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Abstract. With rapid advancements in machine learning, first-order
algorithms have emerged as the backbone of modern optimization tech-
niques, owing to their computational efficiency and low memory require-
ments. Recently, the connection between accelerated gradient methods
and damped heavy-ball motion, particularly within the framework of
Hamiltonian dynamics, has inspired the development of innovative quan-
tum algorithms for continuous optimization. One such algorithm, Quan-
tum Hamiltonian Descent (QHD), leverages quantum tunneling to es-
cape saddle points and local minima, facilitating the discovery of global
solutions in complex optimization landscapes. However, QHD faces sev-
eral challenges, including slower convergence rates compared to classical
gradient methods and limited robustness in highly non-convex problems
due to the non-local nature of quantum states. Furthermore, the orig-
inal QHD formulation primarily relies on function value information,
which limits its effectiveness. Inspired by insights from high-resolution
differential equations that have elucidated the acceleration mechanisms
in classical methods, we propose an enhancement to QHD by incorporat-
ing gradient information, leading to what we call gradient-based QHD.
Gradient-based QHD achieves faster convergence and significantly in-
creases the likelihood of identifying global solutions. Numerical simula-
tions on challenging problem instances demonstrate that gradient-based
QHD outperforms existing quantum and classical methods by at least
an order of magnitude.

Keywords: Quantum Optimization · Quantum Dynamics · Gradient-
Based Optimization

1 Introduction

In modern machine learning, a central challenge lies in unconstrained optimiza-
tion, particularly the task of minimizing a continuous objective function without
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any constraints. Mathematically, this problem is formulated as:

min
x∈Rd

f(x).

Efficiently solving such optimization problems is fundamental to a wide range of
machine learning applications. First-order optimization algorithms have emerged
as the cornerstone of this endeavor due to their computational efficiency and
low memory requirements. One of the simplest yet most widely used first-order
methods is the vanilla gradient descent, which updates iteratively according to:

xk+1 = xk − s∇f(xk),

where s > 0 denotes the step size. This method, though simple, serves as
the foundation for many modern optimization techniques. In the early 1980s,
a groundbreaking advancement was introduced by [27]: the accelerated gradient
method, now widely known as Nesterov’s accelerated gradient descent method
(NAG). This method revolutionized first-order optimization by achieving a faster
convergence rate compared to vanilla gradient descent. The iterative update rules
for NAG are as follows:

xk = yk−1 − s∇f(yk−1),

yk = xk + k − 1
k + 2(xk − xk−1),

where s > 0 is the step size. The key innovation of NAG lies in the introduction of
momentum, which effectively reduces oscillations in the optimization trajectory
and speeds up progress towards the optimal solution.

Fig. 1: Numerical comparison of successful probability across iterations for both
QHD and gradient-based QHD applied to the Styblinski-Tang function. PPP k de-
notes the success probability at iteration k.

Recent advancements have shed light on the mechanisms underlying the ac-
celeration of NAG, thereby effectively bridging the gap between its discrete up-
dates and the continuous dynamics of damped heavy-ball motion. One pivotal
contribution in this area is the introduction of the low-resolution ordinary differ-
ential equation (ODE) by [34], which characterizes the continuous limit of NAG
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as:
Ẍ + 3

t
Ẋ +∇f(X) = 0,

where the first derivative Ẋ represents velocity in classical mechanics. By trans-
forming this equation into its canonical form, we obtain:Ẋ = V,

V̇ = −3
t
V̇ −∇f(X).

This canonical form establishes the foundation for a variational perspective on
the acceleration phenomenon, which is articulated through the Bregman La-
grangian,

L(X,V, t) = 1
2 t

3∥V ∥2 − t3f(X), (1)

as introduced by [35]. Furthermore, employing the Legendre transformation, we
can convert this Lagrangian into its Hamiltonian form:

H(X,P, t) = 1
2t3 ∥P∥

2 + t3f(X), (2)

which paves the way for extending the analysis from classical dynamics to quan-
tum dynamics.

By transforming the classical momentum variable P to the quantum momen-
tum operator −i∇ within the Hamiltonian (2), [18] have pioneered a ground-
breaking algorithm, known as Quantum Hamiltonian Descent (QHD), which
defines the quantum dynamics through the following Schrödinger equation as

i∂tΨ(t, x) = Ĥ(t)Ψ(t, x), (3)

where the time-dependent Hamiltonian is articulated as5:

Ĥ(t) = 1
2

∥∥∥t−3/2(−i∇)
∥∥∥2

+ t3f(x). (4)

Let Ψ(t, x) : [0,∞) × Rd → C denote a quantum wave function, whose squared
modulus |Ψ(t, x)|2 represents the probability distribution of a hypothetical quan-
tum particle in Rd at any time t ≥ 0. For sufficiently large evolution time t, the
probability distribution is expected to concentrate near the low-energy config-
urations of the potential f , particularly around its global minimum. Measuring
the quantum state in the computational basis at such times yields a random
vector X ∼ |Ψ(t, x)|2, which is likely to lie close to the global minimizer of f ,
thereby approximately solving the associated optimization problem.
5 The original formulation of QHD allows a more general Hamiltonian: Ĥ(t) =

eαt−γt (−∆/2) + eαt+βt+χt f(x), where the Laplacian ∆ = ∇ · ∇, as given in Eq.
(A.24) of [18]. For simplicity, we specialize to the parameter choices corresponding
to the classical NAG, namely αt = − log(t) and βt = γt = 2 log(t).
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As a quantum algorithm, QHD is implemented by simulating the time-
dependent Hamiltonian (4), which relies only on oracle access to the function
values of f . Thus, QHD can be viewed as a quantum zeroth-order method. A
natural extension of QHD is to develop its higher-order variants that leverage
additional information such as the gradient of f , and to analyze whether such
extensions can enhance QHD’s efficiency on various continuous optimization
problems.

Inspired by the high-resolution ODE framework introduced by [31], where
the Lyapunov function is conceptualized as a form of energy or Hamiltonian
involving the interplay of kinetic energy and gradient, we propose a novel time-
dependent Hamiltonian as

Ĥ(t) =1
2

∥∥∥t−3/2(−i∇) + αt3/2∇f
∥∥∥2

+ β

2 ∥t
3/2∇f∥2 + (t3 + γt2)f(x). (5)

In this paper, we mainly investigate the Schrödinger equation (3) with the
gradient-based Hamtiltonian (5), termed as gradient-based QHD.

1.1 Warm-up: gradient-based QHD v.s. QHD

We provide a numerical example to illustrate the differences between gradient-
based QHD and standard QHD, both qualitatively and quantitatively. Fig-
ure 1 visualizes the probability distribution across iterations for both QHD and
gradient-based QHD, applied to the non-convex Styblinski-Tang function, which
features three local minima alongside a global minimum.

(a) Function value (b) Success probability

Fig. 2: Numerical performance comparison of various algorithms on the
Styblinski-Tang function.

Furthermore, Figure 2 demonstrates the numerical performance involving
function values and success probability. While QHD does not depict an obvious



Quantum Optimization via Gradient-Based Hamiltonian Descent 5

advantage against stochastic gradient descent with momentum (SGDM) [30,
32] and NAG, gradient-based QHD demonstrates a much more concentrated
solution distribution as the iterations progress, leading to an improved global
convergence. These findings motivate us to conduct a detailed investigation into
gradient-based QHD and its potential in continuous optimization.

1.2 Overview of contributions

Our contributions are listed as follows:

1. We propose gradient-based QHD for continuous optimization problems.
With a novel Lyapunov function approach involving quantum operators, we
provide a convergence analysis of gradient-based QHD in continuous time.
In particular, we establish the convergence rate of gradient-based QHD in
both function values (Theorem 1) and gradient norms (Theorem 2).

2. We develop a quantum algorithm that simulates discrete-time gradient-based
QHD to solve optimization problems (Algorithm 1). With a gate complexity
linear in problem dimension d, this quantum algorithm is readily scalable to
handle large-scale problems in practice.

3. In addition to the theoretical analysis, we conduct a numerical study to
evaluate the performance of gradient-based QHD in both convex and non-
convex optimization. Our results show that gradient-based QHD achieves
an enhanced performance compared to standard QHD and other prominent
classical optimization algorithms. In some cases, gradient-based QHD yields
solutions that are an order of magnitude better than those obtained by other
methods.

2 Gradient-based Hamiltonian dynamics

2.1 Classical Hamiltonian flows with gradient

Inspired by the Bregman Lagrangian [35] and the high-resolution ODE frame-
work [31], we propose to study the following Lagrangian function:

L(t,X, Ẋ) = t3

2 |Ẋ|
2 − αt3Ẋ⊤∇f(X)

− βt3

2 |∇f(X)|2 − (t3 + γt2)f(X),
(6)

where α, β, γ ∈ R are real-valued parameters that will be specified later. Com-
pared with the standard Bregman Lagrangian (1), our new Lagrangian func-
tion explicitly incorporates the gradient ∇f into the Lagrangian. This design is
motivated by the convergence analysis in the high-resolution ODE, where the
Lyapunov function can be interpreted as a generalized energy functional that
includes gradient information. More details are provided in Appendix B.2.



6 J. Leng and B. Shi

By applying the Legendre transformation, we obtain the Hamiltonian func-
tion associated with (6):

H(t,X, P ) = sup
Y

(
P⊤Y − L(t,X, Y )

)
= 1

2∥t
−3/2P + αt3/2∇f∥2

+ βt3

2 ∥∇f(X)∥2 + (t3 + γt2)f(X).

(7)

Thus, we derive the Hamiltonian dynamics:

Ẋ = ∂H

∂P
= 1

2t3P (t) + α∇f(X(t)), (8)

Ṗ = −∂H
∂X

=−∇2f(X)
(
αP + (α2 + β)t3∇f(X)

)
− (t3 + γt2)∇f(X).

(9)

Connection with high-resolution ODEs. It is worth noting that while our La-
grangian function shares certain similarities with high-resolution ODEs, they
are not equivalent. By substituting (9) into (8), and choosing

β/α =
√
s, γ − 3α = 3

√
s/2, (10)

we can transform the Hamiltonian dynamics to a second-order ODE:

Ẍ(t) + 3
t
Ẋ(t) +

√
s∇2f(X(t))Ẋ

+
(

1 + 3
√
s

2t

)
∇f(X(t)) =

√
s

2t3∇
2f(X(t))P.

(11)

Formally, the left-hand side corresponds to the high-resolution ODE derived
by [31] (for details, see Appendix B). The right-hand side of (11) is asymp-
totically vanishing as the momentum P eventually decays to 0.6 Therefore, we
expect the Hamiltonian dynamics to exhibit long-term behavior similar to that of
high-resolution ODEs; however, we leave a detailed analysis for future research.

Due to its distinctive properties, the proposed Lagrangian function is of in-
dependent theoretical interest. In this work, we deliberately do not restrict the
parameters α, β, and γ to the specific values associated with the high-resolution
ODE case (10). This flexibility allows us to explore a broader class of dynam-
ical systems, potentially leading to novel insights and improved algorithms for
continuous optimization.

6 Details are available in Section 3.
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2.2 Canonical quantization

We introduce canonical quantization, a standard procedure that maps a classical
Hamiltonian function to a quantum Hamiltonian operator. The Hamiltonian
operator serves as an infinitesimal generator of a quantum evolution, which will
be the core of our quantum optimization algorithms.

A classical-mechanical system is described by a Hamiltonian functionH(X,P, t).
In contrast, a quantum-mechanical system is governed by a quantum Hamilto-
nian operator Ĥ : L2(Rd) → L2(Rd). The canonical quantization procedure al-
lows us to translate a known classical Hamiltonian function to a corresponding
quantum Hamiltonian by the mapping:

xj 7→ x̂j , pj 7→ p̂j := −i ∂
∂xj

. (12)

Here, xj and pj are the position and momentum variables describing a classical
object living in a d-dimensional space Rd, respectively, with the dimension indices
i ∈ [d]. Correspondingly, x̂j and p̂j are the quantum position and momentum
operators acting on wave functions ψ(x) ∈ L2(Rd):

(x̂jψ)(x) = xjψ(x), (p̂jψ)(x) = −i ∂
∂xj

ψ(x).

Using this dictionary, we obtain the quantum Hamiltonian operator correspond-
ing to the Hamiltonian function (7):

Ĥ(t) = 1
2

d∑
j=1

A2
j + β

2 t
3∥∇f∥2 + (t3 + γt2)f, (13)

where for j = 1, . . . , d, the operator Aj is defined by

Aj = t−3/2p̂j + αt3/2v̂j , v̂jψ := ∂f

∂xj
ψ. (14)

with v̂j a multiplicative operator acting on a wave function ψ. Due to the non-
commutativity of quantum operators, the square of the operator Aj is expressed
as

A2
j = t−3p̂2

j + α{p̂j , v̂j}+ α2t3v̂2
j ,

where {A,B} := AB +BA denotes the anti-commutator of operators.
Given a quantum Hamiltonian operator Ĥ(t), the quantum evolution gener-

ated by the Hamiltonian operator is governed by the Schrödinger equation:

i∂tΨ(t, x) = Ĥ(t)Ψ(t, x), (15)

for time 0 < T0 ≤ t ≤ T , subject to an initial condition Ψ(T0, x) = Ψ0(x). The
quantum wave function Ψ(t) is complex-valued, and its modulus squared |Ψ(t)|2
corresponds to a probability density that characterizes the distribution of the
quantum particle in the real space Rd.
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Connection with the original QHD. In [18], the Hamiltonian was derived from
the Bregman Lagrangian via Feymann’s path integral technique. Our derivation
relying on canonical quantization takes a different yet complementary approach.
The resulting Hamiltonian operator Ĥ(t) naturally encompasses the original
QHD as a special case by choosing the parameters α = β = γ = 0.

3 Convergence analysis

In this section, we focus on the convergence results of the newly derived quantum
dynamics. Throughout this section, we assume f(x∗) = 0 and x∗ = 0. This can
always be achieved by considering the translated objective function f(x) ←
f(x+ x∗)− f(x∗).

3.1 Case 1: convergence to global minimum

First, we consider a simple case where no gradient norm appears in the Hamil-
tonian (13), i.e., β = 0. In this case, we can prove that the dynamics converge
to the global minimum of f .

Theorem 1. Let β = 0 and γ ≥ max(3α, 0) for any α ∈ R. For any 1/α ≥
T0 > 0, we denote Ψ(t, x) as the solution to the PDE (15) for t ≥ T0. Let Xt

be a random variable distributed according to the probability density |Ψ(t, x)|2.
Then, for a convex and continuously differentiable f , we have

E[f(Xt)] ≤
K0 + D0

t2 + ωt
, ω = γ − 3α ≥ 0,

where K0 = T−4
0 ⟨Ψ(T0)|(−∆)|Ψ(T0)⟩ and

D0 = E
[
∥∇f(XT0)∥2 + 4∥XT0∥2 + (T 2

0 + ωT0)f(XT0)
]
.

In other words, E[f(Xt)] ≤ O(t−2).

The convergence rate is proved by constructing a Lyapunov function E(t)
that is non-increasing in time. The Lyapunov function is defined by

E(t) = ⟨Ô(t)⟩t := ⟨Ψ(t)|Ô(t)|Ψ(t)⟩,

Ô(t) = 1
2

d∑
j=1

(
t−2p̂j + αtv̂j + 2x̂j

)2 +
(
t2 + ωt

)
f.

Here, ω = γ − 3α ≥ 0 because γ ≥ max(3α, 0).

Lemma 1. Let β = 0 and γ ≥ max(3α, 0). For any t > 0, we have Ė(t) ≤ 0.
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In Lemma 1, we prove that the function E(t) is non-increasing in time, as a
result,

t2⟨f⟩t ≤ E(t) ≤ E(T0) =⇒ ⟨f⟩t ≤
E(T0)
t2

.

Moreover, we note that

E(T0) ≤ ⟨Ψ(t)
∣∣∣∣ 1
T 4

0
(−∆) + α2T 2

0 ∥∇f∥2 + 4∥x∥2
∣∣∣∣Ψ(t)⟩

+ (T 2
0 + ωT0)⟨Ψ(t)|f |Ψ(t)⟩,

which proves Theorem 1.
The details of Lemma 1 is presented in Appendix D.2. The technical proof

heavily relies on the commutation relations between various non-commuting
quantum operators that appeared in the Lyapunov function. We summarize the
common commutation relations used in this work in Lemma 2, which might be
of independent interest in future work.

Lemma 2 (Commutation relations). Let Aj, pj, and xj be the same as
above. For any 1 ≤ j, k ≤ d, we have the following identities:

1. i[A2
j , f ] = t−3{pj , vj}+ 2αv2

j ,
2. i[f, {Aj , xj}] = −2t−3/2xjvj,

3. i[A2
j , x

2
k] =

{
2
t3 {pj , xj}+ 4αxjvj (j = k)
0 (j ̸= k)

,

4. i[A2
j , {Ak, xk}] =

{
4

t3/2A
2
j (j = k)

0 (j ̸= k)
,

5. i[v2
j , {Ak, xk}] = −4t−3/2

(
∂2f

∂xjxk

)
xkvj.

For the proof, please refer to Appendix D.1.

3.2 Case 2: convergence to first-order stationary point

We denote the function G(x) as the square of the gradient norm of f , i.e.,

G(x) := ∇f(x)⊤∇f(x) =
d∑

j=1

∣∣∣∣∂f(x)
∂xj

∣∣∣∣2 . (16)

Theorem 2. Let γ ≥ max(3α, 0) and β > 0. For any min(1/α,
√

2/β) ≥ T0 >
0, we denote Ψ(t, x) as the solution to the PDE (15). Let Xt be a random variable
distributed according to the probability density |Ψ(t, x)|2. Then, for a convex and
continuously differentiable f such that its gradient norm satisfies the following
identity:

G(x)−∇G(x)⊤x ≤ 0, (17)
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we have
E[∥∇f(Xt)∥2] ≤ 2 (K0 + D ′

0)
βt2

,

where K0 is the same as in Theorem 1 and

D ′
0 = E

[
2∥∇f(XT0)∥2 + 4∥XT0∥2 + (T 2

0 + ωT0)f(XT0)
]
,

where ω = γ − 3α. In other words, E[∥∇f(Xt)∥2] ≤ O(t−2).

Remark 1. A sufficient condition for the identity (17) is that G(x) is convex.
In this case, the global minimizer of G(x) must be x∗ and (17) holds. However,
this does not always require the objective function f to be convex. For example,
consider f(x) =

√
x for x > 0. While f is a concave function, G(x) = (f ′)2 = 1

4x
is a convex function for x > 0.

Similarly, the proof of Theorem 2 exploits a Lyapunov function approach.
We define

F(t) = ⟨Ĵ(t)⟩t := ⟨Ψ(t)|Ĵ(t)|Ψ(t)⟩,

Ĵ(t) = 1
2

d∑
j=1

(
t−2p̂j + αtv̂j + 2x̂j

)2 + β

2 t
2G+ (t2 + ωt)f,

with ω = γ − 3α ≥ 0. Due to the positivity of (t−2pj + αtvj + 2xj)2 and f , we
have

⟨∥∇f∥2⟩t ≤
2
βt2
F(t) ≤ 2

βt2
F(0),

where the last step follows from Lemma 3. This proves Theorem 2.

Lemma 3. Let γ > 0 and α ≥ max(β, 0). If (17) holds, we have Ḟ(t) ≤ 0 for
any t > 0.

The proof is left in Appendix D.3.

4 Quantum algorithms and complexity analysis

In this section, we study the time discretization of gradient-based QHD, which
facilitates the simulation of the quantum dynamics in a (fault-tolerant) quantum
computer.

4.1 Time discretization of the quantum Hamiltonian dynamics

Recall that the gradient-based QHD dynamics are governed by the differential
equation (15). Let U(t) be the time-evolution operator that maps an initial state
|Ψ0⟩ to the solution state |Ψ(t)⟩ at time t ∈ [0, T ], i.e.,

U(t)Ψ(0) = Ψ(t) ∀t ∈ [0, T ].
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Algorithm 1 Gradient-based QHD with fixed step size
Classical Input: Hamiltonian parameters α, β, γ, step size h, number of iterations
K.
Quantum Input: an initial guess state |Ψ0⟩
Output: a classical point ξ ∈ Rd.

Initialize the quantum register to |Ψ0⟩.
for k = 1 to K do

Determine tk = kh.
Implement a quantum circuit Uk as described in (18).
Compute |Ψk⟩ = Uk |Ψk−1⟩.

end for
Measure the final quantum state |ΨK⟩ with the position observable x̂ to obtain a
sample point ξ ∈ Rd.

Formally, the time-evolution operator can be obtained by a sequence of infinites-
imal time evolution of the quantum Hamiltonian Ĥ(t):

U(t) = lim
K→∞

e−ihĤ(tK)e−ihĤ(tK−1) . . . e−ihĤ(t1),

where K is a positive integer, h = t/K and tk = kh for 1 ≤ k ≤ N . Note that
the gradient-based QHD Hamiltonian can be decomposed in the form Ĥ(tk) =
Hk,1 +Hk,2 +Hk,3, where

Hk,1 = − 1
2t3k

∆, Hk,2 = α

2 {−i∇,∇f},

Hk,3 =
(
α2 + β

)
2 t3∥∇f∥2 + (t3 + γt2)f.

Therefore, we can further decompose a short-time evolution step using the prod-
uct formula (i.e., operator splitting):

e−ihĤ(tk) ≈ e−ihHk,1e−ihHk,2e−ihHk,3 . (18)

Since all the Hamiltonians Hk,1, Hk,2, and Hk,3 can be efficiently simulated
using a quantum computer, we obtain a quantum algorithm that implements
gradient-based QHD to solve large-scale optimization problems, as summarized
in Algorithm 1. In Appendix F, we give a detailed discussion on the choice of
the step size h.

4.2 Complexity analysis

Now, we analyze the computational cost of Algorithm 1. In our analysis, we
assume the quantum computer has access to the function f and its gradient via
the following quantum circuits:

Of : |x⟩ |z⟩ 7→ |x⟩ |f(x) + z⟩ ,
O∇f : |x⟩ |z⟩ 7→ |x⟩ |∇f(x) + z⟩ .
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The quantum circuits Of and O∇f are often called quantum zeroth- and first-
order oracles. They can be efficiently constructed by quantum arithmetic circuits
when the expressions of f and ∇f are known.

A crucial step in Algorithm 1 is to implement the quantum unitary oper-
ator Uk based on the operator splitting formula (18). We note that the sub-
Hamiltonians Hk,1 and Hk,3 are fast-forwardable, and the operator Hk,2 can be
simulated by invoking Quantum Singular Value Transformation (QSVT). Com-
bining these technical results together, we end up with the overall complexity of
the quantum algorithm, as summarized in Theorem 3.

Theorem 3. Let f be L-Lipschitz and |Ψ0⟩ be a sufficiently smooth function.
Then, we can implement Algorithm 1 for K iterations using O(K) queries to
the quantum zeroth-order oracle Of and Õ (αdhKL) queries to the quantum
first-order oracle O∇f and its inverses.7

The details proof of Theorem 3, including the efficient simulation of Hk,2 via
QSVT, is presented in Appendix E.

5 Numerical experiments

In this section, we conduct extensive numerical experiments to evaluate the
performance of gradient-based QHD and compare it with other prominent opti-
mization algorithms.

5.1 Experiment setup and implementation details

Let f : Rd → R be an objective function with gradient∇f(x). Given an optimiza-
tion algorithm initialized with a random sample drawn from a fixed distribution
ρ0, the algorithm’s output after k iterations can be represented by a random
variable Xk ∈ Rd. We denote E[f(Xk)] as the expectation value of the objective
function and E[∥∇f(Xk)∥2] as expected gradient norm at iteration k. To assess
the algorithm’s performance, we define the success probability after k iterations
as

Pk := P[f(Xk)− f(x∗) ≤ δ].

where δ > 0 is a pre-defined error threshold. For all the subsequent experiments,
we set δ = 1.

We remark that the iteration steps in gradient-based QHD (as shown in Al-
gorithm 1) are more intricate than those in classical methods such as SGDM and
NAG. As demonstrated in the proof of Lemma 6, the query and gate complexity
per iteration of gradient-based QHD scales as Õ(d). In contrast, each iteration of
7 Here, the Õ notation suppresses poly-logarithmic factors in the error parameter ϵ.

The parameter ϵ > 0 represents the error budget in the Hamiltonian simulation, as
detailed in Lemma 6.
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SGDM/NAG involves only a single query to ∇f , with a time complexity of O(d).
Therefore, in terms of overall runtime, gradient-based QHD remains asymptoti-
cally comparable to NAG, which justifies our comparison based on the iteration
count.

To evaluate the classical methods such as SGDM and NAG, we estimate the
expectation values and success probabilities using a sample of 1000 independent
runs. Each run begins with a uniformly random initial guess and proceeds for
k iterations. For the quantum methods, since the probability density function
can be explicitly derived from the quantum state vector, expectation values and
success probabilities are computed via numerical integration.

The numerical simulations of the quantum algorithms, including QHD and
gradient-based QHD, are performed on a MacBook equipped with an M4 chip.
Additional details on the numerical methods employed are provided Appendix G.1.

5.2 Convex optimization

To evaluate performance, we conduct a numerical comparison of gradient-based
QHD against three baseline algorithms, including SGDM, NAG, and QHD, for
convex optimization. The test function used is

f(x, y) = (x+ y)4

256 + (x− y)4

128 , (19)

which is a convex yet non-strongly convex function, with a singular Hessian at its
unique minimum (0, 0). Notably, the gradient of this function does not satisfy the
Lipschitz continuity condition. This flat geometry presents significant challenges
for classical methods that rely heavily on curvature information, making it a
suitable benchmark for comparative evaluation. All methods are executed with
a fixed step size h = 0.2.8 For the quantum variants, the initial evolution time is
set to t0 = 1. The parameters of gradient-based QHD are configured as α = −0.1,
β = 0, and γ = 5.

The performance of these optimization algorithms is visualized in Figure 3,
where two key metrics are employed to access convergence: the average function
values E[f(Xk)] (depicted in the left subplot) and the average gradient norm
E[∥∇f(Xk)∥2] (depicted in the right subplot). Both quantities are tracked over
iterations 1 ≤ k ≤ 25. The results reveal distinct convergence behaviors. While
the (classical) QHD exhibits a slower convergence rate compared to NAG, the
gradient-based QHD stands out by achieving a remarkably faster convergence
rate, outperforming all other algorithms. This superior performance highlights
the effectiveness of incorporating gradient-based techniques into QHD, particu-
larly for challenging optimization landscapes.

8 We have tested various step sizes (h ∈ [0.05, 0.5]) for gradient-based QHD and
observed similar convergence behavior. To maintain consistency, we fix h = 0.2 in
all comparisons.
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(a) Function value (b) Gradient norm
Fig. 3: Numerical comparison of various optimization algorithms on the convex
objective function (19), including function values and success probability.

5.3 Non-convex optimization

We now turn our attention to the numerical comparison of gradient-based QHD
against three baseline algorithms, including SGDM, NAG, and QHD, in non-
convex optimization settings. Non-convexity introduces significant challenges for
classical first-order methods, as local gradient information alone is often insuffi-
cient to distinguish the global minimum from other spurious local optima.

To illustrate these challenges, we evaluate a variety of non-convex optimiza-
tion problem instances characterized by diverse landscape features:

(i) Michalewicz function (Figure 4a): This function features a flat plateau
and a unique global minimum hidden within a sharp valley, posing a difficult
search problem.

(ii) Rastrigin function (Figure 4b): This function presents a highly oscilla-
tory landscape with a global minimum at the origin, making it notoriously
challenging for optimization algorithms.

Due to these intricate characteristics, all three problems are recognized as par-
ticularly difficult for classical first-order methods. Additional details about these
test functions are provided in Appendix G.2.

For the two quantum algorithms, the evolution time starts from t0 = 0. In
gradient-based QHD, the parameters are set to α = −0.05, β = 0, and γ = 5.

Despite the diversity of non-convex test problems, gradient-based QHD con-
sistently delivers robust and favorable performance. Compared to both QHD and
the classical algorithms, it achieves a significantly faster convergence rate and
yields notably lower terminal objective function values. In the Rastrigin function,
for instance, the final objective value obtained by gradient-based QHD is nearly
an order of magnitude lower than that of QHD and two orders of magnitude
lower than those achieved by SGDM and NAG.

Further numerical analysis highlights that gradient-based QHD attains a
higher success probability across all problem instances, indicating that its fi-
nal states are tightly concentrated around the global minimizer. In summary,
by leveraging gradient information within the quantum Hamiltonian framework,
gradient-based QHD demonstrates enhanced global convergence properties, out-
performing QHD and classical optimization methods.



Quantum Optimization via Gradient-Based Hamiltonian Descent 15

(a) Michalewicz function (b) Rastrigin function

Fig. 4: Numerical comparison of various optimization algorithms, including func-
tions values and success probability.

6 Conclusion and Future Work

In this paper, we propose gradient-based QHD for continuous optimization prob-
lems without constraints. We prove the convergence of the gradient-based QHD
dynamics in both function values and gradient norms via a Lyapunov function
approach. We also discuss an efficient implementation of discrete-time gradient-
based QHD using a fault-tolerant quantum computer. Our numerical results
show that gradient-based QHD achieves improved convergence with a higher
chance of identifying the global minimum in a sophisticated optimization land-
scape.

Our theoretical analysis has primarily focused on the convergence of gradient-
based QHD in continuous time, while the long-term behavior of the discrete-time
algorithm deserves further investigation. The numerical experiments are limited
to 2D problems due to the exponential growth of computational overhead. Devel-
oping new numerical techniques could help evaluate the advantages of quantum
Hamiltonian-based algorithms for high-dimensional optimization.

Software and Data

The source code of the experiments is available at https://github.com/jiaqileng/
Gradient-Based-QHD.

https://github.com/jiaqileng/Gradient-Based-QHD
https://github.com/jiaqileng/Gradient-Based-QHD
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Appendices

A Related work

NAG-related algorithms and ODEs. There has been a long history of analyz-
ing NAG-related optimization algorithms [12, 28]. [34] sheds new light on the
understanding and design of NAG using an ODE perspective. In [6, 35, 36],
a Lagrangian (or Hamiltonian) framework is used to describe a larger class of
ODEs that provides a unified perspective for the acceleration phenomenon in
first-order optimization. Notably, accelerated gradient descent has been inves-
tigated in non-Euclidean settings, including mirror descent [16, 23] and more
generally, Riemannian manifolds [1, 13, 15, 33].

Quantum algorithms for unconstrained optimization. Using quantum comput-
ers to accelerate bottleneck steps in classical optimization algorithms has shown
promise in achieving quantum advantage [14, 24, 29]. However, their practical
performance requires further investigation due to the non-trivial overhead in-
volved in extracting classical information from quantum states [37]. Motivated
by the interplay between NAG and ODEs, another line of research proposes lever-
aging quantum Hamiltonian dynamics as an algorithmic surrogate for addressing
unconstrained optimization problems [18, 25, 38], with recent extensions to open
quantum systems [7], constrained optimization [4], and discrete optimization [8].
This approach is particularly effective for highly non-convex problems [20] and
well-suited for hardware implementation [17, 19]. More discussions are available
in Appendix C.

B Review of accelerated gradient descent

B.1 Accelerated gradient descent as differential equations

Accelerated gradient descent methods are fundamental in both theory and prac-
tice. Nesterov [27] proposed the first accelerated gradient method that has the
following update rules (where s > 0 is the step size):

xk = yk−1 − s∇f(yk−1), (20a)

yk = xk + k − 1
k + 2(xk − xk−1), (20b)
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It is known that Nesterov’s gradient descent achieves the optimal convergence
rate among all gradient-based methods.

On the other hand, there has been a long-lasting research attempting to relate
gradient-based optimization algorithms with differential equations. A seminal
work by Su et al. [31] proposed a second-order differential equation to capture the
acceleration phenomenon in Nesterov’s algorithm. For sufficiently small step size
s, the continuous-time limit of (20) is given by the following ordinary differential
equation,

Ẍ + 3
t
Ẋ +∇f(X) = 0, (21)

for t > 0, with initial conditions X(0) = x0 and Ẋ(0) = 0. The convergence rate
of the ODE is O(t−2), which matches that of the discrete-time algorithm (20).

The ODE framework of accelerated gradient descent was later generalized
via a variational formulation of the underlying dynamics. Wibisono, Wilson,
and Jordan [35] proposed to consider the Bregman Lagrangian,

L(X,V, t) = eαt+γt

(
1
2

∣∣∣e−αtV
∣∣∣2 − eβtf(X)

)
, (22)

where t ≥ 0 is the time, X ∈ Rd is the state vector, and V ∈ Rd is the ve-
locity.9 Given the Lagrangian function L(X,V, t), we can consider the following
variational problem:

min
Xt

J(Xt) =
∫ ∞

0
L(X, Ẋt, t)dt, (23)

where J(Xt) is a functional defined on smooth curves {Xt : t ∈ [0,∞)}. From the
calculus of variations, a curve that minimizes the functional J(Xt) necessarily
satisfies the Euler-Lagrange equation:

d

dt

(
∂L
∂V

(Xt, Ẋt, t)
)

= ∂L
∂X

(Xt, Ẋt, t). (24)

Specifically, if we choose αt = − log(t), βt = γt = 2 log(t), the resulting Euler-
Langrage equation is exactly the continuous-time limit of Nesterov’s accelerated
gradient descent (21). It is also shown that, if αt, βt, and γt satisfies the following
ideal scaling conditions,

β̇t ≤ eαt , γ̇t = eαt , (25)

the solutions to the Euler-Lagrange equation satisfy

f(Xt)− f(x∗) ≤ O(e−βt), (26)

which gives a convergence rate of the dynamical system in continuous time.
9 Here, we give a simplified version of the Bregman Lagrangian in which the Bregman

divergence is given by the standard Euclidean distance; for details, see [35].
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B.2 Understanding acceleration via high-resolution ODEs

While the continuous-time formulations of accelerated gradient descent provide
a more transparent perspective on the acceleration phenomenon and allow us
to introduce the rich toolbox from ODE theory, they offer little understanding
of different accelerated gradient descent algorithms with the same continuous-
time limit. For example, Polyak’s heavy-ball method and NAG have the same
continuous-time limit, however, they exhibit strikingly different behaviors in
practice: the heavy-ball method generally only achieves local acceleration, while
NAG is an acceleration method applicable to all initial values of the iterate [21].

The difference between the two algorithms lies in a gradient correction step
that only exists in NAG. Inspired by the dimensional-analysis strategies in
fluid mechanics, [31] developed a high-resolution ODE framework to reflect the
gradient correction effect in different algorithms with the same low-resolution
continuous-time limit. The high-resolution ODEs for NAG are as follows.

Ẍ(t) + 3
t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) +

(
1 + 3

√
s

2t

)
∇f(X(t)) = 0, (27)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0, Ẋ(3

√
s/2) = −

√
s∇f(x0).

In contrast, the high-resolution ODE for the heavy-ball method does not
have the higher-order correction term

√
s∇2f(X(t))Ẋ(t), which explains how

the gradient correction step improves the overall convergence performance of
NAG over the heavy-ball method. The high-resolution ODE framework also
motivates the design of a new family of accelerated gradient descent algorithms
that maintain the convergence rate of NAG.

To prove the convergence of the high-resolution ODEs, [31] employs the fol-
lowing Lyapunov function (see [31, Eq. (4.36)]):

E(t) = t

(
t+
√
s

2

)
(f(X)− f(x∗)) + 1

2∥tẊ + 2(X − x∗) + t
√
s∇f(X)∥2. (28)

Let X(t) be the solution to (27), it is proven in [31, Lemma 5] that for all
t ≥ 3

√
s/2

dE(t)
dt ≤ −

[√
st2 +

(
1
L

+ s

2

)
t+
√
s

2L

]
∥∇f(X)∥2 < 0. (29)

As a direct consequence, for any t ≥ 3
√
s/2, we have

f(X(t))− f(x∗) ≤ (4 + 3sL)∥x0 − x∗∥2

t(2t+
√
s)

. (30)

C Two paradigms of quantum optimization

Based on how the solution is encoded in a quantum state, there are two major
paradigms in designing quantum algorithms for continuous optimization prob-
lems. In this section, we briefly discuss the two paradigms and compare their
respective pros and cons.
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Solution vector as a quantum state. The first paradigm uses amplitude en-
coding, where an n-dimensional vector v is encoded into a q-qubit state with
q = ⌈log2(n)⌉:

|v⟩ = 1
∥v∥

n∑
j=1

vj |j⟩ ,

where {|j⟩}2q−1
j is the set of computational basis. This approach encompasses a

vast majority of works in quantum optimization, including [14, 24, 29]. In this
encoding scheme, the solution vector can be represented using O(log(n)) qubits
and it allows us to exploit the rich quantum numerical linear algebra toolbox to
accelerate existing classical algorithms. Nevertheless, the downside is that the
recovery of the classical vector v from its amplitude-encoded state |v⟩, a task
known as quantum state tomography, would inevitably incur a Θ(n/ϵ) overhead
due to the Heisenberg limit, where ϵ is the readout precision [37]. Therefore,
the quantum state tomography can nullify the potential exponential quantum
speedup in the computation.

Superposition of all possible solutions. Another paradigm uses basis encoding,
where an n-dimensional vector v corresponds to a unique computational basis
|bv⟩. To see how this works, we assume that each element in the real-valued
vector v is represented by a fixed-point number vj with bit length q. Therefore,
we can uniquely enumerate all possible solutions (corresponding to all possible
fixed-point numbers) in the n-dimensional space using (2q)n computational ba-
sis, or equivalently, nq qubits. This encoding scheme is similar to how modern
computers store an array with fixed/floating-point arrays. Nevertheless, the dif-
ference is that quantum computers can produce a superposition of basis states,
i.e.,

|Ψ⟩ =
∑

x

√
ρ(x) |x⟩ ,

where ρ is a probability distribution over the whole space. In this case, measuring
the quantum state |Ψ⟩ is equivalent to sampling a point from the distribution ρ.
Solving an optimization problem amounts to preparing an approximation of the
Dirac-delta distribution at the minimizer x∗, i.e., the state |x∗⟩. Compared to the
first paradigm, there are two major advantages of this approach: First, there is
no obvious fundamental limitation on extracting information from the quantum
register, as we can prepare a Dirac-delta-like state for which the probability of
obtaining a fixed solution can be arbitrarily close to 1. Second, the superposition
of solutions |Ψ⟩ is a natural quantum wave function, so we can design a solution
path by exploiting the toolbox of continuous-space quantum mechanics, which is
historically less explored in the quantum computation literature. The drawback,
however, is that we will not have exponentially improved space/qubit complexity
to represent the solution. The first approach in principle only uses O(log2(n))
qubits to represent a solution vector, while representing the superposition state
|Ψ⟩ requires O(n) qubits for an n-dimensional vector.
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D Technical details of convergence analysis

D.1 Commutation relations in gradient-based QHD

This section proves the commutation relations in Lemma 2.

Lemma 4. Let g : Rd → R be a smooth function. We have

i[p̂2
j , g] = {p̂j , ∂jg}.

Proof. Let φ be a test function. Note that

(p̂2
jg)(φ) = − ∂2

∂x2
j

(gφ) = − (∂jjgφ+ 2∂jg∂jφ+ g∂jjφ) , (gp̂2
j )(φ) = g

(
− ∂2

∂x2
j

φ

)
= −g∂jjφ.

Therefore,

i[p̂2
j , g]φ = −i (∂jjgφ+ 2∂jg∂jφ) .

Meanwhile, we find that

{p̂j , ∂jg}φ = (−i∂j)(∂jgφ) + ∂jg (−i∂jφ) = −i (∂jjgφ+ 2∂jg∂jφ) ,

which concludes the proof.

Lemma 5. Let g : Rd → R, h : Rd → R be two smooth functions. We have

i[{p̂j , h}, g] = 2h(∂jg).

Proof. Let φ be a test function. Direct calculation shows that

i[{p̂j , h}, g]φ = i [(pjh+ hpj) (gφ)− g (pjh+ hpj)φ]
= i [pj(hgφ) + h(pjg)φ− gpj(hφ)− gh(pjφ)]
= 2ih(pjg)φ = 2h(∂jg)φ,

which implies i[{p̂j , h}, g] = 2h(∂jg). This operator is again a multiplicative
operator that commutes with both g and h.

Now, we are ready to prove Lemma 2.

Proof. 1. Recall that

Aj = t−3/2pj + αt3/2vj , vj = ∂f

∂xj
, A2

j = t−3p2
j + α{pj , vj}+ α2t3v2

j .

Therefore,

i[A2
j , f ] = i[t−3p2

j + α{pj , vj}, f ] = t−3{pj , vj}+ 2αv2
j .

The last identity invokes Lemma 4 and Lemma 5.
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2. Since the vj part in Aj commutates with x and f , we can drop it from the
commutator:

i[f, {Aj , xj}] = i[f, {t−3/2pj , xj}] = −it−3/2[{pj , xj}, f ] = −t−3/2xjvj ,

where we use Lemma 5 in the last step.
3. By dropping the v2

j part in A2
j , we get

i[A2
j , x

2
k] = i[t−3p2

j + α{pj , vj}, x2
k] = t−3i[p2

j , x
2
k] + α[{pj , vj}, x2

k].

By Lemma 4 and Lemma 5, we obtain the following:

i[A2
j , x

2
k] =

{
0 (j ̸= k)
2t−3{pj , xj}+ 4αxjvj (j = k).

4. It can be readily verified that [Aj , Ak] = 0 and [Aj , xk] = 0 for any j ̸= k.
Therefore, if j ̸= k, we will have

i[A2
j , {Ak, xk}] = 0.

When j = k, we first observe that

i[Aj , xj ] = i[t−3/2pj , xj ] = t−3/2i[pj , xj ] = t−3/2

due to the canonical commutation relation i[pj , xj ] = 1. By leveraging the
commutation relation between Aj and xj ,

i[A2
j , {Aj , xj}] = i

(
A3

jxj +A2
jxjAj −AjxjA

2
j − xjA

3
j

)
= i
(
A2

j (xjAj − it−3/2) +A2
jxjAj −AjxjA

2
j − (Ajxj + it−3/2)A2

j

)
= i
(

2Aj(xjAj − it−3/2)Aj − 2AjxjA
2
j − 2it−3/2

)
= 4t−3/2A2

j .

5. This commutation relation is a direct consequence of Lemma 5. By dropping
the vk part in Ak, we have

i[v2
j , {Ak, xk}] = −it−3/2[{pj , xk}, v2

j ] = −4t−3/2xkvj(∂kvj) = −4t−3/2
(

∂2f

∂xjxk

)
xkvj .

D.2 Proof of Lemma 1

Proof. By the definition of the Lyapunov function, we have

d
dtE(t) = ⟨∂tÔ(t) + i[Ĥ(t), Ô(t)]⟩t, (31)

where [A,B] := AB−BA denotes the commutator of operators. In the following
calculation, we omit the hat over quantum operators to simplify the notation.
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First, we calculate the ∂tO(t) part. Direct calculations yield that

∂tO(t) =
d∑

j=1

(
− 2
t5
p2

j + α2tv2
j + 2αxjvj −

α

2t2 {pj , vj} −
2
t3
{pj , xj}

)
+ (2t+ ω)f.

(32)

As for the commutator part, it is worth noting that

O(t) = 1
2

d∑
j=1

(t−1/2Aj + 2x̂j)2 +
(
t2 + ωt

)
f

= 1
t
H(t) +

d∑
j=1

(
2x2

j + 1
t1/2 {Aj , xj}

)
− 3αtf.

(33)

Therefore, we have

i[H(t), O(t)] = i

H(t),
d∑

j=1

(
2x2

j + {Aj , xj}
t2

)
− 3αtf

 (34)

Invoking the commutation relations 1-4 in Lemma 2 to simplify (34) and com-
bining it with (32), we obtain the following identity:

∂tO + i[H,O] = (2t+ ω)(f(x)− x⊤∇f(x))− 2ωf(x). (35)

Since f is convex, we have f(x) − x⊤∇f(x) ≤ 0 for any x ∈ Rd. Since ω =
γ − 3α ≥ 0, it follows that ∂tO+ i[H,O] ≤ 0 and f(x) ≥ 0 for all x ∈ Rd, which
implies that

d
dtE(t) = ⟨∂tÔ(t) + i[Ĥ(t), Ô(t)]⟩t ≤ 0.

D.3 Proof of Lemma 3
Proof. Similar to the proof of Lemma 1, we have

d
dtF(t) = ⟨∂tĴ(t) + i[Ĥ(t), Ĵ(t)]⟩t. (36)

Direct calculation shows that

∂tĴ(t) + i[Ĥ(t), Ĵ(t)] = I1 + I2(t), (37)

where
I1(t) = −2ωx⊤∇f(x) + 2t(f(x)− x⊤∇f(x)) ≤ 0, (38)

I2(t) = βt

 d∑
j=1

v2
j

+ β

2 t
5/2

d∑
j,k=1

[v2
j , {Ak, xk}]

= βt

 d∑
j=1

v2
j − 2

d∑
j,k=1

(
∂2f

∂xjxk

)
xkvj


= βt

(
G(x)− x⊤∇G(x)

)
≤ 0.

(39)
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The second equation uses commutation relation 5 in Lemma 2, and the last
inequality is deduced from the convexity of G(x). Combining (38) and (39), we
prove the lemma.

E Technical details of complexity analysis

Lemma 6. Assume that f : Rd → R is a L-Lipschitz function. For sufficiently
smooth wave function |Φ⟩, we can prepare a quantum state |Ψ⟩ such that

∥Ψ − e−ihHk,2Φ∥ ≤ ϵ

using
Õ (αdhL)

queries to the first-order oracle O∇f . Here, the Õ(·) notation suppressed poly-
logarithmic terms in 1/ϵ.

Proof. Recall that

Hk,2 = α

2 {−i∇,∇f} = α

2

d∑
j=1
{pj , vj}.

Note that this operator is independent of time and thus of k. To simulate the
Hamiltonian Hk,2, we need to perform spatial discretization for the operators
pj and vj . The standard approach is to consider a d-dimensional regular mesh
with N grid points on each dimension, e.g., [3, 9]. The momentum operators can
be implemented by applying Quantum Fourier Transform 2 times (with overall
gate complexity dpoly log(N)), as discussed in [22]. The discretized Hamiltonian
operator takes the following form:

H̃k,2 = α

2

d∑
j=1

(P̃j Ṽj + ṼjP̃j), (40)

where ∥P̃j∥ ≤ O(N), and ∥Ṽj∥ ≤ L, with L the Lipschitz constant of f . By using
O(1) queries to the first-order oracle O∇f , we can implement a block-encoding
of the matrix H̃k,2 with a normalization factor a ≤ O(αdNL), and an additional
O(d) ancilla qubits [11, Lemma 29,30]. With the block-encoded operator Hk,2,
we can perform optimal Hamiltonian simulation by QSVT [11, Corollary 32].
The total number of queries to the block-encoding is

O (ah+ log(1/ϵ)) ,

with an additional O(d(ah + log(1/ϵ))) elementary gates. Given that the in-
put wave function Φ is sufficiently smooth, the discretization number N can
be chosen as N = poly log(1/ϵ) since the spatial discretization can be regarded
as a pseudo-spectral method. It turns out that the overall query complexity of
the Hamiltonian simulation reads Õ (dαhL), where the Õ(·) notation suppresses
poly-logarithmic terms in 1/ϵ.
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Now, we are ready to prove Theorem 3.

Proof. In Algorithm 1, each iteration requires the implementation of the quan-
tum circuit

Uk = e−ihHk,1e−ihHk,2e−ihHk,3 .

Note thatHk,1 = −∆/(2t3k) and the Laplacian operator∆ can be diagonalized by
Fourier transform, so we can implement e−ihHk,1 using O(d log2(N)) elementary
gates. The Hamiltonian Hk,3 is a multiplicative operator with two commuting
terms, i.e.,

e−ihHk,3 = e−ih(α2+β)t3
k∥∇f∥2/2e−ih(t3

k+γt2)f .

Since the functions f and ∥∇f∥2 are multiplicative operators and reduce to
diagonal matrices after spatial discretization. Therefore, the Hamiltonian Hk,3 is
fast-forwardable and can be implemented usingO(1) uses of the zeroth- and first-
order oracle of f , respectively. Finally, by Lemma 6, the Hamiltonian Hk,2 can
be simulated using Õ(αdhL) queries to the first-order oracle O∇f . By iterating
these steps for K times, we can implement the quantum algorithm using O(K)
queries to the zeroth-order oracle Of and Õ(αdhKL) queries to the first-order
oracle O∇f .

F On the choice of step size in Algorithm 1

It is shown in [10] that the product formula will introduce a “simulation error”
such that ∥∥∥e−ihĤ(tk) − e−ihHk,1e−ihHk,2e−ihHk,3

∥∥∥
≤ h2

2
∑

1≤i ̸=j≤3
∥[Hk,i, Hk,j ]∥ .

A formal calculation shows that the commutator norm scales as O(t3k), which
suggests h ∼ t

−3/2
k may be needed to control the simulation error in each time

step. However, in the numerical experiments, we observe that a much larger
step size h can still result in the convergence of the discrete-time gradient-based
QHD. This observation aligns with our experience with the NAG method, where
convergence is achieved with a step size proportional to 1/L, irrespective of the
continuous-time dynamics. As a result, we treat the step size h as an indepen-
dent parameter in the complexity analysis. A complete understanding of the
convergence of the discrete-time algorithm, however, is left for future study.

Remark 2. Quantum simulations of time-dependent Hamiltonians constitute an
active research area, with a growing body of literature addressing this topic
(e.g., [2, 3, 5, 9, 26]). These developments pave the way for more advanced im-
plementations of gradient-based QHD, potentially offering improved asymptotic
complexity. A detailed exploration of such implementations is left for future
work.
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G Details of numerical experiments

G.1 Numerical implementations of optimization algorithms

In the numerical experiments, we test four optimization algorithms: Stochastic
Gradient Descent with momentum (SGDM), Nesterov’s accelerated gradient de-
scent (NAG), Quantum Hamiltonian Descent (QHD), and Gradient-based QHD.
Our Python implementation of the numerical algorithms can be found in the
supplementary materials.

SGDM. The iterative update rules for SGDM are as follows:

vk = ηkvk−1 − (1− ηk)skgk,

xk = xk + vk,

where 1 ≤ k ≤ K is the iteration number, ηk is the momentum coefficient, sk is
the step size, gk is an unbiased gradient estimator at xk. We use

ηk = 0.5 + 0.4k
K

, sk = s0

k
.

with s0 = 0.01, v0 = 0, and a uniformly random initial guess x0. The gradient
estimator gk is obtained by adding a unit Gaussian random noise to the exact
gradient ∇f(xk).

NAG. The update rules of NAG are as follows:

xk = yk−1 − s∇f(yk−1),

yk = xk + k − 1
k + 2(xk − xk−1),

for 1 ≤ k ≤ K. We choose y0 = 0 and a uniformly random initial guess x0. The
step size is chosen as s = 0.01.

QHD and gradient-based QHD. Both QHD and gradient-based QHD are simu-
lated following Algorithm 1. Note that QHD is a special case of gradient-based
QHD with α = β = γ = 0. The simulation is performed in a mesh grid with
N = 128 grid points per dimension, with the momentum and kinetic operators
implemented using FFT, as discussed in Appendix E. The step size varies with
the test problems: We use h = 0.01 for the Styblinski-Tang and Michalewicz
function, and h = 0.005 for the Rastrigin function.

G.2 Non-convex test problems

The test problems used in this paper are defined as follows:
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1. Styblinski-Tang function:

f(x, y) = 0.2×
(
x4 − 16x2 + 5x+ y4 − 16y + 5y

)
,

where we introduce a normalization factor of 0.2 for a better illustration.
This function has a unique global minimizer at (x∗, y∗) = (−2.9,−2.9), with
the minimal function value f(x∗, y∗) ≈ −31.33. The numerical algorithms
are implemented over the square region {−5 ≤ x, y ≤ 5}.

2. Michalewicz function:

f(x, y) = − sin(x) sin
(
x2/π

)20 − sin(y) sin
(
2y2/π

)20
.

This function has a unique global minimizer at (x∗, y∗) = (2.2, 1.57), with
the minimal function value f(x∗, y∗) ≈ −1.8. The numerical algorithms are
implemented over a square region {0 ≤ x, y ≤ π}.

3. Rastrigin function:

f(x, y) = x2 − 10 cos(2πx) + y2 − 10 cos(2πy) + 20.

This function has a unique global minimizer at (x∗, y∗) = (0, 0), with the
minimal function value f(x∗, y∗) = 0. The numerical algorithms are imple-
mented over a square region {−3 ≤ x, y ≤ 3}.
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