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Abstract. In this paper, we present an enhanced medical image segmentation approach
leveraging the nnUNet framework, specifically tailored to integrate bounding box prompts
for improved segmentation accuracy in resource-constrained environments. By incorporating
these prompts as binary masks in an additional input channel, we enable more precise and
context-aware segmentation. Our methodology employs a 2D slice-wise approach optimized
for CPU-based inference through just-in-time (JIT) compiled functions, ensuring efficient
processing on standard clinical equipment. Our solution demonstrates robust performance,
achieving an average Dice Similarity Coefficient (DSC) of 80.98% and a Normalized Surface
Dice (NSD) of 83.23% across multiple modalities in the validation set. This indicates its
practical applicability and effectiveness in real-world clinical settings, where computational
resources may be limited. By focusing on both accuracy and efficiency, our approach makes
advanced segmentation technology accessible to a broader range of healthcare providers,
facilitating enhanced clinical decision-making and patient care.
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1 Introduction

1.1 Background and Difficulty of the Challenge

Medical image segmentation is a crucial process in clinical practice, enabling precise quantification
of anatomical structures and identification of pathological regions. With the advancement of tech-
nology, there is a significant transition in this field from the use of specialized models tailored to
specific tasks to the adoption of foundation models that can handle diverse segmentation scenarios.
However, this shift is fraught with challenges, particularly due to the variability across different
medical domains and the resource limitations faced during inference.

The primary difficulty lies in developing models that can generalize across a wide range of
medical image modalities and pathological conditions. Each medical domain, such as radiology,
histopathology, and oncology, presents unique imaging characteristics and diagnostic requirements,
necessitating highly adaptable models. Furthermore, the computational resources required for in-
ference with state-of-the-art models often exceed the capabilities of standard clinical equipment,
particularly in settings where high-end GPUs are not available. This creates a significant barrier to
the practical implementation of advanced segmentation tools in many healthcare facilities, thereby
limiting their accessibility and utility.
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The Segment Anything on Laptop 2024 Challenge is therefore launched to advance the current
state of segmentation technologies, aiming to develop truly universal and resource-efficient medical
image segmentation models. Recognizing the limitations of existing approaches, the objective of
this challenge is to inspire innovations that will result in models deployable on standard clinical
equipment, such as laptops or edge devices, without the necessity for GPUs.

To facilitate this, this challenge provides an extensive training dataset comprising over 1,000,000
image-mask pairs, encompassing 10 different medical image modalities and more than 20 types of
cancer. This dataset is designed to support the development of models that can generalize across
a broad spectrum of medical imaging scenarios. By focusing on lightweight, bounding box-based
segmentation techniques, the organizers aim to encourage solutions that not only achieve high ac-
curacy but also maintain efficiency in resource-constrained environments.

The challenge shall drive methodological advancements in the field of medical image segmen-
tation, leading to the creation of universal models with broad applicability. Additionally, by em-
phasizing ease of interaction and deployment, it is envisioned that sophisticated segmentation tools
are more accessible to a wider range of healthcare providers, ultimately enhancing clinical decision-
making and patient care.

1.2 Related Work and State-of-the-Art Methods

Recent advancements in segmentation models have shown promise in addressing some of the above-
mentioned challenges. Models like SAM (Segment Anything Model) [3,5] and its variants, including
MedSAM [4], MobileSAM [7], and EfficientViT-SAM [8], represent the state-of-the-art in segmen-
tation technology. SAM and its derivatives have demonstrated remarkable performance in natural
image segmentation, leveraging large-scale datasets and powerful computational frameworks.

MedSAM, an adaptation of SAM for medical imaging, has improved performance in medical
domains but still requires significant computational resources. MobileSAM and EfficientViT-SAM
have attempted to address the resource constraints by optimizing for mobile and edge devices, yet
their effectiveness across the wide variety of medical imaging modalities and conditions remains a
subject of ongoing research. These models provide a strong foundation but highlight the need for
further advancements to achieve the goal of universal, resource-efficient medical image segmentation.

1.3 Motivation and Contribution

In approaching this task, we leverage the well-established nnUNet framework [1], renowned for its
state-of-the-art performance across various medical imaging tasks and domains. nnUNet’s robust
out-of-the-box capabilities on new datasets make it a baseline for numerous model developments.
However, nnUNet is inherently designed for automatic semantic segmentation of target structures
it is trained on, without the flexibility to accept prompts.

Our contribution addresses this limitation by integrating a straightforward, yet effective, method
for incorporating bounding box prompts into the nnUNet framework. This enhancement allows
nnUNet to adapt to the challenge’s requirements for prompt-based segmentation. Additionally,
nnUNet’s use of a lightweight CNN-based UNet architecture, as opposed to more computationally
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demanding transformer-based models, ensures excellent computational efficiency.

Our approach introduces a patch-based processing methodology, which contrasts with conven-
tional methods that process entire images at once. While this patch-based strategy can introduce
computational overhead, we mitigate this by optimizing our model for rapid CPU-based inference.
We employ just-in-time (JIT) compiled functions to accelerate prediction speed, ensuring our model
remains efficient even on resource-constrained devices like laptops and edge devices.

2 Method

2.1 Using nnUNet as Base Model

For this challenge, we employ nnUNet as our base model due to its proven track record of achieving
state-of-the-art performance across various medical imaging tasks. nnUNet’s inherent flexibility
and robust architecture provide a solid foundation for our modifications, ensuring reliable and
high-quality segmentation results. Furthermore, we use the residual encoder blocks (ResEnc) as
introduced in [2] for nnUNet.

2.2 Incorporating Prompts as an additional input channel

To adapt nnUNet for prompt-based segmentation, we introduce a method of incorporating prompts
using channel masks. Specifically, we integrate bounding box prompts as additional input channels,
allowing the model to focus on specific regions of interest within the medical images (cf. Figure
1). This approach effectively guides the segmentation process, enhancing the model’s ability to
accurately delineate target structures based on the provided prompts.

2.3 Fully slice wise 2D approach

Given the computational constraints and the need for efficient processing on edge devices, we opt for
a full 2D approach. By processing images slice-by-slice rather than in a 3D context, we significantly
reduce the computational burden. Although a 2D approach typically sacrifices some performance
compared to a 3D setting, it allows us to use a single model across all input image modalities.
This unified approach eliminates the need to develop and maintain separate 2D and 3D models,
streamlining our contribution and ensuring consistency across different types of medical images.
This strategy not only aligns with our goal of achieving resource-efficient segmentation but also
simplifies the integration of bounding box prompts into the nnUNet framework.

2.4 Training vs. Inference

Our training and inference pipelines are designed to maximize efficiency and performance. For train-
ing, all images were preprocessed with z-score normalization of the standard nnUNet framework.
During training, we focus on optimizing the model’s ability to handle various types of bounding box
prompts, using a diverse set of training samples from the provided dataset. A random component of
one of the foreground classes of each image is sampled and used for the ground truth mask, as well
as to extract a bounding box prompt. This bounding box is augmented by random dilations and
concatenated to the input image for training. We employ data augmentation techniques to ensure
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the model generalizes well across different medical imaging modalities and conditions (see [1] for
details on the pipeline).

For inference, we streamline the process to ensure rapid and accurate segmentation on CPU-
based systems. We only predict on a patch, which extends by half the patch-size around the bounding
box prompt. Furthermore, just-in-time (JIT) compiling the model architecture minimizes latency
and maximizes throughput, ensuring that our approach is viable for real-time clinical applications.

2.5 Postprocessing

To enhance the accuracy and usability of the segmentation results, we incorporate a postprocess-
ing step that involves removing all predictions that do not lie in the the region specified by the
bounding box prompts. This step refines the segmentation output, removing any extraneous areas
outside the region of interest, and ensures that the final results are focused and relevant for clinical
interpretation.

2.6 Compiling Using OpenVINO

To further optimize our model for deployment on edge devices, we compile it using OpenVINO3.
OpenVINO is an open-source toolkit for optimizing and deploying deep learning models from cloud
to edge. This optimization toolchain converts our trained model into an optimized intermediate rep-
resentation, enabling efficient execution on Intel CPUs and other compatible hardware. By leverag-
ing OpenVINO, we achieve significant improvements in inference speed and resource utilization (cf.
Table 4), making our solution practical for use in real-world clinical settings where computational
resources are limited.

In summary, our method combines the strengths of nnUNet with innovative prompt integration,
a 2D processing approach, efficient training and inference pipelines, targeted postprocessing, and
deployment optimization using OpenVINO. This comprehensive strategy ensures that our model
meets the challenge’s requirements for universal, resource-efficient medical image segmentation.
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Fig. 1. Network architecture: We use nnUNet [1] with residual encoder (ResEnc) blocks [2], which here
are illustrated by the orange blocks. The input image is concatenated with the bounding box represented
as binary mask and then fed into the network. The patch size of the model is 224x288.

3 https://github.com/openvinotoolkit/openvino and https://docs.openvino.ai/

https://github.com/openvinotoolkit/openvino
https://docs.openvino.ai/
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3 Experiments

3.1 Dataset and evaluation measures

We exclusively utilized the challenge dataset for model development. The evaluation metrics in-
clude two accuracy measures—Dice Similarity Coefficient (DSC) and Normalized Surface Dice
(NSD)—alongside one efficiency measure—running time. These metrics collectively contribute to
the ranking computation. For model selection we opted for the model showing superior performance
across all modalities based on average ranking. We explored the potential of modality-specific mod-
els to enhance results for particular modalities. However, we abandoned this "specialist" approach
for two reasons. Firstly, selecting the appropriate specialist model would either rely solely on the
file name of the case or require an additional modality classification method, which again would in-
crease latency. Secondly, in a real-world setting, switching model weights between predicting images
of different modalities would increase latency. We recognize that this switching of model weights
is not penalized in the challenge’s runtime evaluation, as the docker container is run for each case
individually.

3.2 Implementation details

Environment settings The development environments and requirements are presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04
CPU AMD Ryzen 9 3900X processor
RAM 64GB DDR4-3600 RAM; 256 GB per socket
GPU (number and type) One NVIDIA RTX3090 GPU with 24GB
CUDA version 12.1
Programming language Python 3.12.2
Deep learning framework torch 2.2.1
Specific dependencies
Code

4 Results and discussion

Our proposed method demonstrates robust performance in various medical imaging scenarios, par-
ticularly excelling when clear, well-defined anatomical structures are present within the bounded
regions. The integration of bounding box prompts effectively guides the segmentation model, al-
lowing it to focus on specific areas of interest and thereby improving accuracy. This method is
notably beneficial in common modalities such as MRI and CT, where the target structures often
have distinct and recognizable boundaries. In clinical settings, the method proves effective in tasks
such as segmenting organs and tissues in high-contrast images, delineating target structures in MRI
images, and segmenting regions of interest in X-Ray images with minimal noise or artifacts.
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Table 2. Training protocols.

Pre-trained Model Not applicable
Batch size 51
Patch size 224×288×3
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule linear LR decay
Training time 72.5 hours
Loss function Soft Dice loss + Cross Entropy loss
Number of model parameters 71.81M
Number of flops -
CO2eq -

The method works exceptionally well in scenarios involving the segmentation of organs and
tissues in high-contrast images, such as liver and kidney segmentation in CT scans, as well as the
delineation of structures such as single teeth or bones in X-Ray images. It is also successful in
ultrasound images where the region of interest is well-isolated and less affected by noise or artifacts.
In these cases, the bounding box prompts provide a significant advantage by narrowing the focus
of the segmentation model, leading to precise and reliable outcomes.

Despite its strengths, the proposed method encounters challenges in certain situations. Primary
reasons for failed cases include poor image quality, such as low resolution, significant noise, or ar-
tifacts, which can hinder the model’s ability to accurately segment target structures. Ambiguous
boundaries, particularly in the presence of diffuse pathological regions or overlapping anatomical
features, also pose difficulties, as the model may struggle to produce accurate segmentations. Ad-
ditionally, extreme variability in the appearance of target structures across different patients or
imaging conditions can lead to poor generalization by the model.

4.1 Quantitative results on validation set

The quantitative results are summarized in Table 3. In addition to presenting the final submit-
ted solution, we conducted ablation experiments to assess the impact of varying training sets on
the model’s downstream performance. Ablation study 1 involved training our nnUNet architecture
solely on 1% of the SAM data, while ablation study 2 employed pre-training on the same 1% subset
of SAM followed by training on the provided challenge dataset. Results indicate that utilizing the
non-medical dataset of SAM in ablation study 1 yields unsatisfactory outcomes, underscoring the
disparity between natural and medical images. Of note, training solely on the provided challenge
data appears, on average, to outperform using the pre-trained checkpoint (ablation study 2). How-
ever, pre-training showed slight improvements in certain modalities (CT, Dermatology, Fundus).
Furthermore, we observed marginal enhancements when pre-training on the entire challenge dataset
and subsequently fine-tuning modality-wise on the corresponding subset of the challenge dataset.
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Table 3. Quantitative evaluation results comparing the performance of the nnUNet architecture under
different training conditions. Ablation study 1 involves training exclusively on 1% of the SAM dataset, while
ablation study 2 entails pre-training on 1% of the SAM dataset followed by fine-tuning on the challenge
dataset. Our proposed and submitted solution was trained solely on the provided challenge dataset from
scratch.

Target Baseline (LiteMedSAM) Ablation Study 1 Ablation Study 2 Proposed
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)

CT 92.26 94.90 67.64 69.14 90.60 93.37 90.05 92.84
MR 89.63 93.37 43.84 44.24 81.31 85.89 82.22 86.61
PET 51.58 25.17 30.69 23.36 34.33 24.84 45.84 32.82
US 94.77 96.81 64.17 68.60 80.03 86.45 80.85 87.00
X-Ray 75.82 80.38 16.24 15.34 78.79 84.94 79.54 85.73
Dermotology 92.47 93.86 52.95 54.28 90.29 91.84 89.75 91.36
Endoscopy 96.04 98.11 2.41 1.55 95.07 97.31 95.75 98.06
Fundus 94.81 96.42 3.03 0.00 89.66 91.42 88.70 90.49
Microscopy 61.63 65.39 2.26 0.43 76.06 84.38 76.11 84.13
Average 83.23 82.71 31.47 30.77 79.57 82.27 80.98 83.23

Nevertheless, we opted against training modality-specific models due to the aforementioned reasons
(cf. section 3.1).

4.2 Qualitative results on validation set

In Figures 2 and 3 qualitative results across 10 modalities are shown. While in Figure 2 samples
are shown where nnUNet is likely outperformed by LiteMedSAM, Figure 3 shows examples where
nnUNet performs well.

4.3 Segmentation efficiency results on validation set

Our approach prioritizes efficiency, making it suitable for deployment on edge devices and in
resource-constrained environments. By adopting a 2D processing methodology and utilizing just-
in-time (JIT) compiled functions, we achieve significant reductions in computational load and in-
ference time, as demonstrated in Table 4. Notably, for CT, MR, Endoscopy, and PET modalities,
our method achieves significantly reduced inference times compared to the MedSAM baseline, with
the improvement being especially pronounced in ultrasound (US) images.

However, for large 2D images, such as those in Dermoscopy and Microscope imaging, our model
experiences a notable increase in inference time over the baseline. This increase is due to our patch-
based approach, which necessitates multiple forward passes for large images, resulting in slower
inference speeds. This represents one of the major limitations of our method.

Despite this, our model generally demonstrates reduced inference time and lower resource usage,
making it capable of running effectively on standard laptops and edge devices without the need for
high-end GPUs. This broadens its accessibility and potential impact, allowing advanced medical
image segmentation to be more widely adopted in various clinical settings.
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Fig. 2. Qualitative results. Within each column the same model was used for prediction. In parenthesis,
the training data is indicated, where SAM is the SegmentAnything dataset from Meta and MedSAM the
provided challenge dataset. For nnUNet only 1% of the actual SAM dataset was used. The right most
model was submitted as final solution. In the first row, nnUNet struggles to understand the box prompt
correctly as the dental field is continuously segmented instead of the single teeth within the bounding box.
Here, LiteMedSAM correctly understands the intention of the prompt. Despite the different model, this
could be due to the larger pre-training on the whole SAM dataset, which could help the model understand
the intention of the prompt. The other rows likely also show worse performances of nnUNet compared to
LiteMedSAM.
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Fig. 3. Qualitative results. While under-performing for teeth in the X-Ray modality, nnUNet does a better
job at segmenting the vertebrae in X-Rays compared to LiteMedSAM. Furthermore, nnUNet provides
seemingly better segmentations for the depicted microscopy image.
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Table 4. Quantitative evaluation of segmentation efficiency measured in terms of running time (seconds).
The baseline is the LiteMedSAM method developed by the challenge organizers. Ablation study presents
our proposed solution without OpenVINO optimization, while Proposed refers to the same method post-
runtime optimization using OpenVINO. Note: Our reported times for "Ablation Study" and "Proposed"
reflect only the time for inference without the model loading and initialization overhead. These times were
measured on the machine specified in Table 4.

Case ID Size Num. Objects Baseline Ablation Study Proposed
3DBox_CT_0566 (287, 512, 512) 6 376.4 466.70 159.03
3DBox_CT_0888 (237, 512, 512) 6 100.5 97.27 35.88
3DBox_CT_0860 (246, 512, 512) 1 17.7 20.70 7.65
3DBox_MR_0621 (115, 400, 400) 6 157.1 130.39 51.48
3DBox_MR_0121 (64, 290, 320) 6 99.9 83.72 31.78
3DBox_MR_0179 (84, 512, 512) 1 17.1 10.85 4.87
3DBox_PET_0001 (264, 200, 200) 1 12.1 6.93 2.75
2DBox_US_0525 (256, 256, 3) 1 6.3 1.04 0.45
2DBox_X-Ray_0053 (320, 640, 3) 34 7.3 20.52 8.28
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 6.5 192.03 49.10
2DBox_Endoscopy_0086 (480, 560, 3) 1 6.1 2.99 0.89
2DBox_Fundus_0003 (2048, 2048, 3) 1 6.1 6.15 1.87
2DBox_Microscope_0008 (1536, 2040, 3) 19 6.8 47.41 13.97
2DBox_Microscope_0016 (1920, 2560, 3) 241 19.1 506.83 153.71
Total 325 839 1593.53 521.71

4.4 Results on final testing set

This is a placeholder. We will announce the testing results during CVPR (6.17-18)

4.5 Limitation and future work

Looking forward, several avenues for further enhancement and exploration are evident. Improving
the model’s robustness to handle a wider range of image qualities and boundary ambiguities will
be a key focus, with techniques such as advanced data augmentation and semi-supervised learn-
ing potentially enhancing generalization. While our current approach is 2D-based, integrating 3D
context in a hybrid model could combine the strengths of both approaches, offering better perfor-
mance for complex cases without sacrificing efficiency. Furthermore, addressing the main limitation
of increased inference time for large-sized images is a key aspect of future investigation. Potential
solutions include optimizing the patch-based system or eliminating the need for patches altogether.
Extending the model to handle additional medical imaging modalities and pathologies, including
more rare and complex conditions, will further demonstrate its versatility and utility in diverse
clinical scenarios.

5 Conclusion

In conclusion, while the proposed method shows promise in many areas of medical image segmen-
tation, ongoing refinement and adaptation will be essential to fully realize its potential and address
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the remaining challenges. The focus on efficiency and universal applicability positions our approach
as a valuable tool in advancing medical imaging technologies and improving patient care outcomes.
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Introduction includes at least three parts:
background, related work, and motivation Yes
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Pre-processing Page 3 (in section 2.4)
Strategies to data augmentation Page 3 (in section 2.4)
Strategies to improve model inference Page 4 (in section 2.6)
Post-processing Page 4 (in section 2.5)
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Training protocol table is provided Table 2
Ablation study Page 6 (in section 4.1)
Efficiency evaluation results are provided Table 4
Visualized segmentation example is provided Figure 3 & 2
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes


