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ABSTRACT

As large language models (LLMs) grow in sophistication, some of their capabilities
surpass human abilities, making it essential to ensure their alignment with human
values and intentions, i.e., Superalignment. This superalignment challenge is
particularly critical for complex tasks, as annotations provided by humans, as weak
supervisors, may be overly simplistic, incomplete, or incorrect. Previous work
has demonstrated the potential of training a strong model using the weak dataset
generated by a weak model as weak supervision. However, these studies have been
limited to a single capability. In this work, we conduct extensive experiments to
investigate weak to strong generalization for LLMs with multi-capabilities. The
experiments reveal that different capabilities tend to remain relatively independent
in this generalization, and the effectiveness of weak supervision is significantly
impacted by the quality and diversity of the weak datasets. Moreover, the self-
bootstrapping of the strong model leads to performance degradation due to its
overconfidence and the limited diversity of its generated dataset. To address these
issues, we proposed a novel training framework using reward models to select
valuable data, thereby providing weak supervision for strong model training. In
addition, we propose a two-stage training method on both weak and selected
datasets to train the strong model. Experimental results demonstrate our method
significantly improves the weak to strong generalization with multi-capabilities.

1 INTRODUCTION

With large language models (LLMs) continuing to grow in strength and sophistication, some of
their capabilities surpass human abilities, e.g., text summarization (Pu et al., 2023), predicting
neuroscience results (Luo et al., 2024), etc. Consequently, Burns et al. (2023) introduce the concept
of “superalignment”, which seeks to guarantee that these superhuman models’ capabilities remain
aligned with human intentions and values when understanding and executing tasks.

As LLMs become increasingly powerful, they can handle more complex tasks, often exhibiting
reasoning abilities that exceed those of humans. This progression underscores the challenge of
providing sufficient labeled data for training LLMs, especially for intricate tasks. For such complex
tasks, humans may only be able to offer simple, incomplete, or even erroneous annotations. Despite
this, LLMs are expected to understand human intent to solve these tasks effectively. Some works
(Burns et al., 2023; Gambashidze et al., 2024) investigate the weak to strong generalization setting,
which involves training a strong model using data generated by a weak model. In this setting, the weak
model is analogous to humans, providing weak supervision to guide the training of the strong model,
similar to how humans teach a superhuman model. However, previous work (Burns et al., 2023; Liu &
Alahi, 2024; Gambashidze et al., 2024) has only demonstrated weak to strong generalization in single
capabilities. A strong model typically necessitates a range of capabilities, and a single weak model
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may lack the capabilities required. Thus, weak-to-strong generalization across multiple capabilities is
essential, enabling strong model to acquire diverse abilities from different weak models.

In this work, we conduct extensive experiments to investigate the multi-capabilities weak to strong
generalization. Firstly, we validate the weak to strong generalization for LLMs with multiple capabil-
ities. Subsequently, we analyze the interactions between these capabilities during the generalization
process, aiming to identify the factors influencing performance. Preliminary experiments reveal
that the different capabilities exhibit a tendency to remain relatively independent, irrespective of the
strength of the generalization. Moreover, the quality of the generated data significantly impacts the
effectiveness of weak supervision. Upon delving deeper into the weak to strong generalization, we
discover that strong models do not strictly adhere to weak supervision, i.e., weak models. Further
analysis indicates that strong models tend to exhibit overconfidence in certain knowledge in a capa-
bility, which also leads to a degradation in performance through its self-bootstrapping. The analysis
demonstrates that data generated by weak models tends to be more diverse for the strong model,
which is more beneficial for the weak to strong generalization.

To improve weak to strong generalization with multi-capabilities, we propose a novel training
framework that employs reward models to select valuable data as weak supervision for strong model
training. Firstly, generating weak datasets by weak models serves as weak supervision. Subsequently,
the strong model trained on weak datasets relabels the weak datasets to obtain strong datasets.
Furthermore, according to previous findings of inconsistency between weak models and strong
models, we divide the weak datasets and strong datasets into three parts based on consistency:
consistent datasets, inconsistent weak datasets, and inconsistent strong datasets. In previous findings,
weak datasets exhibit greater diversity relative to the strong model and are better beneficial for weak
to strong generalization. Consequently, we train a reward model to identify correct datasets that differ
in distribution from the strong datasets. In addition, we then propose a two-stage training method,
enabling the strong model to learn from both the weak dataset and the selected datasets, thereby
achieving superior multi-capabilities weak to strong generalization.

In this study, our contributions are as follows:
• We conducted extensive experiments to investigate weak to strong generalization with multi-

capabilities. The analysis results provide insights, including the relative independence of different
capabilities and weak datasets more diverse compared with strong datasets.

• We propose a novel training framework for strong model training, consisting of a reward model
for selecting valuable weak supervision data, and two-stage training for the strong model on weak
datasets and selected datasets.

• Our method significantly enhances weak to strong generalization for LLMs with multi-capabilities.
Further analysis demonstrates that the reward model can select more accurate data that is also more
divergent from the data distributions generated by strong models.

2 BACKGROUND AND NOTATION

Weak to strong generalization in large language models refers to a weak model guiding a strong
model training, an analogy setting of human-guided superhuman model training (Burns et al., 2023).
Specifically, the weak model generates a weak dataset to provide weak supervision for the strong
model’s training. However, the data generated by the weak model may contain errors and be
incomplete. Consequently, the strong model needs to infer the correct task intentions from the
imperfect guidance provided by the weak model. Following Burns et al. (2023), the weak to strong
generalization involves two different training sets with a single capability i, namely Da

i and Db
i . In

this setting, the dataset Da
i is annotated by humans, while Db

i is an unannotated dataset.

Firstly, the weak model M (w)
i is trained on the human-annotated dataset Da

i , resulting in the trained
weak model M̄ (w)

i . This ensures that the model acquires a certain capability i, similar to human
understanding. This training process can be expressed as follows:

min
θw

∑
(x,y)∈Da

i

L(y, fθw,i
(x)) (1)

where L denotes the loss function, θw,i represents the weak model parameters, and (x, y) are the
labeled samples from the dataset Da

i .
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Subsequently, the trained weak model is used to label the unannotated dataset Db
i , resulting in the

dataset D̄b
i . Since the weak model’s capability i may be limited, its annotations on D̄b

i could be
incomplete and noisy. The annotation process by the weak model can be described as follows:

D̄b
i = {(x, ŷ) | x ∈ Db

i , ŷ = fθ̄w,i
(x)} (2)

where θ̄w,i is the parameters of trained weak model, and label ŷ is predicted by trained weak model.

In weak to strong generalization, the strong model M (s)
i learns the capability i by training on the

dataset D̄b
i annotated by the weak model. The training process for the strong model is as follows:

min
θs

∑
(x,ŷ)∈D̄b

i

L(ŷ, fθs,i(x)) (3)

where θs,i represents the parameters of the strong model, and L denotes the loss function for training
the strong model. The objective is to minimize L by adjusting the parameters θs,i so that the strong
model can effectively learn from the annotations generated by the weak model.

Related Work. Recent advancements have been marked by the development of large language
models (LLMs), e.g., GPT-4 (OpenAI, 2023), Gemini (Anil et al., 2023), LLaMA (Touvron et al.,
2023), Qwen (Bai et al., 2023). Due to some capabilities of LLMs surpassing those of humans
(Pu et al., 2023; Luo et al., 2024), a significant focus has been on weak to strong generalization.
Studies like (Tong et al., 2024; Li et al., 2024a; Sun et al., 2024) have shown how this approach
optimizes capabilities through methods like self-reinforcement and data filtering. In addition, training
data selection methods, both efficiency-based (Xie et al., 2023; Zhou et al., 2023) and quality-based
(Wettig et al., 2024; Yu et al., 2023)), have been developed to enhance LLM performance by focusing
on computational efficiency and data quality. The full version can be found in Appendix B.

3 ANALYSIS ON MULTI-CAPABILITIES WEAK TO STRONG GENERALIZATION

3.1 MULTI-CAPABILITIES FOR LLM

Numerous studies are currently investigating the various capabilities of LLMs (Chen et al., 2024;
Zhao et al., 2024), including mathematics (Li et al., 2024b), temporal reasoning (Zhou et al., 2019),
planning (Logeswaran et al., 2022), and more. Unlike previous research that primarily focused on a
single ability (Burns et al., 2023), our study aims to explore whether weak to strong generalization can
occur across multiple capabilities in LLMs. To explore the models’ performance in weak to strong
generalization settings, we employ eight datasets that span various skills, such as GSM8K (Cobbe
et al., 2021) for mathematical abilities, MC-TACO (Zhou et al., 2019) for temporal reasoning,
SCAN (Lake & Baroni, 2018) for planning ability, CREAK (Onoe et al., 2021) for fact-checking
and commonsense reasoning ability, ECQA (Aggarwal et al., 2021) for explainable commonsense
reasoning, e-SNLI (Camburu et al., 2018) for logical reasoning ability, OpenBookQA (Mihaylov
et al., 2018) for fact reasoning, and SciQ (Welbl et al., 2017) for science-related abilities.

3.2 CAN TRAINING MODEL WITH MULTI-CAPABILITIES FROM WEAK SUPERVISION?
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Figure 1: Left: Performance of different-
scale models on multi-capabilities tasks; Right:
Performance of strong model with single-
capability and multi-capabilities weak to strong
generalization.

To investigate whether LLMs can learn multiple capabil-
ities from multiple weak supervision, we train a series of
LLMs with different parameter scales (i.e., 0.5B, 1.8B,
4B, 7B) on datasets annotated for these capabilities. The
average performance of these LLMs in multiple capa-
bilities is shown in Figure 1 (Left). From the figure, we
can observe that larger LLMs, i.e., with more parame-
ters, exhibit better average performance, confirming a
positive correlation between model size and capability
in these LLMs. Based on the premise that these models,
ordered from smallest to largest, exhibit a correspond-
ing increase in capability, we conduct weak to strong
generalization experiments on these models. Following
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Burns et al. (2023), we employ weaker models to generate datasets that served as weak supervision
for stronger model training, i.e., 0.5B, 1.8B, and 4B models provide weak supervision for 1.8B,
4B, and 7B models, respectively. The results, shown in Figure 1 (Right), reveal that the average
performance of the weaker models consistently underperforms compared to the “WTS-S” (averaging
performance across models with single-capability weak to strong generalization on different datasets)
and “WTS” (averaging performance of model with multi-capabilities weak to strong generalization).
The performance between single-capability and multi-capabilities generalization is comparable. In
addition, we can observe that the gains from weak to strong generalization are more pronounced
when the model size is smaller due to its weaker capability. Further details, i.e., the performance of
each capability for Figure 1, can be found in Appendix D.

3.3 HOW DOES WEAK MODEL GENERATED DATA IMPACTS WEAK TO STRONG
GENERALIZATION WITH MULTI-CAPABILITIES?
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Figure 2: Performance of strong
model trained on different weak
supervision.

To further explore the factors impacting multi-capabilities weak to
strong generalization, we train strong models on datasets generated
by weak models of varying model sizes. As shown in Figure 2,
the quality of data generated by weak models significantly impacts
the performance of weak to strong generalization. Higher-quality
data generated by weak models with greater model sizes improve
the performance of stronger models, highlighting the importance of
improving the data quality produced by these weak models. Beyond
the direct impact of the generated data, we also analyze the effect
of dataset compositions with different capabilities on strong models.
In our experiment, we randomly weaken certain capabilities in weak
supervision. Specifically, we replace the training data for given
capabilities with weak data generated by a smaller-size weak model
corresponding to that capability. As shown in Figure 3, we observe
that the performance of other capabilities in the strong model is not
significantly affected. It demonstrates that weak data quality is relatively independent across different
capabilities. To further validate this observation, we randomly remove some capabilities to investigate
any potential synergistic or inhibitory interactions among capabilities. The results, presented in
Figure 4, confirm that removing certain capabilities does not compromise strong model performance
in others, supporting the independence of data quality across various capabilities. More results of
strong models on each capability for Figure 2, Figure 3, and Figure 4, can be found in Appendix E.
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Figure 3: Results under weaken some capabilities.
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Figure 4: Results under remove some capabilities.

3.4 HAVE CONSISTENCY BETWEEN STRONG MODEL AND WEAK SUPERVISION?

To deepen our understanding of the performance improvements exhibited by strong models in weak
to strong generalization, we analyze the consistency of prediction results between strong and weak
models. Firstly, weak models generate datasets for training strong models, which are then re-annotated
these datasets by the trained strong models. As shown in Figure 5, the majority of predictions by the
strong and weak models were consistent, denoted as “True Con.” and “False Con.”. This indicates
that strong models predominantly learn from the knowledge provided by weak models. However, it
is observed that strong models correctly predict more samples compared to weak models, i.e., “WTS
True” versus “Weak True”. This suggests that the essence of weak to strong generalization is not
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Figure 5: Prediction results of strong model (WTS) and weak supervision (Weak). “True Con.” and “False
Con.” indicate cases where both models give the same correct or incorrect answers, respectively. “WTS True”
means the strong model is correct and the weak model is incorrect, while “Weak True” is the opposite. “False
Incon.” indicates both models are incorrect but with different answers.
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Figure 6: Prediction results of strong model (WTS-2) and its supervision from strong model (WTS).

merely the strong model replicating the weak model but rather learning the task’s intent and rules
from the datasets. Nevertheless, the strong models incorrectly answer “Weak True” samples correctly
predicted by the weak models, highlighting a potential overconfidence issue in strong models that
prevent them from learning some correct samples identified by the weak models. The details of each
capability consistency between strong model and weak supervision can be found in Appendix F.

3.5 CAN IMPROVE STRONG MODEL WITH SELF-BOOTSTRAPPING?

Based on the above analysis, we can observe that a strong model trained on datasets generated by weak
models can achieve better performance. This raises a new question: “Can a strong model continuously
improve itself through self-bootstrapping?”. To explore its answer, we relabel the datasets using the
trained strong model (WTS) and then trained a second version of the strong model (WTS-2) on the
relabeled datasets. We compared the predictions of the trained strong model and the second version
for consistency. As shown in Figure 6, we found that the second version correctly labeled fewer
samples than the original strong model, i.e., “WTS-2 True” vs. “WTS True”. This indicates that it
fails to enhance the performance of weak to strong generalization. As mentioned in Sec. 3.4, the
strong model tends to be overconfident, leading to data collapse into a particular distribution during
self-bootstrapping. Similar conclusions have been observed in other studies (Alemohammad et al.,
2023; Shumailov et al., 2023; Seddik et al., 2024). More details of each capability can be found in
Appendix G.

3.6 HOW THE WEAK DATASETS IMPACT THE WEAK TO STRONG GENERALIZATION
PERFORMANCE?

Given that self-bootstrapping the strong model does not yield improved results, we focus on how
datasets generated by the weak model impact the weak to strong generalization. Firstly, we train the
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Figure 7: Left: Performance of strong model trained on
clean samples and different proportions of noise samples
of weak datasets; Right: Performance of strong model
trained on weak, strong, and combination datasets.

strong model on the clean weak datasets that
include only the correct sample in datasets gen-
erated by the weak model. Subsequently, we
introduce varying proportions of noise (i.e., in-
correct samples from the same weak dataset)
to the clean datasets for strong model training.
As shown in Figure 7 (Left), the strong model
performs best on clean datasets, which indicates
that training on accurate weak data yields better
results, emphasizing the importance of filtering
out erroneous samples in weak datasets. In ad-
dition, as shown in Figure 7 (Right), we use the
strong model trained on the relabeled data from
the strong model, termed “Strong Data”, to train
a second version of the strong model. We ob-
serve that its performance is inferior to the strong model trained on “Weak Data”, further confirming
the failure of model self-bootstrapping. Moreover, to mitigate the distributional collapse caused by
the overconfidence of the strong model, we combine the data labeled by both the weak model and
the trained strong model for training the strong model, “Mixed Data” in the figure. Although this
approach improves performance compared to “Strong Data”, it still does not surpass the performance
achieved with “Weak Data”. This underscores the significance of weak data for training strong
models. The performance on each capability can be found in Appendix H.

4 MULTI-CAPABILITIES WEAK TO STRONG GENERALIZATION WITH REWARD
MODELS

As mentioned before, the significance of weak datasets is shown in Figure 7, which shows that clean
weak datasets can provide better supervision for the strong model. A key factor in improving the
performance of weak to strong generalization is the accuracy of the weak datasets. Moreover, weak
datasets provide greater gain than strong datasets for the strong model. This difference arises from
the data distributions of weak datasets and strong datasets. Since strong datasets align more closely
with the internal knowledge of the strong model, this knowledge can be more easily activated when
using weak datasets to train a strong model. Self-bootstrapping a strong model on its generated data
gradually increases the model’s confidence in its internal knowledge, leading to potential collapse and
overconfidence during prediction. In contrast, weak datasets present a more diverse data distribution
for the strong model. Our method improves the strong model by increasing the accuracy of weak
datasets and selecting more diverse weak data for the strong model.

4.1 THE GOAL OF WEAK DATA SELECTION

As shown in Sec. 2, we first use the labeled datasetDa
i to train a weak model M (w)

i and then leverage
the trained weak model M̄ (w)

i to predict the answer for the unlabeled dataset Db
i to obtain labeled

weak dataset D̄b
i . Subsequently, we train a strong model M (s)

i with the weak dataset D̄b
i . The trained

strong model M̄ (s)
i is employed to relabel the dataset Db

i to obtain the strong dataset D̂b
i .

Let PD̄b
i
(x) and PD̂b

i
(x) represent the data distributions of datasets D̄b

i and D̂b
i , respectively. Our goal

is to identify a subset D̃b
i ⊂ D̄b

i such that the accuracy of samples in D̃b
i is high and the distribution

PD̃b
i
(x) differs significantly from PD̂b

i
(x), i.e.,

max
D̃b

i

Ex∼D̃b
i
[Accuracy(x)] subject to DKL(PD̃b

i
∥ PD̂b

i
) is high. (4)

where DKL denotes the Kullback-Leibler divergence between the distributions PD̃b
i (x)

and PD̂(x), and
the divergence can be defined as:

DKL(PD̃b
i
∥ PD̂b

i
) =

∑
x

PD̃b
i
(x) log

PD̃b
i
(x)

PD̂b
i
(x)

(5)
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This measure ensures that the selected subset D̃b
i not only maintains high accuracy but also introduces

sufficient diversity to prevent a collapse of the strong model.

4.2 TRAINING REWARD MODELS

To obtain a subset D̃b
i for strong model training, we train a reward model to differentiate between

data distributions. Following Figure 5, we first divide the data into three parts: consistent dataset Dc
i

from weak dataset D̄b
i and strong dataset D̂b

i , and inconsistent data, with D̄c
i representing inconsistent

data in D̄b
i and D̂c

i representing inconsistent data in D̂b
i . We define the consistent and inconsistent

datasets as follows:

Dc
i = {x | x ∈ D̄b

i ∩ x ∈ D̂b
i}

D̄c
i = {x | x ∈ D̄b

i \ D̂b
i}

D̂c
i = {x | x ∈ D̂b

i \ D̄b
i} (6)

In the setting of weak to strong generalization, we do not know which samples in D̄b
i and D̂b

i are
correct. Therefore, we choose Dc

i as positive samples because they include data where both the weak
model and the strong model agree, indicating higher confidence (as shown in Figure 5). In contrast,
we select D̂c

i as negative samples due to their low confidence. Additionally, this data includes “WTS
True” samples from Figure 5, which we know from Sec. 3.5 to be less diverse from strong model. We
aim to ensure that the distribution of the training data has high accuracy and differs more from D̂c

i to
prevent collapse. The objective function for the reward model can be defined as:

max
R

Ex∼Dc
i
[R(x)]− Ex∼D̂c

i
[R(x)] (7)

where R(x) denotes the reward assigned to a sample x by the reward model R. This ensures that the
reward model favors data points where the weak model’s predictions are consistent with the strong
model’s predictions (i.e., higher accuracy than the inconsistent part) while penalizing inconsistent
ones in the strong dataset. The proof of the reward model can be found in Appendix C.

4.3 REWARD MODEL FOR DATA SELECTION

To obtain better datasets from strong model training, we employ the trained reward model R to filter
the weak dataset from each capability to collect selected dataset D̈b

i . The reward model distinguishes
each sample x from weak datasets based on its accuracy and its contribution to diversity. Specifically,
the sample, classified as correct by the reward model, exhibits significant divergence from the strong
model’s data distribution in the dataset D̈b

i . In the weak dataset D̄b
i , each sample is evaluated by the

reward model. The reward model, R(x), is a binary classifier that determines whether a sample is
beneficial for training the strong model by considering both accuracy and diversity. Samples are
filtered based on the reward model classification as follows:

D̈b
i = {x | R(x) = 1}, x ∈ D̄b

i (8)

The selected samples have higher accuracy and introduce sufficient diversity for strong model training.

4.4 TRAIN STRONG MODEL WITH SELECTED DATA

The strong model M (s) is trained in two stages to leverage the benefits of both the weak datasets
D̄b = {D̄b

0, · · · , D̄b
N} and selected weak datasets D̈b = {D̈b

0, · · · , D̈b
N}, where N is the number of

capabilities. Firstly, the strong model is trained using the weak datasets D̄b. This initial training
phase serves as a warm-up, allowing the model to learn from a broader range of weak data, even
though it may not be entirely accurate or comprehensive.

M
(s)
i ←Warm-up(M (s)

i , D̄b), (9)

After the warm-up phase, the model is trained using the selected weak dataset D̈b. This phase focuses
on the higher accuracy, and diverse samples selected by the reward model, ensuring that the strong
model refines its predictions and avoids collapse.

M̄
(s)
i ← Train(M (s)

i , D̈b) (10)
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By employing this two-stage training approach, the strong model benefits from an initial broad
exposure to weak data, followed by focused training on higher accuracy and diverse samples. This
method enhances the model’s generalization capabilities, leveraging the advantages of weak data to
improve overall performance while mitigating risks of overconfidence and collapse.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Multi-Capabilities Task. For the multi-capabilities task, we utilize a range of datasets encompass-
ing various capabilities to comprehensively evaluate the models’ performance under weak to strong
generalization settings. The tasks were selected to cover diverse capabilities, such as reasoning,
comprehension, robot planning, math skills, etc. Details of the datasets are provided in Appendix A.
Following Burns et al. (2023), each capability’s dataset is split into a labeled training set, an unlabeled
training set, and a test set to simulate the weak to strong generalization scenario. The weak models
were trained on the annotated datasets, and their prediction on the unannotated datasets served as the
weak supervised dataset for training the strong models.

Experimental Details. In the experiments, we utilized a series of Qwen-1.5 models (Bai et al.,
2023) with varying parameters, specifically 0.5B, 1.8B, 4B, and 7B. The reward models are initialized
from the strong model, i.e., Qwen-1.5, and they maintain the same parameters. To ensure a fair
comparison, we followed the experimental setup from Burns et al. (2023), conducting all experiments
with 2 epochs and a batch size of 40. The optimizer used was Adam (Kingma & Ba, 2015) with a
learning rate of 1e-5. Weight decay was set at 0.01, and a cosine learning rate decay strategy was
employed. During inference, the models utilized a greedy decoding strategy. The performance refers
to accuracy, where a correct prediction exactly matches the ground truth answer. For weak to strong
generalization, we use the performance gap recovered (PGR) metric (Burns et al., 2023) to measure
the weak to strong generalization performance. All experiments are conducted on NVIDIA A100
80G GPUs.

5.2 RESULTS AND DISCUSSION

As shown in Figure 8, we present the experimental results on the weak to strong generalization
for LLMs with multi-capabilities. Our method, denoted as “Ours”, is compared against the multi-
capabilities weak to strong generalization approach, i.e., “WTS”, and the performance of strong
models trained on datasets Db

i with human annotations is used as a performance ceiling. The
average performance of the models is plotted against the size of the strong models (1.8B, 4B, and
7B parameters) in Figure 8. In addition, we show the performance gap recovered of our method and
baseline, i.e., “WTS”, in Figure 9. The results of each capability can be found in Appendix I.
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Figure 8: Performance of weak to
strong generalization. In “Ours-xB”
and “WTS-xB”, the “x” indicates the
size of the weak model used.

Analysis of Performance. As shown in Figure 8, the “WTS”
shows a gradual improvement in performance as the size of the
strong model increases from 1.8B to 7B parameters. However,
its relatively modest performance improvement indicates that
weak to strong generalization benefits from strong model capac-
ities but still faces limitations. Our method, “Ours”, significantly
outperforms the “WTS” across all strong model sizes. For the
same weak model, the performance gap between “Ours” and
“WTS” increases as the strong model size increases, suggesting
that our approach scales more effectively with stronger models.
The performance of the strong model trained on clean datasets
is a performance ceiling. While our method does not completely
bridge the gap to the performance ceiling, it achieves a substan-
tially closer performance than the “WTS” method, especially
for the models with larger sizes. Our method exhibits a notable
advantage, indicating its effectiveness even with models with
smaller sizes or when the model faces relatively harder tasks.
For the 7B model, our method achieves performance comparable
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to the “WTS” model. This is because the model already performs at a high level across various
capabilities, leaving little room for improvement. In addition, the abundance of correct samples
means the reward model’s data filtering impact is likely diminished.
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Figure 9: Performance gap recov-
ered of weak to strong generalization.

Analysis of Performance Gap Recovered. In Figure 9, we an-
alyze the performance gap recovered of the baseline “WTS” and
our method. This figure shows how much of the performance gap
recovered between various methods and the performance ceiling
as the model size increases. The “WTS-0.5B”, the weak model
of 0.5B model, recovers approximately 30% of the performance,
while our method recovers around 50%. This indicates that our
method is more effective at recovering performance, even with
weaker models guiding the strong model. As the model size in-
creases to 7B, the performance gap recovered for both methods
slightly decreases. However, our method still outperforms the
“WTS” approach. This reduction in recovery at larger model sizes
is due to the increased difficulty in further improving already
high-performing models and the diminishing impact of reward
model filtering as the proportion of correct samples increases.

5.3 ANALYSIS
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Figure 10: Performance of
model with and without first stage
training on weak datasets D̄b.
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Figure 11: Accuracy of datasets
from reward model, weak model,
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Deep Dive into Weak Data. To validate the effectiveness of using
weak datasets D̄b in the first stage of training, we compared the
performance of models trained with a first-stage weak dataset D̄b

against those trained directly on the selected weak dataset D̈b without
a first-stage training. The comparison spanned models of varying
sizes, including 0.5B, 1.8B, and 4B, with corresponding strong
models at 1.8B, 4B, and 7B. As shown in Figure 10, models trained
using weak datasets D̄b in the first stage consistently outperform
those that skip this stage and train directly on D̈b. This demonstrates
that even though weak datasets D̄b may not be entirely accurate or
comprehensive, they still provide a broader range of weak data that
benefits model training.

Impact of Reward Model. To analyze how our method achieves
performance gains through the selection of weak data, we further
examined the accuracy of the selected dataset. As shown in Fig-
ure 11, we present the accuracy of datasets provided by different
models, including the weak model, strong model, and our reward
model. The reward model consistently outperforms both the weak
and strong models across different weak model sizes (0.5B, 1.8B,
and 4B). Specifically, the accuracy of the reward model increases
significantly as the weak model size grows. This indicates that the
reward model and the weak model are correlated, as the weak model
provides positive training samples for the reward model, as men-
tioned in Sec. 4.2. As the capability of the weak model improves, it
provides more accurate positive training samples. However, the per-
formance gains from the reward model diminish as the weak model’s
performance improves because the task becomes more challenging.
In addition, in Figure 11, we also show the weak dataset retention
rate of our reward model, represented by the gray bars. The figure shows as the model size increases,
the reward model not only improves accuracy but also retains a higher proportion of useful data.

Deep Dive into Reward Model. In Figure 11, we have demonstrated that the accuracy of the
data selected by the reward model is higher than that of the original weak data. Thus, we aim to
observe whether the distribution of this data differs significantly from the distribution of the strong
data, specifically whether the reward model can select more data labeled as “Weak True”. Based
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Figure 12: Performance of reward model (Reward) on (in)consistent part between weak model (Weak) and
strong model.

on Figure 5, we conduct a distribution analysis of the data selected by the reward model, with the
results shown in Figure 12. Firstly, we observe that the reward model retains a higher proportion of
“Weak True” data among the inconsistency between the weak model and strong model predictions,
i.e., “Strong True”, “Weak True”, and “False Incon”. It demonstrates that the reward model not only
improves accuracy but also maintains a data distribution distinct from the strong model’s predictions.
Furthermore, as the weak model with greater size, the proportion of “True Con.” increases, leading to
a slight improvement by the reward model, as shown in Figure 8. More details of the reward model
can be found in Appendix J.
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Analysis Across Model Scales. To further analyze whether our
approach remains effective with larger models, approaching more
realistic settings, we expanded the range of weak models to include
0.5B, 1.8B, 4B, 7B and 32B, with their corresponding strong models
set at 1.8B, 4B, 7B, 32B and 72B, respectively. As shown in Fig-
ure 13, our method consistently outperforms the “WTS” approach
across all strong model sizes. Figure 14 shows that our method con-
sistently maintains a performance recovery rate of over 30%, even as
model sizes grow, particularly for weak models of 7B and 32B and
strong models of 32B and 72B. Moreover, the results demonstrate
that as the scale difference between weak and strong models grows
(e.g., weak models from 4B to 32B with their corresponding strong
models from 7B to 72B), the performance recovery rate becomes
even more significant.

6 CONCLUSION

In this study, we have explored the concept of multi-capabilities
weak to strong generalization in large language models (LLMs). Our
research validates that LLMs can indeed generalize from weak su-
pervision across multiple capabilities, shedding light on the relative
independence of these capabilities during the generalization process.
Through extensive experiments, we confirmed that the diversity and
quality of data generated by weak models are crucial factors influenc-
ing the effectiveness of weak to strong generalization. Specifically,
weak models tend to produce more diverse datasets for the strong
models, counteracting the performance degradation caused by the
overconfidence of strong models. We introduced a novel training
framework that incorporates reward models to select high-quality
weak supervision data, facilitating superior generalization for strong
models. Our proposed two-stage training method enables the strong model to learn effectively from
both weak and selected datasets, addressing the inconsistencies between weak and strong datasets.
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A DETAILS OF DATASETS ON DIFFERENT CAPABILITIES

In this section, we provide a comprehensive overview of the datasets utilized in our study, which
are designed to train and evaluate various capabilities of LLMs. Table 1 summarizes the datasets
employed, along with their sources and descriptions of the tasks.

Table 1: Datasets on multi-capabilities tasks

Dataset Original Source Description
CREAK Onoe et al. (2021) Fact-Checking and Commonsense Reasoning
ECQA Aggarwal et al. (2021) Explainable Commonsense Reasoning
e-SNLI Camburu et al. (2018) Logical Reasoning
GSM8K Cobbe et al. (2021) Mathematical Problem Solving
MC-TACO Zhou et al. (2019) Temporal Reasoning
OpenBookQA Mihaylov et al. (2018) Fact Questions
SCAN Lake & Baroni (2018) Robot Planning
SciQ Welbl et al. (2017) Science Question Answering

B RELATED WORK

B.1 LARGE LANGUAGE MODELS

Recent advancements in AI have been driven by the development of large language models (LLMs).
These models exhibit remarkable capabilities not only in language reasoning but also in visual
understanding (Zhu et al., 2024; Zhou et al., 2024a) and have even demonstrated impressive results
across a variety of applications (Zhou et al., 2025; 2024b). These models can be categorized into
closed-source and open-source LLMs. Closed-source models such as GPT-4 (OpenAI, 2023), Gemini
(Anil et al., 2023), and Claude 3 (Anthropic, 2024) excel in text and visual processing, reasoning,
and coding tasks, demonstrating near-human performance on various benchmarks due to significant
resource investments but with restricted access. In contrast, open-source models like Mistral 7B
(Jiang et al., 2023), LLaMA (Touvron et al., 2023), LLaMA-3 (AI@Meta, 2024) and Qwen (Bai
et al., 2023) promote broader research and innovation. Mistral 7B, with 7.3 billion parameters, and
LLaMA, ranging from 700 million to 65 billion parameters, provide competitive performance on
public datasets, enhancing accessibility and community contributions. Qwen encompasses a variety
of models ranging from 0.5 billion to 110 billion parameters, and its range makes it suitable for
research on model size and capability, from weak to strong generalization (Burns et al., 2023).

B.2 WEAK TO STRONG GENERALIZATION

weak to strong generalization leverages weaker models to supervise stronger ones, improving their
performance significantly (Burns et al., 2023; Guo et al., 2024). Several studies in weak to strong
generalization have focused on optimizing the capabilities of large language models (LLMs) using
weak supervision. For instance, Tong et al. (2024) introduces a self-reinforcement approach, starting
with supervised fine-tuning (SFT) on a small set of annotated questions. The model then iteratively
improves by learning from the differences in responses between the SFT and the un-fine-tuned model
on unlabeled questions. In mathematical reasoning, (Zhang et al., 2024) discuss the “AutoDS” method
and “AutoMathText” dataset, and uses foundational language models as zero-shot validators for
autonomous data selection, significantly improving performance on mathematical tasks. In addition,
Li et al. (2024a) investigates using smaller, weaker models for data filtering to fine-tune larger,
stronger models in instruction tuning. Despite the performance gap, there is a high consistency
between weak and strong models in perceiving instruction difficulty and data selection outcomes.

Other studies have applied weak to strong generalization to specific tasks. For example, Gambashidze
et al. (2024) introduces a framework for 3D object detection that addresses sparsity and occlusion
issues in LiDAR-based detection. In scalable alignment, Sun et al. (2024) proposes an easy-to-hard
generalization method. This approach trains process supervision reward models on easy problems
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and uses them to evaluate policy models on harder problems, resulting in significant performance
improvements through re-ranking or reinforcement learning. Moreover, Liu & Alahi (2024) presents
a co-supervised learning method that enhances weak to strong generalization by using a group of
specialized teachers instead of a single generalist teacher. Furthermore, Ji et al. (2024) introduces
Aligner, an efficient alignment paradigm that bypasses the RLHF process by learning the correction
residuals between aligned and misaligned answers.

B.3 TRAINING DATA SELECTION

In recent years, various methods have been proposed to enhance the performance of large language
models (LLMs) by selecting high-quality training data. These methods can be broadly categorized
into algorithms focusing on the efficiency of data selection and those optimizing for specific quality
attributes.

Efficiency-based data selection methods prioritize computational efficiency and scalability. The
DSIR framework (Xie et al., 2023) estimates importance weights in a simplified feature space and
uses importance resampling to select data efficiently, which can select 100M documents from the
entire Pile dataset within 4.5 hours. LIMA (Zhou et al., 2023) and LESS (Xia et al., 2024) improve
instruction-following capabilities by fine-tuning models using high-quality instruction-tuning data.
In addition, Muennighoff et al. (2023) explores scaling language models under data constraints,
proposing a method that considers diminishing returns from repeated tokens and excess parameters
to achieve computational optimality.

Quality-based data selection methods focus on selecting data that meets certain quality criteria.
QuRating (Wettig et al., 2024) aims to select pre-training data that captures abstract qualities of text
perceived by humans, such as writing style, required expertise, factuality, and educational value.
Moreover, MetaMath (Yu et al., 2023) focuses on mathematical reasoning by self-bootstrapping new
mathematical questions from multiple perspectives without adding extra knowledge, resulting in the
MetaMathQA dataset. To address the complexities and sensitivities of reinforcement learning from
human feedback (RLHF), Song et al. (2024) introduces PRO, an efficient supervised fine-tuning
algorithm that iteratively compares candidate responses to guide LLMs towards optimal responses,
aligning with human values.

C PROOF FOR REWARD MODEL

To prove that training a classifier using the defined positive and negative samples will result in positive
samples with higher accuracy and a distribution that is further from the strong dataset, we follow
these steps:

C.1 NOTATION AND ASSUMPTIONS

Let:

• D̄b
i : Weak dataset.

• D̂b
i : Strong dataset.

• Dc
i : Consistent dataset where Dc

i = {x | x ∈ D̄b
i ∩ x ∈ D̂b

i}.

• D̄c
i : Inconsistent data in D̄b

i where D̄c
i = {x | x ∈ D̄b

i \ D̂b
i}.

• D̂c
i : Inconsistent data in D̂b

i where D̂c
i = {x | x ∈ D̂b

i \ D̄b
i}.

• R(x): Reward assigned to sample x by the reward model.

C.2 OBJECTIVE FUNCTION

The objective function for the reward model is given by:

max
R

Ex∼Dc
i
[R(x)]− Ex∼D̂c

i
[R(x)] (11)
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C.3 PROOF

We start by defining the expected accuracy of the weak model M̄ and the strong model M̂ on their
respective datasets:

Accuracy of M̄ : AM̄ = Ex∼D̄b
i
[1{M̄(x) = y}] (12)

Accuracy of M̂ : AM̂ = Ex∼D̂b
i
[1{M̂(x) = y}] (13)

where y is the true label of x.

By construction, the consistent dataset Dc
i includes samples where both models agree, which implies

higher confidence:

Ex∼Dc
i
[1{M̄(x) = y}] ≥ Ex∼D̄b

i
[1{M̄(x) = y}] (14)

Ex∼Dc
i
[1{M̂(x) = y}] ≥ Ex∼D̂b

i
[1{M̂(x) = y}] (15)

Next, consider the inconsistent datasets D̄c
i and D̂c

i . These sets include samples where the weak and
strong models disagree, indicating lower confidence and potentially higher noise:

Ex∼D̄c
i
[1{M̄(x) = y}] ≤ Ex∼D̄b

i
[1{M̄(x) = y}] (16)

Ex∼D̂c
i
[1{M̂(x) = y}] ≤ Ex∼D̂b

i
[1{M̂(x) = y}] (17)

We aim to show that the reward model R trained using Dc
i (positive samples) and D̂c

i (negative
samples) will lead to a higher accuracy in the positive samples. The reward model objective is:

max
R

Ex∼Dc
i
[R(x)]− Ex∼D̂c

i
[R(x)] (18)

By optimizing this objective, the reward model learns to assign higher rewards to samples from
Dc

i and lower rewards to samples from D̂c
i . This training process effectively filters out noise and

emphasizes samples where the weak and strong models agree, leading to a classifier with higher
accuracy.

Furthermore, because the consistent samples Dc
i are derived from both weak and strong datasets, they

are more representative of high-confidence data, ensuring that the positive samples (i.e., samples with
high R(x)) are less noisy and have a distribution that is different from the noisy parts of the strong
dataset (D̂c

i ).

Thus, we have shown that the classifier trained in this manner will produce positive samples with
higher accuracy and a distribution that is further from the noisy strong datasets.

D MODEL PERFORMANCE ON DIFFERENT CAPABILITY

In this section, we present the performance of models of various scales across multiple capabilities.
The results are shown in the following figures. The Figure (Figure 15) shows the performance of
different-scale models on multi-capabilities tasks. Moreover, Figure 16 shows the performance of
weak to strong generalization with single-capability and multi-capabilities.

E IMPACT OF DIFFERENT CAPABILITY

Figure 17 shows the performance of a strong model when trained with various weak supervision.
In Figure 18 and Figure 19, we observe the results when the model’s capabilities are deliberately
weakened on the some dataset. Figure 20, Figure 21, Figure 22, and Figure 23 show the generalization
performance of models when certain capabilities are removed.
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Figure 15: Performance of different-scale models on multi-capabilities tasks.
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Figure 16: Performance of weak to strong generalization with single-capability and multi-capabilities.
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Figure 17: Performance of strong model trained on different weak supervision.
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Figure 18: Results under weaken capability on GSM8k.
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Figure 19: Results under weaken capabilities on ECQA and e-SNLI.
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Figure 20: Results of 1.8B to 4B generalization under remove capability on GSM8k.
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Figure 21: Results of 4B to 7B generalization under remove capability on GSM8k.
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Figure 22: Results of 1.8B to 4B generalization under remove capabilities on ECQA and e-SNLI.
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Figure 23: Results of 4B to 7B generalization under remove capabilities on ECQA and e-SNLI.
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F CONSISTENCY ANALYSIS ON WEAK TO STRONG GENERALIZATION

This section presents an analysis of the consistency in prediction results between models of varying
sizes. The analysis focuses on comparing the predictions of weaker models with those of stronger
models. The following Figure 24, Figure 25, and Figure 26 illustrate the prediction results for
different pairs of models.
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Figure 24: Prediction results of 1.8B strong model (WTS) and 0.5B weak model (Weak).
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Figure 25: Prediction results of 4B strong model (WTS) and 1.8B weak model (Weak).

22



Published as a conference paper at ICLR 2025

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6

0.8

Nu
m

be
r

(a) CREAK

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6

0.8

Nu
m

be
r

(b) ECQA

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6

0.8

Nu
m

be
r

(c) e-SNLI

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Nu
m

be
r

(d) GSM8K

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6

0.8

Nu
m

be
r

(e) MC-TACO

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6
Nu

m
be

r

(f) OpenBookQA

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.1

0.2

0.3

0.4

0.5

Nu
m

be
r

(g) SCAN

Tru
e C

on
.

WTS
 Tru

e

Wea
k T

rue

Fal
se 

Inc
on

.

Fal
se 

Con
.

0.0

0.2

0.4

0.6

0.8

Nu
m

be
r

(h) SciQ

Figure 26: Prediction results of 7B strong model (WTS) and 4B weak model (Weak).

G CONSISTENCY ANALYSIS ON STRONG MODEL SELF-BOOTSTRAPPING

This section presents a detailed consistency analysis of the self-bootstrapping used in training strong
models. The bootstrapping involves using predictions from a previously trained strong model (WTS)
to supervise the training of a new strong model (WTS-2). We evaluate the prediction consistency
between these models across different scales in Figure 27, Figure 28, and Figure 29.
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Figure 27: Prediction results of 1.8B strong model (WTS-2) and its supervision from strong model (WTS).
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Figure 28: Prediction results of 4B strong model (WTS-2) and its supervision from strong model (WTS).
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Figure 29: Prediction results of 7B strong model (WTS-2) and its supervision from strong model (WTS).
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H IMPACT OF WEAK DATA

This section examines the impact of weak data on model performance. The analysis is presented
through Figure 30 and Figure 31 which illustrate the effects of training a strong model with clean and
noisy weak datasets.
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Figure 30: Each capability performance of strong model trained on clean samples and different proportions of
noise samples of weak datasets.
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Figure 31: Each capability performance of strong model trained on weak datasets, strong datasets and their
combination.
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I PERFORMANCE ON EACH CAPABILITY

This section provides a detailed analysis of the weak to strong generalization performance of each
capability. The results are illustrated in the Figure 32 and Figure 33.
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Figure 32: Each capability performance of weak to strong generalization.
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Figure 33: Performance gap recovered of weak to strong generalization on each capability.
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J PERFORMANCE ON REWARD MODEL

In this section, we present the performance analysis of the reward model compared to weak and
strong models across various capabilities. The analysis is visualized through Figure 34, Figure 35,
Figure 36, and Figure 37, illustrating the accuracy and consistency of the models.
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Figure 34: Accuracy of datasets from reward model, weak model and strong model on each capability.
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Figure 35: Performance of reward model (Reward) on (in)consistent part between 0.5B weak model (Weak)
and 1.8B strong model.
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Figure 36: Performance of reward model (Reward) on (in)consistent part between 1.8B weak model (Weak)
and 4B strong model.
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Figure 37: Performance of reward model (Reward) on (in)consistent part between 4B weak model (Weak) and
7B strong model.
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K MORE DETAILED FIGURES

We have expanded on the content of Figure 1, Figure 7(Left), and Figure 7(Right) in greater detail. The
detailed breakdown is presented in Figure 38, Figure 39, and Figure 40 below for better observation.
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Figure 38: Performance of strong model with single-capability and
multi-capabilities weak to strong generalization.

0.5B 1.8B
Weak Model

0.575

0.600

0.625

0.650

0.675

Pe
rfo

rm
an

ce

Clean
0.25
0.5
0.75
1.0

1.8B 4B
Weak Model

0.68

0.70

0.72

0.74

0.76

0.78
Pe

rfo
rm

an
ce

Clean
0.25
0.5
0.75
1.0

Figure 39: Performance of strong model trained on clean samples and different
proportions of noise samples of weak datasets.
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Figure 40: Performance of strong model trained on weak, strong, and combination
datasets.
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L ABLATION STUDY ON DATA SELECTION METHODS

We experiment to compare the effectiveness of our reward model-based data selection with a random
selection baseline. Random selection was performed by choosing the same amount of data as selected
by the reward model, as it is considered a strong baseline in LLM data selection. The results of these
experiments are presented in Table 2.

Weak Model Strong Model Random Ours
0.5B 1.8B 52.49 59.17
1.8B 4B 63.52 69.05

4B 7B 74.31 77.07

Table 2: Performance comparison between random data selection and reward model-based data
selection.

The results show that random selection leads to a significant drop in performance compared to
our reward model-based approach. This performance gap can be attributed to the reward model’s
ability to identify and prioritize higher-quality training samples, which is critical for achieving better
generalization. These findings underscore the importance of the reward model in improving the data
selection process.

M PERFORMANCE VERIFICATION WITH IN-CONTEXT LEARNING

To better verify the performance of the strong model before training, we assessed its capabilities
using in-context learning (ICL). Specifically, we evaluated the strong model’s performance before
training by providing 3 ground truth examples for ICL. The experimental results are presented in
Table 3.

Weak Model Strong Model Ours WTS ICL
0.5B 1.8B 59.19 56.10 45.92
1.8B 4B 69.07 68.00 58.38

4B 7B 77.06 76.11 70.02

Table 3: Performance comparison between our method, standard weak-to-strong generalization
(WTS), and in-context learning (ICL).

The results demonstrate that weak-to-strong generalization (including both our method and the
standard WTS approach) significantly outperforms ICL across all model sizes. This performance gap
highlights the limitations of ICL, which relies solely on a few examples and cannot fully learn the
task’s intent. In contrast, weak-to-strong generalization effectively learns the task’s intent from noisy
weak data and exhibits remarkable resistance to noise. This robustness underscores the superiority
of weak-to-strong generalization in scenarios where data quality is inconsistent or noisy, further
validating its effectiveness for large-scale model training.
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