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ABSTRACT

We study the Nearest Neighbor Search (NNS) problem in a high-dimensional set-
ting where data originates from a low-dimensional subspace and is corrupted by
Gaussian noise. Specifically, we consider a semi-random model where n points
from an unknown k-dimensional subspace of R? (k < d) are perturbed by zero-
mean d-dimensional Gaussian noise with variance o2 on each coordinate. Without
loss of generality, we may assume the nearest neighbor is at distance 1 from the
query, and that all other points are at distance at least 1 + . We assume we are
given only the noisy data and are required to find NN of the uncorrupted data. We
prove the following results:

1. For ¢ € O(1/k'/*), we show that simply performing SVD denoises the
data; namely, we provably recover accurate NN of uncorrupted data (Theo-
rem

2. For ¢ > 1/k'Y*, NN in uncorrupted data is not even identifiable from the
noisy data in general. This is a matching lower bound on ¢ with the above
result, demonstrating the necessity of this threshold for NNS (Lemma 3.T].

3. Foro > 1/ 'k, the noise magnitude (c+/d) significantly exceeds the inter-
point distances in the unperturbed data. Moreover, NN in noisy data is dif-
ferent from NN in the uncorrupted data in general.

Note that (1) and (3) together imply SVD identifies correct NN in uncorrupted
data even in a regime where it is different from NN in noisy data. This was not the
case in existing literature (see e.g. (Abdullah et al., 2014)). Another comparison
with (Abdullah et al.| 2014) is that it requires o to be at least an inverse polyno-
mial in the ambient dimension d. The proof of (1) above uses upper bounds on
perturbations of singular spaces of matrices as well as concentration and spherical
symmetry of Gaussians. We thus give theoretical justification for the performance
of spectral methods in practice. We also provide empirical results on real datasets
to corroborate our findings.

1 INTRODUCTION

The nearest neighbor problem is a fundamental task in various fields, including machine learning,
data mining, and computer vision. It involves identifying the data point closest to a given query point
within a dataset. While conceptually straightforward, the performance and reliability of nearest
neighbor search (NNS) can suffer in the presence of noise, particularly in high-dimensional spaces.
Real-world data is susceptible to noise, which can ruin the true underlying structure and lead to
erroneous nearest neighbor identifications. This necessitates robust techniques that can reduce the
impact of noise to ensure accurate and reliable NNS. In this paper, we analyze the NNS problem in
a noisy high-dimensional setting. Specifically, we consider a semi-random model where data points
from an unknown k-dimensional subspace of R? (k < d) are perturbed by adding d-dimensional
Gaussian noise N4(0,021,) to it.

A fundamental tool in high-dimensional computational geometry, often applied to the NNS prob-
lem, is the random projection method. The Johnson-Lindenstrauss Lemma (Johnson and Linden-
strauss, |1984) demonstrates that projecting data onto a uniformly random k-dimensional subspace
of R? approximately preserves distances between points, offering a computationally efficient way



to reduce dimensionality. This approach has had a tremendous impact on algorithmic questions in
high-dimensional geometry, leading to the development of algorithms for approximate NNS, such
as Locality-Sensitive Hashing (LSH) (Indyk and Motwani, [1998)), which are widely used both the-
oretically and practically. All known variants of LSH for Euclidean space, including (Datar et al.,
2004} |Andoni and Indyk} 2006} |Andoni et al., [2014)), involve random projections.

However, it is natural to question whether performance can be improved by replacing "random" pro-
jections with "best" or data-aware projections. Practitioners often rely on techniques like Principal
Component Analysis (PCA) and its variants for dimension reduction, leading to successful heuris-
tics such as PCA trees (McNames|, 2001} Sproull, 1991} |Verma et al., 2009)), spectral hashing (Weiss
et al.,|2008), and semantic hashing (Salakhutdinov and Hinton) 2009)). These data-adaptive methods
frequently outperform algorithms based on oblivious random projections in practice. Yet, unlike ran-
dom projection methods, these adaptive approaches often lack rigorous correctness or performance
guarantees. Bridging this gap between theoretical guarantees and empirical successes for data-aware
projections is a significant open question in Massive Data Analysis, see, e.g., (Councill 2013). For
worst-case inputs, random projections are known to be theoretically optimal (Alon, [2003; |Jayram
and Woodruff] |2013), making it challenging to theoretically justify data-aware improvements. This
paper aims to provide a theoretical justification for this disparity by studying data-aware projections
for the NNS problem.

To address this challenge, we study the semi-random setting proposed in (Abdullah et al.| [2014).
In this setting, a dataset P of n points in R?, and a query point ¢ are arbitrarily drawn from an
unknown k-dimensional subspace (where k < d) and then perturbed by adding d-dimensional
Gaussian noise Ng(0,021,). The goal is to find the point p € P that is closest to ¢ in Euclidean
distance (considering their unperturbed versions), based on noisy versions.

Our main contribution is a new Singular Value Decomposition (SVD) algorithm for solving the NNS
recovery problem. This algorithm can tolerate substantially larger noise levels compared to previous
approaches, such as those in (Abdullah et al.l 2014). Specifically, we characterize the robustness
of NNS under various noise levels. We identify several critical noise level thresholds below in the
increasing order of noise level:

* For 0 >> 1/+/d, the noise magnitude (with an expected magnitude of ov/d) can be sub-
stantially larger than the inter-point distances in the original data. Specifically, random
Johnson-Lindenstrauss projections will preserve these noisy distances, effectively losing
the underlying nearest neighbor structure of the uncorrupted data. Therefore, SVD would
be preferred to random projection when o > 1/+/d.

« Foro € O(1/ dt/ 4), (Abdullah et al.l 2014) proved that the nearest neighbor in the
perturbed data remains the same. Their algorithm tolerates a noise level of at most
o = O(1/Vkd'*), which implies o must be at least an inverse polynomial in the am-
bient dimension d.

» Foro > 1/ V/k, the nearest neighbor in the perturbed data can, with large probability, differ
from the true nearest neighbor.

* For o € O(1/k'/*), our algorithmic results (Theorem demonstrate that applying SVD
to the perturbed data can effectively identify the true nearest neighbor in this regime. This
represents a critical improvement over the previous work of (Abdullah et al.,|2014)), as our
algorithm is effective for o > 1/ vk where the NN in noisy data is different from the NN
in uncorrupted data.

* For 0 > 1/k'/*, we show that it is information-theoretically impossible to identify the
nearest neighbors from the noisy data. This result complements our algorithmic findings by
providing matching lower bounds on the noise level o, thereby demonstrating the necessity
of the threshold o = O(1/k"/*) for NNS.

1.1 HIGH-LEVEL OVERVIEW

In addition to improved noise tolerance, our algorithm offers simplicity, requiring only two SVD
calls, unlike the iterated PCA approach in (Abdullah et al.| |2014). We now discuss the high-level
idea of our algorithm. We represent the input points as the first n columns of a d x (n + 1) matrix



B, with the last column being the query point ¢. Similarly, we represent the Gaussian noise as a
d x (n+ 1) matrix C with i.i.d. entries drawn from N (0, 0?). Let A = B + C denote the perturbed
data set, which serves as the input to our algorithm. Our approach involves computing the SVD of
A and projecting A onto its top k-dimensional subspace. A direct application of the SVD was not
explored in earlier works to handle such high noise levels. The only earlier work we are aware of
with related provable guarantees in a noisy model via the SVD is that on latent semantic indexing
(Papadimitriou et al., 2000), though (Papadimitriou et al.|[2000) makes strong assumptions.

More specifically, we process the j indices in two parts: first for 1 < j < 7, thenfor §+1 < j < n.
Let AV be ad x (% + 1) matrix consisting of the first n/2 columns of A and the query point (as
column n/2 + 1). Similarly, let A® be a d x (2 + 1) matrix formed by the last n/2 columns of
A and the query point. The query point is in both parts. This superscript notation, (1) and (2), is
also extended to B and C. Let U} be the subspace spanned by the k top singular vectors of the
first n./2 columns of AM) (i.e., AV[1, 5. Similarly, U®) is the subspace spanned by the k top
singular vectors of the first n/2 columns of A (i.e., A1, 21). Since AM and A® are given,

U™ and U can be computed. The point of splitting the data into 2 parts is that Py, and A(!) are
stochastically independent and this makes our probabilistic arguments simpler. It is not clear that
this is necassary and we leave it as an open question as to whether the simpler algorithm without
splitting provably works.

We denote the projection matrix onto a subspace U C R as P;;. The underlying idea is that pro-
jecting points (both data and query) onto the SVD subspace effectively extracts the latent subspace
structure, which is sufficient to estimate distances, ||p; — ¢||. Thus, the main algorithm proceeds as
follows: to estimate all distances for the first n/2 points, we compute the minimum value of:

1 1
PU(2> (A(j) - AFJB/Q.},_l)

min
1<5< 2

)

where A,(’lj) denotes the j-th column of A1), With Tj = €; — €,/241, this expression simplifies

to HPU<2>A(1):EJ~H. Our claim is that, under a specific noise regime, |PU<2>A(1)xjH provides a
(1 4 &)-approximation of HB(l)zj H = ||p; — ¢|| for any e > 0. Subsequently, similar steps are
performed for the second part of the data. The complete algorithm is then as follows:

Algorithm 1 (1 + ¢)-approximate NNS for the Semi-Random Model

Require: An ambient space R¢ and a matrix A € R?*("+1) representing the perturbed point set.
Ensure: Returns the index of a (1 + ¢)-approximate nearest neighbor for the unperturbed data.
1: A « matrix formed by columns 1 to n/2 of A and column n + 1 of A.

2: A® « matrix formed by columns /2 + 1 to  of A and column n + 1 of A.
3: UM < the subspace spanned by the k top singular vectors of A™).

4: U®?) « the subspace spanned by the k top singular vectors of A(2).

5 j1 argminlSjS% |PU(2)A(1)J’J]'||.

6: jo ¢ argmin,c;cn HPU<1)A(2)xjH.

7: if || Py Az, || < ||Pyay APz, || then

8: Return j;.

9: else
10:  Return jo + n/2.

11: end if

Below, we formalize the theoretical guarantee of Algorithm [I} Let s, (X) denote the k-th singular
value of matrix X. If rank(X) < k, then s (X) is defined as 0.

Theorem 1.1. For the semi-random model described above, if the noise level o satisfies:

J<min( = in (| B, || B ) < - min(sy (BD). 54 (52) s~mm<||B<1>xj||,||B<2>lel>),

240 (klnn)t/4 ’ 75y/n ’ 36vInn
then Algorilhm returns a (1 + €)-approximate nearest point for any € > 0 with probability at least
1-1

n’



Remark 1.2 (Interpretation of Bounds). Theorem 1.1 highlights two distinct scaling requirements
for recovery:

1. Intrinsic Dimension (k): The term O(1/k'/*) reflects the geometric complexity of the
subspace. This threshold aligns with the information-theoretic limits of preserving nearest
neighbor structures (see Lemma/[3.1).

2. Signal Strength (si(B)): The term proportional to si(B)/+/n bounds the spectral gap.
By Wedin’s Theorem, this ratio ensures that the principal angles between the true subspace
V and the empirical subspace U®) remain small. If si(B) were too small, the signal
directions would be indistinguishable from noise directions, making subspace recovery im-
possible regardless of the algorithm used. We discuss this factor in Section2.3]

This highlights the power of SVD in extracting low-dimensional structure from noisy high-
dimensional observations. We also explored its impact through our empirical results. Our empirical
results further validate our theoretical findings, demonstrating the practical benefits of our SVD-
based approach and its superior performance compared to naive algorithms, particularly in terms
of noise dependence on the intrinsic subspace dimension k and sensitivity to the k-th minimum
singular value of the data s (B).

Organization: Section [2| details our algorithmic approach, including the problem setup and the
SVD-based algorithm, along with its analysis and discussion. Section [3| provides theoretical lower
bounds, demonstrating the optimality of our proposed noise thresholds. Finally, Section [d] presents
empirical results that validate our theoretical findings and illustrate the practical benefits of our
approach.

2 ALGORITHMIC RESULTS

2.1 THE MODEL AND PROBLEM

We employ a semi-random data model that assumes the original data consists of n arbitrary (not
random) points from a k-dimensional subspace V of R?. We also assume the query point lie in
V. The original data is latent (hidden), and so is V. The input is noisy data, obtained by adding
Gaussian noise to the original data. Such a semi-random model has been widely used (Abdullah
et al.l [2014;|Azar et al.| [2001)).

Bisad x (n+ 1) matrix where the first n columns represent the latent data points, and the last
column represents the latent query. C'is a d X (n + 1) matrix representing the perturbations to the
n latent data points and the query. We assume the entries of C' are i.i.d. random variables, each
drawn from N(0,0?). The observed data A = B + C constitutes the input to the problem. For
notational convenience, let x; =e; — e,y suchthat B.; — B. 1 = B:c;». The objective is to
output a (1 + ¢)-approximate nearest neighbor for £ > 0. Specifically, the goal is to find an index
J€11,2,...,n}satisfying |[Bz}|| < (1 + ¢) - mini <<, || Bxj]|.

2.2 ANALYSIS

We are now ready to start the proof of Theorem We said that HPU(2>A(1)a:jH is a good ap-
proximation to ||B (1):cj | | Below, Lemma quantifies how well the projected noisy distances
approximate the true latent distances, plus an expected noise term (2ko?). Hence, we can infer
that if j satisfies: || Py AWM z;|| = minj<;<, /o ||Pye AN x|, then, j approximately minimizes
||BM ;]| over |[BM ;| for 1 < i < n/2 within error at most the right hand side of (1).

Lemma 2.1. Assume B has rank k, n > d, and k > Inn. Then, for each 1 < j < n/2, the
following holds with at least 1 — % probability:

2 2
[ R
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Similarly, assuming B (2) has rank k, n > d, and k > lnn, then for each 1 < j < n/2, the following
holds with at least 1 — =5 probablllry

2
[Poora®||* - 2t - || 52,

1 2 4
<L‘(:HB H + 00\(/1; HB LE]H +200HB xjH\/ n + 400*VkInn.

Proof. Without loss of generality, we prove only the first part. Since all data points and the query
point ¢ lie in V, projecting B(Y) onto V' does not change it. Thus, Py B(Y) = B(1). Therefore, the
following holds:

PU(2)A(1) = PU(z) (B(l) + C(l)) = B(l) + (PU(2) — Pv)B(l) + PU(z)C(l)

We aim to bound each term in this expression. First, ||Py ) — Py || can be bounded in terms of
the k-th singular value s(B()). Second, PU<2)C’(1):17j is a random Gaussian vector, as per the
definition of the noise matrix C'. Thus, in the lemma statement, terms containing sk(B(l)) relate to
the effect of the (P2 — PV)B(l)xj term, while the remaining terms are associated with the inner
product of random Gaussian noise or the norm of the noise vector itself.

Since P2y is symmetric, we get:
2 2
HPU(z)A(l)Q?jH = HB(l)CL'j + (PU(Z) — Pv)B(l)l‘j + PU(z)C(l)xjH

., |I° ., ||? ., |I°
:HB .TJH +H(PU<2)_PV)B Zj +HPU(2)C Xy

T T
+ 22T BW (Pye) — Py)BWa; + 227 BY” Py CWaj + 227 T Py (Pyg) — Pv)BWa;
2)

Now, Py (o) is idempotent: Py P2y = P2 . Also since the columns of B lie in V, we have
PyBM = BM. Plugging these into the last term on the right hand side of (2), we see that term
is zero (Ppe2) (P — Py BM) = 0). It turns out that each of the other terms can be bounded.
By Lemma[2.4] Lemma[2.5] Lemma [2.6] and Lemma[2.7)below, together with the union bound, the
theorem is proved. O

Before proving the lemmas directly, we first show a bound on the spectral norm of the matrix Py 2) —
Py. Recall that V is the true underlying subspace containing the points and the query, while U(?)
is the subspace spanned by the columns of the perturbed matrix A. Thus, bounds on the spectral
norm of the difference between these two projection matrices can be expressed in terms of the noise
o as follows. For this, we use well-established results from Numerical Analysis, namely, the sin ©
theorem by (Davis and Kahan| [1970) and the corresponding theorem for singular subspaces due to
(Wedin, [1972)), which is stated as Lemma@]below:

Lemma 2.2 ((O’Rourke et al., 2018, Theorem 19)). Let B be a real d x n matrix with singular
values s1 2> ... 2> Smin(d,n) = 0 and corresponding singular vectors vy, ..., Vmin(d,n)- Also, let E
be an d x n perturbation matrix. Let s} > ... > smm( dn) > 0 denote the singular values of B+ E
with corresponding singular vectors v, . .. ménin(d ) Suppose the rank of Bisr. For1 < j <,
let V; and V be the subspaces spanned by {v1,...,v;} and {v},...,v;}. Then, if Vj and V] are
both j dimensional spaces, the following holds for the (principal) angle between two subspaces:
2||1El]

sin Z(V;,V!) ;= max min  sin Z(v,v’) = HPVj —PV/H <
! 55 7 8j+1

Jr "y UEVj,'U?éO’U'EV}/,v’#O P
where sp4+1 = 0.

The bound in Lemma|2.2)is in terms of the || E|| term, which is the spectral norm of the perturbation
matrix. To use this, we need an upper bound on ||E||. For this, we use a well-known result from
Random Matrix Theory:



Lemma 2.3 ((Rudelson and Vershynin, 2010, Equation 2.3)). Suppose all entries of a d X n matrix
E are sampled from N (0, 0°) i.i.d. Then the following holds for any t > 0:

Pr [HEH > a(vn 4+ Vd) +t] < 2exp (;;) .

Lemma 2.4. Assume that n > d, and B® has rank k. Then for all 1 < j < n/2, the following
holds with at least 1 — ﬁ probability:

10002%n

2
[

2
=]
Lemma 2.5. Assume k > Innandn > d. Then ’HPU(Q)C'(Da:j | |2 — 2k02‘ < 40vIn nvko? holds
Jorall1 < j <n/2 withat least 1 — # probability.
Lemma 2.6. Assume n > d, and B® has rank k. Then, forall 1 < j < n/2, the following holds
with at least 1 — 5~ probability.:

2n2

4o/n

T
[T B (Py) = Py)BVa | < - (BT

el

Lemma 2.7. Forall 1 < j < n/2, the following holds:
‘x?B(l)TPU<2)ij‘ <30 ‘ ‘B(l)xjH Vinn
with at least 1 — ﬁ probability.

We now use Lemma[2.1]to prove the following corollary, which quantifies the noise level tolerance
needed for a (1 £ O(e))-approximation of the distance:

Corollary 2.8. Suppose the noise o satisfies:
r<min (| MBI el el
240 (klnn)l/4"  75/n 36vInn

() =]

forall1 < j < 3 with at least 1 — % probability. Similarly, the above holds for A and B®).

Then, we have

2
[Py AW || — 2102 € [(1 = %) HB“)%-‘

We now provide the proof of Theorem [I.1] which offers the theoretical guarantee for our main
algorithm:

Proof. Our algorithm returns the index j corresponding to the minimum value found across two
parts of the minimization: min;<;<, 2 ||PU<2)A(1)xj|| and min, /24 1<j<n ||PU<1)A(2)xj_n/2||.
Without loss of generality, assume that the first column of B (corresponding to p;) is the nearest
neighbor to the query point ¢, and | ’B Mgy | | = 1. The proof then needs to show that the algorithm

Suppose our algorithm returns an index j* from the first part of the minimization, where 1 < 5% <
n/2. By the algorithm’s logic, this implies:

2
HPU(’-’)A(l)l‘j* — 2ko? < HPU(z)A(l)J)l H — 2ko2.

Since the noise level o satisfies the conditions of Corollary 2.8] we have:

2 2
(=550 < 0 < a5 15 0
This implies
2 14¢/3 2
B || < HB H (1 M H .
H Gl =12 e/3 +e) o

Thus, the desired result is obtained. If our algorithm returns an index j* from the second part of the
minimization, a similar argument establishes the correctness of our algorithm. [



2.3 DISCUSSION

Our work shows recovery even when the noisy nearest neighbor has changed, whereas (Abdullah
et al., 2014)) operates in a regime where the NN is preserved despite the noise, which is a key
conceptual distinction. However, Theorem [I.1]shows that our algorithm can also be affected by the
spectral property of the data matrix. We discuss several aspects of this difference in comparison to
the prior work, as well as other aspects of our algorithm below.

si(B) term in Theorem Our noise bound for o depends not only on O(k~1/*) but also on
the term s, (B)/y/n. One might wonder if this term diminishes as the number of data points n
increases, thereby weakening our central claim that o = O(k~'/*). However, s(B) is a property
of the entire d x (n + 1) data matrix B. As n increases, the matrix itself grows, and its singular
values are generally expected to grow as well.

More precisely, for a data matrix B whose columns (the data points) have a reasonably constant
average norm, the squared Frobenius norm HBH% = ZZ j Bf ; will grow approximately linearly
with n. Since the squared Frobenius norm for our rank-k matrix B is also equal to the sum of
its squared singular values, i.e., ||B ||2F = Zle 5;(B)?, this growth must be distributed among
the singular values. Furthermore, if the data matrix B is well-conditioned—meaning its singular
values are not pathologically distributed and the data points do not collapse onto a lower-dimensional
subspace—then individual singular values are expected to scale proportionally to || B|| . = O(y/n).
Therefore, for well-conditioned data, the ratio s;(B)/y/n is expected to converge to a non-zero
constant rather than decay to 0. An example of a well-conditioned matrix family is a random matrix
where each entry is sampled independently and identically from a random variable with mean 0,
variance 1, and finite fourth moment (Bai and Yin, [1993). They proved that for such an m x n
matrix (m < n), the smallest singular value is almost surely (1 — /m/n)?. The assumption that
the data matrix is well-conditioned is standard for many real-world, high-dimensional datasets.

Comparison to Prior Work (Abdullah et al., 2014). Prior work, unlike our algorithm, does not
require any assumption on the singular values of the (latent) data matrix. However, this generality
comes at the cost of a much stricter noise requirement, where the noise level ¢ must be bounded
by an inverse polynomial in the ambient dimension d. By contrast, our approach introduces a de-
pendency on the data’s spectrum si(B) but achieves significantly improved noise tolerance with
respect to the intrinsic dimension k. Our contribution is therefore most impactful in the common
scenario where the ambient dimension d is very high, but the data lies near a low-dimensional, well-
conditioned subspace (i.e., large d, small k). We believe this represents a valuable and practical
trade-off.

Connection between Johnson-Lindenstrauss Lemma and Our Results. The upper bounds of o
in Theorem [T]depend on three terms. For the first term to be the smallest, our theorem requires k =
Q(Inn/e?). This term Q(Inn/e?) also appears in the standard Johnson-Lindenstrauss (JL) Lemma.
The JL. Lemma states that a random projection of n data points from a d-dimensional ambient space
into a k-dimensional subspace preserves all pairwise distances up to a (1 + ¢) multiplicative factor.
The JL Lemma thus establishes the required dimensionality for an oblivious random projection to
preserve the geometry of n points, where k& = Q(Inn/e?) is known to be the information-theoretic
complexity for the pairwise distance preservation problem.

Our result implies that for SVD to be an effective denoising strategy for NNS, the underlying sub-
space containing the true signal must itself have a complexity that scales in a JL-like manner. If &
were smaller than this threshold, the k-dimensional subspace would be too simple to robustly encode
the identity of the nearest neighbor against noise across all n points. In summary, the JL Lemma
focuses on dimensionality reduction (from d — k) using random projections. Conversely, our work
addresses denoising when the data already possesses a low intrinsic dimension k. We demonstrate
that if the data has this structure and k satisfies this fundamental complexity requirement, then us-
ing SVD enables accurate NNS recovery in a high-noise regime (o = O(k~1/4)), a regime where
standard JL would fail to preserve the nearest neighbor identity.



Matrix Split Ratio Choice. In our algorithm, we split the perturbed point set into two halves.
This 50-50 split ratio is actually a minimax optimal choice. The primary goal of splitting the data
is to obtain a set of learned singular vectors (e.g., spanning subspace U(2)) that are stochastically
independent of the noise in the data we intend to denoise (e.g., A(1)). The accuracy of this learned
subspace U as an estimate for the true latent subspace V' depends directly on the number of data
points used to compute it (i.e. (1 — p)n). A smaller partition size leads to a less stable SVD and a
larger error in the estimated subspace, as quantified by the bounds on || P2y — Py|| in our proofs
(Lemma [2.4). Note that the algorithm’s overall performance is limited by the weaker of the two
subspace estimations. Therefore, due to the inherent symmetry of our algorithm, the 50 — 50 split
maximizes the size of the smaller partition, thereby providing the most robust performance when no
prior information about the data’s structure is known.

Runtime of the Algorithm I} The running time of our methods just involves two SVD calcula-
tions on the two halves of the matrix, and using iterative methods, such as those in (Musco and
Musco, 2015), each can be done in O(ndk/min(1,/gap)) time, up to logarithmic factors, where
gap = Sr/Sk+1 — 1. For our recovery guarantees (Theorem , we require si(B) to be suf-
ficiently larger than o. Then we expect that si(A) ~ sg(B) and sgy1(A) ~ o, which implies
gap = S (A)/sk+1(A) — 1 will be large. This helps both for recovery and for the efficiency of the
SVD calculation. We then need to project the data onto the top & components we find, which is
O(ndk) time.

Requirement to Know the Intrinsic Dimension k. In our setting, we need to know k to run our
algorithm. In other words, choosing a cutoff ¥’ > k would imply s, = 0, yielding a vacuous bound.
However, real-world data is often full-rank with a decaying spectrum. In practice, selecting &' > k
is a valid heuristic to capture signal "leakage" into lower singular values without capturing the bulk
of the noise spectrum.

3 LOWER BOUNDS

In Theorem [1.1| we showed an algorithmic result for which o € O(1/kY/*) (tesp. o € O(e)). In
this section, we demonstrate that this dependence on k (resp. €) for o is optimal by establishing an
information-theoretic lower bound showing that o = O(1/k'/4) (resp. o € O(¢)) is necessary. We
prove this hardness result for a computationally easier problem than the one we have addressed. Let
P1s- -, Pn,q be points in R*. We note that reducing the dimension of the ambient space only makes
the problem easier in our reduction. Let 61, ..., d,,d, be noise vectors where each component is
drawn independently and identically from N (0, o). We observe the perturbed points: p; = p; + J;,
and G = q + dq.

3.1 DEPENDENCE ON THE SUBSPACE DIMENSION k

The following sequence represents a reduction from the original problem to our target problem.
Specifically, we are starting from our NN recovery problem and making the problem instance easier
for any potential algorithm to solve. If we can prove that even this simplified, easier problem is
impossible to solve reliably, it immediately implies that the original, harder problem (with the larger
gap) must also be impossible to solve. We assume € > 0 is a fixed constant throughout this chain of
reductions and each step introduces at most a constant change in parameters.

* Given p1, . .., Pn, G, there is a unique index j* such that ||g — p;-
satisfy ||g — p;|| > 1 + ¢. The goal is to output j*.

< 1. All other points

* Given py, P2, the goal is to distinguish between the two cases: (i) p; = 0 and ||p2|| > 1, or
(i) [|p1|] > 1 and p; = 0.

* Given pi,pe, the goal is to distinguish between the two cases: (i) p1 = 0 and py ~
N(0, £1x), or (i) p1 ~ N(0, £ 1) and po = 0.

To show the reduction from the first problem to the second, we show that the second problem is
a special case of the first: Consider the case where the first problem hasn = 2, ¢ = 0. If p; =
0, ||p2|| > 1, the only correct answer to NN is py (ps is not a valid answer). If ||p1|| > 1,p2 = O, the



only correct answer is 2. The final reduction step is based on the concentration of the chi-squared
distribution. For asymptotically large k, this concentration implies that any p ~ N (0, %I %) has a
norm that is almost 1 except with exponentially small probability.

The following lemma is a hardness result for the last problem:

Lemma 3.1. Suppose X,Y are random vectors in R¥, where X ~ N(0,0%I;) andY ~ N(0, (c%+

). If o € w(1/kY*), then given the unordered pair {X,Y }, no test can tell which distribution
the sample came from with high probability.

3.2 DEPENDENCE ON THE DISTANCE GAP ¢

In a similar way as in Section we reduce the original NN recovery problem to a computation-
ally simpler one to facilitate hardness analysis. The problem reduction details are available in the
appendix. We only give the final lemma below:

Lemma 3.2. Suppose X,Y are random vectors in R¥, where X ~ N(ey,02I},) and Y ~ N((1 +
g)er,0%ly). If o € w(e), then given the unordered pair { X, Y}, no test can tell which distribution
the sample came from with high probability.

4 EXPERIMENTS

In this section, we implement and evaluate our main algorithm. First, we show that it empirically
outperforms the naive algorithm, suggesting that the denoising effect of the SVD is significant.
Second, we demonstrate that our analysis in Corollary is tight with respect to the parameter

4.1 EXPERIMENTAL EVALUATION

We first describe the details of our initial experiment. Our main algorithm is simple to implement.
As a baseline, we compare it against a naive algorithm that selects the index minimizing || Ax;||
over 1 < j < n, where x; = ep4+1 — €;. This naive method is affected by the ambient space R
when determining the noise threshold o required for successful recovery, while our main algorithm
depends only on the latent subspace dimension k (specifically, o = O(k:_l/ 4)). Note that this naive
method does not mean the algorithm in the (Abdullah et al., | 2014). We could not use them as a base-
line because their time and space complexity made implementation infeasible for our experimental
setup.

We evaluate our algorithm on two real datasets from different domains: one image-based and one
text-based. Throughout the experiments, we fix the parameters as follows: n = 3000, £ = 30, and
€ = 0.05. For a given dataset and fixed noise level o, we perform 100 queries to compute the success
probability. As our algorithm is efficient and simple to implement, all experiments were conducted
on a CPU with an M1 chip and 16 GB of RAM. We give the full details of our datasets.

1) GloVeﬂ: This is a set of pre-trained word embeddings where each English word is represented
by a high-dimensional real vector. We use the GloVe Twitter 27B dataset, which provides 1193 514
word vectors of dimension 200. We randomly sample n = 3 000 to construct the data matrix B.

2) MNIS'IE]: MNIST consists of 70 000 images of handwritten digits (0-9) in grayscale, of which
60 000 are training and 10 000 testing. Each image is 28 x 28, yielding a 784-dimensional vector of
pixel intensities. We sample n = 3 000 training images (flattened to d = 784) as data points.

Preprocessing. To align the real-world datasets with our theoretical model, we first performed a
rank-k approximation on the data matrix B. We then selected queries and rescaled the data to
ensure the nearest neighbor was at distance 1 and all other points were at least 1 4+ ¢ away. The full
preprocessing details are available in the appendix.

Results. Across both datasets, our main algorithm consistently outperforms the naive algorithm
across the full range of ¢ values. In particular, the failure threshold—the smallest o at which NN

Thttps://nlp.stanford.edu/projects/glove/
Zhttp://yann.lecun.com/exdb/mnist/
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Figure 1: Performance comparison on two real-world datasets (left) and analysis of the noise thresh-
old’s dependence on the singular value s (B) (right).

recovery becomes unreliable—is significantly higher for our algorithm. We observe two character-
istic noise regimes: one where the noise is too small to affect the NN, and another where recovery
is information-theoretically impossible. Between these extremes lies a meaningful intermediate
regime in which the performance of the two algorithms diverges. In this regime, the performance
gap is more pronounced when the ambient dimension d is large. The qualitative results are con-
sistent across both image (MNIST) and text (GloVe) domains, indicating cross-domain robustness.
These results illustrate the practical benefits of our approach.

4.2 DEPENDENCE ON s;(B)

We now describe the details of our second experiment. While the analyses in Sections [2] and [3]
characterize the algorithm’s performance in terms of the subspace dimension k£ and the distance
gap &, it is also of interest to examine its dependence on si(B). In Corollary we showed that
our algorithm exhibits a linear dependence: ¢ = O(si(B)). Our empirical results confirm these
dependencies, suggesting that the analysis is tight.

Data Generation. For the second experiment, we generated synthetic data to analyze the algorithm’s
dependence on sj(B). We constructed the data matrix B via an SVD-based approach, allowing us
to explicitly control its singular values. A subsequent procedure was used to embed a query and
its nearest neighbor to satisfy the 1 + ¢ distance gap condition. A detailed description of the data
generation process can be found in the appendix.

Results. In this plot, we observe a clear linear dependence on each parameter across the full range of
0. The noise threshold is defined as the value of o at which the success probability first drops below
90% for a given parameter setting. For each parameter configuration, we repeat the experiment 100
times to estimate the success probability. These results demonstrate that our theoretical analysis is
tight. Note that this does not imply the optimality of our algorithm with respect to s (B).
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A  SUPPLEMENTARY MATERIAL

A.1 POSTPONED PROOFS

A.1.1 PROOF OF LEMMA[2.4]
Proof. BM’s columns all lie in V. So, 5341 (B()) = 0. Thus, instantiating Lemma 2.2| gives:
2[jc®|

‘|PU(2)_PVH< (B(2))

3)

Note that C®) isa d x (% + 1) matrix. Applying Lemma[2.3|with t = 01/21In(8n?) gives:

2||Cc@| 20 [n 8o\/n
Py — Pyl < < 14+ 4/21 2 4
[Py vl < sh(B®) = 5:(B®) <\f+ -1+ n(8n?) ) il B(2 ) “)

with at least 1 — W probability (using n > d, 10). In conclusion, the lemma is proved as follows:
2 1000 n 2 1
_ Wy o
Pr [H(PU(Q) Py)BWg; 25 HB ;i } >1-
forall1 < j <mn/2. O

A.1.2 PROOF OF LEMMA 2.3

Proof. From the definition of C(!) and ;, the vector y := CVx; € R? is just a summation of two

Gaussian random vectors. Thus, y ~ N(0,2021,). Also, for any basis {u1, ..., u;} of col(U(z)),
since P2 is a projection matrix, the following holds:

2 k
HPU(Q)C(l)IjH = Z (u?y)2 .

Note that P2y and C (1) are stochastically independent (since Psy,;; depends only on C'®) and not
on CW), Since y ~ N(0,20%1,) is spherically symmetric, its entries X; = u} y are independent
N(0,20?) random variables. Hence
X\’
) =20°Z
V202

k k
> () = X =207 (

Where Z ~ x3. Now we can apply the Laurent-Massart tail bound (Laurent and Massart, 2000) for
x?2 distribution.

Va > 0,Pr [|Zf k| > 2vkx+2x} <e "

Setting = 6 1nn, using the Laurant-Massart bound and taking the union over j = 1,2,3...n/2
gives us the Lemma. O

A.1.3 PROOF OF LEMMA [2.6]
Proof. We have

HB(DT%T(PUm - PV)B(I)%‘H < ||Pye — Pyl| HB(D%‘W- )
Applying (@) to the right hand side, the proof completes. O
A.1.4 PROOF OF LEMMA[2Z7]

Proof. Lety = x?B (1)TPU<2). y and C (1):10]- are stochastically independent (Recall that B is not
random, but, a fixed matrix.) So, yC (1)xj is a real-valued Gaussian random variable ith distribution

N(0,2y]|* o2). < ||B(1)xj || since Py is a projection matrix. Now, the Lemma
follows by standard Gaussian tail bounds.

O

12



A.1.5 PROOF OF LEMMA [3.1]

Proof. We want to calculate the KL divergence between two distributions. Let P, = N (0, 021y)
and P, = N(0, (02 + 1)Ix). We evaluate this by computing the KL divergence between the joint
distributions Ry (z,y) = Py(z)P2(y) and Ra(x,y) = Pa(x)Pi(y). Note that these two distribu-
tions differ only by a swap. Since the KL divergence is additive for independent distributions, the
following holds:

Dk (Ri||R2) = Drr(P1||[P2) + Dxr(Pa||P1).

The formula for the KL divergence between two multivariate k-dimensional gaussian distributions
Q1= N(p1,%1) and Q2 = N (2, X2) is:

1 X _ _
Dia(@il1Qs) = 5 [log (22 = ko (£ B1} + i = )57 o = )

Using the above formula, we get

o+ (1/k) o?
=klog ——— L 7 - -
2DKL(R1HR2) k og o2 k+k02 n (l/k})
2
o
klog————— —k+k (14 (1/ko?
tklog 5y — (1+ (1/ka?))
1 1 1
k+k1+(1/k‘02)+k+02_k04’

usin +n) < 1-n+ orn € . eretore, the 1vergence approaches U when
ing 1/(1+mn) < 1—n+n?forn € [0,1]. Therefi he KL diverg pproaches 0 wh

o = w(k~'/*). This means that it becomes impossible to determine which distribution the observed
vector came from as k grows large. O

A.1.6 PROOF OF LEMMA [3.2]

Proof. Translating both distributions by —e; and scaling by 1 /0 reduces the problem to distinguish-
ing N(0, I;) from N((e/o)e1, It;) while preserving distinguishability. Because the coordinates are
independent and identical except for the mean shift in the first coordinate, the optimal test depends
only on the first coordinate. Thus, the task is equivalent to distinguishing the 1-dimensional Gaus-
sian distribution N (0,1?) and N(g/c,1?). According to (Devroye et al., 2023), the total variation
distance between two one-dimensional Gaussian distributions with unit variance is at most half the
difference of their means. Therefore, dry (N(0,1%), N(£,1?)) < £, which implies that based
on the observed vector, it becomes impossible to determine which distribution it came from as
£ 0. O

A.2 POSTPONED DETAILS

A.2.1 COMPARISON OF NOISE TOLERANCE REGIMES

Noise Regime = Magnitude Random Projection |Abdullah et al.|(2014) SVD (Ours)

o< 1/Vd o(1) v'Succeeds v'Succeeds v'Succeeds
occO0(1/d"Y) =oVd x Fails v Succeeds v'Succeeds
occO(1/k'* =~oVd x Fails x Fails v Succeeds
o>1/ k14 ~ ovd x Fails x Fails x Fails (info-theoretic)

Table 1: Comparison of Noise Tolerance Regimes. SVD succeeds in the “Intermediate” regime
where the noise norm is large enough to break Random Projections (RP), but structured enough to
be filtered by SVD.
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A.2.2 PROBLEM REDUCTION DETAILS FOR SECTION[3.2]

The following describes the original problem and the simplified target problem:

* Given py, ..., Pn, §, there is a unique index j* such that ||g — p;«|| < 1. All other points
satisfy ||¢ — p;|| > 1 + €. The goal is to output j*.

* (n =2 and g = 0) Given py, p», there is a unique index j= such that |[p;.|| < 1. The other
point satisfies ||p;|| > 1 + €. The goal is to output j*.

* (Fix the data generation process) Given p1, p2, distinguish between the two cases: (i) p; =
e and py = (1 + €)eq, or (ii) p1 = (1 + €)ey and p2 = e;.

A.2.3 PREPROCESSING DETAILS FOR SECTION [4.1]

Our theoretical guarantees assume that the data lies entirely in a k-dimensional subspace, which
does not strictly hold in real datasets. However, both datasets exhibit low intrinsic dimensionality,
as indicated by the decay of their singular values. To align with the theoretical assumptions and
highlight performance within a low-rank subspace, we apply a rank-k approximation to the sampled
matrix B by retaining only its top k singular components. This transformation preserves the essential
structure of the data while making the setup consistent with our analysis.

For each dataset, we generate 100 query points by projecting held-out data onto the rank-k subspace
and selecting points whose nearest-to-second-nearest neighbor distance ratio is just above 1+¢. Due
to the dataset structure, all GloVe vectors are eligible as query candidates, while for MNIST, queries
are sampled from the test set. After that, each column is rescaled such that the NN lies exactly at
distance 1 from the query point, and i.i.d. noise N (0, 0?) is added. Finally, we randomly shuffle the
first 7 columns to ensure that both B(") and B(®) have rank k, as required by Theorem|1.1

A.2.4 DATA GENERATION DETAILS FOR SECTION [4.2]

Unlike in the first experiment, this experiment is conducted on randomly generated datasets. The
purpose here is to find concrete examples that clearly reveal the linear dependence of our algorithm
on si(B). We fix the parameters as follows: n = 200, d = 100, k¥ = 10, and e = 0.05. To study
the dependence on s (B), we start with the SVD decomposition B = XYY T, where X and Y are
orthogonal matrices randomly generated via QR decomposition of random Gaussian matrices. The
singular values of B are controlled by setting the diagonal entries of 3.

However, the resulting matrix B = XYY T may not automatically satisfy the distance gap condi-
tion—that is, the requirement that the NN lies at distance exactly 1 from the query point, and the
second NN is at distance at least 1 4 €. To enforce this condition, we proceed as follows. We first
generate the first n — 1 columns of B using the above procedure.

Then, we sample a random direction « that lies in the intrinsic k-dimensional subspace V. Essen-
tially, we embed the query point ¢ = ¢;4 and the n-th point p,, = to@ in the space for some scalars
t1 and to. The value ¢; is set by starting from +oo and decreasing it until the distance between the
nearest neighbor among the other n— 1 points and ¢1 @ becomes 1+ €. Then, we setto = t1+1/||d]],
which makes the distance between the query point and this n-th point exactly 1. This construction
makes the query point, its nearest neighbor, and the origin collinear. While one could add noise to
these points to avoid this artificial colinearity, we believe it would not affect the performance of the
algorithms in our context.
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