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Abstract. Calibration, the property of producing predicted probabil-
ities that reflect true likelihoods of outcomes, is a relevant attribute
of medical image computing models and a key requirement in clinical
decision-making. However, empirical Calibration Error (CE) estimates
suffer from instability in data-scarce scenarios. Here, for any existing CE
we propose a Multi-Rater version of it (MR-CE), a wrapper over conven-
tional calibration metrics, which provides a new strategy for estimating
a CE that effectively addresses this limitation in situations where there
are multiple annotations per sample. MR-CEs offer more consistent esti-
mates of calibration errors by leveraging the consensus and disagreement
among multiple annotators to generate virtually extended test datasets,
more robust to typical binning artifacts. We evaluate a MR version of the
popular Expected Calibration Error (ECE), and also of the more recent
Kernel Density Estimation-ECE (kdeECE), in a comprehensive set of
classification and segmentation problems, demonstrating improved sta-
bility compared to their single-rater CE counterparts. Specifically, we
show that MR-CEs achieve a reduced variability as the test set size de-
creases across all analysed datasets. Our findings emphasize the critical
role of modelling inter-rater variability not only for training but also for
evaluating medical image analysis models, in particular when studying
the calibration of modern neural networks.

Keywords: Model Calibration · Uncertainty Quantification · Multi-
Rater Modelling.

1 Introduction

Calibration refers to the ability of a model to formulate probabilistic predictions
aligned with its own accuracy, ensuring that lower predictive confidence is truly
related to less likelihood of being correct. In clinical contexts, where decisions
often hinge on a model’s probabilistic outputs, poorly calibrated predictions can
lead to overconfidence in incorrect classifications or underutilization of accurate
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Fig. 1: As the test size decreases, conventional empirical estimates of Calibration
Error (ECE, left) become highly unstable. In contrast, adding multi-rater infor-
mation (MR-ECE, right) makes the estimates robust to decreasing test set size.

models [4]. This is significant in medical image analysis tasks, where data vari-
ability and imbalance, or inter-rater differences introduce unique challenges [16].

Calibration is not a binary property of a predictive model, but rather there
is a wide variety of miscalibration modes. For example, a model could be ex-
tremely accurate with low confidences, exceedingly overconfident but inaccurate,
or anywhere in between. Measuring the degree of miscalibration is a far from
straightforward process, since we need to estimate its accuracy at each level of
confidence, and some regions of the confidence space can be very sparsely pop-
ulated [13]. In order to improve calibration error estimates, we would need to
have large quantities of test data with a representative spectrum of model con-
fidences associated to it, which is often unfeasible. On the other hand, common
calibration measures have been shown to be fragile and unstable with respect to
the size of test data [6], as illustrated in Fig. 1. Therefore, developing better cal-
ibration error metrics is a critical step in order to build more robust uncertainty
quantification techniques in data-limited scenarios.

When compared to improving model calibration, the problem of measuring
calibration error has traditionally been much less explored. Estimating a Calibra-
tion Error (CE) requires comparing model confidence with accuracy by grouping
test samples based on confidence levels. The Expected Calibration Error (ECE),
detailed in the next section, uses equal-width binning of confidence values and is
the most widely used approach due to its simplicity. However, it has been shown
to produce biased estimates, leading to various alternative CE measures. Nixon
et al. [13] improved error robustness by discarding extreme-confidence samples,
while Roeloffs et al. [15] reduced statistical bias by using equal-sized bins instead
of equal-width ones. Arrieta-Ibarra et al. [2] reformulated ECE using cumulative
probability distributions. Other approaches address binning sensitivity through
Proper Scoring Rules [5] or Kernel-Density Estimators [14,24]. A separate fam-
ily of methods relies on statistical (frequentist) testing [22]. For instance, Tygert
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et al. [18] analyzed cumulative differences between sorted confidence scores and
corresponding labels, comparing them to Brownian motion. Similar statistical
techniques have been developed for machine learning models [2,19].

In this work, we propose to make use of multi-rater annotations to improve
CE estimates. Data labelled by multiple annotators is often present when re-
searchers need to control for inter-rater variability [8], or when the training data
is suspected to contain noisy labels [3]. In these cases, test data is typically ac-
quired by collecting several opinions, and then forming some sort of consensus
that is taken as the gold-standard [1,20]. Instead of using prevalent merging tech-
niques [20], we argue that for a given sample, treating each label independently
results in richer, more representative test sets. Our experiments on a wide range
of medical image analysis datasets and tasks show that this simple observation
allows to formulate a multi-rater version of common calibration errors which is
noticeably more robust to the size of the test set, even when data is scarce.

2 Methodology

2.1 Notation, Definitions, and Problem Formulation

We consider a binary classifier U trained on samples (x, y), where x is an image,
and y ∈ {0, 1} is its category. Often, binary classifiers are built as models with
a single numerical output, U(x) = c ∈ [0, 1]. This number is typically referred
to as confidence, and interpreted as a probability for x to belong to the positive
class. However, it is not necessarily the case that c ≈ p(y = 1|x), and when this
property does not hold we say that the model is miscalibrated.

There is a continuous spectrum of miscalibration degrees a model can suffer,
often referred to as its Calibration Error. Unfortunately, measuring the gap
between model confidence and actual probabilities is a deceptively complex and
brittle process, due to finite-sample limitations. Firstly, (mis)calibration must be
measured on held-out data that has not been used for training, to avoid biased
estimates. Second, since we cannot estimate p(yi = 1|xi) over a single item xi,
we need to group samples. If we use M uniformly distributed bins Bm, we end
up with per-bin average confidences and positive proportions defined as:

conf(Bm) =
1

bm

∑
x∈Bm

c(x), pos(Bm) =
1

bm

∑
x∈Bm

1(x), (1)

being 1(x) a characteristic function returning 0 unless yx = 1, in which case it
takes a value of 1. These can then be used to define the Expected Calibration
Error, the most popular empirical estimate of a model’s CE.

ECE(Xtest) =

M∑
m=1

bm
M

|conf(Bm)− pos(Bm)|. (2)

There are multiple ways of extending Eq. (2) to a multi-class setting, the
most favoured being to consider a model’s prediction as the category with max-
imum probability ŷ = argmax(ci), define its confidence as that probability, and
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compare bin-wise accuracy (acc(Bm) = 1
bm

∑
x∈Bm

1(yx = ŷx)) to confidence:

ECE(Xtest) =

M∑
m=1

bm
M

|conf(Bm)− acc(Bm)|. (3)

When measuring calibration for segmentation problems, these are often con-
sidered as pixel-wise classification tasks and the above definitions remain valid.
Unfortunately, and regardless of the considered problem, there is often conflict
between increasing M , therefore building narrower bins (which would result in
finer but less robust accuracy estimates), and decreasing M , thereby reducing
bin resolution, obtaining more robust probability estimates, but paying the price
of coarser confidence bands. Several alternative ways of estimating calibration er-
rors have been proposed in the literature, e.g. replacing binning and histograms
by kernel density estimates (kdeECE, [14]), or computing a CE class-wise in
a one vs rest manner and then averaging the result (cwECE, [10]). However,
the limited size of test sets in machine learning problems remains a challenge
for any kind of CE estimation. In the next section, we introduce a simple but
extremely effective procedure to improve the robustness of calibration error es-
timates whenever there is data annotated by multiple raters.

2.2 Leveraging Multiple Annotations to Improve Calibration Error
Estimates: Multi-Rater Calibration Error

Let us consider a scenario where each sample x in the test set has multi-rater
annotations {y1, ..., yRx}, being Rx the number of raters who annotated sample
x. In our discussion, Rx can vary with respect to each sample, and we do not
assume that we know the identity of each annotator; indeed, different subsets of
annotators from a large pool of raters may label the data without affecting our
approach. We also do not assume that any annotator has greater skill or expertise
than the other, but rather all labels are equally valid. In other words, they can
be regarded as samples of a posterior distribution of the true ground-truth, with
a higher dispersion reflecting greater aleatoric uncertainty. Finally, we ignore
potential dependence structures between samples and multiple annotations. This
is a strong assumption, since knowing the label assigned by one rater to a sample
can affect the potential label a second rater will attribute to it. However, since
this happens in a sample-wise manner, we expect this kind of dependence to
affect estimation quality in a similar way across bins, limiting its impact.

The conventional approach to exploit multiple annotations would be to com-
bine labels in a particular way, e.g. using some consensus strategy, or smoothing
labels. On the other hand, the most important limitation for estimating the
calibration error is the size N of the test set, and merging annotations does
not address this issue. Instead, we propose to extend the definition of bin to
accommodate multiple, equally valid labels as follows:

BMR
m = {(x, yj) ∈ Xtest | c(x) ∈ Im, 1 ≤ j ≤ Rx}, (4)
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where (x, yj) denotes a test instance x paired with the label provided by the j−th
annotator, Xtest is the test dataset comprising all such (x, yj) pairs across all
instances and annotaors, c(x) represents the predicted confidence for instance
x, Im is the confidence interval corresponding to bin m, and Rx denotes the
number of annotators who labeled instance x.

In words, we do not fuse the multiple annotations associated to x, but rather
iterate the presence of x in the test set, each time with a different label. Although
“new” samples will share the same model confidence c(x), and therefore lie in
the same bin, each of them can have a different label yj , resulting in useful in-
formation to estimate pos(BMR

m ) or acc(BMR
m ) in Eqs. (2) and (3) more robustly.

Therefore, a binary Multi-Rater Expected Calibration Error can be written as:

MR-ECE(Xtest) =

M∑
m=1

bMR
m

M
|conf(BMR

m )− pos(BMR
m )|, (5)

with an analogous formulation for the multi-class MR-ECE.
Despite its simplicity, we argue that introducing new samples when estimat-

ing a CE effectively allow us to control the instability of that CE with respect
of the test set size. Note that we could directly build an MR counterpart of any
existing CE, since the idea of repeated sampling with different labels is indepen-
dent of the choice of estimate. It is also important to stress that an inter-rater
smoothing of labels would be far from straightforward to implement in this con-
text, as the terms pos(Bm) in Eq. (2) and acc(Bm) in Eq. (3) would become
ill-defined when using soft labels.

2.3 Evaluating Calibration Errors

In an experimental analysis, we would like to assess if a CE estimate (i.e., an
empirical approximation such as the ECE) approximates better the real (un-
kown) CE in the absence of enough test data. Of course, we only have access to
empirical estimates of the real CE, but we can safely assume that such estimates
will be better (or at least non-inferior) with more data. Based on this premise,
we propose to measure stability with respect to the test set size by observing
variation of an estimate as the number of test samples decreases. We achieve
this by measuring the Total Variation of the CE estimate: we define a uniform
partition [p0, p0+p, ..., 1−p, 1] of the unit interval, and a random subset of Xtest
of Xp

test consisting of a fraction p of the initially available samples (we typically
set p0 = 0.2 and p = 0.05, see Supp. Material). With this, we compute:

TV(CE) =
1

n

∑
p

CE(Xp
test)− CE(Xp−1

test ), (6)

where Xp
test denotes a randomly sampled subset of the test set containing a

proportion p ∈ [p0, 1] of the original data, and CE(Xp
test) is the calibration error

computed over that subset. The sum is taken over a uniform partition of the
interval [p0, 1] with step size ∆p, and n corresponds to the number of steps in
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Fig. 2: Samples of the different classification and segmentation datasets em-
ployed for validating the proposed MR-CE estimation strategy. (a) LIDC-IDR,
(b) CHÁKS.U/QUBIQ Brain Growth (top), MHIST (bottom), (c) CSAW-M.

this partition. TV(CE) gives us an understanding of the stability of a Calibration
Error estimate when the test set size decreases. if the CE is robust to smaller
quantities of data, its total variation should be less, but for a weaker CE estimate,
reducing test set size will produce estimates with greater variability, resulting in
a higher TV.

It is worth noting that how to measure calibration of segmentation models
is an open research question, with no clear answer in the literature. Simply
concatenating all pixels in all images of a test set and computing a classification-
like CE is a process bound to quickly saturate computational memory. The
obvious alternative is to compute a single CE estimate per image, and then report
the average. Then, each test image can be considered as an independent test set,
and issues such as class/foreground imbalance may bias estimates, leading us to
average apples with oranges in this situation. Despite these considerations, we
adopt the latter strategy since it is the most favoured in the literature [9].

3 Experimental Results

3.1 Datasets and Model Training

We conduct our evaluation on several binary/multi-class classification and seg-
mentation tasks over a variety of data, see Fig. 2. Further details are given below.

1) MHIST1, a histopathology dataset where seven experts label each image as
either Hyperplastic Polyp or Sessile Serrated Adenoma, a binary classification
task with significant inter-pathologist variability [21]. 2) CSAW-M2, which in-
cludes mammograms from over 10,000 individuals, annotated with eight mask-
ing categories [17]. Masking, caused by breast tissue density, can obscure tu-
mors in mammography. Test set mammograms are annotated by five experts.

1 https://bmirds.github.io/MHIST/
2 https://github.com/yueliukth/CSAW-M

https://bmirds.github.io/MHIST/
https://github.com/yueliukth/CSAW-M
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3) LIDC-IDRI3, containing CT scans with nodule locations, malignancy rat-
ings, and texture ratings from three to seven annotators [1]. In this dataset,
3D nodule textures are distributed into four different classes; we use 1011 le-
sions extracted with a 48×48×32 bounding cube. 4) QUBIQ4 spans multiple
subdatasets [12]: Brain Growth (34 multimodal MRI scans annotated by seven
raters), Brain Tumor (28 images across three tasks, labeled by three annota-
tors), Kidney (24 CTs with a single task, labeled by three annotators), and
Prostate (55 MRI cases, two segmentation tasks, annotated by six raters). We
do not use the QUBIQ-Pancreas 3d subdatasets due to inconsistent slice thick-
ness. The remaining QUBIQ subdatasets only contain 2d slices. 5) CHÁKS.U

5:
a dataset containing 1,345 retinal fundus images with optic disc and cup outlines
annotated by five expert ophthalmologists [11]. Cup-to-disc ratios are clinically
relevant for glaucoma diagnosis and show significant inter-rater variability [23].

For classification, we use ResNet architectures, with 3D inputs processed via
video-based variants where convolutional kernels incorporate the third spatial
dimension. For segmentation, we employ encoder-decoder nets with a ResNet50
backbone pretrained on ImageNet and a Feature Pyramid Network decoder [7].
Since our focus is on calibration rather than discriminative performance, we do
not optimize hyperparameters extensively. The only dataset-dependent design
choice is training length, and we adapt the number of epochs to the size of the
dataset. We use the n-adam optimizer to minimize a CE loss, with a batch size of
8 (4 for segmentation), a learning rate of 1e-4, and a cosine-decay schedule. We
apply early stopping to select the best model based on validation performance.

3.2 Numerical Analysis of the Stability of CE Estimates

We first conduct a visual evaluation of the stability of calibration error estimates
across three classification tasks, comparing the conventional CE with its Multi-
Rater version (MR-ECE). We also consider the Kernel Density Estimate-CE and
its MR counterpart. After training each classifier, we progressively reduce the
test set and compute both measures on the remaining data, expecting that a
robust CE estimate remains stable as test samples decrease. We see in Fig. 3
how both MR-ECE and MR-kdeECE achieve this, whereas standard ECE and
kdeECE exhibit sharp peaks and fluctuations.

To quantify CE stability with respect to test set size numerically, we com-
pute the Total Variation (TV) of each calibration measure in Table 1. In order to
obtain dispersion measures, we bootstrap 100 times the test sets by random sam-
pling with replacement, averaging results across iterations. Our results confirm
that MR-ECE and MR-kdeECE consistently achieve lower TV, reducing TV
by a factor of 1.5–4. Table 1 highlights MR-CE’s superiority, showing reduced
variability and stronger stability in low-data scenarios.

For segmentation problems, each test image served as an independent test
set, with CE estimates averaged to report mean and standard deviation. Total
3 https://www.cancerimagingarchive.net/collection/lidc-idri/
4 https://qubiq21.grand-challenge.org/participation/
5 https://doi.org/10.6084/m9.figshare.20123135

https://www.cancerimagingarchive.net/collection/lidc-idri/
https://qubiq21.grand-challenge.org/participation/
https://doi.org/10.6084/m9.figshare.20123135
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Fig. 3: ECE, kdeECE and their MR-versions computed as the test set size de-
creases for classification datasets MHIST (left), CSAW-M (middle), LIDC-IDRI.

Table 1: Total Variation for Single Rater (SR) and Multi-Rater (MR) Calibra-
tion Errors (ECE and kdeECE) for three classification problems.

MHIST CSAW-M LIDC-IDRI

ECE kdeECE ECE kdeECE ECE kdeECE

SR 0.25±0.06 0.47±0.01 0.32±0.07 0.41±0.06 0.13±0.03 0.26±0.05
MR 0.04±0.01 0.07±0.02 0.05±0.01 0.13±0.02 0.10±0.02 0.15±0.03

Table 2: Total Variation of the Single Rater (SR) and Multi Rater (MR) ECE.
Optic Disc/Cup (Cháks.u) and several binary segmentation tasks in QUBIQ.

Cháks.u Kidney Prostate T1 Prostate T2

SR 1.15±0.44 0.11±0.09 0.15±0.06 0.08±0.06
MR 0.54±0.20 0.01±0.01 0.01±0.01 0.01±0.01

Brain Growth Brain Tumor T1 Brain Tumor T2 Brain Tumor T3

SR 0.85±0.22 1.06±0.58 1.08±0.69 0.84±0.15
MR 0.69±0.21 0.50±0.08 0.94±0.18 0.40±0.02

Variation values for the ECE and the MR-ECE6 are shown in Table 2. They
follow the same trend as in classification, which again verify that the multi-
rater version of a CE provides a more reliable calibration measure as test data
availability decreases.

4 Conclusions and Future Work

In this work, we have introduced a new mechanism for estimating the Calibra-
tion Error (CE) of a model when multiple annotations are available, enabling

6 In segmentation problems, the kde-ECE was too memory-demanding to compute.
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a more nuanced approach to assessing performance of uncertainty estimates in
this particular scenario. Our proposed Multi-Rater Calibration Error (MR-CE)
virtually expands the size of the test set by independently considering each data
point with a different label as a single sample. As a consequence, an MR-CE
achieves greater robustness to small test set sizes than its single-rater counter-
part. Experiments on an array of medical image classification and segmentation
tasks support our hypothesis and confirm the greater reliability of our proposed
CE estimates. Another advantage of the proposed approach is that it is orthogo-
nal to the improvement of the adopted base CE empirical estimates. This means
that if a practitioner can design a superior CE estimator, they would still be able
to benefit from our method whenever they have data with multiple annotations.

With a more reliable CE measure established, future work will focus on
training methods that enhance model calibration using multi-label annotations.
Additionally, exploring new stability metrics for CE beyond TV will provide
deeper insights into their reliability across models and datasets. This research line
could refine model evaluation practices, leading to more robust and interpretable
assessment methodologies, especially in multi-rater scenarios.
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