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Abstract

Large Language Models (LLMs) excel in language
understanding but are susceptible to "confabula-
tion," where they generate arbitrary, factually in-
correct responses to uncertain questions. Detecting
confabulation in question answering often relies on
Uncertainty Quantification (UQ), which measures
semantic entropy or consistency among sampled
answers. While several methods have been pro-
posed for UQ in LLMs, they suffer from key limita-
tions, such as overlooking fine-grained semantic re-
lationships among answers and neglecting answer
probabilities. To address these issues, we propose
Semantic Graph Density (SGD). SGD quantifies
semantic consistency by evaluating the density of
a semantic graph that captures fine-grained seman-
tic relationships among answers. Additionally, it
integrates answer probabilities to adjust the con-
tribution of each edge to the overall uncertainty
score. We theoretically prove that SGD general-
izes the previous state-of-the-art method, Deg, and
empirically demonstrate its superior performance
across four LLMs and four free-form question-
answering datasets. In particular, in experiments
with Llama3.1-8B, SGD outperformed the best
baseline by 1.52% in AUROC on the CoQA dataset
and by 1.22% in AUARC on the TriviaQA dataset.

1 INTRODUCTION

Large language models (LLMs) have shown impressive per-
formance in language understanding and text generation
across various domains [Zhao et al., 2023, Chang et al.,
2024, Wei et al., 2022, Chi et al., 2024]. However, these
models often encounter a critical issue known as "hallu-
cination," where the generated content is either nonsen-
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sical or unfaithful to the provided source [Ji et al., 2023,
Maynez et al., 2020, Filippova, 2020]. Hallucinations man-
ifest in various forms and exhibit different characteristics
across different tasks [Huang et al., 2023, Farquhar et al.,
2024]. In this paper, we focus exclusively on one type of
hallucination—confabulation—and limit the scope to short-
form question answering (QA). Confabulation occurs when
LLMs generate arbitrary, factually incorrect responses to un-
certain questions [Farquhar et al., 2024], often arising when
a query exceeds the model’s knowledge boundaries [Huang
et al., 2023]. For example, when asked "Which program-
ming language has been used for implementing GWAR?",
LLMs may answer "C++" or "Perl" inconsistently, even
when the same question is posed.

Detecting confabulation in LLM-generated answers can be
approached through Uncertainty Quantification (UQ), which
assesses the likelihood that an LLM will generate a confab-
ulated response to a given question [Farquhar et al., 2024].
Existing UQ methods include entropy-based [Farquhar et al.,
2024, Nikitin et al., 2024] and graph-based approaches [Lin
et al., 2024, Da et al., 2024]. Both of these approaches
share the commonality of first sampling multiple possible
answers and then evaluating their entropy or consistency.
The most well-known entropy-based method is Semantic
Entropy (SE) [Farquhar et al., 2024], which makes a notable
contribution by using semantic equivalence clustering to
mitigate lexical uncertainty. However, SE only considers
whether two responses are semantically equivalent, over-
looking finer semantic similarities [Nikitin et al., 2024].
Existing graph-based methods achieve effective modeling
of semantic consistency through graphs, but they neglect
answer probabilities. This introduces bias, as answers with
higher probabilities are generally more representative and
reliable for uncertainty quantification compared to answers
with lower probabilities1 [Geng et al., 2024].

1In Appendix A, we present a detailed example illustrating the
consequences of current graph-based methods overlooking answer
probabilities.
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To address these issues, we propose a novel UQ method,
Semantic Graph Density (SGD). For the first issue, SGD
measures semantic consistency by evaluating the density
of a semantic graph that reflects fine-grained semantic rela-
tionships. A denser graph indicates higher consistency and
lower uncertainty. For the second issue, we adjust the con-
tribution of each edge in the semantic graph to the density
based on the probability of the answers it connects. The
higher the probabilities of the two answers forming an edge,
the greater their contribution to the final uncertainty score.
We theoretically demonstrate that where certain hyperpa-
rameters of SGD are specified, it generalizes the previous
state-of-the-art graph-based method, Deg [Lin et al., 2024].

We evaluate the performance of SGD across various
question-answering domains, including conversational set-
tings (CoQA [Reddy et al., 2019]), trivia knowledge (Triv-
iaQA [Joshi et al., 2017]), biomedical science (BioASQ
[Tsatsaronis et al., 2015]), and natural questions (NQ
[Kwiatkowski et al., 2019]) derived from real-world Google
Search queries. Our evaluation focuses on two key as-
pects: (1) its capability to distinguish between correct
and fabricated responses, and (2) the improvement in
question-answering accuracy when high-uncertainty ques-
tions are rejected to answer. Experimental results across four
LLMs demonstrate that SGD outperforms baseline methods,
achieving enhanced efficiency and robustness in UQ.

2 RELATED WORK

Hallucinations and Confabulations in LLMs Hallucina-
tions in LLMs manifest in various forms, including factual
fabrication [Huang et al., 2023, Farquhar et al., 2024], in-
struction inconsistency [Huang et al., 2023], and reasoning
failure [Berglund et al., 2024, Zheng et al., 2023]. This pa-
per focuses on one specific type: confabulation, also known
as fabrication, particularly in short-form QA scenarios. Fab-
rication in QA refers to the phenomenon where the LLM-
generated answer is arbitrary and incorrect [Farquhar et al.,
2024]. For example, when asked, "Which programming
language has been used for implementing GWAR?" the
model may confabulate by answering "C++" at one time
and "Perl" at another, despite the same input question. A
more intuitive and concrete example is shown in Table 5.
One possible cause of this phenomenon is the model’s ten-
dency to generate an answer even when the query exceeds
its knowledge boundaries [Huang et al., 2023]. This behav-
ior aligns with the training objective of maximizing rewards
for providing answers, resulting in an "overeager" tendency
to respond instead of abstaining [Farquhar et al., 2024]. De-
tecting whether an LLM-generated answer is accurate or
fabricated is an important research problem. Approaches
include leveraging external knowledge sources, where LLM
outputs are cross-referenced with established databases [Sui
et al., 2024], or using an external LLM as a judge [Cohen

et al., 2023]. Another method involves supervised learning,
training classifiers on the LLM’s internal states to distin-
guish between accurate and fabricated content [Azaria and
Mitchell, 2023]. A different approach is uncertainty quan-
tification, as discussed in the following paragraph.

Uncertainty Quantification in LLMs Uncertainty Quan-
tification (UQ) is an effective method for assessing whether
LLMs generate hallucinations [Farquhar et al., 2024, Lin
et al., 2024]. Notably, the term "uncertainty" in this paper
specifically refers to the degree of dispersion in the LLM’s
predicted distribution, rather than response confidence. The
former depends exclusively on the input prompt, while the
latter is influenced by both the input prompt and the output
response. A higher uncertainty score indicates a greater like-
lihood of hallucinations [Farquhar et al., 2024]. Specifically
for QA, it measures how likely an LLM is to produce a
confabulated answer for a given question [Farquhar et al.,
2024]. Recently, numerous UQ methods have emerged, dif-
fering in their approaches to uncertainty modeling and the
types of information utilized, such as output text and token
probabilities. UQ methods are classified into white-box and
black-box categories based on their access to the LLM’s
internal workings and numerical outputs. Black-box meth-
ods only access the LLM’s output text, whereas white-box
methods have full access [Lin et al., 2024]. Semantic En-
tropy [Kuhn et al., 2023, Farquhar et al., 2024] serves as
a gold standard for quantifying uncertainty in LLMs and
represents a prominent white-box approach. Early methods
combined lexical and semantic uncertainty, overlooking the
fact that different lexical expressions can convey the same
meaning. Semantic Entropy, by focusing exclusively on se-
mantics, addresses this limitation and marks a significant
advancement in UQ.

Representative black-box methods include Deg, Ecc, and
EigV [Lin et al., 2024]. These methods construct a graph
where edge weights reflect semantic similarity. EigV esti-
mates the number of connected components in the graph
by analyzing the eigenvalues of the graph Laplacian. In
contrast, Deg and Ecc measure output diversity using the
graph’s degree matrix and the spectral embedding of its
nodes, respectively. Although SGD, as well as Deg, Ecc,
and EigV, all construct semantic graphs, the key difference
lies in our approach’s use of graph density in the semantic
graph as a consistency proxy. Additionally, we address the
bias issues inherent in these methods by incorporating token
probability.

Beyond these key methods, additional approaches include
Discrete Semantic Entropy [Farquhar et al., 2024], a black-
box approximation of Semantic Entropy; Kernel Language
Entropy [Nikitin et al., 2024], which extends Semantic En-
tropy by incorporating fine-grained semantic relations be-
yond equivalence; D-UE [Da et al., 2024], which addresses
limitations in using average entailment probabilities from



bidirectional Natural Language Inference (NLI) models to
evaluate response similarity; and SEU [Grewal et al., 2024],
which utilizes transformer-based sentence embeddings to
provide a smoother and more robust estimation of semantic
similarities in UQ.

There is an increasing focus on quantifying uncertainty in
long-form answers [Zhang et al., 2024, Jiang et al., 2024,
Fang et al., 2025]. However, this paper specifically fo-
cuses on short-form answers, which are defined as single-
proposition responses to a question [Farquhar et al., 2024].
These answers are typically concise, comprising only a few
words or, at most, a single sentence, in contrast to more
extensive paragraphs.

Complementary methods Kuhn et al. [2023] and Aich-
berger et al. [2025] emphasized that UQ benefits from se-
mantically diverse yet likely output sequences. Aichberger
et al. [2025] experimentally demonstrated that Diverse
Beam Search [Vijayakumar et al., 2018] and the Seman-
tically Diverse Language Generation (SDLG) method im-
prove the performance of sample-based UQ methods. These
techniques can be incorporated into SGD to further enhance
its effectiveness.

3 SEMANTIC GRAPH DENSITY

In question answering (QA), given an input prompt x (i.e.,
a question with or without context) and an LLM, the goal is
to evaluate how likely the LLM is to generate a fabricated
answer for the given prompt. It is important to emphasize
that the objective is to derive a relative score indicating the
potential for confabulated output, rather than calculating
the exact probability of the model’s correctness (which is
related to model calibration [Zhu et al., 2023, Guo et al.,
2017], an orthogonal research topic). A higher uncertainty
score corresponds to a greater potential for confabulation.

The first two steps of Semantic Graph Density (SGD) in-
volve sampling multiple possible answers (Step 1) and mea-
suring the fine-grained semantic relationships among them
(Step 2). In Step 3, these relationships are used to construct a
semantic graph. Based on this graph, we compute the graph
density and adjust each edge’s contribution according to
the probabilities of the connected answers. Edges linking
answers with higher probabilities contribute more to the
final uncertainty score.

Step 1. Sample N possible answers. Following Far-
quhar et al. [2024] and Nikitin et al. [2024], for an in-
put x, we sample N possible answers {y(i)}Ni=1, where
each answer is represented as a sequence of tokens
y(i) = [y

(i)
1 , y

(i)
2 , . . . , y

(i)
Li
], with y

(i)
j denoting the j-th

output token of y(i). We then compute the correspond-

ing length-normalized probability 2 [Murray and Chiang,
2018] for each answer: {P (y(i)|x)}Ni=1, with P (y(i)|x) =∏Li

j=1 P (y
(i)
j |y(i)<j , x)

1/Li , where y
(i)
<j represents the se-

quence of tokens preceding y
(i)
j .

Step 2. Compute pairwise semantic similarities among
N possible answers. The output logits of Natural Lan-
guage Inference (NLI) models have been demonstrated to
effectively measure the semantic similarity between two re-
sponses within a given textual context [Lin et al., 2024]. We
follow the best practice in [Lin et al., 2024] to measure the
semantic similarity between any two sampled answers y(i)

and y(j) within the context x. The NLI model we employ is
DeBERTa-Large-MNLI3 [He et al., 2021].

We concatenate x with y(i) and y(j) to yield x⊕y(i) and x⊕
y(j) (see Appendix D for the input format used to generate
the output logits of the NLI model) and feed them into the
NLI model twice. In the first pass, x ⊕ y(i) is regarded as
the premise and x⊕ y(j) as the hypothesis. Conversely, in
the second pass, x ⊕ y(j) is regarded as the premise, and
x⊕ y(i) as the hypothesis. We apply the softmax function
to the predicted logits from the NLI model and take the
average of the entailment logits from the two passes as the
similarity score.

si,j =
1

2

(
p̂entail(x⊕ y(i), x⊕ y(j))+

p̂entail(x⊕ y(j), x⊕ y(i))
) (1)

Step 3. Construct a semantic graph and compute the se-
mantic graph density. We first construct a semantic graph
to capture fine-grained semantic relationships between an-
swers and then adapt graph density to quantify semantic
consistency. Given an undirected simple graph G = (V,E),
graph density is defined as the ratio of the number of edges
|E| to the maximum possible number of edges [ERDdS and
R&wi, 1959].

D =
|E|(|V |
2

) =
|E|

|V |(|V | − 1)/2
(2)

Each answer is treated as a node in the graph. The adjacency
matrix is represented as W = [wij ]N×N . In practice, an
edge is established between nodes i and j if their similarity
score sij exceeds a threshold δ. This relationship is formally
defined as follows:

wij := 1sij>δ. (3)

Under this design, a denser graph signifies greater semantic
consistency and reduced uncertainty. We define SGD as

2In this paper, all probabilities refer to length-normalized prob-
abilities [Murray and Chiang, 2018], a commonly used method to
correct for length bias in sequence probabilities.

3https://huggingface.co/microsoft/
deberta-large-mnli
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follows:

SGDδ(x) =
−|E|

|V |(|V | − 1)/2
= −

∑
i,j∈[N ],

i<j

1sij>δ

N(N − 1)/2
.

(4)
Another approach is to directly define the weight wij of each
edge as the similarity sij , i.e., wij := sij . However, graph
density traditionally applies only to binary graphs. Since
the weights defined by the similarity are non-negative and
bounded within the range [0, 1], we extend the definition
of graph density by calculating the total sum of all edge
weights divided by the total sum of the maximum possible
weights of all edges. Under this design, SGD is defined as:

SGDs(x) = −
∑

i,j∈[N ],i<j

2wij

|V |(|V | − 1) · supm,n∈[N ]
m<n

wmn

= −
∑

i,j∈[N ],i<j

2sij
N(N − 1) · 1

= −
∑

i,j∈[N ],i<j

sij
N(N − 1)/2

.

(5)

Here, supm,n,m<n wmn represents the maximum weight
that can be assigned to any edge, which corresponds to the
maximum pairwise similarity that can be assigned between
responses {y(i)}Ni=1. Since the similarities are computed
from the output logits of the NLI model, which are trans-
formed via softmax and bounded within the range of [0, 1],
we have supm,n,m<n wmn = supm,n,m<n smn = 1.

Probability Incorporation In Equations 4 and 5, the
numerator (sij or 1sij>δ) represents the weights of the
edges. Each edge contributes equally to the uncertainty
score at 1/(N(N − 1)/2), as determined by the denom-
inator N(N − 1)/2. However, the sampled answers are not
necessarily equally probable, meaning the edges formed
by pairs of answers may not have equal probabilities. The
length-normalized probability of an answer reflects the
LLM’s confidence in that answer [Geng et al., 2024]. If
an edge {y(i), y(j)} has a higher probability compared to
other edges, this indicates that the LLM has higher confi-
dence in producing {y(i), y(j)}. As such, {y(i), y(j)} should
carry more weight in UQ, contributing more significantly to
the final uncertainty score.

We define the contribution of each edge as µ(i, j),∑
i,j∈[N ],i<j µ(i, j) = 1. SGD is further calculated as:

SGDδ+P (x) = −
∑

i,j∈[N ],i<j

1sij>δ · µ(i, j),

SGDs+P (x) = −
∑

i,j∈[N ],i<j

sij · µ(i, j)
(6)

We use the notation "+P " to denote probability incorpora-
tion. As each sampling is mutually independent, the cate-

gorical distribution of the relative occurrence of {y(i), y(j)}
is estimated as:

P (y(i), y(j)|x) = P (y(i)|x) · P (y(j)|x)∑
i,j∈[N ]
i<j

P (y(i)|x) · P (y(j)|x)
(7)

We define µ(i, j) as a convex combination of 1/(N(N −
1)/2) and Equation 7.

µ(i, j) =
θ

N(N − 1)/2
+ (1− θ) · P (y(i), y(j)|x),

i, j ∈ [N ], i < j.

(8)

Algorithm 1 summarizes the SGD procedure.

Generalization towards Deg [Lin et al., 2024] Deg
constructs a semantic graph based on the pairwise simi-
larity of answers, where the edge weights are defined as
wij := sij , i, j ∈ [N ]. The degree matrix is defined as
D = diag(d1, d2, . . . , dN ), where di =

∑
j∈[N ] sij repre-

sents the degree of node i. Next, we explain how to derive
an approximation of Deg [Lin et al., 2024] from SGDs

(equivalent to SGDs+P when θ = 1).

Deg(x) = tr(NI−D)/N2

= (N tr(I)− tr(D)) /N2

=
1

N2

N2 −
∑

i,j∈[N ]

sij



= 1− 1

N2

 ∑
i,j∈[N ]
i=j

sij + 2
∑

i,j∈[N ]
i<j

sij


(9)

In Deg, sij (i, j ∈ [N ], i = j) is calculated using the output
logits of the NLI model. When y(i) is identical to y(j), the
softmax logit for entailment is nearly equal to 1 (e.g., 0.998),
though it can never be exactly 1. Thus, sij (i, j ∈ [N ], i =
j) can be approximated as 1. By further combining the
following equation,

2
∑

i,j∈[N ]
i<j

sij = N(N − 1)
∑

i,j∈[N ]
i<j

sij
N(N − 1)/2

= −N(N − 1) SGDs(x),

(10)

we can derive the following:

Deg(x) ≈ 1− 1

N
+

N − 1

N
SGDs(x)

=
N − 1

N
(1 + SGDs(x)).

(11)

It is evident that the approximation of Deg(x) is a linear
combination of SGDs(x), and linearly scaling the uncer-
tainty scores does not alter their relative discriminative capa-
bility (as previously mentioned, we require a relative score



to determine whether a prompt will generate a correct or
confabulated response). Ablation experiments (refer to Sec-
tion 4.3) demonstrate that SGDs and Deg achieve nearly
identical performance.

Algorithm 1: Semantic Graph Density
Input: An input prompt x (i.e. a question with/without

context), an LLM, the number of possible
responses N , hyperparameters δ and θ.

Output: Semantic Graph Density.
Step 1: Sample N possible answers.
Sample N possible answers {y(i)}Ni=1 based on the
input prompt x, and compute the length-normalized
probability for each answer, resulting in
{P (y(i)|x)}Ni=1.

Step 2: Compute pairwise semantic similarities
among N possible answers.

Compute the pairwise semantic similarities for any pair
of N possible answers, resulting in sij , where
si,j =

(
p̂entail(x⊕ y(i), x⊕ y(j)) + p̂entail(x⊕

y(j), x⊕ y(i))
)
/2

Step 3: Compute the semantic graph density.
SGDδ(x) = −

∑
i,j∈[N ],i<j

1sij>δ

N(N−1)/2 ,
SGDs(x) = −

∑
i,j∈[N ],i<j

sij
N(N−1)/2 ,

SGDδ+P (x) = −
∑

i,j∈[N ],i<j 1sij>δ · µ(i, j),
SGDs+P (x) = −

∑
i,j∈[N ],i<j sij · µ(i, j),

where µ(i, j) = θ
N(N−1)/2 + (1− θ) · P (y(i), y(j)|x),

P (y(i), y(j)|x) = P (y(i)|x)·P (y(j)|x)∑
i,j∈[N ],i<j P (y(i)|x)·P (y(j)|x) ,

i, j ∈ [N ], i < j.

Computational Cost We focus solely on the resource
consumption arising from language model inference, as no
other operation is more computationally expensive. Review-
ing the entire process of calculating SGD, model inferences
are only required in the first and second steps. The first step
involves sampling N possible answers, requiring N LLM
inferences, which can be executed in parallel. The second
step demands 2 ·

(
N
2

)
inferences by the NLI model to cal-

culate the semantic similarity sij for each pair {y(i), y(j)}
(i < j). Computing sij requires two inferences to obtain
p̂entail(x ⊕ y(i), x ⊕ y(j)) and p̂entail(x ⊕ y(j), x ⊕ y(i)).
These N(N−1) inferences can also be performed in parallel.
The NLI model used in this study is DeBERTa-Large-MNLI,
with approximately 150 million parameters. In contrast to
LLMs, which process over a billion parameters to generate
a single token, the computational cost of NLI models is
relatively minimal.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and LLMs We consider four generative
question-answering tasks for evaluation, including the open-
book conversational QA dataset CoQA [Reddy et al., 2019],
the closed-book QA dataset TriviaQA [Joshi et al., 2017],
the biomedical QA dataset BioASQ [Tsatsaronis et al.,
2015], and Natural Questions [Kwiatkowski et al., 2019].
We use the development split of CoQA, which contains
7,983 questions, the deduplicated validation split of Trivi-
aQA (rc.noncontext subset) with 9,960 questions, the val-
idation split of NQ with 3,610 questions, and the training
split of BioASQ with 2,814 questions4. We utilize four pop-
ular off-the-shelf instruction-tuned LLMs for evaluation,
with model sizes ranging from 1B to 12B parameters. These
models include Llama-3.2-1B5, Llama-3.1-8B6, Mistral-7B-
v0.37 and Mistral-Nemo-12B8.

Evaluation Metric We use AUROC (Area Under the Re-
ceiver Operating Characteristic Curve) to evaluate how well
the uncertainty scores distinguish between correct and in-
correct answers. AUROC indicates the probability that a
randomly selected correct generation has a lower uncer-
tainty score than a randomly selected incorrect generation.
An AUROC of 0.5 indicates that the assigned uncertainty
score is no better than random guessing, meaning it can-
not effectively differentiate between correct and incorrect
answers. An AUROC of 1 signifies perfect discrimination,
where all correct answers are assigned lower uncertainty
scores than all incorrect answers.

Additionally, QA accuracy can be improved by rejecting
questions with high uncertainty. This improvement is quanti-
fied using the AUARC (Area Under the Accuracy-Rejection
Curve) [Nadeem et al., 2009], which measures the area un-
der the accuracy-rejection curve at various thresholds. The
rejection accuracy at a given threshold is determined by the
accuracy of the remaining answers after rejecting those with
uncertainty scores above this threshold.

Answer Generation For each question, we generated 10
answers using nucleus sampling (P = 0.9) and top-K sam-
pling (K = 50) at a temperature of T = 1, following
Farquhar et al. [2024] and Nikitin et al. [2024]. To assess

4http://participants-area.bioasq.org/
Tasks/10b/trainingDataset/

5https://huggingface.co/meta-llama/
Llama-3.2-1B-Instruct

6https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

7https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

8https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

http://participants-area.bioasq.org/Tasks/10b/trainingDataset/
http://participants-area.bioasq.org/Tasks/10b/trainingDataset/
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407


model accuracy, we generated a single answer at T = 0.1
and prompted GPT-4-0613 to verify whether this response
aligned with any ground truths provided by the datasets, as
adopted by Farquhar et al. [2024]. The prompts used for
generating the answers and conducting correctness checks
are detailed in Appendix B and Appendix E, respectively.

Baselines We included nine UQ methods for comparison.
These baselines are categorized as follows: (1) entropy-
based methods, including Semantic Entropy (SE) [Farquhar
et al., 2024], Discrete Semantic Entropy (DSE) [Farquhar
et al., 2024] and Kernel Language Entropy (KLE) [Nikitin
et al., 2024]; (2) graph-based methods, including Ecc [Lin
et al., 2024], EigV [Lin et al., 2024], Deg [Lin et al., 2024]
and D-UE [Da et al., 2024]; and (3) consistency-based meth-
ods, including Number of Semantic Sets (NSS) [Kuhn et al.,
2023] and Semantic Embedding Uncertainty (SEU) [Grewal
et al., 2024]. For SE and DSE, we used GPT-3.5-Turbo-0125
for entailment prediction as recommended by Farquhar et al.
[2024]. For KLE, we employ KLE(KHEAT ), as it demon-
strates the best performance among all variants of KLE. To
ensure fairness, the NLI model utilized in KLE, Ecc, EigV,
Deg, and D-UE is identical to ours, specifically DeBERTa-
Large-MNLI. For further details, refer to Appendix F.

Implementation Details We repeated the experiment five
times, each time randomly selecting 10 QA pairs from the
dataset as context examples and subsequently dividing the
remaining dataset into a validation set (1,000 QA pairs;
400 QA pairs for BioASQ) and a test set. Hyperparameter
tuning for our method was conducted on the validation set.
The hyperparameters δ and θ were selected from the set
{0.01, 0.1, 0.2, ..., 0.9, 0.99} to maximize validation set
performance. Finally, we evaluated the performance on the
test data. Since both KLE and Ecc require hyperparameter
tuning, to ensure fairness, all methods, including ours, were
tuned using the same subset of the dataset. All experiments
were conducted on a server equipped with one NVIDIA
A100 (80GB) GPU.

4.2 MAIN RESULTS

Table 1 and Table 2 present the AUROC and AUARC scores
for various uncertainty metrics across 16 model-dataset com-
binations. SGDs+P outperforms baseline methods in 15 out
of 16 cases for both AUROC and AUARC. For instance,
when evaluated on the CoQA dataset using Llama-3.1-8B,
SGDs+P achieved an average AUROC of 81.52%, surpass-
ing the best baseline result by 1.52%. SGDs+P consistently
outperforms SE due to its utilization of fine-grained seman-
tic relations rather than relying solely on semantic equiva-
lence. Compared to graph-based methods (e.g., Deg, Ecc)
and KLE, both these baselines and SGDs+P utilize seman-
tic similarity measured by the NLI model. However, the
advantage of SGDs+P lies in its incorporation of probabil-

ity to adjust the contribution of each edge of the semantic
graph to the uncertainty score, which our subsequent ab-
lation experiments validate as effective (see Section 4.3).
Among SGDδ+P and SGDs+P , the latter is the best as it
has superior performance and requires only one hyperpa-
rameter, while the former needs two.

4.3 ABLATION EXPERIMENTS

Number of Possible Answers In the main experiment,
we sampled N = 10 possible answers for each question. In
this section, we investigate how the performance changes
as the number of possible answers increases. We selected
SE, KLE, and Deg as baselines, as these three methods
have demonstrated the strongest performance among numer-
ous baseline approaches. We compared our best-performing
method, SGDs+P , with these three baselines. The exper-
iments were conducted using Mistral-Nemo-12B on the
TriviaQA dataset. In these experiments, N varied from 3
to 10. Except for the variation in N , all other experimental
settings were identical to those in the main experiment. The
results, as shown in Figure 1, demonstrate that SGDs+P is
more generation-efficient compared to the baseline methods.
Specifically, to achieve comparable AUROC or AUARC
scores, SGDs+P generates fewer possible answers, result-
ing in reduced computational resource consumption.
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Figure 1: Performance of different uncertainty metrics with
increasing numbers of possible answers. The number of
possible answers ranges from 3 to 10, incremented by 1 at
each step. We only included competitive baseline methods
SE, KLE and Deg for comparison.

Effectiveness of Probability Incorporation In Section 3,
we presented how to adjust the contribution of each edge in
the semantic graph to the uncertainty based on the probabil-
ity of the paired nodes, namely, the probability of the paired
answers. Subsequently, we verified its effectiveness through
experiments. Specifically, we compared the performance of
SGDδ and SGDδ+P , as well as that of SGDs and SGDs+P .
We verified the effectiveness of probability incorporation
using Mistral-7B-v0.3 on the NQ and BioASQ datasets.
Results are shown in Table 3. The results on AUROC and
AUARC indicate that the incorporation of probability is ef-



Table 1: Performance (AUROC) comparison of various uncertainty metrics. All results are presented as percentages. For each
model-dataset combination, the best average result from both baseline methods and our proposed methods is underlined,
while the overall best result among all methods is highlighted in bold.

Datasets Entropy-based Methods Graph-based Methods Consistency-based Methods Ours

SE DSE KLE Ecc EigV Deg D-UE NSS SEU SGDδ+P SGDs+P

Llama-3.2-1B
NQ 77.48±0.55 76.50±0.53 75.36±0.50 76.66±0.62 75.87±0.57 77.18±0.51 71.93±0.63 76.43±0.56 67.38±0.72 76.89±0.55 78.29±0.55

CoQA 73.73±0.21 73.22±0.22 74.59±0.28 73.84±0.29 70.82±0.25 75.73±0.27 73.95±0.28 72.51±0.22 69.80±0.27 75.66±0.44 76.35±0.29

BioASQ 86.87±0.45 86.76±0.47 86.73±0.40 86.79±0.45 85.53±0.42 87.25±0.39 85.62±0.44 86.36±0.44 78.78±0.51 87.56±0.39 87.32±0.38

TriviaQA 82.17±0.18 81.15±0.16 80.41±0.18 81.13±0.18 78.84±0.16 81.64±0.16 79.25±0.13 80.51±0.15 77.04±0.14 82.24±0.18 82.44±0.20

Average 80.06 79.41 79.27 79.61 77.77 80.45 77.69 78.95 73.25 80.59 81.10

Llama-3.1-8B
NQ 78.30±0.43 77.88±0.47 77.55±0.44 77.73±0.46 76.26±0.41 78.64±0.44 75.00±0.42 77.48±0.47 71.03±0.44 78.84±0.39 78.87±0.42

CoQA 75.26±0.36 74.89±0.35 78.92±0.27 76.97±0.40 71.75±0.33 80.04±0.24 77.90±0.30 74.14±0.35 72.71±0.33 78.59±0.44 81.56±0.28

BioASQ 83.40±0.47 83.35±0.47 84.28±0.45 83.03±0.58 81.32±0.42 84.73±0.46 82.59±0.57 82.45±0.51 74.81±0.74 84.93±0.42 85.42±0.48

TriviaQA 85.95±0.11 85.23±0.13 85.67±0.12 84.97±0.24 83.27±0.12 86.23±0.12 84.51±0.13 84.42±0.13 81.95±0.13 86.47±0.13 87.17±0.12

Average 80.73 80.34 81.61 80.68 78.15 82.41 80.00 79.62 75.13 82.21 83.26

Mistral-7B-v0.3
NQ 76.88±0.60 76.88±0.60 77.58±0.55 77.24±0.46 76.62±0.37 77.42±0.56 76.15±0.45 76.67±0.57 71.85±0.43 77.68±0.60 78.39±0.60

CoQA 75.82±0.33 75.76±0.29 77.60±0.21 78.11±0.35 72.18±0.27 79.61±0.28 78.44±0.26 75.32±0.28 73.47±0.25 78.81±0.55 80.58±0.25

BioASQ 80.86±0.53 80.90±0.50 83.66±0.41 83.05±0.50 82.66±0.50 83.57±0.53 80.54±0.55 80.98±0.49 67.84±0.41 83.88±0.60 84.56±0.54

TriviaQA 83.76±0.29 83.53±0.28 83.86±0.28 83.74±0.11 82.80±0.12 85.04±0.28 83.58±0.28 82.98±0.28 79.59±0.12 85.48±0.26 86.27±0.27

Average 79.33 79.27 80.68 80.54 78.57 81.41 79.68 78.99 73.19 81.46 82.45

Mistral-Nemo-12B
NQ 76.78±0.59 76.35±0.57 77.78±0.58 76.55±0.47 76.28±0.58 76.92±0.52 73.04±0.44 75.84±0.56 69.53±0.39 78.34±0.50 77.14±0.54

CoQA 76.08±0.19 75.72±0.24 78.09±0.19 77.25±0.19 71.11±0.24 79.10±0.14 77.01±0.16 75.05±0.23 72.41±0.20 78.26±0.73 80.39±0.18

BioASQ 81.66±0.48 81.58±0.56 84.54±0.44 82.20±0.39 81.90±0.61 83.60±0.38 79.55±0.44 80.91±0.57 69.64±0.49 84.03±0.43 84.54±0.37

TriviaQA 85.44±0.10 84.88±0.19 86.10±0.10 84.61±0.14 83.31±0.11 86.29±0.11 84.29±0.11 84.07±0.09 81.47±0.11 86.83±0.17 87.39±0.11

Average 79.99 79.63 81.63 80.15 78.15 81.48 78.47 78.97 73.26 81.87 82.37

fective, as demonstrated by the fact that the performance of
SGDδ is inferior to that of SGDδ+P , and the performance
of SGDs is inferior to that of SGDs+P . In addition, we
draw the following conclusions: (1) SGDs and Deg exhibit
nearly identical performance, consistent with the theoretical
analysis in Section 3; and (2) the superior performance of
SGDs+P over baseline methods KLE and Deg can be pri-
marily attributed to the incorporation of probability. This
is evident from the fact that SGDs yields nearly identical
results to Deg but performs worse than KLE in the Mistral-
7B experiment9; after incorporating probability, SGDs+P

outperforms both KLE and Deg.

Results of Diverse Beam Search Previous studies pre-
dominantly utilized multinomial sampling to generate mul-
tiple answers, often setting T = 1 to increase diversity. Few
studies explored alternative sampling methods. In this paper,
we conducted an ablation study using Diverse Beam Search
[Vijayakumar et al., 2018] because it tends to produce di-
verse yet highly probable responses [Vijayakumar et al.,
2018], which is crucial for UQ [Aichberger et al., 2025].
We sampled 10 answers for each question by configuring 10
groups, with each group containing one beam. The answer
from the first group, generated via greedy beam search, was
used to evaluate model accuracy. The subsequent groups, de-

9In the experiments with the Mistral-7B-BioASQ combination,
KLE outperforms Deg. However, as shown in Tables 1 and 2, Deg
generally outperforms KLE across most cases.

signed to introduce greater diversity, provided the possible
answers used to assess consistency. We compared our best
method, SGDs+P , with several competitive baseline meth-
ods, including SE, DSE, KLE, and Deg. The results, shown
in Figure 2, indicate that under Diverse Beam Search, KLE
performs worse than SE, which contrasts with the multino-
mial sampling experiments where KLE outperforms SE in
most cases. However, our method, SGDs+P , still outper-
forms other competitive baseline methods, demonstrating
the stronger robustness of our approach.

4.4 COMPARISON OF COMPUTATIONAL
RESOURCE CONSUMPTION

Previous experiments have demonstrated that SGDs+P out-
performs baseline methods. In this section, we specifically
compare the resource consumption of different UQ methods,
concentrating solely on the consumption of language model
inferences, as these operations are significantly more com-
putationally intensive than other components. All methods
are sampling-based and first require sampling N possible
answers, which incurs the same consumption. To improve
the accuracy of SE and DSE, we use GPT-3.5-turbo-0125 for
entailment prediction, following Farquhar et al. [2024]. This
approach requires at most O(N2) model inferences, where
N is the number of statements to be compared. We also ap-
ply this strategy to NSS. KLE and all graph-based methods
need to use the output logits of the NLI model to obtain the



Table 2: Performance (AUARC) comparison of various uncertainty metrics. All results are presented as percentages. For each
model-dataset combination, the best average result from both baseline methods and our proposed methods is underlined,
while the overall best result among all methods is highlighted in bold.

Datasets Entropy-based Methods Graph-based Methods Consistency-based Methods Ours

SE DSE KLE Ecc EigV Deg D-UE NSS SEU SGDδ+P SGDs+P

Llama-3.2-1B
NQ 27.54±0.63 27.43±0.63 27.08±0.58 27.75±0.49 26.50±0.53 28.10±0.57 25.91±0.52 27.20±0.54 23.70±0.50 27.62±0.67 28.56±0.58

CoQA 86.97±0.28 86.32±0.16 87.65±0.11 87.25±0.14 85.28±0.12 87.98±0.28 87.45±0.10 86.08±0.26 85.80±0.11 87.87±0.17 88.34±0.29

BioASQ 71.25±0.86 71.01±0.85 70.64±0.93 70.63±0.90 69.37±0.88 70.88±0.83 70.11±0.86 70.62±0.91 65.72±0.81 71.27±0.84 71.22±0.83

TriviaQA 52.04±0.24 51.48±0.23 51.39±0.37 51.55±0.24 49.35±0.21 52.22±0.24 50.47±0.21 50.89±0.23 48.30±0.22 52.37±0.27 53.62±0.23

Average 59.45 59.06 59.19 59.30 57.63 59.80 58.49 58.70 55.88 59.78 60.44

Llama-3.1-8B
NQ 51.74±1.02 51.10±1.11 51.39±1.06 51.11±0.90 49.51±1.00 52.10±0.92 49.66±0.97 50.71±1.20 46.83±0.81 51.62±0.97 53.18±0.91

CoQA 94.74±0.29 94.79±0.30 96.02±0.19 95.80±0.17 94.13±0.24 96.30±0.15 95.92±0.16 94.69±0.18 95.15±0.15 95.99±0.24 96.39±0.15

BioASQ 82.48±0.77 82.30±0.80 83.57±0.67 82.97±0.63 81.05±0.79 83.94±0.53 82.82±0.54 83.21±0.37 81.84±0.36 83.44±0.66 84.90±0.53

TriviaQA 84.12±0.31 83.60±0.33 84.18±0.32 83.85±0.32 82.50±0.33 84.49±0.29 83.57±0.33 83.21±0.37 81.84±0.36 84.21±0.38 85.71±0.30

Average 78.27 77.95 78.79 78.43 76.80 79.21 77.99 77.96 76.42 78.82 80.05
Mistral-7B-v0.3

NQ 51.96±0.61 51.49±0.71 52.53±0.50 52.22±0.50 51.16±0.56 52.75±0.48 52.01±0.51 51.27±0.70 49.52±0.64 51.98±0.86 53.71±0.48

CoQA 92.83±0.26 93.11±0.22 94.29±0.20 94.17±0.16 91.95±0.32 94.47±0.13 94.32±0.16 93.02±0.18 93.28±0.17 94.05±0.31 95.97±0.13

BioASQ 80.46±0.77 80.07±0.66 82.27±0.70 81.07±0.59 80.34±0.86 81.65±0.63 80.18±0.61 80.05±0.71 73.21±0.62 81.75±0.72 82.64±0.64

TriviaQA 82.58±0.25 82.53±0.31 83.02±0.25 82.31±0.26 81.81±0.33 83.11±0.32 82.11±0.30 82.23±0.37 79.48±0.35 83.39±0.22 84.19±0.32

Average 76.96 76.80 78.03 77.44 76.32 78.00 77.16 76.64 73.87 77.79 79.13
Mistral-Nemo-12B

NQ 51.32±1.30 51.27±1.17 52.12±1.16 51.18±1.10 50.47±1.28 51.70±1.17 49.83±1.12 50.82±1.39 47.12±1.02 51.82±1.05 53.46±1.19

CoQA 93.35±0.24 93.15±0.24 94.24±0.18 94.15±0.17 91.82±0.17 94.54±0.13 94.10±0.14 93.02±0.23 93.03±0.18 94.17±0.20 95.60±0.13

BioASQ 82.31±0.56 82.00±0.66 83.55±0.53 82.33±0.53 81.63±0.70 83.50±0.45 81.49±0.56 81.73±0.59 76.35±0.54 83.50±0.68 84.50±0.46

TriviaQA 85.35±0.26 85.07±0.38 85.85±0.32 85.14±0.26 84.14±0.32 85.93±0.27 85.14±0.27 84.63±0.29 83.31±0.27 85.93±0.27 86.49±0.25

Average 78.08 77.87 78.94 78.20 77.02 78.92 77.64 77.55 74.95 78.86 80.01

Table 3: Performance comparison among four variants of
SGD (SGDδ , SGDδ+P , SGDs, and SGDs+P ) and compet-
itive baseline methods including SE, KLE, and Deg. Experi-
ments were conducted on Mistral-7B-v0.3.

Methods NQ BioASQ

AUROC AUARC AUROC AUARC

SE 76.88±0.60 51.96±0.61 80.86±0.53 80.46±0.77

KLE 77.58±0.42 52.53±0.50 83.66±0.41 82.27±0.70

Deg 77.42±0.56 52.75±0.48 83.57±0.53 81.65±0.63

SGDδ+P 77.68±0.60 51.98±0.86 83.88±0.60 81.75±0.72

SGDδ 76.71±0.58 ↓ 50.88±0.88 ↓ 82.94±0.55 ↓ 80.92±0.70 ↓
SGDs+P 78.39±0.60 53.71±0.48 84.56±0.54 82.64±0.64

SGDs 77.41±0.56 ↓ 52.74±0.48 ↓ 83.58±0.54 ↓ 81.66±0.63 ↓

similarity between texts, which incurs the same resource
consumption as ours. SEU requires N(N − 1) inferences
of the all-mpnet-base-v2 model 10 with 109M parameters to
obtain the embeddings of answers. In summary, compared
to SE, DSE, and NSS, our method outperforms them in
terms of performance and has lower resource consumption;
our method outperforms graph-based methods in terms of
performance and has the same resource consumption; com-
pared to SEU, although its resource consumption is lower
than that of other methods, its performance is inferior to that
of other baseline methods and our method.

10https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 2: Performance comparison of different uncertainty
metrics when generating possible answers using diverse
beam search. We compare our best method SGDs+P with
competitive baseline methods SE, DSE, KLE, and Deg. All
results are shown as percentages.

5 CONCLUSION

In this study, we proposed Semantic Graph Density (SGD),
a novel method for Uncertainty Quantification (UQ) in short-
form QA. SGD incorporates fine-grained semantic relation-
ships and adjusts edge contributions within semantic graphs,
enabling more precise uncertainty quantification. Our ex-
periments on four free-form QA datasets demonstrate that

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


SGD outperforms baseline methods. These results highlight
the potential of SGD to enhance the reliability of LLMs,
providing a promising direction for addressing hallucination
in LLMs. Future work may explore extending SGD to other
NLP tasks and integrating it with real-time decision-making
systems.
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A BIAS ARISING FROM NEGLECT OF ANSWER PROBABILITIES IN GRAPH-BASED
METHODS

Different sampled answers may have varying probabilities, which can be calculated using the numeric outputs (token-level
logits) provided by LLMs. Answers with higher probabilities are considered more representative in UQ, compared to
answers with lower probabilities [Geng et al., 2024].

Table 4 shows the responses of the same LLM to two questions. For both cases, the sample answers consisted of one "No"
and two "Yes" responses. However, the model’s confidence in the "Yes" sampled answer is notably higher in the first case,
where the probabilities for "Yes" and "No" are 0.95 and 0.15, respectively. In contrast, for the second case, the probabilities
are 0.55 and 0.45. It can be inferred that the model exhibits greater confidence in answering Question 1 compared to
Question 2. Consequently, the uncertainty score assigned to Question 1 should be lower than that assigned to Question 2.

Existing graph-based methods [Lin et al., 2024, Da et al., 2024] overlook answer probabilities and focus exclusively on
LLM output text. Consequently, these methods would assign identical uncertainty scores to both questions, despite the
sampled answers having different probabilities, which is problematic.

Table 4: Example Responses from BioASQ.

Question 1 Has Denosumab (Prolia)
been approved by FDA ?
Ground Truth
Yes

Model Answer
Yes ✔

Possible Answer, Probability
• y(1): No, 0.15
• y(2): Yes, 0.95
• y(3): Yes, 0.95

Question 2 Is the ACE inhibitor
indicated for lung cancer treatment?
Ground Truth
No

Model Answer
Yes ✘

Possible Answer, Probability
• y(1): No, 0.45
• y(2): Yes, 0.55
• y(3): Yes, 0.55

*Corresponding author.
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B PROMPTS FOR OBTAINING ANSWERS

We follow Farquhar et al. [2024] and use the following prompt template to obtain answers, including both the target answer
(to evaluate the model’s accuracy) and the possible answers (to measure the model’s uncertainty), for datasets without
context, such as NQ, TriviaQA, and BioASQ:

Question: {Example 1 Question}
Answer: {Example 1 Answer}
[Additional Examples]
Question: {question}
Answer:

For CoQA, a dataset that includes context, we adopt a modified prompt template provided by Lin et al. [2024]:

[The provided context paragraph]
[Additional question-answer pairs]
Q: [Provided question]
A:

Below are some example prompts for each dataset, formatted according to the template described above.

NQ

Question: Can exosomes be detected in urine?
Answer: yes.
Question: Who wrote the music for Annie Get Your Gun?
Answer: Irving Berlin.
Question: What is the name of the speaker of parliament in Ghana?
Answer: Aaron Mike Oquaye.
Additional Question-Answer Pairs

Question: When did Stevie Wonder release his first album?
Answer:

CoQA

Once upon a time, in a barn near a farm house, there lived a little white kitten named Cotton. Cotton lived high up
in a nice warm place above the barn where all of the farmer’s horses slept. Some contents are omitted here.
"Don’t ever do that again, Cotton!" they all cried. "Next time you might mess up that pretty white fur of yours and
we wouldn’t want that!" Then Cotton thought, "I change my mind. I like being special".

Q: What color was Cotton?
A: white.
Additional Question-Answer Pairs

Q: Where did she live?
A:



BioASQ

Question: In which cell organelle is the SAF-A protein localized?
Answer: the nucleus.
Question: What is the role of IL-18BP?
Answer: IL-18 binding protein (IL-18BP) is a natural inhibitor of IL-18. The balance between IL-18 and IL-18BP
has an important role in the inflammatory setting.
Question: Which is the genetic lesion associated with Huntington’s disease?
Answer: A CAG trinucleotide repeat expansion in the HD gene.
Additional Question-Answer Pairs

Question: What is a exposome?
Answer:

TriviaQA

Question: Who discovered electromagnetic induction, so facilitating the transformer and dynamo?
Answer: Michael Faraday.
Question: Which card game, originating in Spain and introduced to England in 1861, is played between 2 persons
with 2 packs of cards (with sixes and below removed) who are dealt 8 cards each?
Answer: Bezique.
Question: Whose twelfth studio album Magna Carta Holy Grail released in July has topped the charts on both
sides of the Atlantic?
Answer: JAY-Z.
Additional Question-Answer Pairs

Question: Which American won the Nobel Peace Prize in 2002?
Answer:

C EXAMPLE RESPONSES

Table 5 includes two examples showing the responses of the Llama-3.1-8B model to two questions, each corresponding to a
question from either the NQ (left) or CoQA (right) dataset.

D INPUT FORMAT FOR NLI MODELS TO MEASURE CONTEXTUAL SEMANTIC
SIMILARITY

Following Lin et al. [2024], we use the following format to obtain the output logits of the NLI model:

[x] [yi] [SEP] [x] [yj]

E PROMPTS FOR LLM-BASED CORRECTNESS CHECKING

We automatically determined whether the target answer is correct or incorrect by using GPT-4-0613 to compare the given
answer to the corresponding ground truth answers provided by the dataset. Following Farquhar et al. [2024], we set the
temperature to 0.01 in order to minimize randomness. We utilized the template provided by Farquhar et al. [2024] as follows:

We are assessing the quality of answer to the following question: {question}
The expected answer is(are): {reference answers}
The proposed answer is: {target answer}
Within the context of the question, does the proposed answer mean the same as the
expected answer? Respond only with yes or no.



Table 5: Example Responses from NQ and CoQA.

Example Responses from NQ

Question In the honour of which god
is anant chaturdashi celebrated ?
Ground Truth
Ganesh
Model Answer
4 gods ✘

Possible Answers
• y(1): Hindu Lord Vishnu
• y(2): 4 Avatars of Vishnu
• y(3): Chaturbhuja or Kartikeya
• y(4): 10 incarnations of Lord Vishnu
• y(5): 12 Avatars of Lord Vishnu
• y(6): the god of prosperity
• y(7): 12-year-old Ganesh
• y(8): 16 forms of Vishnu
• y(9): 9 different deities of Hinduism
• y(10): 16 forms of Vishnu

Example Responses from CoQA

Context Once upon a time, in a barn near a farm house ...
Question Whose paint was it?
Ground Truth
the old farmer’s
Model Answer
the old farmer’s ✔

Possible Answers
• y(1): it was the old farmer’s paint
• y(2): the old farmer’s paint
• y(3): It was the old farmer’s orange paint
• y(4): the old farmer’s paint
• y(5): the old farmer’s paint
• y(6): the old farmer’s paint
• y(7): the farmer’s
• y(8): the old farmer’s
• y(9): the old farmer’s paint
• y(10): the old farmer’s

Performance of Correctness Checking. In the supplementary materials of Note 6 in [Farquhar et al., 2024], the authors
evaluated the agreement between GPT-4-0613 and human raters in answer correctness assessment. The results showed that
(1) GPT-4-0613 agreed with two human raters at an average rate of 93%, while the two raters agreed with each other at
a similar rate of 92%. (2) Compared to Llama-2-Chat-70B and GPT-3.5, GPT-4 demonstrated performance most closely
aligned with human-level judgment.

F BASELINE IMPLEMENTATION DETAILS

• Semantic Entropy (SE) [Farquhar et al., 2024], Discrete Semantic Entropy (DSE) [Farquhar et al., 2024]. SE
measures the entropy of the meaning distribution of free-form responses to questions. Specifically, SE groups the
sampled answers with the same semantic and computes cluster-wise predictive entropy to quantify semantic uncertainty.
For our study, we utilize the SE implementation from the Nature publication [Farquhar et al., 2024], rather than the
version from the ICLR publication [Kuhn et al., 2023]. In accordance with the recommendation in [Farquhar et al.,
2024], we use GPT-3.5-turbo-0125 to determine whether two answers entail one another. If the answers are deemed to
entail each other, it indicates that they share the same semantic. DSE is an approximation of SE, designed for black-box
LLMs. Unlike SE, DSE estimates the probability of the meaning by counting the frequency of each answer in the
samples.

• Kernel Language Entropy (KLE) [Nikitin et al., 2024]. KLE treats each answer as a mixed state in quantum
mechanics, where each pure state represents a distinct "semantic meaning". It then calculates the von Neumann entropy
of the mixed state that corresponds to all sampled answers. Specifically, KLE constructs a semantic graph based on
the fine-grained semantic relationships among answers, computes a semantic kernel K over this graph, and calculates
the von Neumann entropy of the kernel. We particularly employ the variant KLE(KHEAT ), which has demonstrated
superior performance compared to other KLE variants.

• Sum of Eigenvalues of the Graph Laplacian (EigV) [Lin et al., 2024], The Degree Matrix (Deg) [Lin et al., 2024],
and Eccentricity (Ecc) [Lin et al., 2024]. These metrics construct a weighted semantic graph based on the semantic
similarity among the sampled answers. EigV approximates the number of connected components by analyzing the
eigenvalues of the graph Laplacian. Deg uses the degree matrix to quantify the diversity of the answers, while Ecc
calculates the eccentricity of the spectral embedding, capturing the spread of the answers in the semantic space.

• Directed Uncertainty Evaluation (D-UE) [Da et al., 2024]. D-UE captures the semantic relationships between



answers using a bidirectional approach and quantifies uncertainty by analyzing directional instability. Specifically,
D-UE constructs a directional graph based on the entailment logits from the NLI model. It then applies Random Walk
Laplacian analysis, considering the asymmetric properties of the constructed directed graph. Finally, uncertainty is
aggregated through the eigenvalues derived from the Laplacian process.

• Number of Semantic Sets (NSS) [Kuhn et al., 2023]. NSS clusters the sampled answers that share the same meaning
and uses the number of clusters, which represents the number of distinct meanings conveyed by the prompt, as an
uncertainty measurement.

• Semantic Embedding Uncertainty (SEU) [Grewal et al., 2024]. SEU calculates the average pairwise cosine similarity
of the embeddings of possible answers. SEU calculates the negative average pairwise cosine similarity of the embeddings
of possible answers as an uncertainty measure. The embeddings are obtained using a pretrained embedding model; in
this implementation, we use all-mpnet-base-v21. SEU argues that leveraging the embedding model to capture semantic
similarities can achieve smoother and more robust estimation of semantic uncertainty than NLI models.

G COMPARISON WITH NON-SAMPLING-BASED METHODS

In the main comparison, we focus on sampling-based baselines. In this section, we introduce three non-sampling-based
methods as baselines for comparison. The baselines and their brief descriptions are as follows. The last two methods are
verbalization-based, in which LLMs are prompted to express their uncertainty in words.

• Perplexity: Perplexity is calculated as the exponentiation of the average negative log-likelihood of the predicted
probabilities for each token in a sequence, normalized by the length of the sequence.

• Post-hoc Verbalized Uncertainty (PH-VU) [Lin et al., 2022]: Instructing an LLM to evaluate the confidence in the
accuracy of its previously generated answer, and using the negative value of this confidence as the uncertainty score.
We use the following prompt: Q: question A: the best generation. The proposed answer is true with a confidence value
(0-100) of

• In-line Verbalized Uncertainty (IL-VU) [Xiong et al., 2024]: Directing an LLM to provide an answer along with its
confidence score, and using the negative value of this score as the uncertainty score. We use the following prompt
provided by Xiong et al. [2024]: Read the question, provide your answer, and your confidence in this answer. Note:
The confidence indicates how likely you think your answer is true. Use the following format to answer: Answer and
Confidence (0-100): [Your answer], [Your confidence level, please only include the numerical number in the range of
0-100] Question: question Answer and Confidence (0-100):

We follow the setup of the main experiments in our paper. The experimental results are as shown in Table 6 and Table 7.
The results indicate that each variant of our method consistently and significantly outperforms these non-sampling-based
approaches.

Table 6: Results with Llama-3.1-8B (AUROC).

Perplexity PH-VU IL-VU SGDδ+P (Ours) SGDs+P (Ours)

NQ 62.02±0.32 67.83±0.82 64.35±0.91 78.84±0.39 78.87±0.42
BioASQ 63.96±0.51 68.24±0.48 68.52±0.62 84.93±0.42 85.42±0.48
TriviaQA 62.08±0.21 67.38±0.35 70.25±0.41 86.47±0.13 87.17±0.12

Table 7: Results with Mistral-7B-v0.3 (AUROC).

Perplexity PH-VU IL-VU SGDδ+P (Ours) SGDs+P (Ours)

NQ 60.42±0.58 64.91±1.04 63.06±0.88 77.68±0.60 78.39±0.60
BioASQ 63.74±0.46 66.05±0.62 68.10±0.74 83.88±0.60 84.56±0.54
TriviaQA 62.21±0.31 70.68±0.53 73.69±0.69 85.48±0.26 86.27±0.27

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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