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ABSTRACT

Parallelizing Gated Recurrent Unit (GRU) networks is a challenging task, as the
training procedure of GRU is inherently sequential. Prior efforts to parallelize
GRU have largely focused on conventional parallelization strategies such as data-
parallel and model-parallel training algorithms. However, when the given se-
quences are very long, existing approaches are still inevitably performance limited
in terms of training time. In this paper, we present a novel parallel training scheme
(called parallel-in-time) for GRU based on a multigrid reduction in time (MGRIT)
solver. MGRIT partitions a sequence into multiple shorter sub-sequences and
trains the sub-sequences on different processors in parallel. The key to achieving
speedup is a hierarchical correction of the hidden state to accelerate end-to-end
communication in both the forward and backward propagation phases of gradi-
ent descent. Experimental results on the HMDB51 dataset, where each video is
an image sequence, demonstrate that the new parallel training scheme achieves
up to 6.5× speedup over a serial approach. As efficiency of our new paralleliza-
tion strategy is associated with the sequence length, our parallel GRU algorithm
achieves significant performance improvement as the sequence length increases.

1 INTRODUCTION

Recently, the model complexity of Deep Neural Networks (DNN) has grown to keep pace with
the increasing scale of data. Hence, parallelization of DNNs is becoming important to achieve high
quality models in tractable computational run times (Ben-Nun & Hoefler, 2019). Sequence modeling
is one learning task that suffers from substantial computational time due to data size. The goal is
to capture temporal dependencies within a sequence. Several different deep learning approaches
addressing sequence tasks have been proposed, including 3D-CNNs (Carreira & Zisserman, 2017),
LSTM (Srivastava et al., 2015), and Transformers (Girdhar et al., 2019). Focusing on sequence
classification, this paper proposes a parallelization strategy for a gated recurrent unit (GRU) which
is a special type of recurrent neural network (RNN) architecture.

Parallel algorithms for training neural networks are generally broken into two classes; data-
parallelism distributes a batch across processors, and model-parallelism distributes the architec-
ture (Ben-Nun & Hoefler, 2019). Data-parallelism inherent in mini-batch stochastic gradient de-
scent (SGD) is the primary strategy for parallelizing RNN architecture (You et al., 2019; Huang
et al., 2013). However, the accuracy of mini-batch SGD degrades as the number of sequences in
each mini-batch increases. Moreover, although multiple mini-batches are processed in parallel, the
training procedure of each sequence (within a mini-batch) is invariably sequential. Alternatively, the
RNN model can be parallelized across hidden layers (Wu et al., 2016; MXNet, 2018). This model-
parallelism approach is beneficial when the network requires a large number of layers. However,
even large-scale RNN such as the Google Neural Machine Translation (GNMT) developed by Wu
et al. (2016) have only 8 LSTM layers. Therefore, the scalability of layer-based model-parallelism
is limited. A common problem in data-parallel and model-parallel algorithms for GRU is that the
training execution time increases with the sequence length. At the heart of this difficulty is a fun-
damental need to process sequences in a serial fashion, yielding forward and backward propagation
algorithms that are inherently sequential, and thus hard to parallelize.
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We propose a parallel-in-time (PinT) training method for GRU networks with long sequences. To
achieve this, we adapt a multigrid reduction in time (MGRIT) solver for forward and backward prop-
agation. Within the numerical methods community, a resurgence in PinT has paralleled increasing
computational resources (Gander, 2015; Ong & Schroder, 2020). These efforts have even been ap-
plied to the training of neural Ordinary Differential Equations (ODEs) (Schroder, 2017; Gunther
et al., 2020; Kirby et al., 2020; Cyr et al., 2019), where inexact forward and back propagation is
exploited to achieve parallel speedups. To date, these techniques have not been applied to RNN.

Following Jordan et al. (2021), GRU networks can be written as an ODE to facilitate application of
MGRIT. Different from existing parallel training algorithms for RNN, our MGRIT parallel training
scheme partitions a sequence into multiple shorter sub-sequences and distributes each sub-sequence
to different processors. By itself, this provides local improvement of the hidden states, yet global
errors remain. To correct these errors, propagation is computed on a coarse representation of the in-
put sequence requiring less computational work while still providing an improvement to the original
hidden states. This process is iterated to the accuracy required for training. Applying this algorithm
to the classic GRU networks will achieve parallelism. However, this training algorithm will not lead
to accurate networks due to stability problems on the coarse grid. This emphasizes the challenges
of choosing a proper coarse grid model for neural networks, and multigrid algorithms in general. To
alleviate this, we develop a new GRU architecture, or discretization of the ODE, which we refer to
as Implicit GRU that handles stiff modes in the ODE. This is required for application of the MGRIT
algorithm where coarse sub-sequences providing the correction, correspond to discretizations with
more strict numerical stability restrictions. We also compare the accuracy of serial versus parallel
inference. This ensures that the network is not compensating for the error introduced by the MGRIT
procedure, and is a study that has not been considered in prior work.

Two datasets are chosen for evaluation of the PinT algorithm. The first is the UCI-HAR dataset for
human activity recognition using smartphones (Anguita et al., 2013). This small dataset is used to
demonstrate the algorithm can obtain similar accuracy to classical training approaches, while also
demonstrating speedups. The second learning problem uses the HMDB51 dataset for human activity
classification in videos (Kuehne et al., 2011). As the size of each image in the video is too large
to directly use it as an input for a RNN-based model, we use a pre-trained CNN model to gener-
ate low-dimensional input features for the GRU network. This approach captures spatio-temporal
information in videos (Yue-Hei Ng et al., 2015; Donahue et al., 2015; Wang et al., 2016). In our
experiments, extracted image features from the ResNet pre-trained on ImageNet are used as input se-
quences for GRU networks. Using this architecture on the HMDB51 dataset, the MGRIT algorithm
demonstrates a 6.5× speedup in training over the serial approach while maintaining accuracy.

The paper is organized as follows. Section 2 presents background on GRUs and their formulation as
ODEs. Section 3 details PinT training for GRU using the MGRIT method. Section 4 compares the
performance of the proposed approach on sequence classification tasks. We conclude in Section 5.
The appendix provides greater detail on the MGRIT method including a serial implementation and
parameters used in the experiments.

2 GATED RECURRENT UNIT

The GRU network, proposed by Cho et al. (2014), is a type of RNN and a state-of-the-art sequential
model widely used in applications such as natural language processing and video classification.
Each GRU cell at time t takes input data xt and the previous hidden state ht−1, and computes a
new hidden state ht. The cell resets or updates information carefully regulated by gating units in
response to prior hidden state and input sequence data stimulation as follows:

rt = σ(Wirxt + bir +Whrht−1 + bhr)

zt = σ(Wizxt + biz +Whzht−1 + bhz)

nt = φ(Winxt + bin + rt ⊙ (Whnht−1 + bhn))

ht = zt ⊙ ht−1 + (1− zt)⊙ nt.

(1)

We refer to this method as Classic GRU in the text.

GRUs to ODEs Recent work has shown how RNN can be modified to obtain an ODE descrip-
tion (Chang et al., 2019; Habiba & Pearlmutter, 2020). Of particular interest here is those works for
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Figure 1: Parallel distribution of work in parallel-in-time training.

GRU networks (De Brouwer et al., 2019; Jordan et al., 2021) where the ODE is
∂tht = −(1− zt)⊙ ht︸ ︷︷ ︸

stiff mode

+(1− zt)⊙ nt. (2)

Jordan et al. (2021) present a detailed description of the network behavior. For our purposes, note
that the first term can generate stiff dynamics that drive the hidden state h towards a manifold
specified by the data. The second term injects changes from the data. The term zt controls the decay
rate towards the manifold for each component of the hidden state. If zt is near 1, then the rate is
slow. If zt is close to zero the decay rate is rapid and the first term can be stiff, constraining the
choice of time step (for numerical treatment of stiff ODE’s see Wanner & Hairer (1996)).

The classic GRU method in Eq. 1 is rederived using an explicit Euler scheme with a unit time step
to integrate Eq. 2. Adding and subtracting ht−1 on the right hand side of the hidden state update,
and for notational purposes multiplying by γ = 1, yields

ht = Φγ(xt, ht−1) := ht−1 + γ (−(1− zt)⊙ ht−1 + (1− zt)⊙ nt) . (3)
The notation Φγ , introduced here, denotes the classic GRU hidden state update if γ = 1.

3 PARALLEL-IN-TIME TRAINING

Training GRU networks is typically done with the backpropagation through time (BPTT) algo-
rithm (Sutskever, 2013). BPTT performs a forward evaluation of the neural network, followed by
backpropagation to compute the gradient. Both forward and backward propagation are computa-
tionally expensive algorithms that do not naturally lend themselves to parallelization in the time
domain. Despite this, we develop a methodology achieving the parallel distribution shown in Fig. 1.
This distribution is enabled by computing the forward and backward propagation inexactly, trading
inexactness for parallelism and ultimately run time speedups. MGRIT, a multigrid method, is used
to compute the hidden states for both forward and backward propagation.

Multigrid methods are used in the iterative solution of partial differential equations (Brandt, 1977;
Douglas, 1996; Briggs et al., 2000; Trottenberg et al., 2000). Recent multigrid advances have yielded
the MGRIT method achieving parallel-in-time evolution of ODEs like Eq. 2 (see for instance Fal-
gout et al. (2014); Dobrev et al. (2017); Gunther et al. (2020)). Thus, multigrid and MGRIT methods
are reasonably well developed; however, they remain quite complex. Here, we briefly outline the
algorithm for forward propagation, and present a brief motivation for the method in Appendix A.1.
In Section 3.3, an implicit formulation for GRU that handles the stiff modes is proposed. This is the
key advance that enables the use of MGRIT for training GRU networks.

3.1 NOTATION AND PRELIMINARIES

Denote a sequence by u⃗ = {ut}Tt=0 where the length T will be clear from context, and u0 = 0 by
assumption. This notation is used for the input data sequence x⃗ and the sequence of hidden states h⃗.
The GRU forward propagator in Eq. 3 can be written as the system of nonlinear algebraic equations

f (⃗h) = {ht − Φ1(xt, ht−1)}Tt=1 . (4)

When f (⃗h) = 0, then h⃗ is the hidden state for the GRU networks with input sequence x⃗.

A two-level multigrid algorithm uses a fine sequence on level l = 0, corresponding to a data input
of length T . The coarse level, defined on level l = 1, has data of length T/cf where cf is an integer
coarsening factor. Sequences are transferred from the fine to coarse level using a restriction operator

U⃗ = R(u⃗) := {ucf t}
T/cf
t=1 . (5)
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Figure 2: For cf = 4 with T = 16, this image shows F - and FC-relaxation. In both cases, forward
propagation is performed serially starting at the open green circle and ending at the closed one. Each
propagation step is performed in parallel, with four-way parallelism depicted in the image.

Applying R to x⃗ gives a coarse sub-sequence of the original. Time points on the fine level that are
included in the coarse level are referred to as coarse points (see Fig. 2). Transfers from coarse to
fine grids are denoted by the prolongation operator

u⃗ = P(U⃗) := {U⌊t/cf⌋}
T
t=1. (6)

Prolongation fills intermediate values using replication of the prior coarse point. The nonlinear
system from Eq. 4 is modified using ∆t = cf , yielding the residual for the coarse network:

fc(H⃗) =
{
Ht − Φcf (Xt, Ht−1)

}T/cf

t=1
. (7)

Notice that in addition to a larger time step, the length of sequence H⃗ is smaller than the fine grid’s.

Finally, we introduce the notion of relaxation of the hidden state. Here, we define this formally,
while in Fig. 2 a schematic view of these algorithms is taken. Relaxation applies propagation to an
initial condition for the hidden state in a parallel fashion. F -relaxation is defined in Algorithm 1
as ΨF (cf , x⃗, h⃗) and demonstrated in the top of Fig. 2. F -relaxation uses the hidden state at the
coarse points, and fills in the fine points up to the next coarse point (exclusive). FC-relaxation,
ΨFC , is identical to F -relaxation except the next coarse point is included (the bottom row in Fig. 2,
where closed circles fall on the coarse grid point). Combining F - and FC-relaxation yields FCF -
relaxation used in MGRIT to ensure sequence length independent convergence

h⃗′ = ΨFCF (cf , x⃗, h⃗) := ΨF (cf , x⃗,ΨFC(cf , x⃗, h⃗)). (8)

The available parallelism for all relaxation methods is equal to the number of coarse points.

Algorithm 1: ΨF (γ, x⃗, h⃗) - F -relaxation
1. parallel for tc ← 1 to T/γ
2. t = γtc
3. h′

t = ht

4. for τ ← t to t+ γ − 1
5. h′

τ+1 = Φγ(xτ , h
′
τ )

6. return h⃗′

3.2 MULTI-GRID IN TIME

Algorithm 2 presents pseudocode for the two-level MGRIT method for forward propagation. A
related schematic is presented in Fig. 3 where line numbers are included in parentheses. In Fig. 3,
the fine grid on the top corresponds to an input sequence of length 16. It is depicted as being
distributed across 4 processors. The coarse grid representation is a sub-sequence of length 4, its
propagation is limited to a single processor. Red arrows in Fig. 3 indicate grid transfers, while green
arrows indicate relaxation and propagation through the network. Appendix A.1 provides a brief
motivation for MGRIT, and a serial implementation is included in the supplementary materials.
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Algorithm 2: MGProp(x⃗, h⃗) - Forward propagation using multigrid
// Relax the initial guess

1. h⃗′ = ΨFCF (x⃗, h⃗)
// Transfer approximate hidden state to the coarse grid

2. r⃗c = R(f (⃗h′))

3. h⃗′
c = R(⃗h′)

// Compute coarse grid correction, return to fine grid

4. Solve for h⃗∗
c : fc(⃗h∗

c) = fc(⃗h
′
c)− r⃗c

5. h′′ = h′ + P(h∗
c − h′

c)
// Update the fine grid solution, and relax on fine level

6. return ΨF (x⃗, h⃗
′′)
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Figure 3: The two level MGRIT method. Green arrows represent relaxation, and forward propaga-
tion. Grid transfers are represented by red arrows. Numbers in parentheses are lines in Algorithm 2.

Line 1 in Algorithm 2 relaxes the initial guess, and improves the fine grid hidden state. FCF -
relaxation is typically used to obtain sequence length independent convergence, though often on the
fine level F -relaxation is used. Regardless, relaxation is applied in parallel yielding a processor
local improved hidden state. The fine level residual given the relaxed hidden state is

r⃗ = f (⃗h′). (9)

Let h⃗∗ be the forward propagated hidden state that satisfies f (⃗h∗) = 0. This is easily computed by
serial forward propagation. Rewriting r⃗ in terms of h⃗′ and h⃗∗ gives

r⃗ = f (⃗h′)− f (⃗h∗). (10)
Coarsening the residual using the restriction operator from Eq. 5, we arrive at an equation for the
coarse grid approximation of h⃗∗

fc(⃗h
∗
c) = fc(R(⃗h′))−R(r⃗). (11)

The coarse grid approximation is computed using Eq. 11 in Line 4 of the algorithm. This compu-
tation has reduced run time relative to the fine grid because the input sequence is shorter. Line 5
transfers a coarse approximation to the fine grid. The final step in the algorithm is F -relaxation on
Line 6 that propagates the corrected solution from the coarse points to the fine points.
Remark 1 (Multiple Iterations). MGRIT is an iterative algorithm. One pass through Algorithm 2
may not provide sufficient accuracy in the hidden state for use in neural network training. However,
in Gunther et al. (2020), relatively few iterations were needed for successful training.
Remark 2 (Beyond Two-Level). As presented, this is a two level algorithm. The coarse grid correc-
tion in line 4 provides an end-to-end correction at a reduced run-time of T/cf . However, for large
T , this may be prohibitively expensive. The solution is to recognize that the coarse grid problem it-
self can be solved using MGRIT in a recursive fashion. Thus, new levels are added to reduce the run
time of the coarse problem. The run time of level l with T time steps scales as c(l) = T/P+c(l+1),
where P is the number of processors. Therefore, the total run time for L levels scales as

c(0) =

L−1∑
l=0

T

Pclf
≤ T

P

∞∑
l=0

1

clf
≤ T

P

cf
cf − 1

. (12)
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3.3 COARSE GRID PROPAGATORS

The discussion above assumes that all levels use the classic GRU propagator in Eq. 3 (forward Euler
with a time step of ∆t = 1). This presents a problem for coarsening. Consider only the stiff term in
the dynamics from Eq. 2 and assume that z ∈ [0, 1] is constant for all time. This results in the model
ODE ∂th = −(1− z)⊙ h. Discretizing with forward Euler, stable time steps satisfy

|1−∆t(1− z)| ≤ 1⇒ 0 ≤ ∆t ≤ 2(1− z)−1. (13)

The model ODE shares the stiff character of the GRU formulation, and the time step is restricted
to be ∆t < 2 assuming the worst case z = 0 (z = 1 implies there is no time step restriction). On
the fine grid with ∆t = 1, forward Euler is not unstable. However, on coarse grids, where the time
step is equal to clf , stability of forward and back propagation is a concern. In practice, we found
instabilities on coarse grids materialize as poor training, and generalization.

To alleviate problems with stiffness, the traditional approach is to apply an implicit method. For
instance, applying a backward Euler discretization to the model ODE yields a stability region of

|1 + ∆t(1− z)|−1 ≤ 1. (14)

Hence, the time step is unlimited for the model problem (for 1− z < 0 the ODE is unstable).

A backward Euler discretization of Eq. 2 requiring a nonlinear solver is possible; however, it is likely
needlessly expensive. We hypothesize, considering the model problem, that the stiffness arises from
the first term in Eq. 2. The second term incorporates the input sequence data, changing the hidden
state relatively slowly to aggregate many terms over time. Finally, the nonlinearity in z may be
problematic; however, this term primarily controls the decay rate of the hidden state.

As a result of this discussion, we propose an implicit scheme to handle the term labeled “stiff mode”
in Eq. 2. The discretization we use computes the updated hidden state to satisfy

(1 + ∆t(1− zt))⊙ ht = ht−1 +∆t(1− zt)⊙ nt. (15)

We refer to this method as Implicit GRU. Here, the term (1 − zt) on the left hand side and the
right hand side are identical and evaluated at the current data point xt and the old hidden state ht−1.
Compared to classic GRU, this method inverts the left-hand side operator to compute the new hidden
state ht. This is easily achieved because (1+∆t(1− zt)) is a diagonal matrix. Thus, the evaluation
cost of Eq. 15 is not substantially different from Eq. 3. Yet the (linear) stiffness implied by the first
term in the ODE is handled by the implicit time integration scheme. To simplify notation, Eq. 15 is
rewritten by defining an update operator Φγ (similar to Eq. 3)

ht = Φγ(xt, ht−1; ) := (1 + γ(1− zt))
−1 ⊙ (ht−1 + γ(1− zt)⊙ nt) . (16)

The subscript γ is the time step size, and the learned parameters are identical to classic GRU. This
propagator replaces the classic GRU propagator in all levels of the MGRIT algorithm.

3.4 TRAINING WITH MGRIT

Training using MGRIT follows the traditional approaches outlined in Goodfellow et al. (2016). In
fact, the MGRIT algorithm has been implemented in PyTorch (Paszke et al., 2019), and the Adam
implementation is used without modification. The difference comes in the forward propagation, and
backward propagation steps. These are replaced with the MGRIT forward and backward propa-
gation. We provide a more detailed description of this approach in Appendix A.2. However, the
iterations used for these steps are much fewer than would be required to achieve zero error in the
propagation. We found that using 2 MGRIT iterations for the forward propagation, and 1 iteration
for back propagation was all that is required to reduce the training loss.

Remark 3 (Serial vs. Parallel Inference). As training with MGRIT is inexact, a question arises: does
inference with the network evaluated in parallel differ from when the network is evaluated in serial?
Our results below indicate consistency between serial and parallel inference even when training is
done with MGRIT. This suggests that error introduced by MGRIT is not a severe limitation.
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Figure 4: For the UCI-HAR dataset: (left) Accuracy for classic, implicit and parallel training of a
GRU network on the UCI-HAR dataset. (right) Run time per epoch for training.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our parallel-in-time training approach on sequence
classification tasks such as human activity recognition and video classification. Experiments are run
on a multi-node supercomputer, named Attaway at Sandia National Laboratories, with each node
comprised of 2 sockets with a 2.3 GHz Intel Xeon processor, each processor has 18 cores yielding
36 cores per node. Inter-process communication is handled using the Message Passing Interface
(MPI) (Gropp et al., 1999) which has been optimized for the Intel Omni-Path interconnect. For the
video classification dataset, 9 OpenMP threads were used per MPI rank, yielding 4 ranks per node.

We used two publicly available datasets – UCI-HAR (Anguita et al., 2013) and HMDB51 (Kuehne
et al., 2011). The UCI-HAR dataset is a collection of 10299 sequences of human activities labeled
with 6 activities such as walking, walking upstairs, walking downstairs, sitting, standing, and laying.
Each sequence consists of 128 consecutive input data samples of size 9 measuring three different
types of motion recorded by smartphone accelerometers. The HMDB51 dataset contains 6726 video
clips recording 51 human activities. To limit computational costs, in several of our experiments a
subset of classes are used (see Table 2 in the appendix). For consistency, each video clip is converted
(truncated/padded) into 128 frames. Each image in the sequence is of size 240 × 240 pixels, and
is passed through ResNet18, 34 or 50 networks pre-trained on ImageNet to extract features for the
GRU networks (Deng et al., 2009; He et al., 2016). See Appendix A.3.2 for architectural details.

The software implementation of the MGRIT GRU propagation algorithm is a combination of the
C++ library XBraid and PyTorch. The combined capability is referred to as TorchBraid1. The
implementation leverages performance enhancements developed for classic GRU within PyTorch.
While Implicit GRU has been carefully implemented, further optimizations are certainly possible
to achieve greater computational performance. A GPU implementation of the MGRIT algorithm is
under development. Finally, it is important to note that the time parallel implementation does not
interfere substantially with traditional data and model forms of parallelism.

4.1 UCI-HAR DATASET

In Fig. 4, the left image shows the test accuracy variability over 16 training runs for the UCI-HAR
dataset. The set of parameters is detailed in Table 1 of the appendix. Solid lines are the mean
accuracy, while the colored shadows indicate one standard deviation. The classic GRU (black)
achieves 90% accuracy. Implicit GRU (blue line) does as well though with a more rapid increase
with epochs. When training with MGRIT, three levels with a coarsening rate of 4 are used for each
sequence of length 128. This yields a hierarchy of grids of size 128, 32, and 8. Here, we see that the
test accuracy using parallel inference (red line) is modestly lower than the serial case. Inference with
the serial algorithm suffers a little more. The plot on the right demonstrates a roughly 2× speedup
over the classic GRU method in serial (black dashed line) when using the MGRIT algorithm. This
dataset is very small, and likely suffers from the effects of Amdahls’ law (see Sun & Ni (1993) for
discussions of Amdahl’s law). Thus, even achieving 2× speedup is notable. Beyond 32 MPI ranks
there is no further speedup due to communication swamping potential gains from parallelism.

1Available at https://github.com/Multilevel-NN/torchbraid
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Figure 5: HMDB51 Subset: (left) MGRIT converges rapidly for cf = 2, 4, and 8. Sufficient accu-
racy for training is achieved with 2 forward iterations, and 1 backward. (right) Parallel performance
of training with different sequence lengths.

Figure 6: HMDB51 Subset: The accuracy for GRU, and implicit GRU, using serial and parallel
training. The right image highlights serial vs. parallel inference with the MGRIT trained network.

4.2 HMDB51 DATASET

Fig. 5 presents parameter studies elucidating the scalability and performance of the MGRIT algo-
rithm. The left image in Fig. 5 shows the residual norm as a function of MGRIT iterations for both
forward (solid lines) and backward (dashed lines) propagation. The colors differentiate coarsening
factors. This demonstrates that the MGRIT algorithm converges in iterations marginally faster for
smaller cf . Note that the deeper hierarchies implied by cf = 2 can be more expensive, while cf = 8
may not provide sufficient robustness. As a result, cf = 4 is used in the remainder. Based on the
convergence plots and experimentation, only 2 iterations for forward propagation and 1 iteration of
backward are used for training (sufficient accuracy indicated in the figure). Further, iterations do not
improve training; a similar observation was made in Gunther et al. (2020) and Kirby et al. (2020).
The right image in Fig. 5 shows the parallel performance over multiple sequence lengths. While
there is some degradation in the weak scaling, the run time for a 128 timestep dataset is roughly
only twice that of a dataset with sequences of length 8. Further, MGRIT performance improves
for all lengths if the number of timesteps per MPI rank is 4 or greater. When timesteps per rank
are too few, the computational work is dominated by parallel communication yielding no speedup.
Sequences of length 128 are used in the remaining studies in this section.

Fig. 6 (left) shows test accuracy achieved for a subset of the HMDB51 dataset (see dataset details
in Table 2). The Adam optimizer is used with a fixed learning rate of 10−3. The accuracy for the
parallel algorithms are nearby the result obtained for classic GRU. Note that the use of different
processor counts does not yield a different algorithm. In the right image, the differences between
the schemes are examined after training 16 times. Here, we see that the standard deviation (shaded
regions) and mean (solid lines) for the different approaches overlap each other. In addition, both
serial and parallel inference of the Implicit GRU yield similar results, supporting Remark 3.

To further study the parallel performance of MGRIT training of GRU, we now consider the full
HMDB51 dataset. Fig. 7 shows the run time per batch (with a batch size of 100) when different
pre-trained ResNet architectures are used. In all cases, implicit GRU networks are trained with 32
MPI ranks and 9 OpenMP threads (using a total of 288 CPUs), achieving roughly 6.5× speedup over
the classic GRU algorithm trained with 9 OpenMP threads. The largest amount of speedup occurs
after only 4 MPI ranks. Increasing parallelism to 64 MPI ranks did not result in any speedup. Note
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Figure 7: For HMDB51: Batch run times for training a GRU network with ResNet18, 34, and 50.

Figure 8: For HMDB51: (left) Per epoch breakdown of run times with ResNet18 preprocessing
images. (right) Test accuracy as a function of epochs for a ResNet34 GRU network, trained on
32 MPI ranks with 9 OpenMP threads per rank. The thin blue lines are different initializations for
parallel training, and the red line provides a baseline for serial training.

that in this case, each rank is responsible for computing only 2 time steps. Based on Fig. 5 (right),
we hypothesize that at this scale the amount of computational work is too small to see benefits
from increased parallelism. Fig. 8 (left) shows a breakdown of run times for the ResNet18 case.
This log plot shows consistent gains with parallelism for the total (red), forward (green), backward
(blue) and disk compute times (orange). The expense of the forward simulation is dominated by
the evaluation of the ResNet at each time step. The backward propagation cost is reduced because
sensitivities with respect to the ResNet are not required. Finally, the disk time can be reduced by
simply storing these in memory or overlapping computation and disk read. Note that both of these
options are available to the MGRIT training as well. The robustness of MGRIT training applied to
implicit GRU using ResNet34 on 32 MPI ranks is investigated with respect to initialization with 7
different random seeds (thin blue lines) and compared to a serial baseline run (red line) in Fig. 8
(right). A learning rate schedule starting from 10−3 and being reduced by 1/2 after 5 epochs is
used to achieve roughly 65% accuracy for both parallel and serial training. The variation in parallel
training is relatively small, and the overall performance is robust. For more details on these studies,
including the hyper-parameters, see Appendix A.3.2.

5 CONCLUSION

We presented a parallel-in-time approach for forward and backward propagation of a GRU network.
Parallelism is achieved by admitting controlled errors in the computation of the hidden states by
using the MGRIT algorithm. A key development to make this possible is a new Implicit GRU
network based on the ODE formulation of the GRU methodology. Applying MGRIT to other types
of RNN (LSTM or those proposed in Chang et al. (2019)) is possible with an implicit solver.

The implementation of this approach leverages existing automatic differentiation frameworks for
neural networks. PyTorch and its Adam optimizer were used in this work. Comparisons between
PyTorch’s GRU implementation and the parallel algorithm were made on CPUs using MPI and
OpenMP demonstrating a 6.5× speedup for HMDB51 dataset. A GPU version of the MGRIT tech-
nology is currently underdevelopment, though related work has demonstrated potential on Neural
ODEs (Kirby et al., 2020). Other forms of data and model parallelism are complementary to the
proposed technique, though undoubtedly there are unexplored optimizations.
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A APPENDIX

A.1 WHY DOES MGRIT WORK?

To help the reader who may not be familiar with the details of the MGRIT algorithm, we include
this brief discussion to provide some intuition about how it works. For brevity, we focus only on
MGRIT forward propagation. As discussed above, there are a number of high quality introductory
texts on multigrid in general that we recommend for a more in-depth exploration. The monograph
“A Multigrid Tutorial” by Briggs et al. (2000) is a really excellent starting place. For MGRIT
specifically see (Falgout et al., 2014) and Dobrev et al. (2017). Moreover, a serial implementation
of the MGRIT algorithm written in python using NumPy is included in the supplementary material
(see Section A.4 for a brief overview). The ODE used in this code is

∂th(t) = −
1

2
h(t) + σ(Ah(t) +Bd(t) + b). (17)

Here, h is the hidden state, d represents the user data, and A,B, b are randomly selected weights and
biases independent of time. In the code, the width of the hidden state is a user defined parameter,
while in the discussion that follows h ∈ R3. This ODE is meant as a simplified representation of an
RNN/GRU network. Finally, realize that in the code and in this discussion only forward propagation
is considered, no training is performed.

MGRIT is a divide and conquer algorithm where the problem of forward propagation is partitioned
into reducing high-frequency error, and low frequency error separately. To this end, the error is
written as a decomposition

h⃗− h⃗∗ = e⃗ = e⃗high-freq + e⃗low-freq (18)

where h⃗∗ is the exact solution, h⃗ is the approximation, e⃗ is the error, and the remaining two terms
are the high-frequency and low-frequency errors. The high-frequency error is reduced in MGRIT by
using FCF -relaxation. To demonstrate this we consider the ODE in Eq. 17, and choose our initial
approximation by selecting random values at each time point to define h⃗. This seeds the initial error
with a number of high-frequency modes. This is evident in Fig. 9 plots (A) and (B), which show
the initial error plotted in time and the Fourier coefficients plotted as a function of wave number.
Each color represents a different component of the hidden state. The high frequencies are large and
significant, even if the low frequency mode is also substantial. Plots (C) and (D) show the error
and its Fourier coefficients after 4 sweeps of FCF -relaxation. Clearly, from plot (C), the solution
has improved in early times in a dramatic fashion. This is expected as FCF -relaxation propagates
exactly from the initial condition. In addition, the error is reduced in magnitude throughout the
time domain. Not so evident from the error plot is the reduction in high frequency errors. This
is clearly demonstrated in plot (D), where the low frequency modes remain relatively large while
the high frequency modes are substantially damped. Thus, FCF -relaxation can be used to reduce
high-frequency errors throughout the time domain, and is the first component of the MGRIT divide
and conquer strategy.

The second part of the divide and conquer strategy is the coarse grid correction, where a coarse
representation of the ODE is used to provide a correction based on the residual from the fine grid.
The residual implicitly contains the error in the current guess of the solution on the fine grid. The
final pair of images, (E) and (F), shows how the error from the fine grid behaves after it is restricted
to the coarse grid, in this case with a coarsening factor of 4. Here, the highest frequency modes
from the fine grid are removed from the error, leaving only modes that are low-frequency on the
fine grid. The goal of the coarse grid is then to compute a correction to these low frequency modes.
If this is the coarsest level, then this computation is a serial forward propagation, which exactly
resolves the coarse grid error and the correction is transferred to the fine grid with the prolongation
operator. For a multi-level scheme, another round of the divide and conquer algorithm is initiated
recursively (applying the MGRIT algorithm again, as discussed in Remark 2). Here, the key is to
recognize that parts of the low-frequency error from the fine grid are aliased onto the coarse grid,
and become, relative to the coarse grid, high-frequency. This can be seen as a spreading of the
Fourier spectrum image (F) relative to image (D). Again, the FCF -relaxation algorithm will damp
the high-frequency error modes on this level, and the coarse grid correction will correct the low
frequency error modes. Regardless, when the recursion returns to the coarse level, the error in both
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Figure 9: This figure is a sequence of images representing the error in the hidden state for an ODE
using 64 time steps. Each color is a different component of the hidden state (e.g., h(t) ∈ R3 for
all time). The left column shows the error, while the right column shows the Fourier transform of
the error. The first row (images A and B) is the initial error. The second row (images C and D) is
the error after 4 sweeps of FCF -relaxation. The final row (images E and F) is the restriction of the
relaxed error (in the second row) onto the coarse grid. Note that the scale in the Fourier coefficients,
and wave numbers axes vary by row.

14



Published as a conference paper at ICLR 2022

the high-frequency modes and low-frequency modes will have been reduced. Thus, a correction
transferred to the fine grid will provide further error reduction.

This presentation has focused on forward propagation. However, using an adjoint ODE the motiva-
tion and implementation are nearly identical. The most notable difference in the implementation is
the reversal of the time evolution.

A.2 TRAINING WITH MGRIT

Incorporating the time-parallel approach into a standard stochastic gradient descent algorithm re-
quires replacing the forward and backward propagation steps with the equivalent MGRIT compu-
tations. Algorithm 3 presents pseudo-code demonstrating how that works. This algorithm requires
additional notation for the parameters in the neural network, here denoted by Θ. The structure of the
algorithm follows the batched gradient descent approach. In the first part, lines 3-5, the MGRIT al-
gorithm is applied to perform forward propagation. In the second block, lines 6-9, MGRIT is called
again, this time to compute the backpropagation through the neural network. Line 10 computes the
gradients of the loss with respect to the weights. Note that the sensitivities computed by backpropa-
gation are used to compute the full gradient with respect to the parameters in a parallel fashion. The
final line of the algorithm is simply the gradient descent step with a specified learning rate.

Algorithm 3: MGRITTraining(lr,Batches,ForwardIters,BackwardIters)
// This is a training loop over epochs, and mini-batches

1. for e ∈ 1 . . .Epochs
2. for each x⃗ ∈ Batches

// Iterate with MGRIT to perform forward propagation

3. h⃗ = 0⃗
4. for i ∈ 1 . . .ForwardIters
5. h⃗ = MGProp(x⃗, h⃗)

// Iterate with MGRIT to perform backward propagation

6. w⃗ = 0⃗
7. wT = ∇hT

L
8. for i ∈ 1 . . .BackwardIters
9. w⃗ = MGBackProp(x⃗, h⃗, w⃗)

// Compute the gradient with respect to parameters
10. gi = wi∂Θi

hi ∀i
11. Θ⃗ = Θ⃗− lr g⃗

The algorithm specified shows MGRIT embedded within a broader stochastic gradient descent al-
gorithm. However, the code described is already relatively modular. Lines 3-5 are simply forward
propagation. Lines 6-10 use back propagation to compute the gradient. In our own PyTorch
implementation, we were able to encapsulate the forward propagation in a torch.Module eval-
uation call. Similarly, the gradient computation is implemented to be compatible with PyTorch’s
autograd capability. As a result, utilization of PyTorch’s optimizers, like Adam, is straightforward.

A final point needs to be made about the application of MGBackProp in Algorithm 3. This is meant
to imply that the MGRIT algorithm is applied in a parallel-in-time fashion to the backpropagation
algorithm. In our opinion, the most transparent way to do this is by considering the adjoint of Eq. 15
and its discretization. This is the approach taken in the Neural ODE paper (Chen et al., 2018).

A.3 COMPUTATIONAL EXPERIMENTS

A.3.1 UCI-HAR DATASET

The UCI-HAR dataset is used as an initial evaluation of the effectiveness of the MGRIT training
for GRU. The parameters used for this study are listed in Table 1. The subsets of labeled Training
Parameters are values used for both the computational resources and algorithmic details of the op-
timizers. Note that the number of threads used per MPI Rank is only 1 as this dataset is relatively

15



Published as a conference paper at ICLR 2022

Training Parameters

Optimizer Adam
Learning Rate 0.001
Batch Size 100
OpenMP Threads per MPI Rank 1

GRU Parameters

Seq. Length 128
Hidden Size 100
Num. Layers 2
Time step (∆t) 1.0
T 128.0

MGRIT Parameters
Iters Fwd/Bwd 2/1
cf 4
Levels 3

Table 1: Parameters used for the UCI-HAR dataset learning problem in Section 4.1.

Training Videos Test Videos Classes
Full Dataset 6053 673 all 51 classes

Subset of Dataset 1157 129 chew, eat, jump, run, sit, walk

Table 2: The full HMDB51 and the subset of HMDB51 are partitioned using a the 90/10 split
between training and test data. The subset contains only 6 of the 51 classes of the original dataset.

small. This implies, on our architecture that contains 36 cores per node, only one node is used for
this simulation. Those labeled GRU Parameters are network architecture specific parameters. All of
these apply to Classic GRU, serial Implicit GRU, and parallel Implicit GRU. Note that a time step
of ∆t = 1 is always chosen to ensure alignment with the Classic GRU architecture. Finally, the
MGRIT parameters have been chosen by following the recommendations in prior works of Gunther
et al. (2020) and Kirby et al. (2020).

A.3.2 HMDB51 DATASET

The HMDB51 dataset is composed of 51 classes, and 67262 different videos. This full dataset was
used in the generation of the results in Fig. 7 and Fig. 8. The subset of the data was used to generate
Fig. 5 and Fig. 6. The breakdown of training to testing videos and the specific classes used are
detailed in Table 2. The images in the video are cropped and padded so the image sizes are all
240×240. Further, to focus on the performance of the MGRIT algorithm, we truncate/pad (with
blank frames) the video sequences to a specified length.

Table 3 shows the parameters used for the simulations. These follow the same grouping convention
as the parameters for the UCI-HAR dataset. This dataset is substantially larger and more computa-
tionally expensive than the UCI-HAR dataset. As a result, more computational resources are used.
In the table, this is demonstrated by the use of 9 OpenMP threads per MPI rank. On the platform
used, this implies there are 4 MPI ranks per node (each of the 36 cores on a node gets assigned a
thread). While we experimented with different configurations, we were unable to get more perfor-
mance by increasing the number of threads per MPI rank. We suspect that this has to do with the
configuration of the memory, and software stack on our system. The table also shows the types of
studies and parameter variations we have performed and documented in the present work. Parameter
names denoted with an asterisk are varied in our studies. For instance, Adam is used as the optimizer
and ∆t = 1 on the fine grid in all experiments, while the learning rate is varied in the experiment
producing Fig. 8.

Images from the video sequence are preprocessed during training and inference into reduced features
(size 1000, also specifying the GRU hidden size) using pre-trained ResNet18, 34 or 50 networks.
In training, the weights and biases of the ResNet’s remain fixed. Further, the MGRIT algorithm
computes the application of the ResNet only once on the fine grid. The coarse grids make use of

2This differs from the documented number somewhat. At the time we downloaded these videos, several
were unavailable.
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Training Parameters

Optimizer Adam
Learning Rate∗ 0.001
Batch Size 100
OpenMP Threads per MPI Rank 9

GRU Parameters

Seq. Length∗ 128
Hidden Size 1000
Num. Layers 2
Time step (∆t) 1.0
T ∗ 128.0
Image Size 240× 240

MGRIT Parameters
Iters Fwd/Bwd∗ 2/1
c∗f 4
Levels∗ 3

Table 3: Baseline parameters used for the HMDB51 dataset learning problem in Section 4.2. These
parameters serve as the defaults. However, those that are marked with an asterisk are varied during
the study.

Figure 10: For a Subset of HMDB51: The training loss for the Classic GRU method and Implicit
GRU using the parallel MGRIT propagation algorithm.

those precomputed features to save computational time. In the MGRIT backpropagation step, the
features are also reused.

The experiments producing Fig. 5 and Fig. 6 used the smaller subset dataset. For the residual
convergence study, the MGRIT coarsening rate was varied. For cf = 2, the number of levels
used was 6, with 128, 64, 32, 16, 8 and 4 timesteps on each level (from fine to coarse). For cf = 4
(the baseline), the number of levels used was 3, with 128, 32 and 8 timesteps on each level. Finally,
for cf = 8, the number of levels used was 2, with 128 and 16 timesteps on each level. A minimum
number of timesteps of 4 on the coarse level was used that defined the depth of the MGRIT hierarchy.
For the performance scaling study in the right image of Fig. 5, varying sequence lengths were used,
and, as a result, the time domain parameter T also varied. The remaining parameters followed the
baseline from Table 3, notably using cf = 4, and a pre-trained ResNet18.

For Fig. 6, ResNet18 was used and all parameters followed the baseline. In addition to the test
accuracy, we include an analogous figure with the loss in Fig. 10. In all cases, the loss decreases
steadily regardless of the number of processors. Varying training over multiple initial states yields a
similar reduction in loss for the MGRIT algorithm.

Figures 7 and 8 use the full data set. All performance simulations use the baseline parameter set
with a sequence length of 128. The plot of the timing breakdown uses ResNet18. Finally, in the full
dataset accuracy results using ResNet34 in Fig. 8 (right), the baseline parameters are used but the
learning rate is varied. The learning starts from 10−3, and then is reduced by 0.5 every 5 epochs,
terminating at 1.25× 10−4.

A.4 SUPPLEMENTAL MATERIAL: SERIAL MGRIT CODE

To help the reader new to MGRIT, we have included a serial implementation of the two-level al-
gorithm using python with minimal prerequisites (only NumPy). It has also been included in our
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TorchBraid library as an example and a teaching tool. This example does no training, but produces
only one forward solve of the ODE in Eq. 17. By default, the ODE has dimension 10, α = 1.0, and
the number of steps is 128. The result of running this example is:

Two Level MG
error = 1.6675e-01, residual = 1.1287e-01
error = 3.1409e-03, residual = 1.9173e-03
error = 5.4747e-05, residual = 3.9138e-05
error = 3.5569e-07, residual = 2.6001e-07
error = 3.2963e-09, residual = 2.9624e-09
error = 5.5450e-11, residual = 3.6914e-11
error = 5.7361e-13, residual = 3.9258e-13
error = 5.1118e-15, residual = 4.5498e-15

As the weights and biases are randomly selected, the specific values may be different depending on
the seed. However, in general, the error reduction should be similar. The code itself is commented.
Further, the implementation of the two level algorithm is labeled with the line numbers used in
Algorithm 2.
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