learnable parameter. The parameter v is the logarithm of the inverse
scale parameter (or the precision parameter), which is initialized and adapted during the training
process. The exponential transformation of + in the RBF computation ensures the positivity of the
precision parameter for any value for . This stabilizes the optimization of the precision because no
positivity constraint has to be enforced. The detailed pseudocode of the RBF Layer is provided in
Appendix

By processing the latent representations by the RBF layer, the model can reason about the similarity
of encoded data points with respect to the learned center(s). The final output provides a measure of
this similarity. A lower similarity measure (or higher distance) between an encoded representation

and the RBF centers could indicate potential anomalies, whereas a higher similarity suggests normal
behavior.

2.1.1 INITIALIZATION OF RBF PARAMETERS

Initializing the RBF layer parameters, the centers ¢ and to a lesser degree ~, plays a critical role in
our methodology. Initially, we employ a Random initialization method, where ¢ and y are initialized
using a normal distribution with zero mean and unit standard deviation. While this method is intu-
itive and straightforward, it might introduce challenges such as slow convergence, the potential risk
of local minima, and poor representation of the data distribution during early training, potentially
leading to instability.

In addition to the aforementioned approach, we also explored the K-means based initialization
method. This method uses the inherent structure in the data, if present, to determine initial cen-
ters, which can provide a more informed and representative starting point, potentially mitigating
some challenges associated with random initialization. In this approach, initially, we focus on train-
ing a base model (without the integrated RBF layer) for reconstruction. The objective during this
phase is to minimize the Mean Squared Error (MSE) given by:
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where N is the total number of samples, &; represents the actual data, and X; denotes the model’s
reconstructed output. The notation ||- ||§7 denotes the squared Frobenius norm. Once the base model
is trained, we extract the hidden representation from the specific layer where we intend to add the
RBF layer subsequently in the next phase. This extracted representation is then used for initializing
the RBF layer parameters y and c. The centers are initialized using the K-means clustering algorithm
applied to the extracted hidden representation. The number of clusters is equal to the number of
RBF layer centers, denoted by M. To initialize v, we first compute 52, which represents the average
squared distance of each data point in the hidden representation to its nearest center as:

N

52 = % szjm hie —c;l?, Vje[l,M] (3)
=1 t=1

where h;; denotes the hidden representation vector of the i-th sample at the ¢-th time step, and

c; denotes the j-th cluster center obtained from the K-means algorithm. This value, &2, is used

to initialize v as v = %, ensuring that the RBF function has a spread informed by the average

dispersion of the data points around their respective centers.

2.2 LEARNING PROCESS

During the training phase of the RBF-integrated model, our primary objective is to ensure accurate
reconstruction of the data while also maximizing the likelihood under the RBF kernels. To achieve
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this, we minimize a composite loss function that combines MSE and an additional term referred to
as the “density loss”. The total loss function L4 is defined as follows:

T

1 X1 1 Y
Lrow = MSE = Az > > log <M ﬂ;zmm - e) @)

=1 t=1

Here, for each data point x; ;, the RBF layer outputs z; ; € RM, where each element (Zi,¢)m corre-
sponds to the RBF response of the m-th center. The parameter A is a weight factor that controls the
importance of the density loss term relative to the overall loss. The term e is a small constant added
to ensure numerical stability during the computation of the logarithm. The logarithmic component
of the density loss ensures a balanced RBF response across centers for each data point, preventing
any single center from overly dominating the output. This design ensures all data points achieve a
high RBF score, enhancing anomaly detection capabilities. This mechanism inherently nudges the
centers to position themselves in a way that they effectively ’cover’ all data points, ensuring the
training data achieves a high likelihood. The intention behind this is twofold: firstly, to ensure that
no data point is left inadequately represented, and secondly, to have a high likelihood on the training
data, such that anomalies are likely to have a lower likelihood. As a result, the model remains finely
tuned to a wide variety of patterns in the data, enhancing its anomaly detection capabilities.

2.3 SIMREC ANOMALY SCORE

In order to enhance anomaly detection, we incorporate the RBF score and the reconstruction crite-
rion. The RBF score is a measure of similarity between the input data and the learned centers, which
can be interpreted as a score indicating the normality of the data. As mentioned, given a sample &;;
the RBF layer output for each data point x; ; is represented by z; ; < RM . The final RBF score
measures how close the data point x; ; is to the learned centers:

M
1
RB-FScorc(wi,t) = M Z (zi,t)m (5)

m=1

A higher RBF score indicates that the data point is more “normal”, while a lower score suggests po-
tential anomalies. The reconstruction error for each data point x; ; is given by the squared difference
between the actual data and its reconstruction:

E(wig) =| wiy —xiy |I? 6)

We compute the RBF score and the reconstruction error for all data points and then normalize them
using MinMax normalization to ensure they are on a comparable scale. The final anomaly score,
denoted as SimRec, is formulated as:

SimRec(z; ) = (i) ¥ (1 - Rstcorc(ﬂ?i,t)) (7

Where € (x;,+) represents the normalized reconstruction error, and RBF Score(®,¢) is the normal-
ized RBF score. This strategic ombination ensures that subtle anomalies, where both the reconstruc-
tion error and RBF score are low, are highlighted, in addition to the significant anomalies with high
reconstruction errors or low RBF scores.

3 EXPERIMENTAL SETUP

3.1 DATASETS

We use three public benchmark datasets for our experiments. 1) Server Machine Dataset (SMD)|Su
et al|(2019): Collected from an Internet company, comprising data from 38 sensors across 28 server
machines. The training and test sets are of equal size. Labels are provided to indicate anomalous
points, and every dimension contributes to the anomaly parts. 2) Mars Science Laboratory (MSL)
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Rover|[Hundman et al.|(2018)): An expert-labeled dataset of 55 dimensions, collected from NASA’s
Incident Surprise Anomaly (ISA) reports. 3) Pooled Server Metrics (PSM)|Abdulaal et al.| (2021):
Collected internally from multiple application server nodes at eBay. The data consists of 25 features
representing server machine metrics, such as CPU usage and memory. The anomaly labels are
manually labeled by experts. For detailed statistics on each dataset, please refer to Appendix

3.2 DATA PREPROCESSING

Initially, each signal in the dataset is normalized to zero mean and unit variance, performed across
the time dimension. Subsequently, following the protocol in Shen et al.| (2020), the normalized
signal is segmented into non-overlapped sliding windows with a fixed length of 100 data points (a
common setting based on the previous related works).

3.3 IMPLEMENTATION

3.3.1 MODELS

We employ LSTM and Transformer models as our baseline architectures inspired by the research
works of [Hundman et al| (2018) and Xu et al.| (2021). The LSTM model comprises two LSTM
layers, with a dropout layer following the first LSTM layer, and a fully connected layer as the
final layer. Each LSTM layer has 80 hidden states. Building upon this architecture, we introduce the
SimRec-LSTM by incorporating RBF layer between the two LSTM layers, positioned right after the
dropout layer. For our Transformer model, we begin with a DataEmbedding module that combines
both token and positional embeddings. This is followed by an encoder made up of three layers. Each
of these layers is equipped with a multi-head self-attention mechanism and feed-forward networks.
Specifically, the model’s hidden state dimension is set to 32, and the intermediate layer of the feed-
forward networks within the Transformer blocks has a dimension of 128. The number of attention
heads is set to 8. In our proposed SimRec-Transformer model, we incorporate an RBF layer between
the second and third encoder layers. For a detailed visual representation of these models, please refer

to Appendix

We use the ADAM optimizer for optimization. We determined the hyperparameters for all models
by systematically searching through all possible combinations to achieve optimal performance on
the reconstruction task. Further details regarding the hyperparameters can be found in Appendix[B.3]

3.3.2 EVALUATION

We label time points as anomalies if their anomaly score, as defined in Equation[7] exceeds a thresh-
old, 4. Following the approach used by Xu et al.|(2021), we set 0 to label a predefined proportion
of the validation dataset as anomalies. This approach is practical and efficient in real-world applica-
tions where the number of anomalies that can be investigated is often decided by human resources.
Given that the aforementioned study is a state-of-the-art reference, we adopt their suggested ratios
for our datasets. Specifically, we set r to 0.5% for the SMD dataset, and 1% for other datasets.

We employ the widely-adopted “point-adjust” approach for evaluating anomaly detection in time
series, as introduced by |Xu et al.| (2018) and used widely in subsequent works like |Su et al.| (2019);
Xu et al.|(2021)). This method acknowledges the contiguous nature of anomalies in time series data.
We evaluate the performance using the F1-score metric and further employ Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall Curve (AUC-PR)
for a threshold-independent evaluation. These metrics offer a broader perspective and reduce de-
pendency on specific threshold settings. Additionally, we have adopted innovative metrics such as
Volume Under the Surface of the Receiver Operating Characteristic Curve (VUS-ROC) and Volume
Under the Surface of the Precision-Recall Curve (VUS-PR) [Paparrizos et al| (2022)). These mea-
sures are particularly designed for time-series anomaly detection, providing a robust, parameter-free
evaluation that is not influenced by threshold choices.

4 RESULTS

Our empirical findings, presented in Table [T} demonstrate the benefits of integrating the RBF layer
into baseline models and employing the SimRec score for anomaly detection in time series data.
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Both the SimRec-LSTM and SimRec-Transformer models, whether initialized randomly or using K-
means clustering, consistently outperform their respective baselines across all benchmark datasets.
The relatively small standard deviations across multiple runs indicate that the performance improve-
ments are stable.

Table 1: Mean performance metrics (in %) of baseline and RBF-integrated models on test sets over
five training runs - Mean(std). Initialization methods are denoted as (R) for Random and (K) for
K-means. A higher value in performance metrics indicates better performance.

Dataset \ SMD MSL PSM
2 x 8 2 o g 2 o g
g 52 KB ¢ 5o B¢ 5oz £
%] 1] ] 2] %) 2] o O 2] %} 2] O O 2] %)
) 2 2 2 2 = 2 2 2 2 s =T =) )
Models 2 < < > > [ < < > > [ < = > >

LSTM 76(1) 85(0) 59(1) 61(0) 55(0) | 82(3) 87(2) 70(4) 7T2(1) 7I(1)] 91(3) 92(2) 88(3) 67(2) 76(1)
SimRec-LSTM (R) | 80(3) 88(2) 65(4) 65(2) 60(3)| 88(1) 92(1) 80(1) 78(1) 78(1)| 95(4) 96(4) 93(5) 84(2) 88(1)
SimRec-LSTM (K) | 82(3) 89(2) 68(5) 66(2) 61(2)| 89(1) 92(1) 80(1) 80(0) 79(1)| 96(1) 96(1) 94(2) 87(1) 89(0)

Transformer 73(3) 83(2) 56(5) 59(2) 52(3) | 80(3) 86(2) 68(4) 70(2) 70(2) | 84(4) 87(3) 80(4) 65(2) 75(1)

SimRec-Transformer (R) | 77(4) 87(3) 61(5) 64(3) 57(3)| 88(0) 92(0) 80(1) 80(1) 79(1)| 91(1) 92(1) 87(1) 71(3) 79(2)

SimRec-Transformer (K) | 82(3) 88(3) 69(4) 66(2) 61(4)| 88(1) 92(1) 79(2) 79(2) 78(2)| 90(5) 91(4) 86(5) 69(5) 79(4)
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Figure 2] visually demonstrates the advantage of the SimRec score, emphasizing its enhanced sensi-
tivity and precision compared with the traditional reconstruction error. The SimRec score identifies
the anomalies that are missed or overlooked by the baseline methods using only the reconstruction
error. These results underscore the efficacy of the RBF kernel in distinguishing deviations that might
be challenging to detect based solely on reconstruction error.
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Figure 2: Comparison of the reconstruction error and SimRec score in anomaly detection across
all datasets. The figure depicts instances where the SimRec score successfully detects anomalies
that are missed by the baseline reconstruction error method. The figure showcases just one example
among several from each of the datasets. Note that the original signal represents only a single feature
selected from multiple available features. Anomalous sections in the original signal are highlighted
in red. The plots are scaled for visualization clarity.
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4.1 ABLATION ANALYSIS

In an ablation study, we investigated the influence of A, which represents the weight of the den-
sity loss term in our loss function (see equation [). Figure [3] demonstrates the performance of the
SimRec-LSTM model with both random and K-means initialization across various A values.

Across most of the datasets and both initialization methods, we observed a trend where the perfor-
mance generally increases as A increases. This trend suggests that giving more weight to the density
loss is beneficial for the anomaly detection task in most scenarios. However, a notable exception
was observed with the MSL dataset when the K-means initialization method was employed. In this
case, as A increases, the performance metrics show a slight decrease. This behavior underscores
the importance of dataset-specific considerations and indicates that while increasing A might be ad-
vantageous in many situations, it might not universally hold true. Additionally, when comparing
initialization strategies, K-means initialization shows a relatively more stable performance across
different A values compared to random initialization.
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Figure 3: Mean AUC performance of SimRec-LSTM over different \ values for both initialization
strategies over five different training runs. (a) Random Initialization (b) K-means Initialization.

In addition, we explored the flexibility of the RBF layer placement within the baseline architectures.
For the LSTM, we initially placed the RBF layer after the first LSTM layer ("Middle-Placement’).
In the ablation setup, we placed the RBF layer after the second LSTM layer, preceding the fully-
connected layer ("End-Placement’). For the Transformer, ’Middle-Placement’ denotes the RBF layer
after the second encoder layer, whereas ’End-Placement’ is after the third encoder layer, before the
final fully-connected layer. The results are presented in Figure[d Across all datasets, both models
consistently maintained their performance, irrespective of the location of the RBF layer. These
findings highlight that the SimRec score retains its effectiveness in anomaly detection regardless of
the position of the RBF layer within the model. (See Appendix [C|for more ablation analyses.)
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Figure 4: Mean AUC performance of SimRec-LSTM and SimRec-Transformer models with *Middle-
Placement’ and ’End-Placement’ configurations of the RBF layer over five different training runs.
(a) SimRec-LSTM (b) SimRec-Transformer.
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5 COMPARISON WITH STATE-OF-THE-ART

Although the primary objective was to address the foundational issue of the smoothing effect in
reconstruction-based anomaly detection, we also highlighted the comparative performance. The
performance of our proposed method was evaluated against a recent state-of-the-art model; the
Anomaly Transformer Xu et al.[(2021), as shown in Tablem Although our method shows a lower
performance on the SMD dataset, its performance on the MSL and PSM dataset is very competitive.
Notably, we used simple baseline architectures without any task-specific optimization, unlike many
state-of-the-art models. Given this, the competitive performance of our method indicates its potential
strength. This suggests that with tailored architectures for the task, our approach could potentially
bridge the gap or even surpass current benchmarks.

Table 2: Comparison of SimRec method with the state-of-the-art Anomaly Transformer - Mean(std).
The table presents the mean performance metrics (in %) over five different training runs.

Dataset \ SMD MSL PSM

2 x O x| x O x| x O

g B &2 & | g & & & | 8 B E &

%] ] O %] %) n O ] %} %] %] O ] ] %}

.—' =) =} =} =} — =} =) =) =} — =] =} =) =}

Models &3 < < > > &3 < < > > &3 < < > >
Anomaly Transformer| 88(1) 93(1) 79(1) 76(1) 72(1)]|90(1) 94(1) 83(2) 82(2) 81(2)| 96(1) 96(1) 93(1) 82(1) 86(1)
SimRec-LSTM | 82(3) 89(2) 68(5) 66(2) 61(2)|89(1) 92(1) 80(1) 80(0) 79(1)| 96(1) 96(1) 94(2) 87(1) 89(0)

6 DISCUSSION AND CONCLUSION

In this study, we introduced the SimRec score that combines a similarity score and reconstruction er-
ror to detect anomalies in time series data, addressing the limitation of reconstruction error anomaly
score. The similarity score is obtained by a nonparametric density estimate using a layer of RBF
neurons in a deep network. This anomaly score increases the sensitivity to subtle anomalies that are
missed by the reconstruction error. The location of this RBF layer in the network is not sensitive,
and this generic setup makes it possible to apply the SimRec score to any arbitrary deep network.

In an ablation analysis, we showed that the initialization of the RBF kernel is important. The K-
means initialization of the RBF layer generally showed higher stability (and often better perfor-
mance) than random initialization. However, due to the complexity of the K-means implementation,
random initialization can be a good alternative.

To optimally use this SimRec score, two measures have to be optimized: the reconstruction error
and the similarity score. The trade-off between these two measures is, unfortunately, dependent on
dataset characteristics and RBF layer initialization. In two datasets (PSM and SMD), a higher weight
for the similarity loss is required, while for the MSL dataset, the reconstruction error has a higher
priority. This can be attributed to characteristics of the MSL dataset, such as high dimensionality
and few number of training samples, which might have led to less effective initialization using the
K-means method.

The SimRec score, in comparison with the state-of-the-art method showed competitive performance,
especially on MSL and PSM datasets. This competitive performance, achieved with not-tailored
architectures for the task, highlights the effectiveness and potential for enhancement of the proposed
method. Future research can focus on developing architectures specifically tailored for the SimRec
score to potentially unlock superior performance.

To conclude, this research addresses a fundamental challenge in time series reconstruction-based
anomaly detection by introducing the SimRec score- a simple, flexible, yet profoundly effective
metric. Our findings not only highlight the clear performance improvement over the baseline models
but also lay the groundwork for future research. The current approach combines the reconstruction
error and similarity score using a multiplicative method. Future studies could delve into alternative
methods of combination, such as additive, weighted average, or even more complex fusion strategies.
Moreover, extending the evaluation to a broader range of datasets and baselines will be a valuable
direction for future research.

"We executed the Anomaly Transformer with details described in the published paper, and averaged results
over five runs under our settings for fairness, due to the lack of multi-run results in the original study.



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

Dedicated to ensuring the reproducibility of our research, we have taken several careful steps. We
provided the source code that offers detailed implementations of the baseline and RBF-integrated
model architectures, ensuring complete transparency in our methodologies and experiments. This
code also encompasses comprehensive details on training configurations and hyperparameters. Ad-
ditionally, the data processing steps are thoroughly outlined within the code itself. For further clarity
on the hyperparameters and training specifics, they are also elaborated upon in the Appendix section
of the paper. Delving into the theoretical aspect, the main text explains the mathematical deriva-
tions and foundations behind our work. In our experimentation, we have made sure to average
results over multiple runs to guarantee the fairness and reproducibility of our findings, eliminating
any dependence on specific random seed configurations. All datasets used in our study are publicly
available. By offering these details, we aim to promote transparency and facilitate further explo-
ration by the research community. Should any questions arise, we encourage researchers to contact
the corresponding author for further clarification.
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A  DATASETS

In Table [3] we provide detailed statistics for each of the datasets used in our experiments. This
includes the number of dimensions, the size of the training and test datasets, and the proportion of
actual anomalies (Anomaly Rate).

Table 3: Statistics and characteristics of benchmark datasets used in experiments. Note: # indicates
the number of windows after the windowing process. The Anomaly Rate is based on the original
data points.

Benchmarks | Applications | Dimension | #Training #Test Samples | Anomaly Rate

SMD Server 38 7084 7084 0.042
MSL Space 55 583 737 0.105
PSM Server 25 1324 878 0.278

B IMPLEMENTATION DETAILS

B.1 RBF LAYER PSEUDOCODE

We present a detailed pseudocode of the RBF layer in Algorithm[I] This representation elucidates
the step-by-step operations for computing the RBF kernel values, based on the input data and the set
of RBF centers.

Algorithm 1 RBF Layer Forward Pass

Require:
X € RT*d: Input matrix where T is the number of data points and d is the dimensionality of
each data point.
C € R™*4: Matrix of RBF centers where m is the number of centers.
log(~y): Logarithm of the inverse scale parameter.
Ensure:
O € RT*™: Output matrix of RBF kernel values.

1: Compute squared Euclidean distance matrix D between rows of X" and C as:

Dy = ||X;. — C;.|1?, Vi€ [l,T],Vj € [1,m]

>D e RTxm
2: Compute RBF kernel matrix O as:
O = exp (—0.5 - exp(log(v)) - D)
>0 € RT*m
3: return O > Represent the similarity scores as output of the RBF layer

B.2 MODEL ARCHITECTURES

Figure [5] provides a visual representation of the architectures of both the SimRec-LSTM and
SimRec-Transformer models.

B.3 HYPERPARAMETERS

We determined the hyperparameters for both the proposed models (SimRec-LSTM and SimRec-
Transformer) and the baseline models through a systematic grid search to ensure optimal recon-
struction performance. The batch size is set to 128 for all models. For the proposed SimRec models,
training is conducted for 100 epochs, while the baseline models are trained for 500 epochs with an
early stopping criterion of 100 epochs to prevent overfitting. In all training settings, we employed

12
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Figure 5: Visual representations of the (a) SimRec-LSTM and (b) SimRec-Transformer models em-
ployed in our experiments. The detailed view of the internal components of a single Transformer
encoder layer is also depicted, shown on the right side of the Transformer model diagram.

a learning rate scheduler that reduces the learning rate by a factor of 0.5 if there is no improvement
in validation performance after 10 epochs. The specific hyperparameters tailored to each dataset for
the baselines and proposed SimRec models are presented in Table [}

Table 4: Hyperparameters for Baseline and SimRec LSTM and Transformer across datasets using
both random and K-means initializations.

Dataset | Model | 1Ir | weightdecay | dropout | clip grad | ARandom | AKkmeans | RBF centers |
Baseline-LSTM 1073 107° 0.3 1 - - -
SMD Baseline-Transformer | 1072 1073 0 1 - - -

. -1 —4

SimRec-LSTM 10 10 0.3 3 4 5 128
SimRec-Transformer | 1073 107° 1 5 10 512
Baseline-LSTM 1072 107° 1 - - -
MSL Baseline-Transformer | 1073 1072 0.3 1 - - -
SimRec-LSTM 1072 107° 0 0.5 7 0 32
SimRec-Transformer | 1072 1072 0 0.5 0 6 16
PSM Baseline-LSTM 1073 10*‘{ 0 1 - - -
Baseline-Transformer | 1072 1076 0.3 1 - - -
SimRec-LSTM 1072 107t 0 1.5 7 7 16
SimRec-Transformer | 1072 1071 0 1.5 1 0 64

C ABLATION STUDY: VARYING NUMBER OF RBF CENTERS

In a further ablation study, we investigated the performance of the SimRec-LSTM by changing the
number of centers in the RBF layer, shown in Figure[] Results show that while the optimal number
of RBF centers varies across datasets, it appears that there’s a threshold beyond which adding more
centers does not result in performance improvements and might even degrade the performance. The
optimal number of RBF centers is influenced by the initialization method and appears to show data-
specific dependencies. In general, K-means initialization performance is more stable compared to
random initialization, especially with a small number of RBF centers.
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Figure 6: Performance of SimRec-LSTM over different numbers of RBF centers for both initialization
strategies. (a) Random Initialization (b) K-means Initialization.
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