
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

SVD PROVABLY DENOISES NEAREST NEIGHBOR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the Nearest Neighbor Search (NNS) problem in a high-dimensional setting where data
originates from a low-dimensional subspace and is corrupted by Gaussian noise. Specifically, we
consider a semi-random model where n points from an unknown k-dimensional subspace of Rd

(k ≪ d) are perturbed by zero-mean d-dimensional Gaussian noise with variance σ2 on each co-
ordinate. Without loss of generality, we may assume the nearest neighbor is at distance 1 from the
query, and that all other points are at distance at least 1 + ε. We assume we are given only the noisy
data and are required to find NN of the uncorrupted data. We prove the following results:

1. For σ ∈ O(1/k1/4), we show that simply performing SVD denoises the data; namely, we
provably recover accurate NN of uncorrupted data (Theorem 1.1).

2. For σ ≫ 1/k1/4, NN in uncorrupted data is not even identifiable from the noisy data in general.
This is a matching lower bound on σ with the above result, demonstrating the necessity of this
threshold for NNS (Lemma 3.1).

3. For σ ≫ 1/
√
k, the noise magnitude (σ

√
d) is significantly exceeds the inter-point distances in

the unperturbed data. Moreover, NN in noisy data is different from NN in the uncorrupted data
in general.

Note that (1) and (3) together imply SVD identifies correct NN in uncorrupted data even in a regime
where it is different from NN in noisy data. This was not the case in existing literature (see e.g.
(Abdullah et al., 2014)). Another comparison with (Abdullah et al., 2014) is that it requires σ to be
at least an inverse polynomial in the ambient dimension d. The proof of (1) above uses upper bounds
on perturbations of singular spaces of matrices as well as concentration and spherical symmetry of
Gaussians. We thus give theoretical justification for the performance of spectral methods in practice.
We also provide empirical results on real datasets to corroborate our findings.

1 INTRODUCTION

The nearest neighbor problem is a fundamental task in various fields, including machine learning, data mining, and
computer vision. It involves identifying the data point closest to a given query point within a dataset. While concep-
tually straightforward, the performance and reliability of nearest neighbor search (NNS) can suffer in the presence
of noise, particularly in high-dimensional spaces. Real-world data is susceptible to noise, which can ruin the true
underlying structure and lead to erroneous nearest neighbor identifications. This necessitates robust techniques that
can reduce the impact of noise to ensure accurate and reliable NNS. In this paper, we analyze the NNS problem in a
noisy high-dimensional setting. Specifically, we consider a semi-random model where data points from an unknown
k-dimensional subspace of Rd (k ≪ d) are perturbed by adding d-dimensional Gaussian noise Nd(0, σ

2Id) to it.

A fundamental tool in high-dimensional computational geometry, often applied to the NNS problem, is the random
projection method. The Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984) demonstrates that project-
ing data onto a uniformly random k-dimensional subspace of Rd approximately preserves distances between points,
offering a computationally efficient way to reduce dimensionality. This approach has had a tremendous impact on
algorithmic questions in high-dimensional geometry, leading to the development of algorithms for approximate NNS,
such as Locality-Sensitive Hashing (LSH) (Indyk and Motwani, 1998), which are widely used both theoretically and
practically. All known variants of LSH for Euclidean space, including (Datar et al., 2004; Andoni and Indyk, 2006;
Andoni et al., 2014), involve random projections.

However, it is natural to question whether performance can be improved by replacing "random" projections with "best"
or data-aware projections. Practitioners often rely on techniques like Principal Component Analysis (PCA) and its

1



052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

variants for dimension reduction, leading to successful heuristics such as PCA trees (McNames, 2001; Sproull, 1991;
Verma et al., 2009), spectral hashing (Weiss et al., 2008), and semantic hashing (Salakhutdinov and Hinton, 2009).
These data-adaptive methods frequently outperform algorithms based on oblivious random projections in practice.
Yet, unlike random projection methods, these adaptive approaches often lack rigorous correctness or performance
guarantees. Bridging this gap between theoretical guarantees and empirical successes for data-aware projections is
a significant open question in Massive Data Analysis, see, e.g., (Council, 2013). For worst-case inputs, random
projections are known to be theoretically optimal (Alon, 2003; Jayram and Woodruff, 2013), making it challenging to
theoretically justify data-aware improvements. This paper aims to provide a theoretical justification for this disparity
by studying data-aware projections for the NNS problem.

To address this challenge, we study the semi-random setting proposed in (Abdullah et al., 2014). In this setting, a
dataset P of n points in Rd is arbitrarily drawn from an unknown k-dimensional subspace (where k ≪ d) and then
perturbed by adding d-dimensional Gaussian noise Nd(0, σ

2Id). Similarly, a query point q ∈ Rd is also corrupted
with d-dimensional Gaussian noise Nd(0, σ

2Id). The goal is to find the point p ∈ P that is closest to q in Euclidean
distance (considering their unperturbed versions), based on noisy versions.

Our main contribution is a new Singular Value Decomposition (SVD) algorithm for solving the NNS recovery prob-
lem. This algorithm can tolerate substantially larger noise levels compared to previous approaches, such as those in
(Abdullah et al., 2014). Specifically, we characterize the robustness of NNS under various noise levels. We identify
several critical noise level thresholds:

• For σ ≫ 1/
√
d, the noise magnitude (with an expected magnitude of σ

√
d) can be substantially larger

than the inter-point distances in the original data. Specifically, at this level, random Johnson-Lindenstrauss
projections would typically lose all nearest neighbor information.

• For σ = O(1/d1/4), (Abdullah et al., 2014) proved that the nearest neighbor in the perturbed data remains
the same. Their algorithm tolerates a noise level of at most σ = O(1/

√
kd1/4), which implies σ must be at

least an inverse polynomial in the ambient dimension d.

• For σ ≫ 1/
√
k, the nearest neighbor in the perturbed data can, with large probability, differ from the true

nearest neighbor.

• For σ = O(1/k1/4), our algorithmic results (Theorem 1.1) demonstrate that applying SVD to the perturbed
data can effectively identify the true nearest neighbor in this regime. This represents a critical improvement
over the previous work of (Abdullah et al., 2014), as our algorithm is effective for σ ≫ 1/

√
k where the NN

in noisy data is different from the NN in uncorrupted data.

• For σ ≫ 1/k1/4, we show that it is information-theoretically impossible to identify the nearest neighbors
from the noisy data. This result complements our algorithmic findings by providing matching lower bounds
on the noise level σ, thereby demonstrating the necessity of the threshold σ = O(1/k1/4) for NNS.

1.1 HIGH-LEVEL OVERVIEW

In addition to improved noise tolerance, our algorithm offers simplicity, requiring only two SVD calls, unlike the
iterated PCA approach in (Abdullah et al., 2014). We now discuss the high-level idea of our algorithm. We represent
the input points as the first n columns of a d×(n+1) matrix B, with the last column being the query point q. Similarly,
we represent the Gaussian noise as a d× (n+ 1) matrix C with i.i.d. entries drawn from N(0, σ2). Let A = B + C
denote the perturbed data set, which serves as the input to our algorithm. Our approach involves computing the SVD
of A and projecting A onto its top k-dimensional subspace. A direct application of the SVD was not explored in earlier
works to handle such high noise levels. The only earlier work we are aware of with related provable guarantees in a
noisy model via the SVD is that on latent semantic indexing (Papadimitriou et al., 2000), though (Papadimitriou et al.,
2000) makes strong assumptions.

More specifically, we process the j indices in two parts: first for 1 ≤ j ≤ n
2 , then for n

2 + 1 ≤ j ≤ n. Let A(1) be a
d × (n2 + 1) matrix consisting of the first n/2 columns of A and the query point (as column n/2 + 1). Similarly, let
A(2) be a d × (n2 + 1) matrix formed by the last n/2 columns of A and the query point. The query point is in both
parts. This superscript notation, (1) and (2), is also extended to B and C. Let U (1) be the subspace spanned by the k
top singular vectors of the first n/2 columns of A(1) (i.e., A(1)[1, n

2 ]). Similarly, U (2) is the subspace spanned by the
k top singular vectors of the first n/2 columns of A(2) (i.e., A(2)[1, n

2 ]). Since A(1) and A(2) are given, U (1) and U (2)

2



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

can be computed. The point of splitting the data into 2 parts is that PU(2) and A(1) are stochastically independent and
this makes our probabilistic arguments simpler. It is not clear that this is necassary and we leave it as an open question
as to whether the simpler algorithm without splitting provably works.

We denote the projection matrix onto a subspace U ⊆ Rd as PU . The underlying idea is that projecting points (both
data and query) onto the SVD subspace effectively extracts the latent subspace structure, which is sufficient to estimate
distances, ||pi − q||. Thus, the main algorithm proceeds as follows: to estimate all distances for the first n/2 points,
we compute the minimum value of:

min
1≤j≤n

2

∣∣∣∣∣∣PU(2)

(
A

(1)
·,j −A

(1)
·,n/2+1

)∣∣∣∣∣∣ ,
where A

(1)
·,j denotes the j-th column of A(1). With xj = ej − en/2+1, this expression simplifies to

∣∣∣∣PU(2)A(1)xj

∣∣∣∣.
Our claim is that, under a specific noise regime,

∣∣∣∣PU(2)A(1)xj

∣∣∣∣ provides a (1 + ε)-approximation of
∣∣∣∣B(1)xj

∣∣∣∣ =
||pi − q|| for any ε > 0. Subsequently, similar steps are performed for the second part of the data. The complete
algorithm is then as follows:

Algorithm 1 (1 + ε)-approximate NNS for the Semi-Random Model

Require: An ambient space Rd and a matrix A ∈ Rd×(n+1) representing the perturbed point set.
Ensure: Returns the index of a (1 + ε)-approximate nearest neighbor for the unperturbed data.

1: A(1) ← matrix formed by columns 1 to n/2 of A and column n+ 1 of A.
2: A(2) ← matrix formed by columns n/2 + 1 to n of A and column n+ 1 of A.
3: U (1) ← the subspace spanned by the k top singular vectors of A(1).
4: U (2) ← the subspace spanned by the k top singular vectors of A(2).
5: j1 ← argmin1≤j≤n

2

∣∣∣∣PU(2)A(1)xj

∣∣∣∣.
6: j2 ← argmin1≤j≤n

2

∣∣∣∣PU(1)A(2)xj

∣∣∣∣.
7: if

∣∣∣∣PU(2)A(1)xj1

∣∣∣∣ < ∣∣∣∣PU(1)A(2)xj2

∣∣∣∣ then
8: Return j1.
9: else

10: Return j2 + n/2.
11: end if

Below, we formalize the theoretical guarantee of Algorithm 1. Let sk(X) denote the k-th singular value of matrix X .
If rank(X) < k, then sk(X) is defined as 0.

Theorem 1.1. For the semi-random model described above, if the noise level σ satisfies:

σ ≤ min

(√
ε

240

min
(∣∣∣∣B(1)xj

∣∣∣∣ , ∣∣∣∣B(2)xj

∣∣∣∣)
(k lnn)1/4

,
ε ·min(sk(B

(1)), sk(B
(2)))

75
√
n

,
ε ·min

(∣∣∣∣B(1)xj

∣∣∣∣ , ∣∣∣∣B(2)xj

∣∣∣∣)
36
√
lnn

)
,

then Algorithm 1 returns a (1 + ε)-approximate nearest point for any ε > 0 with probability at least 1− 1
n .

This highlights the power of SVD in extracting low-dimensional structure from noisy high-dimensional observations.
We note that our analysis relies on an assumption regarding the k-th minimum singular value of the unperturbed data
matrix. We discuss this factor in Section 2.3. We also explored its impact through our empirical results. Our empirical
results further validate our theoretical findings, demonstrating the practical benefits of our SVD-based approach and
its superior performance compared to naïve algorithms, particularly in terms of noise dependence on the intrinsic
subspace dimension k and sensitivity to the k-th minimum singular value of the data.

Organization: Section 2 details our algorithmic approach, including the problem setup and the SVD-based algorithm,
along with its analysis and discussion. Section 3 provides theoretical lower bounds, demonstrating the optimality of
our proposed noise thresholds. Finally, Section 4 presents empirical results that validate our theoretical findings and
illustrate the practical benefits of our approach.

3



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

2 ALGORITHMIC RESULTS

2.1 THE MODEL AND PROBLEM

We employ a semi-random data model that assumes the original data consists of n arbitrary (not random) points from
a k-dimensional subspace V of Rd. We also assume the query point lie in V . The original data is latent (hidden), and
so is V . The input is noisy data, obtained by adding Gaussian noise to the original data. Such a semi-random model
has been widely used (Abdullah et al., 2014; Azar et al., 2001).

B is a d × (n + 1) matrix where the first n columns represent the latent data points, and the last column represents
the latent query. C is a d × (n + 1) matrix representing the perturbations to the n latent data points and the query.
We assume the entries of C are i.i.d. random variables, each drawn from N(0, σ2). The observed data A = B + C
constitutes the input to the problem. For notational convenience, let

x′
j = ej − en+1, such that B·,j −B·,n+1 = Bx′

j .

The objective is to output a (1 + ε)-approximate nearest neighbor for ε > 0. Specifically, the goal is to find an index
j ∈ {1, 2, . . . , n} satisfying

||Bx′
j || ≤ (1 + ε) · min

1≤i≤n
||Bx′

i||.

2.2 ANALYSIS

We are now ready to start the proof of Theorem 1.1. We said that
∣∣∣∣PU(2)A(1)xj

∣∣∣∣ is a good approximation
to
∣∣∣∣B(1)xj

∣∣∣∣. Below, Lemma 2.1 quantifies how well the projected noisy distances approximate the true la-
tent distances, plus an expected noise term (2kσ2). Hence, we can infer that if j satisfies: ||PU(2)A(1)xj || =

min1≤i≤n/2 ||PU(2)A(1)xi||, then, j approximately minimizes ||B(1)xj || over ||B(1)xi|| for 1 ≤ i ≤ n/2 within
error at most the right hand side of (1).

Lemma 2.1. Assume B(1) has rank k, n ≥ d, and k ≥ lnn. Then, for each 1 ≤ j ≤ n/2, the following holds with at
least 1− 1

n2 probability:∣∣∣∣∣∣∣∣∣∣PU(2)A(1)xj

∣∣∣∣∣∣2 − 2kσ2 −
∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2∣∣∣∣
≤ 100σ2n

s2k(B
(2))

∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 + 40σ
√
n

sk(B(2))

∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 + 20σ
∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣√lnn+ 40σ2
√
k lnn. (1)

Similarly, assuming B(2) has rank k, n ≥ d, and k ≥ lnn, then for each 1 ≤ j ≤ n/2, the following holds with at
least 1− 1

n2 probability:∣∣∣∣∣∣∣∣∣∣PU(1)A(2)xj

∣∣∣∣∣∣2 − 2kσ2 −
∣∣∣∣∣∣B(2)xj

∣∣∣∣∣∣2∣∣∣∣
≤ 100σ2n

s2k(B
(1))

∣∣∣∣∣∣B(2)xj

∣∣∣∣∣∣2 + 40σ
√
n

sk(B(1))

∣∣∣∣∣∣B(2)xj

∣∣∣∣∣∣2 + 20σ
∣∣∣∣∣∣B(2)xj

∣∣∣∣∣∣√lnn+ 40σ2
√
k lnn.

Proof. Without loss of generality, we prove only the first part. Since all data points and the query point q lie in V ,
projecting B(1) onto V does not change it. Thus, PV B

(1) = B(1). Therefore, the following holds:

PU(2)A(1) = PU(2)(B(1) + C(1)) = B(1) + (PU(2) − PV )B
(1) + PU(2)C(1).

We aim to bound each term in this expression. First, ||PU(2) − PV || can be bounded in terms of the k-th singular value
sk(B

(1)). Second, PU(2)C(1)xj is a random Gaussian vector, as per the definition of the noise matrix C. Thus, in the
lemma statement, terms containing sk(B

(1)) relate to the effect of the (PU(2) −PV )B
(1)xj term, while the remaining

terms are associated with the inner product of random Gaussian noise or the norm of the noise vector itself.

4



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Since PU(2) is symmetric, we get:∣∣∣∣∣∣PU(2)A(1)xj

∣∣∣∣∣∣2 =
∣∣∣∣∣∣B(1)xj + (PU(2) − PV )B

(1)xj + PU(2)C(1)xj

∣∣∣∣∣∣2
=
∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 + ∣∣∣∣∣∣(PU(2) − PV )B
(1)xj

∣∣∣∣∣∣2 + ∣∣∣∣∣∣PU(2)C(1)xj

∣∣∣∣∣∣2
+ 2xT

j B
(1)T (PU(2) − PV )B

(1)xj + 2xT
j B

(1)TPU(2)C(1)xj + 2xT
j C

(1)TPU(2)(PU(2) − PV )B
(1)xj . (2)

Now, PU(2) is idempotent: PU(2)PU(2) = PU(2) . Also since the columns of B(1) lie in V , we have PV B
(1) = B(1).

Plugging these into the last term on the right hand side of (2), we see that term is zero (PU(2)(PU(2) − PV B
(1)) = 0).

It turns out that each of the other terms can be bounded. By Lemma 2.4, Lemma 2.5, Lemma 2.6, and Lemma 2.7
below, together with the union bound, the theorem is proved.

Before proving the lemmas directly, we first show a bound on the spectral norm of the matrix PU(2)−PV . Recall that V
is the true underlying subspace containing the points and the query, while U (2) is the subspace spanned by the columns
of the perturbed matrix A. Thus, bounds on the spectral norm of the difference between these two projection matrices
can be expressed in terms of the noise σ as follows. For this, we use well-established results from Numerical Analysis,
namely, the sinΘ theorem by (Davis and Kahan, 1970) and the corresponding theorem for singular subspaces due to
(Wedin, 1972), which is stated as Lemma 2.2 below:
Lemma 2.2 ((O’Rourke et al., 2018, Theorem 19)). Let B be a real d × n matrix with singular values s1 ≥ . . . ≥
smin(d,n) ≥ 0 and corresponding singular vectors v1, . . . , vmin(d,n). Also, let E be an d× n perturbation matrix. Let
s′1 ≥ . . . ≥ s′min(d,n) ≥ 0 denote the singular values of B +E with corresponding singular vectors v′1, . . . , v

′
min(d,n).

Suppose the rank of B is r. For 1 ≤ j ≤ r, let Vj and V ′
j be the subspaces spanned by {v1, . . . , vj} and {v′1, . . . , v′j}.

Then, if Vj and V ′
j are both j dimensional spaces, the following holds for the (principal) angle between two subspaces:

sin∠(Vj , V
′
j ) := max

v∈Vj ,v ̸=0
min

v′∈V ′
j ,v

′ ̸=0
sin∠(v, v′) =

∣∣∣∣∣∣PVj
− PV ′

j

∣∣∣∣∣∣ ≤ 2 ||E||
sj − sj+1

where sr+1 = 0.

The bound in Lemma 2.2 is in terms of the ||E|| term, which is the spectral norm of the perturbation matrix. To use
this, we need an upper bound on ||E||. For this, we use a weel-known result from Random Matrix Theory:
Lemma 2.3 ((Rudelson and Vershynin, 2010, Equation 2.3)). Suppose all entries of a d × n matrix E are sampled
from N(0, σ2) i.i.d. Then the following holds for any t ≥ 0:

Pr
[
||E|| > σ(

√
n+
√
d) + t

]
≤ 2 exp

(
− t2

2σ2

)
.

Lemma 2.4. Assume that n ≥ d, and B(2) has rank k. Then for all 1 ≤ j ≤ n/2, the following holds with at least
1− 1

4n2 probability: ∣∣∣∣∣∣(PU(2) − PV )B
(1)xj

∣∣∣∣∣∣2 ≤ 100σ2n

s2k(B
(2))

∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 .
Lemma 2.5. Assume k ≥ lnn and n ≥ d. Then

∣∣∣∣∣∣∣PU(2)C(1)xj

∣∣∣∣2 − 2kσ2
∣∣∣ ≤ 40

√
lnn
√
kσ2 holds for all 1 ≤ j ≤

n/2, with at least 1− 1
2n2 probability.

Lemma 2.6. Assume n ≥ d, and B(2) has rank k. Then, for all 1 ≤ j ≤ n/2, the following holds with at least 1− 1
2n2

probability.: ∣∣∣xT
j B

(1)T (PU(2) − PV )B
(1)xj

∣∣∣ ≤ 4σ
√
n

sk(B(2))

∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 .
Lemma 2.7. For all 1 ≤ j ≤ n/2, the following holds:∣∣∣xT

j B
(1)TPU(2)Cxj

∣∣∣ ≤ 3σ
∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣√lnn
with at least 1− 1

4n2 probability.

5



260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

We now use Lemma 2.1 to prove the following corollary, which quantifies the noise level tolerance needed for a
(1±O(ε))-approximation of the distance:
Corollary 2.8. Suppose the noise σ satisfies:

σ ≤ min

(√
ε

240

∣∣∣∣B(1)xj

∣∣∣∣
(k lnn)1/4

,
εsk(B

(1))

75
√
n

,
ε
∣∣∣∣B(1)xj

∣∣∣∣
36
√
lnn

)
.

Then, we have ∣∣∣∣∣∣PU(2)A(1)xj

∣∣∣∣∣∣2 − 2kσ2 ∈
[(

1− ε

3

) ∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 ,(1 + ε

3

) ∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2]
for all 1 ≤ j ≤ n

2 with at least 1− 1
2n probability. Similarly, the above holds for A(2) and B(2).

We now provide the proof of Theorem 1.1, which offers the theoretical guarantee for our main algorithm:

Proof. Our algorithm returns the index j corresponding to the minimum value found across two parts of the mini-
mization: min1≤j≤n/2

∣∣∣∣PU(2)A(1)xj

∣∣∣∣ and minn/2+1≤j≤n

∣∣∣∣PU(1)A(2)xj−n/2

∣∣∣∣. Without loss of generality, assume
that the first column of B (corresponding to p1) is the nearest neighbor to the query point q, and

∣∣∣∣B(1)x1

∣∣∣∣ = 1. The
proof then needs to show that the algorithm selects an index j∗ such that

∣∣∣∣B(1)xj∗
∣∣∣∣ ≤ 1 + ϵ.

Suppose our algorithm returns an index j∗ from the first part of the minimization, where 1 ≤ j∗ ≤ n/2. By the
algorithm’s logic, this implies:∣∣∣∣∣∣PU(2)A(1)xj∗

∣∣∣∣∣∣2 − 2kσ2 ≤
∣∣∣∣∣∣PU(2)A(1)x1

∣∣∣∣∣∣2 − 2kσ2.

Since the noise level σ satisfies the conditions of Corollary 2.8, we have:(
1− ε

3

) ∣∣∣∣∣∣B(1)xj∗

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣PU(2)A(1)xj∗

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣PU(2)A(1)x1

∣∣∣∣∣∣2 ≤ (1 + ε

3

) ∣∣∣∣∣∣B(1)x1

∣∣∣∣∣∣2
This implies ∣∣∣∣∣∣B(1)xj∗

∣∣∣∣∣∣2 ≤ 1 + ε/3

1− ε/3

∣∣∣∣∣∣B(1)x1

∣∣∣∣∣∣2 ≤ (1 + ε)
∣∣∣∣∣∣B(1)x1

∣∣∣∣∣∣2 .
Thus, the desired result is obtained. If our algorithm returns an index j∗ from the second part of the minimization, a
similar argument establishes the correctness of our algorithm.

2.3 DISCUSSION

Our work shows recovery even when the noisy nearest neighbor has changed, whereas (Abdullah et al., 2014) operates
in a regime where the NN is preserved despite the noise, which is a key conceptual distinction. However, Theorem 1.1
shows that our algorithm can also be affected by the spectral property of the data matrix. We discuss several aspects
of this difference in comparison to the prior work, as well as other aspects of our algorithm below.

sk(B) term in Theorem 1.1. Our noise bound for σ depends not only on O(k−1/4) but also on the term sk(B)/
√
n.

One might wonder if this term diminishes as the number of data points n increases, thereby weakening our central
claim that σ = O(k−1/4). However, sk(B) is a property of the entire d× (n+ 1) data matrix B. As n increases, the
matrix itself grows, and its singular values are generally expected to grow as well.

More precisely, for a data matrix B whose columns (the data points) have a reasonably constant average norm, the
squared Frobenius norm ||B||2F =

∑
i,j B

2
i,j will grow approximately linearly with n. Since the squared Frobenius

norm for our rank-k matrix B is also equal to the sum of its squared singular values, i.e., ||B||2F =
∑k

i=1 si(B)2, this
growth must be distributed among the singular values. Furthermore, if the data matrix B is well-conditioned—meaning
its singular values are not pathologically distributed and the data points do not collapse onto a lower-dimensional
subspace—then individual singular values are expected to scale proportionally to ||B||F = O(

√
n). Therefore, for

well-conditioned data, the ratio sk(B)/
√
n is expected to converge to a non-zero constant rather than decay to 0.

An example of a well-conditioned matrix family is a random matrix where each entry is sampled independently and
identically from a random variable with mean 0, variance 1, and finite fourth moment (Bai and Yin, 1993). They
proved that for such an m × n matrix (m ≤ n), the smallest singular value is almost surely (1 −

√
m/n)2. The

assumption that the data matrix is well-conditioned is standard for many real-world, high-dimensional datasets.

6



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

Comparison to Prior Work (Abdullah et al., 2014). Prior work, unlike our algorithm, does not require any assump-
tion on the singular values of the (latent) data matrix. However, this generality comes at the cost of a much stricter
noise requirement, where the noise level σ must be bounded by an inverse polynomial in the ambient dimension d.
By contrast, our approach introduces a dependency on the data’s spectrum sk(B) but achieves significantly improved
noise tolerance with respect to the intrinsic dimension k. Our contribution is therefore most impactful in the com-
mon scenario where the ambient dimension d is very high, but the data lies near a low-dimensional, well-conditioned
subspace (i.e., large d, small k). We believe this represents a valuable and practical trade-off.

Connection between Johnson-Lindenstrauss Lemma and Our Results. The upper bounds of σ in Theorem 1 de-
pend on three terms. For the first term to be the smallest, our theorem requires k = Ω(lnn/ε2). This term Ω(lnn/ε2)
also appears in the standard Johnson-Lindenstrauss (JL) Lemma. The JL Lemma states that a random projection of
n data points from a d-dimensional ambient space into a k-dimensional subspace preserves all pairwise distances up
to a (1 + ε) multiplicative factor. The JL Lemma thus establishes the required dimensionality for an oblivious ran-
dom projection to preserve the geometry of n points, where k = Ω(lnn/ε2) is known to be the information-theoretic
complexity for the pairwise distance preservation problem.

Our result implies that for SVD to be an effective denoising strategy for NNS, the underlying subspace containing
the true signal must itself have a complexity that scales in a JL-like manner. If k were smaller than this threshold,
the k-dimensional subspace would be too simple to robustly encode the identity of the nearest neighbor against noise
across all n points. In summary, the JL Lemma focuses on dimensionality reduction (from d → k) using random
projections. Conversely, our work addresses denoising when the data already possesses a low intrinsic dimension k.
We demonstrate that if the data has this structure and k satisfies this fundamental complexity requirement, then using
SVD enables accurate NNS recovery in a high-noise regime (σ = O(k−1/4)), a regime where standard JL would fail
to preserve the nearest neighbor identity.

Matrix Split Ratio Choice. In our algorithm, we split the perturbed point set into two halves. This 50-50 split ratio
is actually a minimax optimal choice. The primary goal of splitting the data is to obtain a set of learned singular
vectors (e.g., spanning subspace U (2)) that are stochastically independent of the noise in the data we intend to denoise
(e.g., A(1)). The accuracy of this learned subspace U (2) as an estimate for the true latent subspace V depends directly
on the number of data points used to compute it (i.e. (1 − p)n). A smaller partition size leads to a less stable SVD
and a larger error in the estimated subspace, as quantified by the bounds on ||PU(2) − PV || in our proofs (Lemma 2.4).
Note that the algorithm’s overall performance is limited by the weaker of the two subspace estimations. Therefore,
due to the inherent symmetry of our algorithm, the 50 − 50 split maximizes the size of the smaller partition, thereby
providing the most robust performance when no prior information about the data’s structure is known.

Runtime of the Algorithm 1. The running time of our methods just involves two SVD calculations on the two
halves of the matrix, and using iterative methods, such as those in (Musco and Musco, 2015), each can be done in
O(ndk/min(1,

√
gap)) time, up to logarithmic factors, where gap = sk/sk+1 − 1. For our recovery guarantees

(Theorem 1.1), we require sk(B) to be sufficiently larger than σ. Then we expect that sk(A) ∼ sk(B) and sk+1(A) ∼
σ, which implies gap = sk(A)/sk+1(A) − 1 will be large. This helps both for recovery and for the efficiency of the
SVD calculation. We then need to project the data onto the top k components we find, which is O(ndk) time.

Requirement to Know the Intrinsic Dimension k. In our setting, we need to know k to run our algorithm. One
might wonder if we can use an idea of using a larger dimensional SVD subspace projection. We note that this idea
may be of use if we want to work with weaker assumptions.

3 LOWER BOUNDS

In Theorem 1.1, we showed an algorithmic result for which σ ∈ O(1/k1/4) (resp. σ ∈ O(ε)). In this section, we
demonstrate that this dependence on k (resp. ε) for σ is optimal by establishing an information-theoretic lower bound
showing that σ = O(1/k1/4) (resp. σ ∈ O(ε)) is necessary. We prove this hardness result for a computationally easier
problem than the one we have addressed. Let p1, . . . , pn, q be points in Rk. We note that reducing the dimension of
the ambient space only makes the problem easier in our reduction. Let δ1, . . . , δn, δq be noise vectors where each
component is drawn independently and identically from N(0, σ2). We observe the perturbed points: p̃i = pi+ δi, and
q̃ = q + δq .

7



364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

3.1 DEPENDENCE ON THE SUBSPACE DIMENSION k

The following sequence represents a reduction from the original problem to our target problem. Specifically, we are
starting from our NN recovery problem and making the problem instance easier for any potential algorithm to solve.
If we can prove that even this simplified, easier problem is impossible to solve reliably, it immediately implies that the
original, harder problem (with the larger gap) must also be impossible to solve. We assume ε > 0 is a fixed constant
throughout this chain of reductions and each step introduces at most a constant change in parameters.

• Given p̃1, . . . , p̃n, q̃, there is a unique index j∗ such that ||q − pj∗ || ≤ 1. All other points satisfy ||q − pj || ≥
1 + ε. The goal is to output j∗.

• Given p̃1, p̃2, the goal is to distinguish between the two cases: (i) p1 = 0 and ||p2|| ≥ 1, or (ii) ||p1|| ≥ 1 and
p2 = 0.

• Given p̃1, p̃2, the goal is to distinguish between the two cases: (i) p1 = 0 and p2 ∼ N(0, 1
k Ik), or (ii)

p1 ∼ N(0, 1
k Ik) and p2 = 0.

To show the reduction from the first problem to the second, we show that the second problem is a special case of the
first: Consider the case where the first problem has n = 2, q = 0. If p1 = 0, ||p2|| ≥ 1, the only correct answer to
NN is p1 (p2 is not a valid answer). If ||p1|| ≥ 1, p2 = 0, the only correct answer is 2. The final reduction step is
based on the concentration of the chi-squared distribution. For asymptotically large k, this concentration implies that
any p ∼ N(0, 1

k Ik) has a norm that is almost 1 except with exponentially small probability.

The following lemma is a hardness result for the last problem:
Lemma 3.1. Suppose X,Y are random vectors in Rk, where X ∼ N(0, σ2Ik) and Y ∼ N(0, (σ2 + 1

k )Ik). If
σ ∈ ω(1/k1/4), then given the unordered pair {X,Y }, no test can tell which distribution the sample came from with
high probability.

3.2 DEPENDENCE ON THE DISTANCE GAP ε

In a similar way as in Section 3.1, we reduce the original NN recovery problem to a computationally simpler one to
facilitate hardness analysis. The problem reduction details are available in the appendix. We only give the final lemma
below:
Lemma 3.2. Suppose X,Y are random vectors in Rk, where X ∼ N(e1, σ

2Ik) and Y ∼ N((1 + ε)e1, σ
2Ik). If

σ ∈ ω(ε), then given the unordered pair {X,Y }, no test can tell which distribution the sample came from with high
probability.

4 EXPERIMENTS

In this section, we implement and evaluate our main algorithm. First, we show that it empirically outperforms the naïve
algorithm, suggesting that the denoising effect of the SVD is significant. Second, we demonstrate that our analysis in
Corollary 2.8 is tight with respect to the parameter sk(B).

4.1 EXPERIMENTAL EVALUATION

We first describe the details of our initial experiment. Our main algorithm is simple to implement. As a baseline, we
compare it against a naïve algorithm that selects the index minimizing ||Axj || over 1 ≤ j ≤ n, where x′

j = en+1−ej .
This naïve method is affected by the ambient space Rd when determining the noise threshold σ required for successful
recovery, while our main algorithm depends only on the latent subspace dimension k (specifically, σ = O(k−1/4)).
Note that this naïve method does not mean the algorithm in the (Abdullah et al., 2014). We could not use them as a
baseline because their time and space complexity made implementation infeasible for our experimental setup.

We evaluate our algorithm on two real datasets from different domains: one image-based and one text-based. Through-
out the experiments, we fix the parameters as follows: n = 3000, k = 30, and ε = 0.05. For a given dataset and fixed
noise level σ, we perform 100 queries to compute the success probability. As our algorithm is efficient and simple to
implement, all experiments were conducted on a CPU with an M1 chip and 16 GB of RAM. We give the full details
of our datasets.

8



416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

Figure 1: Performance comparison on two real-world datasets (left) and analysis of the noise threshold’s dependence
on the singular value sk(B) (right).

1) GloVe1: This is a set of pre-trained word embeddings where each English word is represented by a high-dimensional
real vector. We use the GloVe Twitter 27B dataset, which provides 1 193 514 word vectors of dimension 200. We
randomly sample n = 3000 to construct the unperturbed matrix B.

2) MNIST2: MNIST consists of 70 000 images of handwritten digits (0-9) in grayscale, of which 60 000 are training
and 10 000 testing. Each image is 28×28, yielding a 784-dimensional vector of pixel intensities. We sample n = 3000
training images (flattened to d = 784) as data points.

Preprocessing. To align the real-world datasets with our theoretical model, we first performed a rank-k approximation
on the data matrix B. We then selected queries and rescaled the data to ensure the nearest neighbor was at distance 1
and all other points were at least 1 + ε away. The full preprocessing details are available in the appendix.

Results. Across both datasets, our main algorithm consistently outperforms the naïve algorithm across the full range
of σ values. In particular, the failure threshold—the smallest σ at which NN recovery becomes unreliable—is signifi-
cantly higher for our algorithm. We observe two characteristic noise regimes: one where the noise is too small to affect
the NN, and another where recovery is information-theoretically impossible. Between these extremes lies a meaning-
ful intermediate regime in which the performance of the two algorithms diverges. In this regime, the performance gap
is more pronounced when the ambient dimension d is large. The qualitative results are consistent across both image
(MNIST) and text (GloVe) domains, indicating cross-domain robustness. These results illustrate the practical benefits
of our approach.

4.2 DEPENDENCE ON sk(B)

We now describe the details of our second experiment. While the analyses in Sections 2 and 3 characterize the
algorithm’s performance in terms of the subspace dimension k and the distance gap ε, it is also of interest to examine
its dependence on sk(B). In Corollary 2.8, we showed that our algorithm exhibits a linear dependence: σ = O(sk(B)).
Our empirical results confirm these dependencies, suggesting that the analysis is tight.

Data Generation. For the second experiment, we generated synthetic data to analyze the algorithm’s dependence on
sk(B). We constructed the data matrix B via an SVD-based approach, allowing us to explicitly control its singular
values. A subsequent procedure was used to embed a query and its nearest neighbor to satisfy the 1 + ε distance gap
condition. A detailed description of the data generation process can be found in the appendix.

Results. In this plot, we observe a clear linear dependence on each parameter across the full range of σ. The noise
threshold is defined as the value of σ at which the success probability first drops below 90% for a given parameter
setting. For each parameter configuration, we repeat the experiment 100 times to estimate the success probability.
These results demonstrate that our theoretical analysis is tight. Note that this does not imply the optimality of our
algorithm with respect to sk(B).

1https://nlp.stanford.edu/projects/glove/
2http://yann.lecun.com/exdb/mnist/

9

https://nlp.stanford.edu/projects/glove/
http://yann.lecun.com/exdb/mnist/


468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

REFERENCES

Amirali Abdullah, Alexandr Andoni, Ravindran Kannan, and Robert Krauthgamer. Spectral approaches to nearest neighbor search.
arXiv preprint arXiv:1408.0751, 2014.

William B Johnson and Joram Lindenstrauss. Extensions of lipshitz mapping into hilbert space. Contemporary Mathematics, 26:
189–206, 1984.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbor: towards removing the curse of dimensionality. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 604–613, 1998.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distribu-
tions. In Proceedings of the ACM Symposium on Computational Geometry (SoCG), 2004.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 459–468, 2006.

Alexandr Andoni, Piotr Indyk, Huy Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive hashing. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

James McNames. A fast nearest-neighbor algorithm based on a principal axis search tree. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 23(9):964–976, 2001.

Robert F Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica, 6:579–589, 1991.

Nikhilesh Verma, Samy Kpotufe, and Sanjoy Dasgupta. Which spatial partition trees are adaptive to intrinsic dimension? In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 565–574. AUAI Press, 2009.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances in neural information processing systems, pages
1753–1760, 2008.

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal of Approximate Reasoning, 50(7):969–978,
2009.

National Research Council. Frontiers in Massive Data Analysis. The National Academies Press, 2013. Available from: http:
//www.nap.edu/catalog.php?record_id=18374.

Noga Alon. Problems and results in extremal combinatorics i. Discrete Mathematics, 273:31–53, 2003.

T S Jayram and David P Woodruff. Optimal bounds for johnson-lindenstrauss transforms and streaming problems with subconstant
error. ACM Transactions on Algorithms, 9(3):26, 2013. Previously in SODA’11.

Christos H Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh S Vempala. Latent semantic indexing: A probabilistic
analysis. J. Comput. Syst. Sci., 61(2):217–235, 2000.

Yossi Azar, Amos Fiat, Anna Karlin, Frank Mcsherry, and Jared Saia. Spectral analysis of data. Conference Proceedings of the
Annual ACM Symposium on Theory of Computing, 01 2001. doi: 10.1145/380752.380859.

Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal on Numerical Analysis, 7(1):
1–46, 1970. ISSN 00361429. URL http://www.jstor.org/stable/2949580.

Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathematics, 12(1):99–111,
1972.

Sean O’Rourke, Van Vu, and Ke Wang. Random perturbation of low rank matrices: Improving classical bounds. Linear Algebra
and its Applications, 540:26–59, 2018. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2017.11.014.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular values. In Proceedings of
the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols.
II–IV: Invited Lectures, pages 1576–1602. World Scientific, 2010.

Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. The Annals of
Probability, 21(3):1275–1294, 1993. ISSN 00911798, 2168894X. URL http://www.jstor.org/stable/2244575.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value
decomposition. Advances in neural information processing systems, 28, 2015.

10

http://www.nap.edu/catalog.php?record_id=18374
http://www.nap.edu/catalog.php?record_id=18374
http://www.jstor.org/stable/2949580
http://www.jstor.org/stable/2244575


520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. The Annals of Statistics, 28(5):1302
– 1338, 2000. doi: 10.1214/aos/1015957395.

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between high-dimensional gaussians with the
same mean. arXiv preprint arXiv:1810.08693, 2023.

A SUPPLEMENTARY MATERIAL

A.1 POSTPONED PROOFS

A.1.1 PROOF OF LEMMA 2.4

Proof. B(1)’s columns all lie in V . So, sk+1(B
(1)) = 0. Thus, instantiating Lemma 2.2 gives:

||PU(2) − PV || ≤
2
∣∣∣∣C(2)

∣∣∣∣
sk(B(2))

. (3)

Note that C(2) is a d× (n2 + 1) matrix. Applying Lemma 2.3 with t = σ
√

2 ln(8n2) gives:

||PU(2) − PV || ≤
2
∣∣∣∣C(2)

∣∣∣∣
sk(B(2))

≤ 2σ

sk(B(2))

(√
d+

√
n

2
+ 1 +

√
2 ln(8n2)

)
≤ 8σ

√
n

sk(B(2))
(4)

with at least 1− 1
4n2 probability (using n ≥ d, 10). In conclusion, the lemma is proved as follows:

Pr

[∣∣∣∣∣∣(PU(2) − PV )B
(1)xj

∣∣∣∣∣∣2 ≤ 100σ2n

s2k(B
(2))

∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2] ≥ 1− 1

4n2

for all 1 ≤ j ≤ n/2.

A.1.2 PROOF OF LEMMA 2.5

Proof. From the definition of C(1) and xj , the vector y := C(1)xj ∈ Rd is just a summation of two Gaussian random
vectors. Thus, y ∼ N(0, 2σ2Id). Also, for any basis {u1, . . . , uk} of col(U (2)), since PU(2) is a projection matrix, the
following holds: ∣∣∣∣∣∣PU(2)C(1)xj

∣∣∣∣∣∣2 =

k∑
i=1

(
uT
i y
)2

.

Note that PU(2) and C(1) are stochastically independent (since PshU depends only on C(2) and not on C(1)). Since
y ∼ N(0, 2σ2Id) is spherically symmetric, its entries Xi = uT

i y are independent N(0, 2σ2) random variables. Hence
k∑

i=1

(uT
i y)

2 = ||X||2 = 2σ2 ·
k∑

i=1

(
Xi√
2σ2

)2

= 2σ2Z

where Z ∼ χ2
k. Now we can apply the Laurent–Massart tail bound (Laurent and Massart, 2000) for χ2 distribution.

∀x ≥ 0,Pr
[
|Z − k| > 2

√
kx+ 2x

]
≤ e−x.

Setting x = 6 lnn, using the Laurant-Massart bound and taking the union over j = 1, 2, 3 . . . n/2 gives us the
Lemma.

A.1.3 PROOF OF LEMMA 2.6

Proof. We have ∣∣∣∣∣∣B(1)TxT
j (PU(2) − PV )B

(1)xj

∣∣∣∣∣∣ ≤ ||PU(2) − PV ||
∣∣∣∣∣∣B(1)xj

∣∣∣∣∣∣2 . (5)

Applying (4) to the right hand side, the proof completes.

11



572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

A.1.4 PROOF OF LEMMA 2.7

Proof. Let y := xT
j B

(1)TPU(2) . y and C(1)xj are stochastically independent (Recall that B is not random, but,
a fixed matrix.) So, yC(1)xj is a real-valued Gaussian random variable ith distribution N(0, 2 ||y||2 σ2). Further,
||y|| ≤

∣∣∣∣B(1)xj

∣∣∣∣ since PU(2) is a projection matrix. Now, the Lemma follows by standard Gaussian tail bounds.

A.1.5 PROOF OF LEMMA 3.1

Proof. We want to calculate the KL divergence between two distributions. Let P1 = N(0, σ2Ik) and P2 = N(0, (σ2+
1
k )Ik). We evaluate this by computing the KL divergence between the joint distributions R1(x, y) = P1(x)P2(y) and
R2(x, y) = P2(x)P1(y). Note that these two distributions differ only by a swap. Since the KL divergence is additive
for independent distributions, the following holds:

DKL(R1||R2) = DKL(P1||P2) +DKL(P2||P1).

The formula for the KL divergence between two multivariate k-dimensional gaussian distributions Q1 = N(µ1,Σ1)
and Q2 = N(µ2,Σ2) is:

DKL(Q1||Q2) =
1

2

[
log
|Σ2|
|Σ1|

− k + tr{Σ−1
2 Σ1}+ (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
.

Using the above formula, we get

2DKL(R1||R2) = k log
σ2 + (1/k)

σ2
− k + k

σ2

σ2 + (1/k)

+ k log
σ2

σ2 + (1/k)
− k + k

(
1 + (1/kσ2)

)
= −2k + k

1

1 + (1/kσ2)
+ k +

1

σ2
≤ 1

kσ4
,

using 1/(1 + η) ≤ 1 − η + η2 for η ∈ [0, 1]. Therefore, the KL divergence approaches 0 when σ = ω(k−1/4). This
means that it becomes impossible to determine which distribution the observed vector came from as k grows large.

A.1.6 PROOF OF LEMMA 3.2

Proof. Translating both distributions by −e1 and scaling by 1/σ reduces the problem to distinguishing N(0, Ik) from
N((ε/σ)e1, Ik) while preserving distinguishability. Because the coordinates are independent and identical except for
the mean shift in the first coordinate, the optimal test depends only on the first coordinate. Thus, the task is equivalent
to distinguishing the 1–dimensional Gaussian distribution N(0, 12) and N(ε/σ, 12). According to (Devroye et al.,
2023), the total variation distance between two one-dimensional Gaussian distributions with unit variance is at most
half the difference of their means. Therefore, dTV

(
N(0, 12), N( ε

σ , 1
2)
)
≤ ε

2σ , which implies that based on the
observed vector, it becomes impossible to determine which distribution it came from as ε

σ → 0.

A.1.7 PROBLEM REDUCTION DETAILS FOR SECTION 3.2

The following describes the original problem and the simplified target problem:

• Given p̃1, . . . , p̃n, q̃, there is a unique index j∗ such that ||q − pj∗|| ≤ 1. All other points satisfy ||q − pj || ≥
1 + ϵ. The goal is to output j∗.

• (n = 2 and q = 0) Given p̃1, p̃2, there is a unique index j∗ such that ||pj∗|| ≤ 1. The other point satisfies
||pj || ≥ 1 + ϵ. The goal is to output j∗.

• (Fix the data generation process) Given p̃1, p̃2, distinguish between the two cases: (i) p1 = e1 and p2 =
(1 + ϵ)e1, or (ii) p1 = (1 + ϵ)e1 and p2 = e1.

12



624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

A.1.8 PREPROCESSING DETAILS FOR SECTION 4.1

Our theoretical guarantees assume that the data lies entirely in a k-dimensional subspace, which does not strictly hold
in real datasets. However, both datasets exhibit low intrinsic dimensionality, as indicated by the decay of their singular
values. To align with the theoretical assumptions and highlight performance within a low-rank subspace, we apply a
rank-k approximation to the sampled matrix B by retaining only its top k singular components. This transformation
preserves the essential structure of the data while making the setup consistent with our analysis.

For each dataset, we generate 100 query points by projecting held-out data onto the rank-k subspace and selecting
points whose nearest-to-second-nearest neighbor distance ratio is just above 1 + ε. Due to the dataset structure, all
GloVe vectors are eligible as query candidates, while for MNIST, queries are sampled from the test set. After that,
each column is rescaled such that the NN lies exactly at distance 1 from the query point, and i.i.d. noise N(0, σ2) is
added. Finally, we randomly shuffle the first n columns to ensure that both B(1) and B(2) have rank k, as required by
Theorem 1.1.

A.1.9 DATA GENERATION DETAILS FOR SECTION 4.2

Unlike in the first experiment, this experiment is conducted on randomly generated datasets. The purpose here is to
find concrete examples that clearly reveal the linear dependence of our algorithm on sk(B). We fix the parameters
as follows: n = 200, d = 100, k = 10, and ε = 0.05. To study the dependence on sk(B), we start with the SVD
decomposition B = XΣY ⊤, where X and Y are orthogonal matrices randomly generated via QR decomposition of
random Gaussian matrices. The singular values of B are controlled by setting the diagonal entries of Σ.

However, the resulting matrix B = XΣY ⊤ may not automatically satisfy the distance gap condition—that is, the
requirement that the NN lies at distance exactly 1 from the query point, and the second NN is at distance at least 1+ ε.
To enforce this condition, we proceed as follows. We first generate the first n − 1 columns of B using the above
procedure.

Then, we sample a random direction u⃗ that lies in the intrinsic k-dimensional subspace V . Essentially, we embed the
query point q = t1u⃗ and the n-th point pn = t2u⃗ in the space for some scalars t1 and t2. The value t1 is set by starting
from +∞ and decreasing it until the distance between the nearest neighbor among the other n − 1 points and t1u⃗
becomes 1 + ϵ. Then, we set t2 = t1 + 1/||u⃗||, which makes the distance between the query point and this n-th point
exactly 1. This construction makes the query point, its nearest neighbor, and the origin collinear. While one could add
noise to these points to avoid this artificial colinearity, we believe it would not affect the performance of the algorithms
in our context.

13


	Introduction
	High-level Overview

	Algorithmic Results
	The Model and Problem
	Analysis
	Discussion

	Lower Bounds
	Dependence on the subspace dimension k
	Dependence on the distance gap 

	Experiments
	Experimental Evaluation
	Dependence on sk(B)

	Supplementary Material
	Postponed Proofs
	Proof of Lemma 2.4
	Proof of Lemma 2.5
	Proof of Lemma 2.6
	Proof of Lemma 2.7
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Problem Reduction Details for Section 3.2
	Preprocessing Details for Section 4.1
	Data Generation Details for Section 4.2



