Under review as a conference paper at ICLR 2026

EXPERIENCE-BASED KNOWLEDGE CORRECTION FOR
ROBUST PLANNING IN MINECRAFT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM)-based planning has advanced embodied agents in
long-horizon environments such as Minecraft, where acquiring latent knowledge of
goal (or item) dependencies and feasible actions is critical. However, LLMs often
begin with flawed priors and fail to correct them through prompting, even with
feedback. We present XENON (eXpErience-based kNOwledge correctioN), an
agent that algorithmically revises knowledge from experience, enabling robustness
to flawed priors and sparse binary feedback. XENON integrates two mechanisms:
Adaptive Dependency Graph, which corrects item dependencies using past suc-
cesses, and Failure-aware Action Memory, which corrects action knowledge using
past failures. Together, these components allow XENON to acquire complex
dependencies despite limited guidance. Experiments across multiple Minecraft
benchmarks show that XENON outperforms prior agents in both knowledge learn-
ing and long-horizon planning. Remarkably, with only a 7B open-weight LLM,
XENON surpasses agents that rely on much larger proprietary models.

1 INTRODUCTION

Large Language Model (LLM)-based planning has advanced in developing embodied Al agents that
tackle long-horizon goals in complex, real-world-like environments (Szot et al., [2021}; [Fan et al.,
2022). Among such environments, Minecraft has emerged as a representative testbed for evaluating
planning capability that captures the complexity of such environments (Wang et al.| 2023bjc; | Zhu
et al.,|2023;|Yuan et al.|[2023; |Feng et al., 2024} Li et al., [2024b)). Success in these environments often
depends on agents acquiring planning knowledge, including the dependencies among goal items and
the valid actions needed to obtain them. For instance, to obtain an iron nuggetiz=, an agent should
first possess an iron ingot &=, which can only be obtained by the action smelt.

However, LLMs often begin with flawed priors about these dependencies and actions. This issue is
indeed critical, since a lack of knowledge for a single goal can invalidate all subsequent plans that
depend on it (Guss et al., |2019; [Lin et al., [2021; [Mao et al., [2022). We find several failure cases
stemming from these flawed priors, a problem that is particularly pronounced for the lightweight
LLMs suitable for practical embodied agents. First, an LLM often fails to predict planning knowledge
accurately enough to generate a successful plan (Figure[Ib), resulting in a complete halt in progress
toward more challenging goals. Second, an LLM cannot robustly correct its flawed knowledge, even
when prompted to self-correct with failure feedback (Shinn et al., 2023} (Chen et al., |2024), often
repeating the same errors (Figures [Tk and [Td). To improve self-correction, one can employ more
advanced techniques that leverage detailed reasons for failure (Zhang et al., 2024; Wang et al.| |2023a)).
Nevertheless, LLMs often stubbornly adhere to their erroneous parametric knowledge (i.e. knowledge
implicitly stored in model parameters), as evidenced by |Stechly et al.|(2024) and Du et al.| (2024)).

In response, we propose XENON (eXpErience-based kNOwledge correctioN), an agent that robustly
learns planning knowledge from only binary success/failure feedback. To this end, instead of relying
on an LLM for correction, XENON algorithmically and directly revises its external knowledge
memory using its own experience, which in turn guides its planning. XENON learns this planning
knowledge through two synergistic components. The first component, Adaptive Dependency Graph
(ADG), revises flawed dependency knowledge by leveraging successful experiences to propose
plausible new required items. The second component, Failure-aware Action Memory (FAM), builds
and corrects its action knowledge by exploring actions upon failures. In the challenging yet practical
setting of using only binary feedbacks, FAM enables XENON to disambiguate the cause of a failure,

Under review as a conference paper at ICLR 2026

— (a) True Dependency Graph
Correct

dependency ‘

Missed

=
dependency --- —b‘\@ 4;,
at @ d
edundant

dependency

(c) LLM self-correction for dependencies (Ground-truth for = : m)

(Z3 requires You failed to get iZ& many times. I still think (2= requires
- You had - at those times. -

@) M) @ Fail!

Prior attempt Correction prompt Next attempt

o
Hallocinated (B) LLM-predicted Graph

item

_________ a
- -

Wrong

knowledge S —p ‘ @
) ! / i
Ground- ‘ .

truth

(d) LLM self-correction for actions (Ground-truth for 2= : Ragyid)

I will do You failed toﬂ?manytimes. IWiIII:J' again.
“mine” (=1 You had ﬁ 'H at those times. | failed since | had no‘ and@_

@ - O - @ Fail!

Prior attempt Correction prompt Next attempt

Figure 1: An LLM exhibits flawed planning knowledge and fails at self-correction. (b) The
dependency graph predicted by Qwen2.5-VL-7B (Bai et al.l 2025) contains multiple errors (e.g.,
missed dependencies, hallucinated items) compared to (a) the ground truth. (¢, d) The LLM fails to
correct its flawed knowledge about dependencies and actions from failure feedbacks, often repeating
the same errors. See Appendix @for the full prompts and LLM’s self-correction examples.

distinguishing between flawed dependency knowledge and invalid actions, which in turn triggers a
revision in ADG for the former.

Extensive experiments in three Minecraft testbeds show that XENON excels at both knowledge
acquisition and planning. XENON outperforms prior agents in learning knowledge, showing unique
robustness to LLM hallucinations and modified ground-truth environmental rules. Furthermore, with
only a 7B LLM, XENON significantly outperforms prior agents that rely on much larger proprietary
models like GPT-4 in solving diverse long-horizon goals. These results suggest that robust algorithmic
knowledge management can be a promising direction for developing practical embodied agents with
lightweight LLMs (Belcak et al., 2025).

Our contributions are as follows. First, we propose XENON, an LLM-based agent that robustly learns
planning knowledge from experience via algorithmic knowledge correction, instead of relying on the
LLM to self-correct its own knowledge. We realize this idea through two synergistic mechanisms
that explicitly store planning knowledge and correct it: Adaptive Dependency Graph (ADG) for
correcting dependency knowledge based on successes, and Failure-aware Action Memory (FAM)
for correcting action knowledge and disambiguating failure causes. Second, extensive experiments
demonstrate that XENON significantly outperforms prior state-of-the-art agents in both knowledge
learning and long-horizon goal planning in Minecraft.

2 RELATED WORK
2.1 LLM-BASED PLANNING IN MINECRAFT

Prior work has often address LLMs’ flawed planning knowledge in Minecraft using impractical
methods. For example, such methods typically involve directly injecting knowledge through LLM
fine-tuning (Zhao et al., 2023} |[Feng et al., 2024} [Liu et al., 2025} |Qin et al., 2024) or relying on
curated expert data (Wang et al., 2023c; Zhu et al.| 2023 Wang et al.,[2023a)).

Another line of work attempts to learn planning knowledge via interaction, by storing the experience
of obtaining goal items in an external knowledge memory. However, these approaches are often
limited by unrealistic assumptions or lack robust mechanisms to correct the LLM’s flawed prior
knowledge. For example, ADAM and Optimus-1 artificially simplify the challenge of predicting and
learning dependencies via shortcuts like pre-supplied items, while also relying on expert data such as
learning curriculum (Yu & Lu, [2024)) or Minecraft wiki (Li et al.| 2024b)). They also lack a robust
way to correct wrong action choices in a plan: ADAM has none, and Optimus-1 relies on unreliable
LLM self-correction. Our most similar work, DECKARD (Nottingham et al., [2023)), uses an LLM to
predict item dependencies but does not revise its predictions for items that repeatedly fail, and when
a plan fails, it cannot disambiguate whether the failure is due to incorrect dependencies or incorrect

Under review as a conference paper at ICLR 2026

actions. In contrast, our work tackles the more practical challenge of learning planning knowledge
and correcting flawed priors from only binary success/failure feedback.

2.2 LLM-BASED SELF-CORRECTION

LLM self-correction, i.e., having an LLM correct its own outputs, is a promising approach to
overcome the limitations of flawed parametric knowledge. However, for complex tasks like planning,
LLMs struggle to identify and correct their own errors without external feedback (Huang et al.|
2024; Tyen et al.l 2024). To improve self-correction, prior works fine-tune LLMs (Yang et al.|
2025) or prompt LLMs to correct themselves using environmental feedback (Shinn et al., |2023)) and
tool-execution results (Gou et al.,[2024). While we also use binary success/failure feedbacks, we
directly correct the agent’s knowledge in external memory by leveraging experience, rather than
fine-tuning the LLM or prompting it to self-correct.

3 PRELIMINARIES

We aim to develop an agent capable of solving long-horizon goals by learning planning knowledge
from experience. As a representative environment which necessitates accurate planning knowledge,
we consider Minecraft as our testbed. Minecraft is characterized by strict dependencies among game
items (Guss et al.| 2019; |[Fan et al.,|2022), which can be formally represented as a directed acyclic
graph G* = (V*,£*), where V* is the set of all items and each edge (u, ¢, v) € £* indicates that ¢
quantities of an item wu are required to obtain an item ’UEI A goal is to obtain an item g € V*. To
obtain g, an agent must possess all of its prerequisites as defined by G* in its inventory, and perform
the valid high-level action in A = {“mine”, “craft”, “smelt”}.

Framework: Hierarchical agent with graph-augmented planning. We employ a hierarchical
agent with an LLM planner and a low-level controller, adopting a graph-augmented planning strat-
egy (Li et al.| 2024bj Nottingham et al., [2023)). In this strategy, agent maintains its knowledge graph
G and plans with G to decompose a goal g into subgoals in two stages. First, the agent identifies pre-
requisite items it does not possess by traversing G backward from g to nodes with no incoming edges
(i.e., basic items with no known requirements), and aggregates them into a list of (quantity, item)
tuples, ((q1,u1), ..., (qr,,ur,) = (1,g)). Second, the planner LLM converts this list into executable

language subgoals {(a;, q;, ul)}lL:gl, where it takes each w; as input and outputs a high-level action
a; to obtain u;. Then the controller executes each subgoal, i.e., it takes each language subgoal as
input and outputs a sequence of low-level actions in the environment to achieve it. After each subgoal
execution, the agent receives only binary success/failure feedback.

Problem formulation: Dependency and action learning. To plan correctly, the agent must acquire
knowledge of the true dependency graph G*. However, G is latent, making it necessary for the agent to
learn this structure from experience. We model this as revising a learned graph, G = (V, £), where V

contains known items and £ represents the agent’s current belief about item dependencies. Following
Nottingham et al.| (2023)), whenever the agent obtains a new item v, it identifies the experienced
requirement set Rexp(v), the set of (item, quantity) pairs consumed during this item acquisition. The

agent then updates G by replacing all existing incoming edges to v with the newly observed Rexp (V).
The detailed update procedure is in Appendix [C]

We aim to maximize the accuracy of learned graph G against true graph G*. We define this accuracy
Nirue(G) as the number of items whose incoming edges are identical in G and G*, i.e.,

Nirue(9) = Y I(R(v,G) = R(v,G")), e)

veEV*

where the dependency set, R (v, G), denotes the set of all incoming edges to the item v in the graph G.

'In our actual implementation, each edge also stores the resulting item quantity, but we omit it from the
notation for presentation simplicity, since most edges have resulting item quantity 1 and this multiplicity is not
essential for learning item dependencies.

Under review as a conference paper at ICLR 2026

4 METHODS

XENON is an LLM-based agent with two core components: Adaptive Dependency Graph (ADG)
and Failure-aware Action Memory (FAM), as shown in Figure J] ADG manages dependency
knowledge, while FAM manages action knowledge. The agent learns this knowledge in a loop
that starts by selecting an unobtained item as an exploratory goal (detailed in Appendix [G). Once
an item goal g is selected, ADG, our learned dependency graph G, traverses itself to construct
((q1,u1),...,(qr,,ur,) = (1,g)). For each v in this list, FAM either reuses a previously successful
action for u; or, if none exists, the planner LLM selects a high-level action a; € A given u; and action

histories from FAM. The resulting actions form language subgoals {(a;, q;, ul)}lL:*"l. The controller
then takes each subgoal as input, executes a sequence of low-level actions to achieve it, and returns
binary success/failure feedback, which is used to update both ADG and FAM. The full procedure is
outlined in Algorithm[I]in Appendix [D} We next detail each component, beginning with ADG.

4.1 ADAPTIVE DEPENDENCY GRAPH (ADG)

Dependency graph initialization. To make the most of

the LLM’s prior knowledge, albeit incomplete, we ini- (f = ;a;v: —~1 :z;i‘\ir‘:]::t O LLM)
tialize the learned dependency graph G = (V,€) us- |l :

ing an LLM. We follow the initialization process of |
DECKARD (Nottingham et al.| [2023)), which consists :

of two steps. First, Vis assigned), which is the set of

Dependency | Call
Graph | If(past LLM

G successful
(5) All actions | subgoal (3)-0
areinvalid | aysts) Reuse
subgoal

4 l Failure-aware |
goal items whose dependencies must be learned, and & | T . C°%"§"e’
is assigned). Second, for each item v in V), the LLM |(J R | fistory W
. ——— / | fail]
is prompted to predict its requirement set (i.e. incoming \ (6) Svbgoal folures gryironment/

edges of v), aggregating them to construct the initial graph.
)) Figure 3: Overview. XENON up-
However, those LLM-predicted requirement sets often {ateg Adaptive Dependency Graph and

include items not present in the initial set Vo, whichis a pajjyre-aware Action Memory with en-
phenomenon overlooked by DECKARD. Since Vo may yironmental experiences.

be an incomplete subset of all possible game items V*,

we cannot determine whether such items are genuine required items or hallucinated items which
do not exist in the environment. To address this, we provisionally accept all LLM requirement set
predictions. We iteratively expand the graph by adding any newly mentioned item to V and, in
turn, querying the LLM for its own requirement set. This expansion continues until a requirement
set has been predicted for every item in V. Since we assume that the true graph G* is a DAG, we
algorithmically prevent cycles in G; see Appendix for the cycle-check procedure. The quality of
this initial LLM-predicted graph is analyzed in detail in Appendix K.}

Dependency graph revision. Correcting the agent’s flawed dependency knowledge involves two
challenges (1) detecting and handling hallucinated items from the graph initialization, and (2)
proposing a new requirement set. Simply prompting an LLM for corrections is ineffective, as it

often predicts a new, flawed requ1rement set, as shown in Flgures and . Therefore, we revise G
algorithmically using the agent’s experiences, without relying on the LLM.

To implement this, we introduce a dependency revision procedure called RevisionByAnalogy
and a revision count C'(v) for each item v € V. This procedure outputs a revised graph by taking item

v whose dependency needs to be revised, its revision count C'(v), and the current graph G as inputs,
leveraging the required items of previously obtained items. When a revision for an item v is triggered
by FAM (Section , the procedure first discards v’s existing requirement set (i.e., R(v, G)« 0).
It increments the revision count C'(v) for v. Based on whether C'(v) exceeds a hyperparameter ¢y,
RevisionByAnalogy proceeds with one of the following two cases:

* Case 1: Handling potentially hallucinated items (C(v) > ¢). If an item v remains unobtainable
after excessive revisions, the procedure flags it as inadmissible to signify that it may be a halluci-
nated item. This reveals a critical problem: if v is indeed a hallucinated item, any of its descendants

in G become permanently unobtainable. To enable XENON to try these descendant items through
alternative paths, we recursively call RevisionByAnalogy for all of v’s descendants in G,

Under review as a conference paper at ICLR 2026

(a) Dependency Correction for (b) Action Correction for
Case1 ADG 1 Case2 ADG ADG FAM Prompt Subgoal

A Descendant | | [AK “Select an action for
» . 3 T

y (Leaf) : ' ° ":: . ¥ 7 " Failure : mine, craft, smelt” ... craft

counts: n "

£ Descendant : 0 1R : » 4 A Smine”: 2, ||_1\{a||d action ‘ _.‘

+ | |% | et ﬂ? “craft”: 1, 1 “ s

%, Hallucinated | ﬁ = 7{' “smelt”: o 1 _ | "Selectan action for

) item 1 ° yE 2 U , craft, smelt” ...

1 — 3
Recursively call \ Search similar, Replace the Determine & remove Try under-explored
RevisionByAnalogy | obtained items wrong dependency invalid actions action

Figure 4: XENON’s algorithmic knowledge correction. (a) Dependency Correction via
RevisionByAnalogy. Case l: For an inadmissible item (e.g., a hallucinated item), its de-
scendants are recursively revised to remove the flawed dependency. Case 2: A flawed requirement set
is revised by referencing similar, obtained items. (b) Action Correction via FAM. FAM prunes invalid
actions from the LLM’s prompt based on failures, guiding it to select an under-explored action.

removing their dependency on the inadmissible item v (Figure @, Case 1). Finally, to account for
cases where v may be a genuine item that is simply difficult to obtain, its requirement set R (v, G)
is reset to a general set of all resource items (i.e. items previously consumed for crafting other
items), each with a quantity of hyperparameter «;.

 Case 2: Plausible revision for less-tried items (C'(v) < ¢p). The item v’s requirement set,
R(v, Q), is revised to determine both a plausible set of new items and their quantities. First, for
plausible required items, we use an idea that similar goals often share similar preconditions (Yoon
et al.| [2024). Therefore, we set the new required items referencing the required items of the top-/&
similar, successfully obtained items (Figure [, Case 2). We compute this item similarity as the
cosine similarity between the Sentence-BERT (Reimers & Gurevych, 2019) embeddings of item
names. Second, to determine their quantities, the agent should address the trade-off between
sufficient amounts to avoid failures and an imperfect controller’s difficulty in acquiring them.
Therefore, the quantities of those new required items are determined by gradually scaling with the
revision count, a;C'(v).

Here, the hyperparameter c(serves as the revision count threshold for flagging an item as inadmissible.
«; and ag control the quantity of each required item for inadmissible items (Case 1), and for less-tried
items (Case 2), respectively, to maintain robustness when dealing with an imperfect controller. K
determines the number of similar, successfully obtained items to reference for (Case 2). Detailed
pseudocode of RevisionByAnalogy is in Appendix [E3] Algorithm 3]

4.2 FAILURE-AWARE ACTION MEMORY (FAM)

FAM is designed to address two challenges of learning only from binary success/failure feedback:
(1) discovering valid high-level actions for each item, and (2) disambiguating the cause of persistent
failures between invalid actions and flawed dependency knowledge. This section first describes
FAM’s core mechanism, and then details how it addresses each of these challenges in turn.

Core mechanism: empirical action classification. FAM classifies actions as either empirically valid
or empirically invalid for each item, based on their history of past subgoal outcomes. Specifically,
for each item v € V and action a € A, FAM maintains the number of successful and failed
outcomes, denoted as S(a,v) and F'(a,v) respectively. Based on these counts, an action a is
classified as empirically invalid for v if it has failed repeatedly, (i.e., F(a,v) > S(a,v) + zo);
otherwise, it is classified as empirically valid if it has succeeded at least once (i.e., S(a,v) > 0
and S(a,v) > F(a,v) — xp). The hyperparameter x, controls the tolerance for this classification,
accounting for the possibility that an imperfect controller might fail even with an indeed valid action.

Addressing challenge 1: discovering valid actions. FAM helps XENON discover valid actions
by avoiding repeatedly failed actions when making a subgoal sg; = (ay, i, u;). Only when FAM
has no empirically valid action for u;, XENON queries the LLM to select an under-explored action
for constructing sg;. To accelerate this search for a valid action, we query the LLM with (i) the
current subgoal item wu;, (ii) empirically valid actions for top-K similar items successfully obtained
and stored in FAM (using Sentence-BERT similarity as in Section @ and (iii) candidate actions for

Under review as a conference paper at ICLR 2026

w; that remain after removing all empirically invalid actions from A (Figure @p). We prune action
candidates rather than include the full failure history because LLMs struggle to effectively utilize long
prompts (Li et al.| [2024a; [L1u et al.|2024). If FAM already has an empirically valid one, XENON
reuses it to make sg; without using LLM. Detailed procedures and prompts are in Appendix [F}

Addressing challenge 2: disambiguating failure causes. By ensuring systematic action exploration,
FAM allows XENON to determine that persistent subgoal failures stem from flawed dependency
knowledge rather than from the actions. Specifically, once FAM classifies all actions in A for an item
as empirically invalid, XENON concludes that the error lies within ADG and triggers its revision.
Subsequently, XENON resets the item’s history in FAM to allow for a fresh exploration of actions
with the revised ADG.

4.3 ADDITIONAL TECHNIQUE: CONTEXT-AWARE REPROMPTING (CRE) FOR CONTROLLER

In real-world-like environments, an imperfect low-level controller can stall (e.g., in deep water). To
address this, XENON employs context-aware reprompting (CRe) technique, which uses an LLM
that takes the current image observation and the controller’s language subgoal for item acquisition
as input, and outputs whether to replace that subgoal and, if so, a new temporary subgoal to escape
the stalled state (e.g., “get out of the water”). Our CRe is adapted from Optimus-1 (Li et al., |2024b)
to be suitable for smaller LLMs, with two key differences: (1) a two-stage reasoning process that
separates image observation captioning from the subsequent text-only decision to replace the subgoal
or not, and (2) a conditional trigger that activates only when the subgoal for item acquisition makes
no progress, rather than at fixed intervals. See Appendix [H]for details.

5 EXPERIMENTS
5.1 SETUPS

Environments. We conduct experiments in three Minecraft environments, which we separate into
two categories based on their controller capacity. First, as realistic, visually-rich embodied Al
environments, we use MineRL (Guss et al.,[2019) and Mineflayer (PrismarineJS|2023) with imperfect
low-level controllers: STEVE-1 (Lifshitz et al.,[2023)) in MineRL and hand-crafted codes (Yu & Lul,
2024) in Mineflayer. Second, we use MC-TextWorld (Zheng et al., 2025)) as a controlled testbed
with a perfect controller. Each experiment in this environment is repeated over 15 runs; in our
results, we report the mean and standard deviation, omitting the latter when it is negligible. In all
environments, the agent starts with an empty inventory. Further details on environments are provided
in Appendix [J] Additional experiments in a household task planning domain other than Minecraft are
reported in Appendix [A] where XENON also exhibits robust performance.

Evaluation metrics. For both dependency Table 1: Comparison of knowledge correction
learning and planning evaluations, we utilize mechanisms across agents. O: Our proposed mech-
the 67 goals from 7 groups proposed in the long- anism (XENON), A: LLM self-correction, X: No
horizon task benchmark (Li et al., [2024b). To correction, —: Not applicable.

evaluate dependency learning with an intuitive

Dependency Action

perfor{nance score betweep 0 and 1, we report Agent Correction | Correction
Nie(G)/67, where Ny (G) is defined in Equa-

tion (T). We refer to this normalized score as XENON o o
Experienced Graph Accuracy (EGA). To evalu- SD% CKARD % ﬁ

ate planning performance, we follow the bench- ADAM i X
mark setting (L1 et al.| 2024b): at the beginning RAND X X

of each episode, a goal item is specified exter-
nally for the agent, and we measure the average success rate (SR) of obtaining this goal item in
MineRL. See Table [I0|for the full list of goals.

Implementation details. For the planner, we use Qwen2.5-VL-7B (Bai et al.,[2025). The learned

dependency graph is initialized with human-written plans for three goals (“craft an iron sword %,

“craft a golden sword x’,” “mine a diamond @), providing minimal knowledge; the agent must learn
dependencies for over 80% of goal items through experience. We employ CRe only for long-horizon

Under review as a conference paper at ICLR 2026

1.0 <ERon 1.0 Table 2: Robustness to LLM hallucina-
. DECKARD os tions. The number of correctly learned de-
T+ Rawo ' pendencies of items that are descendants
g 061 g 061 of a hallucinated item in the initial LLM-
o4 s predicted dependency graph (out of 12).
0.2 . " . " 021)" 4% Agent Learned descendants
‘ | | | | ‘ | | | | ge of hallucinated items
000 100 200 300 400 000 100 200 300 400
Episode Episode XENON 0.33
. . SC 0
MineRL Minefl
(a) Mine (b) Mineflayer ADAM 0
Figure 5: Robustness against flawed prior knowledge. EEEISARD 8

EGA over 400 episodes in (a) MineRL and (b) Mineflayer.
XENON consistently outperforms the baselines.

goal planning in MineRL. All hyperparameters are kept consistent across experiments. Further details
on hyperparameters and human-written plans are in Appendix[I|

Baselines. As no prior work learns dependencies in our exact setting, we adapt four baselines,
whose knowledge correction mechanisms are summarized in Table[I] For dependency knowledge,
(1) LLM Self-Correction (SC) starts with an LLM-predicted dependency graph and prompts the
LLM to revise it upon failures; (2) DECKARD (Nottingham et al.| 2023) also relies on an LLM-
predicted graph but with no correction mechanism; (3) ADAM (Yu & Lu, [2024) assumes that any
goal item requires all previously used resource items, each in a sufficient quantity; and (4) RAND,
the simplest baseline, uses a static graph similar to DECKARD. Regarding action knowledge, all
baselines except for RAND store successful actions. However, only the SC baseline attempts to
correct its flawed knowledge upon failures. The SC prompts the LLM to revise both its dependency
and action knowledge using previous LLM predictions and interaction trajectories, as done in many
self-correction methods (Shinn et al., 2023} [Stechly et al., [2024). See Appendix [B for the prompts of
SC and Appendix [J.1|for detailed descriptions of these baselines. To evaluate planning on diverse
long-horizon goals, we further compare XENON with recent planning agents that are provided with
oracle dependencies: DEPS |[Wang et al.| (2023b), Jarvis-1 Wang et al.| (2023c), Optimus-1 [Li et al.
(2024b), and Optimus-2 |L1 et al.[(2025b)).

5.2 ROBUST DEPENDENCY LEARNING AGAINST FLAWED PRIOR KNOWLEDGE

XENON demonstrates robust dependency learning from flawed prior knowledge, consistently outper-
forming baselines with an EGA of approximately 0.6 in MineRL and 0.9 in Mineflayer (Figure[5),
despite the challenging setting with imperfect controllers. This superior performance is driven by
its algorithmic correction mechanism, RevisionByAnalogy, which corrects flawed dependency
knowledge while also accommodating imperfect controllers by gradually scaling required items
quantities. The robustness of this algorithmic correction is particularly evident in two key analyses of
the learned graph for each agent from the MineRL experiments. First, as shown in Table [2] XENON
is uniquely robust to LLM hallucinations, learning dependencies for descendant items of non-existent,
hallucinated items in the initial LLM-predicted graph. Second, XENON outperforms the baselines in
learning dependencies for items that are unobtainable by the initial graph, as shown in Table

Our results demonstrate the unreliability of relying on LLM self-correction or blindly trusting
an LLM’s flawed knowledge; in practice, SC achieves the same EGA as DECKARD, with both
plateauing around 0.4 in both environments.

We observe that controller capacity strongly impacts dependency learning. This is evident in ADAM,
whose EGA differs markedly between MineRL (= 0.1), which has a limited controller, and Mineflayer
(= 0.6), which has a more competent controller. While ADAM unrealistically assumes a controller
can gather large quantities of all resource items before attempting a new item, MineRL’s controller
STEVE-1 (Lifshitz et al.,[2023)) cannot execute this demanding strategy, causing ADAM’s EGA to
fall below even the simplest baseline, RAND. Controller capacity also accounts for XENON’s lower
EGA in MineRL. For instance, XENON learns none of the dependencies of the Redstone group items,
as STEVE-1 cannot execute XENON’s strategy for inadmissible items (Section[4.I). In contrast, the

Under review as a conference paper at ICLR 2026

Table 3: Performance on long-horizon task benchmark. Average success rate of each group on the
long-horizon task benchmark |Li et al.|(2024b)) in MineRL. Oracle indicates that the true dependency
graph is known in advance, Learned indicates that the graph is learned via experience across 400
episodes. For fair comparison across LLMs, we include Optimus-17, our reproduction of Optimus-1
using Qwen2.5-VL-7B. Due to resource limits, results for DEPS, Jarvis-1, Optimus-1, and Optimus-2
are cited directly from (Li et al.| 2025b)). See Appendix @for the success rate on each goal.

. [L] =) Q@ @ i ®
Method Dependency Planner LLM ‘ Overall ‘ Wood Stone Iron Diamond Gold Armor Redstone
DEPS - Codex 0.22 0.77 048 0.16 0.01 0.00 0.10 0.00
Jarvis-1 Oracle GPT-4 0.38 0.93 0.89 0.36 0.08 0.07 0.15 0.16
Optimus-1 Oracle GPT-4V 043 0.98 092 0.46 0.11 0.08 0.19 0.25
Optimus-2 Oracle GPT-4V 0.45 0.99 093 0.53 0.13 0.09 0.21 0.28
Optimus-1T Oracle Qwen2.5-VL-7B 0.34 0.92 0.80 0.22 0.10 0.09 0.17 0.04
XENON * Oracle Qwen2.5-VL-7B 0.79 0.95 093 0.83 0.75 0.73 0.61 0.75
XENON Learned Qwen2.5-VL-7B 0.54 0.85 0.81 0.46 0.64 0.74 0.28 0.00

more capable Mineflayer controller executes this strategy successfully, allowing XENON to learn
the correct dependencies for 5 of 6 Redstone items. This difference highlights the critical role of
controllers for dependency learning, as detailed in our analysis in Appendix [K.3]

5.3 EFFECTIVE PLANNING TO SOLVE DIVERSE GOALS

As shown in Table 3] XENON significantly outperforms baselines in solving diverse long-horizon
goals despite using the lightweight Qwen2.5-VL-7B LLM (Bai et al., 2025)), while the baselines
rely on large proprietary models such as Codex (Chen et al., 2021)), GPT-4 (OpenAll 2024), and
GPT-4V (OpenAll 2023). Remarkably, even with its learned dependency knowledge (Section @,
XENON surpasses the baselines with the oracle knowledge on challenging late-game goals, achieving
high SRs for item groups like Gold (0.74) and Diamond (0.64).

XENON’s superiority stems from two key factors. First, its FAM provides systematic, fine-grained
action correction for each goal. Second, it reduces reliance on the LLM for planning in two ways: it
shortens prompts and outputs by requiring it to predict one action per subgoal item, and it bypasses
the LLM entirely by reusing successful actions from FAM. In contrast, the baselines lack a systematic,
fine-grained action correction mechanism and instead make LL.Ms generate long plans from lengthy
prompts—a strategy known to be ineffective for LLMs (Wu et al., 2024; |Li et al.| 2024a). This
challenge is exemplified by Optimus-17. Despite using a knowledge graph for planning like XENON,
its long-context generation strategy causes LLM to predict incorrect actions or omit items explicitly
provided in its prompt, as detailed in Appendix

We find that accurate knowledge is critical for long-horizon planning, as its absence can make even a
capable agent ineffective. The Redstone group from Table 3| provides an example: while XENON*
with oracle knowledge succeeds (0.75 SR), XENON with learned knowledge fails entirely (0.00 SR),
because it failed to learn the dependencies for Redstone goals due to the controller’s limited capacity
in MineRL (Section[5.2). This finding is further supported by our comprehensive ablation study,
which confirms that accurate dependency knowledge is most critical for success across all goals (See

Table [17]in Appendix [K.7).

5.4 ROBUST DEPENDENCY LEARNING AGAINST KNOWLEDGE CONFLICTS

To isolate dependency learning from controller capacity, Table 4: Effect of ground-truth pertur-
we shift to the MC-TextWorld environment with a perfect bations on prior knowledge.
controller. In this setting, we test each agent’s robustness to
conflicts with its prior knowledge (derived from the LLM’s ~ Perturbation Goal items obtainable
initial predictions and human-written plans) by introducing Intensity via prior knowledge

arbitrary perturbations to the ground-truth required items and 0 16 (no perturbation)
actions. These perturbations are applied with an intensity 1 14 (12 %)
level; a higher intensity affects a greater number of items, % 191 (51341 (ZO))

0

as shown in Table] This intensity is denoted by a tuple
(r,a) for required items and actions, respectively. (0, 0) represents the vanilla setting with no
perturbations. See Figure [21|for the detailed perturbation process.

Under review as a conference paper at ICLR 2026

XENON SC ADAM DECKARD —— RAND

1.0 1.0 1.0

0.8 A 0.8 A 0.8 A
< 0.6 1 < 0.6 1 < 0.6 1
]]]
w w w

0.44 0.4 4 0.4 4

otT——8 02 : 0-2"’\"\1-\‘,

©0 (Lo @0 (30 ©0 (01 (02 (03 ©0 L1y @2 (3
Perturbed (required items, action) Perturbed (required items, action) Perturbed (required items, action)

(a) Perturbed True Required Items (b) Perturbed True Actions (c) Perturbed Both Rules

Figure 6: Robustness against knowledge conflicts. EGA after 3,000 environment steps in MC-
TextWorld under different perturbations of the ground-truth rules. The plots show performance with
increasing intensities of perturbation applied to: (a) requirements only, (b) operations only, and (c¢)
both (see Table).

Figure [6] shows XENON’s strong robustness to knowledge conflicts, as it consistently maintains a
near-perfect EGA (/0.97). In contrast, the performance of all baselines degrades as perturbation
intensity increases across all three perturbation scenarios (required items, actions, or both). Notably,
we find that prompting an LLM to self-correct is ineffective when the ground truth conflicts with its
parametric knowledge: SC shows no significant advantage over DECKARD, which lacks a correction
mechanism. ADAM is vulnerable to action perturbations; its strategy of gathering all resource items
before attempting a new item fails when the valid actions for those resources are perturbed, effectively
halting its learning.

5.5 ABLATION STUDIES ON KNOWLEDGE CORRECTION MECHANISMS

As shown in Table 5] to analyze XENON’s Table 5: Ablation study of knowledge correction mech-
knowledge correction mechanisms for de- anisms. O: XENON; A: LLM self-correction; X: No
pendencies and actions, we conduct abla- correction. All entries denote the EGA after 3,000 envi-
tion studies in MC-TextWorld. While de- ronment steps. Columns denote the perturbation setting
pendency correction is generally more im- (r, a). For LLM self-correction, we use the same
portant for overall performance, action cor- prompt as the SC baseline (see Appendix @)

rection becomes vital under action pertur-
bations. In contrast, LLM self-correction
is ineffective for complex scenarios: it of-
fers minimal gains for dependency correc-
tion even in the vanilla setting and fails
entirely for perturbed actions. Its effective-
ness is limited to simpler scenarios, such
as action correction in the vanilla setting.
These results demonstrate that our algorith-
mic knowledge correction approach enables robust learning from experience, overcoming the limita-
tions of both LLM self-correction and flawed initial knowledge.

Dependency Action

Correction Correction (0,0) (3,0) (0,3) (3,3)

0.97 0.97 0.97 0.97
0.93 0.93 0.12 0.12
0.84 0.84 0.12 0.12
0.57 0.30 0.57 0.29
0.53 0.13 0.53 0.13
0.46 0.13 0.19 0.11

X% [>OO0O
*xOOX[P>O

5.6 ABLATION STUDIES ON HYPERPARAMETERS

To validate XENON’s stability to its hyperparameters, we conduct comprehensive ablation studies
in both MC-TextWorld and MineRL. In these studies, we vary one hyperparameter at a time while
keeping the others fixed to their default values (co = 3, a; = 8, as = 2, g = 2).

Our results (Figure [7] Figure [8) show that although XENON is generally stable across hyperpa-
rameters, an effective learning strategy should account for controller capacity when the controller

Under review as a conference paper at ICLR 2026

0.4 — =2 0.4 — =7 0.4 — =1 0.4 =1
=3 — =8 —_— =2 — Xo=2

0.2 — G=4 0.2 — @=9 0.2 — =3 02 — X=3
— =5 — ;=10 —_—as=4 —_— Xg=4

0

1000 2000 3000

Environment step

(@) co

0 1000 2000
Environment step

(b) a;

3000

0

1000 2000 3000

Environment step

(©) as

0 1000 2000 3000

Environment step

(d) xo

Figure 7: Hyperparameter ablation study in MC-TextWorld. EGA over 3,000 environment steps
under different hyperparameters. The plots show EGA when varying: (a) ¢ (revision count threshold
for inadmissible items), (b) o; (required items quantities for inadmissible items), (¢) o (required
items quantities for less-tried items), and (d) x((invalid action threshold). Each study varies one
hyperparameter while keeping the others fixed to their default values (co = 3, a; = 8, a5 = 2,
o = 2)

1.04

1.0 7 —e— xo=1
—— Xxg=2
—— x0=3
1 —— xo=4

—— (=2
—— =3
—— co=4
1 —— co=5

g
g

5
o
EY

200 300 400

Episode

(d) zo

Figure 8: Hyperparameter ablation study in MineRL. EGA over 400 episodes under different
hyperparameters. The plots show EGA when varying: (a) ¢ (revision count threshold for inadmissible
items), (b) o; (required items quantities for inadmissible items), (c) as (required items quantities for
less-tried items), and (d) x¢ (invalid action threshold). Each study varies one hyperparameter while
keeping the others fixed to their default values (c¢y = 3, o; = 8, a5 = 2,29 = 2).

200 300 400 000 100

Episode

200 300 400 000 100

Episode

(b) a;

200 300 400 000 100

Episode

100

(@) co (©) os

is imperfect. In MC-TextWorld (Figure [7), XENON maintains near-perfect EGA across a wide
range of all tested hyperparameters, confirming its stability when a perfect controller is used. In
MineRL (Figure @, with an imperfect controller, the results demonstrate two findings. First, while
influenced by hyperparameters, XENON still demonstrates robust performance, showing EGA after
400 episodes for all tested values remains near or above 0.5, outperforming baselines that plateau
around or below 0.4 (Figure[5a). Second, controller capacity should be considered when designing
dependency and action learning strategies. For example, the ablation on «; (Figure[8c) shows that
while gathering a sufficient quantity of items is necessary (s = 1), overburdening the controller
with excessive items (s = 4) also degrades performance. Similarly, the ablation on z (Figure 8d)
shows the need to balance tolerating controller failures against wasting time on invalid actions.

6 CONCLUSION

We address the challenge of robust planning via experience-based algorithmic knowledge correction.
With XENON, we show that directly revising external knowledge through experience enables an
LLM-based agent to overcome flawed priors and sparse feedback, surpassing the limits of LLM
self-correction. Experiments across diverse Minecraft benchmarks demonstrate that this approach not
only strengthens knowledge acquisition and long-horizon planning, but also enables an agent with a
lightweight 7B open-weight LLM to outperform prior methods that rely on much larger proprietary
models. Our work delivers a key lesson for building robust LLM-based embodied agents: LLM priors
should be treated with skepticism and continuously managed and corrected algorithmically.

Limitations. Despite its contributions, XENON faces a limitation. XENON'’s performance is
influenced by the underlying controller; in MineRL, STEVE-1 (Lifshitz et all, 2023)) controller
struggles with spatial exploration tasks, making a performance gap compared to more competent
controllers like Mineflayer. Future work could involve jointly training the planner and controller,
potentially using hierarchical reinforcement learning.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos, 2022. URL https://arxiv.org/abs/2206.11795.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai, 2025. URL
https://arxiv.org/abs/2506.02153.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
Constructing instruction manuals by Ilm agents via interactive environmental learning, 2024.

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and
Adam Trischler. Textworld: A learning environment for text-based games. CoRR, abs/1806.11532,
2018.

Kevin Du, Vésteinn Snabjarnarson, Niklas Stoehr, Jennifer White, Aaron Schein, and Ryan Cot-
terell. Context versus prior knowledge in language models. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 13211-13235, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.714. URL
https://aclanthology.org/2024.acl-1long.714/.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=rc8o_]8I8PX.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. LLaMA-rider:
Spurring large language models to explore the open world. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL
2024, pp. 4705-4724, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024 findings-naacl.292. URL https://aclanthology.org/2024,
findings—-naacl.292/.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations, 2019. URL
https://arxiv.org/abs/1907.13440.

11

https://arxiv.org/abs/2206.11795
https://arxiv.org/abs/2506.02153
https://aclanthology.org/2024.acl-long.714/
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX
https://aclanthology.org/2024.findings-naacl.292/
https://aclanthology.org/2024.findings-naacl.292/
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/1907.13440

Under review as a conference paper at ICLR 2026

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798!.

Jiajian Li, Qi Wang, Yunbo Wang, Xin Jin, Yang Li, Wenjun Zeng, and Xiaokang Yang. Open-world
reinforcement learning over long short-term imagination. In /CLR, 2025a.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning, 2024a.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Ligiang Nie. Optimus-1:
Hybrid multimodal memory empowered agents excel in long-horizon tasks. Advances in neural
information processing systems, 37:49881-49913, 2024b.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Ligiang Nie. Optimus-2:
Multimodal minecraft agent with goal-observation-action conditioned policy. In 2025 I[EEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2025b.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila Mcllraith. Steve-1: A generative
model for text-to-behavior in minecraft. 2023.

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, and Wei Yang. Juewu-mc:
Playing minecraft with sample-efficient hierarchical reinforcement learning. arXiv preprint
arXiv:2112.04907, 2021.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Shunyu Liu, Yaoru Li, Kongcheng Zhang, Zhenyu Cui, Wenkai Fang, Yuxuan Zheng, Tongya Zheng,
and Mingli Song. Odyssey: Empowering minecraft agents with open-world skills. In International
Joint Conference on Artificial Intelligence, 2025.

Hangyu Mao, Chao Wang, Xiaotian Hao, Yihuan Mao, Yiming Lu, Chengjie Wu, Jianye Hao, Dong
Li, and Pingzhong Tang. Seihai: A sample-efficient hierarchical ai for the minerl competition. In
Distributed Artificial Intelligence: Third International Conference, DAI 2021, Shanghai, China,
December 17-18, 2021, Proceedings 3, pp. 38—51. Springer, 2022.

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang
Dai, Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan
Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
models via mixture-of-loras, 2025. URL https://arxiv.org/abs/2503.01743.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep? embodied decision making
using language guided world modelling. In Proceedings of the 40th International Conference on
Machine Learning, ICML 23. JMLR.org, 2023.

OpenAlL Gpt-4v(ision) system card, 2023. URL |https://openai.com/index/
gpt—-4v-system—-card/.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

12

https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2503.01743
https://openai.com/index/gpt-4v-system-card/
https://openai.com/index/gpt-4v-system-card/
https://arxiv.org/abs/2303.08774

Under review as a conference paper at ICLR 2026

PrismarineJS. Prismarinejs/mineflayer, 2023. URL https://github.com/PrismarineJS/
mineflayer!| https://github.com/PrismarineJS/mineflayer.

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing
Shao. Mp5: A multi-modal open-ended embodied system in minecraft via active perception. In
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16307—
16316. IEEE, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL|https://arxiv.org/abs/1908|
10084.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks, 2024. URL https://arxiv.org/
abs/2402.08115.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find
reasoning errors, but can correct them given the error location. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 13894-13908, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.826. URL https://aclanthology.org/2024,
findings—-acl.826/l

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv: Arxiv-2305.16291, 2023a.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian (Shawn) Ma, and Yitao Liang.
Describe, explain, plan and select: Interactive planning with llms enables open-world multi-task
agents. Advances in Neural Information Processing Systems, 36:34153-34189, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. arXiv preprint arXiv: 2311.05997,
2023c.

Yuhao Wu, Ming Shan Hee, Zhiqing Hu, and Roy Ka-Wei Lee. Longgenbench: Benchmarking long-
form generation in long context llms, 2024. URL |https://arxiv.org/abs/2409.02076!

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and Shuicheng
Yan. Supercorrect: Supervising and correcting language models with error-driven insights. In
International Conference on Learning Representations, 2025.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Forty-first International Conference on Machine Learning,
2024.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments. arXiv
preprint arXiv:2410.22194, 2024.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing

Lu. Plan4MC: Skill reinforcement learning and planning for open-world Minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

13

https://github.com/PrismarineJS/mineflayer
https://github.com/PrismarineJS/mineflayer
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://aclanthology.org/2024.findings-acl.826/
https://aclanthology.org/2024.findings-acl.826/
https://arxiv.org/abs/2409.02076

Under review as a conference paper at ICLR 2026

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jackyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
soning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 15637-15653, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.924. URL
https://aclanthology.org/2024.findings-acl.924/.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,
Vancouver, Canada, pp. 19632-19642. AAAI Press, 2024. doi: 10.1609/aaai.v38i17.29936. URL
https://0ojs.aaai.org/index.php/AAATI/article/view/29936l

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, Jeng-
Neng Hwang, and Gaoang Wang. See and think: Embodied agent in virtual environment. arXiv
preprint arXiv:2311.15209, 2023.

Xinyue Zheng, Haowei Lin, Kaichen He, Zihao Wang, Zilong Zheng, and Yitao Liang. Mcu: An
evaluation framework for open-ended game agents, 2025. URL https://arxiv.org/abs/
2310.08367.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the minecraft:
Generally capable agents for open-world environments via large language models with text-based
knowledge and memory. arXiv preprint arXiv:2305.17144,2023.

14

https://aclanthology.org/2024.findings-acl.924/
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://arxiv.org/abs/2310.08367
https://arxiv.org/abs/2310.08367

Under review as a conference paper at ICLR 2026

This appendix is organized as follows:

* Appendix[A} Experiments in a domain other than Minecraft (Microsoft TextWorld Cooking).
* Appendix [B} Prompts and qualitative results of LLM self-correction in our experiments.

* Appendix[C} Detailed procedure for experienced requirement set determination and depen-
dency graph updates, as discussed in Section 3]

+ Appendix|[E} Detailed pseudocode and the prompt for ADG in Section

* Appendix [F} Detailed pseudocode and the prompt for step-by-step planning using FAM
in Section 4.2

+ Appendix [H} Detailed descriptions and the prompt for CRe in Section

* Appendix[I} Detailed descriptions of implementation, human-written plans, and hyperpa-
rameters.

* Appendix [J} Detailed descriptions of the baselines and experimental environments in Sec-
tion

+ Appendix[K} Analysis of experimental results and additional experimental results.
* Appendix[[} Descriptions about LLM usage.

15

Under review as a conference paper at ICLR 2026

Table 6: Success rates in the TextWorld Cooking environment, comparing XENON against the SC
(LLM self-correction) and DECKARD baselines from Section[5.1] We report the mean + standard
deviation over 3 independent runs, where each run consists of 100 episodes.

DECKARD SC XENON
Success Rate 0.09 £0.02 0.75£0.04 1.0040.00

A ADDITIONAL EXPERIMENTS IN ANOTHER DOMAIN

To assess generalization beyond Minecraft, we evaluate XENON on the Microsoft TextWorld Cooking
environment 2018), a text-based household task planning benchmark. We demonstrate
XENON can correct an LLM’s flawed knowledge of preconditions (e.g., required tools) and valid
actions for plans using ADG and FAM in this domain as well. We note that XENON is applied with
minimal modification: FAM is applied without modification, while ADG is adapted from its original
design, which supports multiple incoming edges (preconditions) for a node, to one that allows only a
single incoming edge, as this domain requires only a single precondition per node.

A.1 EXPERIMENT SETUP

Environment Rules. The goal is to prepare and eat a meal by reading a cookbook, which provides
a plan as a list of (action, ingredient) pairs, e.g., (“fry”, “pepper”’). We note that an agent cannot
succeed by naively following this plan. This is because the agent must solve two key challenges: (1)
it must discover the valid tool required for each cookbook action, and (2) it must discover the valid,
executable action for each cookbook action, as some cookbook actions are not directly accepted by

the environment (i.e., not in its action space).

Specifically, to succeed a cookbook’s (action, ingredient) pair, an agent must make a subgoal,
formatted as (executable action,ingredient, tool), where the executable action and
tool must be valid for the cookbook action. For example, the cookbook’s (“fry”, “pepper”) pair
requires the agent to make a subgoal (cook, “pepper”, stove). The available executable action

LEIT3 9 CEIT3 LEINT3 ELINT3 LLINT3

space consists of { “chop”, “close”, “cook”, “dice”, “drop”, “eat”, “examine”, “slice”, “prepare” },

ELIT3

and the available tools are { “knife”, “oven”, “stove”, “fridge”, “table”, “counter” }.

Baselines and Evaluation. All agents use an LLM (Qwen2.5-VL-7B) to make subgoals. The tool
for each cookbook action is predicted by the LLM from the available tools before an episode begins.
At each timestep during the episode, given a cookbook action, the LLM predicts an executable
action from the executable action space, constructing a subgoal from this predicted executable
action, the input ingredient, and the predicted tool.

To isolate the challenge of planning knowledge correction, we assume a competent controller gathers
all ingredients and tools; thus, an agent starts each episode with all necessary ingredients and tools.
An episode (max 50 timesteps) is successful if the agent completes the plan.

A.2 RESULTS

Table[6]shows that XENON achieves a perfect success rate (1.00 + 0.00), significantly outperforming
both SC (0.75 £ 0.04) and DECKARD (0.09 + 0.02). These results demonstrate that XENON’s core
mechanisms (ADG and FAM) are generalizable, effectively correcting flawed planning knowledge in
a domain that requires the agent to discover valid symbolic actions and preconditions. Notably, the
SC baseline fails to achieve high performance, even in the TextWorld Cooking environment which is
simpler than Minecraft. This reinforces our claim that relying on LLM self-correction is less reliable
than XENON’s experience-based algorithmic knowledge correction.

16

Under review as a conference paper at ICLR 2026

B PROMPTS AND QUALITATIVE RESULTS OF LLLM SELF-CORRECTION

B.1 DEPENDENCY CORRECTION

Figure[9 shows the prompt used for dependency correction.

I |You are a professional game analyst. For a given <item_name>, you need to
make <required_items> to get the item.
> | If you make <required_items> well, I will give you 1 $.

4 |I will give you recent transitions.

5 | % Recent failed trajectories are given

6 | [Failed example]

7 | <item_name>: {item_name}

8 | <hypothesized_required_items>: {original_prediction}
9 | <inventory>: {inventory}

10 | <plan>: {failed_subgoal}

11 | <success>: false

13 |I will give you learned items similar to <item_name>, and their validated
required items, Jjust for reference.

14 | % K similar experienced items and their requirements are given

15 | [Success Example]

16 | <item_name>: {experienced_item}

17 | <required_items> {experienced_requirements}

19 | $ Make a new predicted requirement set

20 | [Your turn]

21 |Here 1is <item_name>, you MUST output <required_items> to obtain the item
in JSON format. Remember <required_items> MUST be in JSON format.

23 | <item_name>: {item_name}
24 | <required_items>:

Figure 9: Prompt used for LLM self-correction about dependencies.

We provide some examples of actual prompts and LLM outputs in Figure[I0] Figure[TT]

B.2 ACTION CORRECTION

Figure[T2]shows the prompt used self-reflection for failed actions.

We provide some examples of actual prompts and LLM outputs in Figure[I3] Figure[T4]

17

W

(VIS

14

16
17
18
19

Under review as a conference paper at ICLR 2026

You are a professional game analyst. For a given <item_name>, you need to make <required_items

> to get the item.
If you make <required_items> well, I will give you 1 $.

I will give you recent transitions.

[Failed example]
<item_name>: iron_nugget

<hypothesized_required_items>: {’iron_ore’: 1, ’'crafting_table’: 1}

<inventory>: {’crafting_table’: 1, ’'wooden_sword’: 1, ’'wooden_pickaxe’: 1, 'torch’: 4, '
furnace’: 1, ’'stone_pickaxe’: 1, ’iron_axe’: 1, ’'iron_shovel’: 1, ’stick’: 2, ’'iron_
pickaxe’: 1, ’diamond’: 3, ’'iron_ingot’: 2, ’iron_ore’: 2, ’'gold_ore’: 1, ’‘coal’: 1}

<plan>: dig down and mine iron_nugget
<success>: false

I will give you learned items similar to <item_name>, and their validated required items,
for reference.

[Success Example]

<item_name>:

iron_ingot

<required_items>:

{’recipe’: {’furnace’: 1, 'iron_ore’: 1, ’'coals’: 1}}

[Success Example]

<item_name>:

iron_pickaxe

<required_items>:

{’recipe’: {’stick’: 2, ’'iron_ingot’: 3, ’crafting_table’: 1}}

[Success Example]

<item_name>:

iron_shovel

<required_items>:

{’recipe’: {’stick’: 2, ’'iron_ingot’: 1, ’crafting_table’: 1}}

[Your turn]
Here is <item_name>, you MUST output <required_items> to obtain the item in JSON format.
Remember <required_items> MUST be in JSON format.

<item_name>:

iron_nugget

<required_items>:

% LLM output: {’recipe’: {’iron_ore’: 1, ’crafting_table’: 1}}

just

Figure 10: Example of dependency self-correction for iron_nugget.

18

W

(VIS

14

16
17
18
19

Under review as a conference paper at ICLR 2026

You are a professional game analyst. For a given <item_name>, you need to make <required_items
> to get the item.
If you make <required_items> well, I will give you 1 $.

I will give you recent transitions.
[Failed example]

<item_name>: charcoal
<hypothesized_required_items>: {’oak_log’: 8}

<inventory>: {’dirt’: 1, 'oak_log’: 2, ’'crafting_table’: 1, ’'wooden_hoe’: 1, ’"wooden_pickaxe’:
1, "torch’: 4, ’'stone_axe’: 1, ’furnace’: 1, ’'stone_pickaxe’: 1, ’'stick’: 2, ’iron_
pickaxe’: 1, ’diamond’: 1, ’'iron_ingot’: 3, ’iron_ore’: 2, ’'coal’: 2}

<action>: craft charcoal
<success>: false

I will give you learned items similar to <item_name>, and their validated required items, just
for reference.

[Success Example]

<item_name>:

coals
<required_items>:
{’recipe’: {’wooden_pickaxe’: 1}}

[Success Example]
<item_name>:

furnace
<required_items>:
{’recipe’: {’cobblestone’: 8, ’'crafting_table’: 1}}

[Success Example]
<item_name>:

diamond
<required_items>:
{’recipe’: {’iron_pickaxe’: 1}

[Your turn]
Here is <item_name>, you MUST output <required_items> to achieve charcoal in JSON format.
Remember <required_items> MUST be in JSON format.

<item_name>:

charcoal

<required_items>:

% LLM output: {’recipe’: {’oak_log’: 8}}

Figure 11: Example of dependency self-correction for charcoal.

19

Under review as a conference paper at ICLR 2026

)

% LLM self-reflection to analyze failure reasons

You are a professional game analyst.

For a given <item_name> and <inventory>, you need to analyze why <plan>
failed to get the item.

4 |I will give you examples of analysis as follow.

[SURNY

6 | [Example]

7 | <item_name>: wooden_pickaxe

8§ | <inventory>: {’stick’: 4, ’'planks’: 4, ’'crafting_table’: 1}

9 | <plan>: smelt wooden_pickaxe

10 | <failure_analysis>

11 | {"analysis": "You failed because you cannot smelt a wooden_pickaxe. You
should craft it instead."}

12

13 | [Example]
14 | <item_name>: stone_pickaxe
15 | <inventory>: {’stick’: 4, ’'planks’: 4, ’'crafting_table’: 1}

16 | <plan>: craft stone_pickaxe

17 | <failure_analysis>

18 | {"analysis": "You failed because you do not have enough cobblestones."}
19
20 | [Your turn]

21 |Here is <item_name>, <inventory> and <plan>, you MUST output <failure_
analysis> concisely in JSON format.

22
23 | <item_name>: {item_name}
24 | <inventory>: {inventory}
25 | <plan>: {plan}

26 | <failure_analysis>

27
28 | % Then, using the self-reflection results, LLM self-correct its actions.
29 |For an item name, you need to make a plan, by selecting one among
provided options.

30 | I will give you examples of which plans are needed to achieve an item,
just for reference.

3 [Example]

32 | <item name>

33 | {similar_item}

34 | <task planning>

35 | {successful_plan

37 |Here are some analyses on previous failed plans for this item.

38 | [Analysis]

39 | {’item_name’: {item}, ’inventory’: {inventory}, ’'plan’: ’{plan}’, '
failure_analysis’: ' {self-reflection}’}

40
41 | [Your turn]

4 |Here is <item name>, you MUST select one from below <options>, to make <
task planning>.

43 |you MUST select one from below <options>. DO NOT MAKE A PLAN NOT IN <
options>.

45 | <options>:

46 [1: {"task": "dig down and mine {item}", "goal": [{item}, {quantity}]}
47 |2: {"task": "craft {item}", "goal": [{item}, {quantity}]}
48 | 3: {"task": "smelt {item}", "item": [{item}, {quantity}}

50 | <item name>
1| {item}
> | <task planning>

Figure 12: Prompts used for LLM self-correction about actions.

20

Under review as a conference paper at ICLR 2026

For an item name, you need to make a plan, by selecting one among provided options.
I will give you examples of which plans are needed to achieve an item, just for reference.

B oW =

[Example]

5 <item name>

6 | iron_ingot

7 | <task planning>

8 {"task": "smelt iron_ingot", "goal": ["iron_ingot", 1]}

10 [Example]

11 <item name>

12 iron_pickaxe

13 | <task planning>

14 {"task": "craft iron_pickaxe", "goal": ["iron_pickaxe", 1]}

16 [Example]

17 | <item name>

18 iron_shovel

19 | <task planning>

20 {"task": "craft iron_shovel", "goal": ["iron_shovel", 1]}
21

22 | Here are some analyses on previous failed plans for this item.

23 [Analysis]

24 {’item_name’: ’iron_nugget’,

25 ’inventory’: {’crafting_table’: 1, ’wooden_sword’: 1, ’'wooden_pickaxe’: 1, ’'torch’: 4, '
furnace’: 1, ’'stone_pickaxe’: 1, ’iron_axe’: 1, ’'iron_shovel’: 1, ’stick’: 2, ’'iron_
pickaxe’: 1, ’diamond’: 3, ’'iron_ingot’: 2, ’iron_ore’: 2, ’'gold_ore’: 1, ’‘coal’: 1},

26 'plan’: ’dig down and mine iron_nugget’,

27 | " failure_analysis’: ’You failed because you do not have any iron ore or diamond ore to mine
for iron nuggets.’}

28

29 [Your turn]

30 | Here is <item name>, you MUST select one from below <options>, to make <task planning>.

31 | you MUST select one from below <options>. DO NOT MAKE A PLAN NOT IN <options>.

32

33 | <options>

34 1. {"task": "dig down and mine iron_nugget", "goal": ["iron_nugget", 1]}

35 [2. {"task": "craft iron_nugget", "goal": ["iron_nugget", 1]}

36 3. {"task": "smelt iron_nugget", "goal": ["iron_nugget", 1]}

37

38 | <item name>
39 | iron_nugget
40 % LLM output: ’{"task": "dig down and mine iron_nugget", "goal": ["iron_nugget", 1]}’

Figure 13: Example of action self-correction for iron_nugget.

21

16

26

28

Under review as a conference paper at ICLR 2026

For an item name, you need to make a plan, by selecting one among provided options.
I will give you examples of which plans are needed to achieve an item, just for reference.

[Example]

<item name>

coals

<task planning>

{"task": "dig down and mine coals", "goal": ["coals", 1]}
[Example]

<item name>

furnace

<task planning>

{"task": "craft furnace", "goal": ["furnace", 1]}
[Example]

<item name>

diamond

<task planning>

{"task": "dig down and mine diamond", "goal": ["diamond", 1]}

Here are some analyses on previous failed plans for this item.

[Analysis]
{’item_name’: ’‘charcoal’,
"inventory’: {’dirt’: 1, ’'oak_log’: 2, ’crafting_table’: 1, ’"wooden_hoe’: 1, ’wooden_pickaxe’:
1, 'torch’: 4, ’'stone_axe’: 1, 'furnace’: 1, ’stone_pickaxe’: 1, ’stick’: 2, ’iron_
pickaxe’: 1, ’'diamond’: 1, ’iron_ingot’: 3, ’iron_ore’: 2, ’coal’: 2},
'plan’: '‘mine iron_nugget’,
’failure_analysis’: ’'You failed because you already have enough charcoal.’}

[Your turn]
Here is <item name>, you MUST select one from below <options>, to make <task planning>.
you MUST select one from below <options>. DO NOT MAKE A PLAN NOT IN <options>.

<options>

1. {"task": "mine iron_nugget", "goal": ["charcoal", 1]}
2. {"task": "craft charcoal", "goal": ["charcoal", 11}
3. {"task": "smelt charcoal", "goal": ["charcoal", 1]}

<item name>

charcoal
<task planning>
% LLM output: ’{"task": "craft charcoal", "goal": ["charcoal", 1]}’

Figure 14: Example of action self-correction for charcoal.

22

Under review as a conference paper at ICLR 2026

C EXPERIENCED REQUIREMENT SET AND DEPENDENCY GRAPH UPDATE

We note that the assumptions explained in this section are largely similar to those in the implementa-
tion of DECKARD (Nottingham et al., 2023ﬂ

Determining experienced requirement set. When the agent obtains item v while executing a
subgoal (op, ¢, u), it determines the experienced requirement set R.p(v) differently depending on
whether the operation op is “mine” or falls under “craft” or “smelt”. If op is “mine”, the agent
determines R..,(v) based on the pickaxe in its inventory. If no pickaxe is held, Ry, (v) is 0.
Otherwise, Rezp(v) becomes {(the highest-tier pickaxe the agent has, 1)}, where the highest-tier
pickaxe is determined following the hierarchy: “wooden_pickaxe”, “stone_pickaxe”, “iron_pickaxe”,
“diamond_pickaxe”. If op is “craft” or “smelt”, the agent determines the used items and their quantities

as Rezp(v) by observing inventory changes when crafting or smelting v.

Dependency graph update. When the agent obtains an item v and its R, (v) for the first time, it
updates its dependency graph G= (f), £). Since Rexp(v) only contains items acquired before v, no
cycles can be introduced to ADG during learning. The update proceeds as follows: The agent adds v
to both the set of known items V. Then, it updates the edge set & by replacing v’s incoming edges
with Rep(v): it removes all of v’s incoming edges (u, -, v) € £ and adds new edges (u;, ¢;,v) to &
for every (u;, ¢i) € Regp(v).

https://github.com/DeckardAgent/deckard

23

https://github.com/DeckardAgent/deckard

Under review as a conference paper at ICLR 2026

Algorithm 1: Pseudocode of XENON

input : invalid operation threshold x(, inadmissible item threshold ¢, less-explored item scale
s, inadmissible item scale «;)
1 Initialize dependency G < (V, £), revision counts C[v] + 1 forallv € V
» Initialize memory S(a,v) = 0, F(a,v) = 0forallv € V,a € A
3 while learning do

4 Get an empty inventory inv
5 vy ¢ SelectGoalWithDifficulty(G,C[]) // DEX Appendix
6 while H.,;04. do

. . Ly, . 4 ,
7 Series of aggregated requirements ((g;,u;)),_; using G and inv

// from Section
L, . .
8 Plan P < ((a1, qi,w)),_; by selecting a; for each w;, using LLM, M, x¢
9 foreach subgoal (a,q,u) € P do
10 Execute (a, ¢, u) then get the execution result success
11 Get an updated inventory ¢nv, dependency graph G // from Section
12 Update memory S(a,u) += success, F'(a,u) += —success
13 if not success then
14 if A1l actions are invalid then
15 G,C + RevisionByAnalogy(G,u,C[], co, s, a;)
// ADG Section |4.1

16 Reset memory M [u, -] < (0,0)
17 vy ¢ SelectGoalWithDifficulty(G,C[])
18 | break

D FULL PROCEDURE OF XENON

The full procedure of XENON is outlined in Algorithm T]

24

S}

Under review as a conference paper at ICLR 2026

E DETAILS IN ADAPTIVE DEPENDENCY LEARNING (ADG)

E.1 RATIONALE FOR INITIAL KNOWLEDGE

In real-world applications, a human user may wish for an autonomous agent to accomplish certain
goals, yet the user themselves may have limited or no knowledge of how to achieve them within a
complex environment. We model this scenario by having a user specify goal items without providing
the detailed requirements, and then the agent should autonomously learn how to obtain these goal
items. The set of 67 goal item names (),) provided to the agent represents such user-specified goal
items, defining the learning objectives.

To bootstrap learning in complex environments, LLM-based planning literature often utilizes minimal
human-written plans for initial knowledge (Zhao et al.| |2024; |Chen et al.| |2024). In our case, we
provide the agent with 3 human-written plans (shown in Appendix[l). By executing these plans, our
agent can experience items and their dependencies, thereby bootstrapping the dependency learning
process.

E.2 DETAILS IN DEPENDENCY GRAPH INITIALIZATION

Keeping ADG acyclic during initialization. During initialization, XENON prevents cycles in
ADG algorithmically and maintains ADG as a directed acyclic graph, by, whenever adding an LLM-
predicted requirement set for an item, discarding any set that would make a cycle and instead assign
an empty requirement set to that item. Specifically, we identify and prevent cycles in three steps when
adding LLM-predicted incoming edges for an item v. First, we tentatively insert the LLM-predicted
incoming edges of v into the current ADG. Second, we detect cycles by checking whether any of v’s
parents now appears among v’s descendants in the updated graph. Third, if a cycle is detected, we
discard the LLM-predicted incoming edges for v and instead assign an empty set of incoming edges
to v in the ADG.

Pseudocode is shown in Algorithm 2} The prompt is shown in Figure T3]

You are a professional game analyst. For a given <item_name>, you need to
make <required_items> to get the item.
If you make <required_items> well, I will give you 1 §$.

I will give you some examples <item_name> and <required_items>.

[Example] % TopK similar experienced items are given as examples
<item_name>: {experienced_item}
<required_items>: {experienced_requirement_set}

[Your turn]
Here is a item name, you MUST output <required_items> in JSON format.
Remember <required_items> MUST be in JSON format.

<item_name>: {item_name}
<required_items>:

Figure 15: Prompt for requirement set prediction for dependency graph initialization

E.3 PSEUDOCODE OF REVISIONBYANALOGY

Pseudocode is shown in Algorithm 3]

25

Under review as a conference paper at ICLR 2026

Algorithm 2: Graphlnitialization

input :Goal items V), (optional) human written plans P

output : Initialized dependency graph G = (f), £), experienced items V
1 Initialize a set of known items V' ¢ Vo, edge set E
2 Initialize a set of experienced items V < ()
3 foreach plan in Py do

4

/

10
11
12
13
14
15
16

Execute the plan and get experienced items and their experienced requirement sets

{ (Una RGWP(U”)) }71721
N

foreach (v, Rezp(v)) € {(Un, Rewp(vn))}, _, do
if v ¢ V then
/+ graph update from Appendix *x/
Ve VUu{vh, Ve« VUu{v}
Add edges to & according to Rezp(v)

* Graph construction using LLM predictions */

9 while v € V \ V whose requirement set R(v) has not yet been predicted by the LLM do

Select such an item v € V \ V (i.e., R(v) has not yet been predicted)
Select Vi C V based on Top-K semantic similarity to v, |Vg| = K
Predict R(v) < LLM (v, {(u, R(u,G)) }uevi)
foreach (u;, ¢;) € R(v) do
E+ & U {(uj,q;,v)}
if u; ¢ V then
| Ve vufy}

26

1
2

10

1

12

13
14
15
16

17
18

19

Under review as a conference paper at ICLR 2026

Algorithm 3: RevisionByAnalogy

input :Dependency graph G = (V, €), an item to revise v, exploration counts C|-],
inadmissible item threshold ¢y, less-explored item scale «, inadmissible item scale «;

output : Revised dependency graph G = (f/, &), exploration counts C:]

Consider cases based on C'[v]:

if C[v] > ¢y then

/* v 1is inadmissible x/

/* resource set: 1items previously consumed for crafting
other items %/

R(v) + {(u, ;) | u € “resource” set}

/* Remove all incoming edges to v in £ and add new edges */

£ E\{(x,q,0) | (z,q,v) € £}
foreach (u, «;) € R(v) do

| €+ EU{(u,,0)}
/+ Revise requirement sets of descendants of v */
Find the set of all descendants of v in G (excluding v): W < FindAllDescendants(v, G)
for each item w in WV do

L Invoke RevisionByAnalogy for w

else
/*x v is less explored yet. Revise based on analogy */
Find similar successfully obtained items Vi C V based on Top-K semantic similarity to v
Candidate items Upgpng + {u | 3w € Vi, (u,-,w) € £} /+ all items required
to obtain similar successfully obtained items Vg */
Start to construct a requirement set, R(v) + 0
for each item u in U.4y,q do
if u is in “resource” set then
| Add (u, a5 x C[v]) to R(v)
else
| Add (u,1) to R(v)

Update G: Remove all incoming edges to v in £, and add new edges (u,q,v) to & for each
(u,q) € R(v)

27

1

2

3

4

10

11
12

Under review as a conference paper at ICLR 2026

F STEP-BY-STEP PLANNING USING FAM

Given a sequence of aggregated requirements ((g;, vl))le, XENON employs a step-by-step planning
approach, iteratively selecting an operation op; for each requirement item v; to make a subgoal
(op1, q1,v1). This process considers the past attempts to obtain v; using specific operations. Specif-
ically, for a given item v;, if FAM has an empirically valid operation, XENON reuses it without
prompting the LLM. Otherwise, XENON prompts the LLM to select an operation, leveraging infor-
mation from (i) valid operations for items semantically similar to v;, (ii) empirically invalid operations

for v;.

The pseudocode for this operation selection process is detailed in Algorithm[] The prompt is shown

in Figure [T6]

Algorithm 4: Step-by-step Planning

input :A requirement item v, Fine-grained Failure-aware Operation Memory M-, -], invalid
operation threshold xg

output : Selected operation opseiected

Retrieve history for item v: M, < {(op, n}'y, n{%ﬂ)}ope@p

/+ Find empirically valid and invalid operations for v

according to M, x/
0Py « {op € OP | n3ee > 0 Anstce — ndail > —ax}

! valid '

OP "« {op € OP | njtee —nfl < —x¢}

if OP.* £ () then

/* Empirically valid operation found (at most one), reuse it
*/

Select 0pgejected @s the single element in (’)Pg“l"d

L return ODselected

else
/* Otherwise, prompt LLM */
/+* 1. Collect (item, valid operation) pairs into
ItemValidOpPairs */
ItemValidOpPairs < 0
foreach v € keys(M) do
succ

Retrieve history M, « {(op’,n3"s5, nﬁfgf),)}op,eop

foreach op’ € OP such that ny'ss, > 0 Anyss, — n{j“;j,, > —xg do
| Add (u, op') to ItemValidOpPairs
/* 2. Find K pairs from ItemValidOpPairs whose items are
Top—-K similar to v */

Vwith_valid_op < {u | (u,0p") € ItemValidOpPairs}

Find similar items Vi C Viith_valid_op based on Top-K semantic similarity to v

{(ug, op) 5y <+ {(u,0p’) € ItemValidOpPairs | u € Vi }

/+ 3. Make candidate operations for LLM, excluding invalid

Ongand — OP \ O/Pim)alid
if OP¢""? = () then
| opyd OP
OPselected < LLM(U, {(uk7 Opk)}kK:p Opgand)
return OPselected

ones for w */

28

Under review as a conference paper at ICLR 2026

For an item name, you need to make a plan, by selecting one among
provided options.

I will give you examples of which plans are needed to achieve an item,
just for reference.

&)

4 |% Similar items and their successful plans are given
5 | [Example]

6 | <item name>

7 | {similar_item}

8 | <task planning>

9 | {successful_plan}

11 [Your turn]

12 |Here is <item name>, you MUST select one from below <options>, to make <
task planning>.

5 |you MUST select one from below <options>. DO NOT MAKE A PLAN NOT IN <
options>.

14
15 | % Three actions are given, excluding any that were empirically invalid

16 | <options>:

17 |1: {"task": "dig down and mine {item}", "goal": [{item}, {quantity}]}
18 [2: {"task": "craft {item}", "goal": [{item}, {quantity}]}

19 |3: {"task": "smelt {item}", "item": [{item}, {quantity}}

20
21 | <item name>

2 | {item}

23 | <task planning>

Figure 16: Prompt for action selection

29

Under review as a conference paper at ICLR 2026

G DIFFICULTY-BASED EXPLORATION (DEX)

For autonomous dependency learning, we introduce DEX. DEX strategically selects items that (1)
appear easier to obtain, prioritizing those (2) under-explored for diversity and (3) having fewer
immediate prerequisite items according to the learned graph G. (line 5 in Algorithm Eb First, DEX
defines the previously unobtained items but whose required items are all obtained according to
learned dependency G as the frontier F. Next, the least explored frontier set Fin = {f € F |
C(f) = mingpep C(f')}is identified, based on revision counts C(-). Foritems f’ € F,,;y,, difficulty
D(f’) is estimated as L, the number of distinct required items needed to obtain f’ according to

G . The intrinsic goal g is then selected as the item in F,,,;,, with the minimum estimated difficulty:
g =argmingcr, . D(f"). Ties are broken uniformly at random.

While our frontier concept is motivated by DECKARD (Nottingham et al.,|[2023)), DEX’s selection
process differs significantly. DECKARD selects randomly from {v € F | C(v) < ¢y}, but if this set
is empty, it selects randomly from the union of frontier set and previously obtained item set. This
risks inefficient attempts on already obtained items. In contrast, DEX exclusively selects goals from
Fmin, inherently avoiding obtained items. This efficiently guides exploration towards achievable,
novel dependencies.

30

Under review as a conference paper at ICLR 2026

H CONTEXT-AWARE REPROMPTING (CRE)

Minecraft, a real-world-like environment can lead to situations where the controller stalls (e.g., when
stuck in deep water or a cave). To assist the controller, the agent provides temporary prompts to guide
it (e.g., "get out of the water and find trees"). XENON proposes a context-aware reprompting scheme.
It is inspired by Optimus-1|L1 et al.|(2024b)) but introduces two key differences:

(a) Two-stage reasoning. When invoked, in Optimus-1, LLM simultaneously interprets
image observations, decides whether to reprompt, and generates new prompts. XENON
decomposes this process into two distinct steps:

(1) the LLM generates a caption for the current image observation, and
(ii) using text-only input (the generated caption and the current subgoal prompt), the LLM
determines if reprompting is necessary and, if so, produces a temporary prompt.

(b) Trigger. Unlike Optimus-1, which invokes the LLM at fixed intervals, XENON calls the
LLM only if the current subgoal item has not been obtained within that interval. This
approach avoids unnecessary or spurious interventions from a smaller LLM.

The prompt is shown in Figure

31

12
13
14

15

16
17
18
19

20

28

Under review as a conference paper at ICLR 2026

o

% Prompt for the first step: image captioning

Given a Minecraft game image, describe nearby Minecraft objects, like
tree, grass, cobblestone, etc.

[Example]

"There is a large tree with dark green leaves surrounding the area."
"The image shows a dark, cave-like environment in Minecraft. The player
is digging downwards. There are no visible trees or grass in this

particular view."

"The image shows a dark, narrow tunnel made of stone blocks. The player
is digging downwards."

[Your turn]

Describe the given image, simply and clearly like the examples.

% Prompt for the second step: reasoning whether reprompting is needed or
not

Given <task> and <visual_description>, determine if the player needs
intervention to achieve the goal. If intervention is needed, suggest
a task that the player should perform.

I will give you examples.

[Example]

<task>: chop tree

<visual_description>: There is a large tree with dark green leaves
surrounding the area.

<goal_item>: logs

<reasoning>:
{{
"need_intervention": false,
"thoughts": "The player can see a tree and can chop it down to get
logs.",
"task": n 'l,
}}
[Example]

<task>: chop tree

<visual_description>: The image shows a dirt block in Minecraft. There is
a tree in the image, but it is too far from here.

<goal_item>: logs

<reasoning>:
{{
"need_intervention": true,
"thoughts": "The player is far from trees. The player needs to move
to the trees.",
"task": "explore to find trees",
}}
[Example]

<task>: dig down to mine iron_ore

<visual_description>: The image shows a dark, narrow tunnel made of stone
blocks. The player is digging downwards.

<goal_item>: iron_ore

<reasoning>:
{{
"need_intervention": false,
"thoughts": "The player is already digging down and is likely to find
iron ore.",
lltask": llll,

I

[Your turn]

Here is the <task>, <visual_description>, and <goal_item>.
You MUST output the <reasoning> in JSON format.

<task>: {task} % current prompt for the controller

<visual_description>: {visual_description} % caption from the step 1

<goal_item>: {goal_item} % current subgoal item
<reasoning>:

Figure 17: Prompt for context-aware reprompting

32

Under review as a conference paper at ICLR 2026

I IMPLEMENTATION DETAILS

To identify similar items, semantic similarity between two items is computed as the cosine similarity
of their Sentence-BERT (all-MiniLM-L6-v2 model) embeddings (Reimers & Gurevychl 2019).
This metric is utilized whenever item similarity comparisons are needed, such as in Algorithm [2]
Algorithm 3] and Algorithm

I.1 HYPERPARAMETERS

Table 7: Hyperparameters used in our experiments.

Hyperparameter Notation Value
Failure threshold for invalid action) -2
Revision count threshold for inadmissible items co 3
Required items quantity scale for less explored items a5 2
Required items quantity scale for inadmissible items 8
Number of top-K similar experienced items used K 3

For all experiments, we use consistent hyperparameters across environments. The hyperparameters,
whose values are determined with mainly considering robustness against imperfect controllers. All
hyperparameters are listed in Table[/| The implications of increasing each hyperparameter’s value
are detailed below:

* 1z (failure threshold for empirically invalid action): Prevents valid operations from being
misclassified as invalid due to accidental failures from an imperfect controller or environ-
mental stochasticity. Values that are too small or large hinder dependency learning and
planning by hampering the discovery of valid actions.

* ¢o (exploration count threshold for inadmissible items): Ensures an item is sufficiently
attempted before being deemed ’inadmissible’ and triggering a revision for its descendants.
Too small/large values could cause inefficiency; small values prematurely abandon poten-
tially correct LLM predictions for descendants, while large values prevent attempts on
descendant items.

* oy (required items quantity scale for less explored items): Controls the gradual increase of
required quantities for revised required items. Small values make learning inefficient by
hindering item obtaining due to insufficient required items, yet large values lower robustness
by overburdening controllers with excessive quantity demands.

* o, (required items quantity scale for inadmissible items): Ensures sufficient acquisition of
potential required items before retrying inadmissible items to increase the chance of success.
Improper values reduce robustness; too small leads to failure in obtaining items necessitating
many items; too large burdens controllers with excessive quantity demands.

e K (Number of similar items to retrieve): Determines how many similar, previously suc-
cessful experiences are retrieved to inform dependency revision (Algorithm 3)) and action
selection (Algorithm [4).

1.2 HUMAN-WRITTEN PLANS

We utilize three human-written plans (for iron sword, golden sword, and diamond, shown in Plan@
[T9] and [20] respectively), the format of which is borrowed from the human-written plan examples in
the publicly released Optimus-1 repository El We leverage the experiences gained from executing
these plans to initialize XENON’s knowledge.

3https ://github.com/JiuTian-VL/Optimus—1/blob/main/src/optimusl/example.
9%

33

https://github.com/JiuTian-VL/Optimus-1/blob/main/src/optimus1/example.py
https://github.com/JiuTian-VL/Optimus-1/blob/main/src/optimus1/example.py

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802,
1803,
1804 12
180513
180612
1807
1808,
1809 18
181019
1811%
1812
1813

181422
181523
1816
1817
1818
181927
182028
1821%
1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

© ® N n R WL~

Under review as a conference paper at ICLR 2026

iron_sword: str = """

<goal>: craft an iron sword.

<requirements>:

1. log: need 7

2. planks: need 21

3. stick: need 5

4. crafting_table: need 1

5. wooden_pickaxe: need 1

6. cobblestone: need 11

7. furnace: need 1

8. stone_pickaxe: need 1

9. iron_ore: need 2

10. iron_ingot: need 2

11. iron_sword: need 1

<plan>

{

"step 1": {"prompt": "mine logs", "item": ["logs", 71},

"step 2": {"prompt": "craft planks", "item": ["planks", 21]},

"step 3": {"prompt": "craft stick", "item": ["stick", 5]},

"step 4": {"prompt": "craft crafting_table", "item": ["crafting_table",
113,

"step 5": {"prompt": "craft wooden_pickaxe", "item": ["wooden_pickaxe",
113,

"step 6": {"prompt": "mine cobblestone", "item": ["cobblestone", 111},

"step 7": {"prompt": "craft furnace", "item": ["furnace", 1]},

"step 8": {"prompt": "craft stone_pickaxe", "item": ["stone_pickaxe",
113,

"step 9": {"prompt": "mine iron_ore", "item": ["iron_ore", 21},

"step 10": {"prompt": "smelt iron_ingot", "item": ["iron_ingot", 2]},

"step 11": {"prompt": "craft iron_sword", "item": ["iron_sword", 1]}

}

wnwn

Figure 18: Human-written plan for crafting an iron sword.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853 9
185410
18551l
1856 |
1857 4
1858 15
1859 16
18601;
1861
1862 5
186321
186422
1865%
1866,
1867

186825
186926
18707
1871
18725
187330
18743!
187522
1876,
1877 55
1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

® 9 O L R W D =

Under review as a conference paper at ICLR 2026

golden_sword: str = """
<goal>: craft a golden sword.
<requirements>:

1. log: need 9

2. planks: need 27

3. stick: need 7

4. crafting_table: need 1
5. wooden_pickaxe: need 1
6. cobblestone: need 11

7. furnace: need 1

8. stone_pickaxe: need 1
9. iron_ore: need 3

10. iron_ingot: need 3
11. iron_pickaxe: need 1
12. gold_ore: need 2

13. gold_ingot: need 2
14. golden_sword: need 1

<plan>

{

"step 1": {"prompt": "mine logs", "item": ["logs", 71},

"step 2": {"prompt": "craft planks", "item": ["planks", 21]},

"step 3": {"prompt": "craft stick", "item": ["stick", 5]},

"step 4": {"prompt": "craft crafting_table", "item": ["crafting_table",
113,

"step 5": {"prompt": "craft wooden_pickaxe", "item": ["wooden_pickaxe",
113,

"step 6": {"prompt": "mine cobblestone", "item": ["cobblestone",

"step 7": {"prompt": "craft furnace", "item": ["furnace", 1]},

"step 8": {"prompt": "craft stone_pickaxe", "item": ["stone_pickaxe",
113,

"step 9": {"prompt": "mine iron_ore", "item": ["iron_ore", 31},

"step 10": {"prompt": "smelt iron_ingot", "item": ["iron_ingot",

"step 11": {"task": "craft iron_pickaxe", "goal": ["iron_pickaxe",

"step 12": {"prompt": "mine gold_ore", "item": ["gold_ore", 21},

"step 13": {"prompt": "smelt gold_ingot", "item": ["gold_ingot",

"step 14": {"task": "craft golden_sword", "goal": ["golden_sword",

}

Figure 19: Human-written plan for crafting a golden sword.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909 °
1910
1911,
191213
191314
1914:
1915
1916 ;5
191719
191820
19192
1920,
1921

192223
192324
19247
1925
1926,
1927 28
19282
19292?
1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

® 9 O L R W D =

9

Under review as a conference paper at ICLR 2026

diamond: str = """
<goal>: mine a diamond.
<requirements>:

1. log: need 7

planks: need 21

stick: need 6
crafting_table: need 1
wooden_pickaxe: need 1
cobblestone: need 11
furnace: need 1
stone_pickaxe: need 1
9. iron_ore: need 3

10. iron_ingot: need 3
11. iron_pickaxe: need 1
12. diamond: need 1

O J o U W

<plan>

{

"step 1": {"prompt": "mine logs", "item": ["logs", 71},

"step 2": {"prompt": "craft planks", "item": ["planks", 21]},

"step 3": {"prompt": "craft stick", "item": ["stick", 5]},

"step 4": {"prompt": "craft crafting_table", "item": ["crafting_table",
113,

"step 5": {"prompt": "craft wooden_pickaxe", "item": ["wooden_pickaxe",
113,

"step 6": {"prompt": "mine cobblestone", "item": ["cobblestone", 111},

"step 7": {"prompt": "craft furnace", "item": ["furnace", 1]},

"step 8": {"prompt": "craft stone_pickaxe", "item": ["stone_pickaxe",
113,

"step 9": {"prompt": "mine iron_ore", "item": ["iron_ore", 21},

"step 10": {"prompt": "smelt iron_ingot", "item": ["iron_ingot", 2]},

"step 11": {"prompt": "craft iron_pickaxe", "item": ["iron_pickaxe", 11},

"step 12": {"prompt": "mine diamond", "item": ["diamond", 1]}

}

Figure 20: Human-written plan for mining a diamond.

36

Under review as a conference paper at ICLR 2026

J DETAILS FOR EXPERIMENTAL SETUP

J.1 COMPARED BASELINES FOR DEPENDENCY LEARNING

We compare our proposed method, XENON, against four baselines: LLM self-correction (SC),
DECKARD Nottingham et al.|(2023)), ADAM (Yu & Lu} [2024), and RAND (the simplest baseline).
As no prior baselines were evaluated under our specific experimental setup (i.e., empty initial
inventory, pre-trained low-level controller), we adapted their implementation to align with our
environment. SC is implemented following common methods that prompt the LLM to correct its own
knowledge upon plan failures (Shinn et al.| 2023} Stechly et al.,[2024)). A summary of all methods
compared in our experiments is provided in Table |8l All methods share the following common
experimental setting: each episode starts with an initial experienced requirements for some items,
derived from human-written plans (details in Appendix [[). Additionally, all agents begin each episode
with an initial empty inventory.

Table 8: Summary of methods compared in our experiments.

Method Predicted Requirement Set Action Memory Intrinsic Goal Selection
XENON LLM-generated (with revision) Success & Failure DEX

SC LLM-generated (with revision) Success & Failure Random

ADAM Yu & Lu|(2024) “8 X resources” Success-only Random
DECKARD Nottingham et al{(2023) ~ LLM-generated (without revision) Success-only Frontier + obtained items
RAND LLM-generated (without revision) None Random

LLM self-correction (SC). While no prior work specifically uses LLM self-correction to learn
Minecraft item dependencies in our setting, we include this baseline to demonstrate the unreliability
of this approach. For predicted requirements, similar to XENON, SC initializes its dependency
graph with LLM-predicted requirements for each item. When a plan for an item fails repeatedly, it
attempts to revise the requirements using LLM. SC prompts the LLM itself to perform the correction,
providing it with recent trajectories and the validated requirements of similar, previously obtained
items in the input prompt. SC’s action memory stores both successful and failed actions for each
item. Upon a plan failure, the LLM is prompted to self-reflect on the recent trajectory to determine
the cause of failure. When the agent later plans to obtain an item on which it previously failed, this
reflection is included in the LLM’s prompt to guide its action selection. Intrinsic goals are selected
randomly from the set of previously unobtained items. The specific prompts used for the LLM
self-correction and self-reflection in this baseline are provided in Appendix [B]

DECKARD. The original DECKARD utilizes LLM-predicted requirements for each item but does
not revise these initial predictions. It has no explicit action memory for the planner; instead, it trains
and maintains specialized policies for each obtained item. It selects an intrinsic goal randomly from
less explored frontier items (i.e., {v € F | C(v) < ¢o}). If no such items are available, it selects
randomly from the union of experienced items and all frontier items.

In our experiments, the DECKARD baseline is implemented to largely mirror the original version,
with the exception of its memory system. Its memory is implemented to store only successful actions
without recording failures. This design choice aligns with the original DECKARD’s approach, which,
by only learning policies for successfully obtained items, lacks policies for unobtained items.

ADAM. The original ADAM started with an initial inventory containing 32 quantities of experienced
resource items (i.e., items used for crafting other items) and 1 quantity of tool items (e.g., pickaxes,
crafting table), implicitly treating those items as a predicted requirement set for each item. Its memory
recorded which operations were used for each subgoal item without noting success or failure, and its
intrinsic goal selection was guided by an expert-defined exploration curriculum.

In our experiments, ADAM starts with an empty initial inventory. The predicted requirements for
each goal item in our ADAM implementation assume a fixed quantity of 8 for all resource items.
This quantity was chosen to align with «;, the hyperparameter for the quantity scale of requirement
items for inadmissible items, thereby ensuring a fair comparison with XENON. The memory stores
successful operations for each item, but did not record failures. This modification aligns the memory
mechanism with SC and DECKARD baselines, enabling a more consistent comparison across

37

Under review as a conference paper at ICLR 2026

baselines in our experimental setup. Intrinsic goal selection is random, as we do not assume such an
expert-defined exploration curriculum.

RAND. RAND is a simple baseline specifically designed for our experimental setup. It started
with an empty initial inventory and an LLM-predicted requirement set for each item. RAND did
not incorporate any action memory. Its intrinsic goal selection involved randomly selecting from
unexperienced items.

J.2 MINERL ENVIRONMENT
J.2.1 BASIC RULES

Minecraft has been adopted as a suitable testbed for validating performance of Al agents on long-
horizon tasks (Mao et al.,|2022; [Lin et al., 2021} [Baker et al., 2022;|L1 et al.| 2025a)), largely because
of the inherent dependency in item acquisition where agents must obtain prerequisite items before
more advanced ones. Specifically, Minecraft features multiple technology levels—including wood,
stone, iron, gold, diamond, etc. —which dictate item and tool dependencies. For instance, an agent
must first craft a lower-level tool like a wooden pickaxe to mine materials such as stone. Subsequently,
a stone pickaxe is required to mine even higher-level materials like iron. An iron pickaxe is required
to mine materials like gold and diamond. Respecting the dependency is crucial for achieving complex
goals, such as crafting an iron sword or mining a diamond.

J.2.2 OBSERVATION AND ACTION SPACE

First, we employ MineRL (Guss et al., [2019) with Minecraft version 1.16.5.

Observation. When making a plan, our agent receives inventory information (i.e., item with their
quantities) as text. When executing the plan, our agent receives an RGB image with dimensions of
640 x 360, including the hotbar, health indicators, food saturation, and animations of the player’s
hands.

Action space. Following Optimus-1 (Li et al.,|2024b)), our low-level action space primarily consists
of keyboard and mouse controls, except for craft and smelt high-level actions. Crucially, craft and
smelt actions are included into our action space, following (Li et al), 2024b)). This means these
high-level actions automatically succeed in producing an item if the agent possesses all the required
items and a valid actions for that item is chosen; otherwise, they fail. This abstraction removes the
need for complex, precise low-level mouse control for these specific actions. For low-level controls,
keyboard presses control agent movement (e.g., jumping, moving forward, backward) and mouse
movements control the agent’s perspective. The mouse’s left and right buttons are used for attacking,
using, or placing items. The detailed action space is described in Table [0}

Table 9: Action space in MineRL environment

Index Action Human Action Description
1 Forward key W Move forward.
2 Back key S Move back.
3 Left key A Move left.
4 Right key D Move right.
5 Jump key Space Jump. When swimming, keeps the player afloat.
6 Sneak key left Shift Slowly move in the current direction of movement.
7 Sprint key left Ctrl Move quickly in the direction of current movement.
8 Attack left Button Destroy blocks (hold down); Attack entity (click once).
9 Use right Button Place blocks, entity, open items or other interact actions defined by game.
10 hotbar [1-9] keys 1-9 Selects the appropriate hotbar item.
11 Open/Close Inventory key E Opens the Inventory. Close any open GUI.
12 Yaw move Mouse X Turning; aiming; camera movement.Ranging from -180 to +180.
13 Pitch move Mouse Y Turning; aiming; camera movement.Ranging from -180 to +180.
14 Craft - Execute crafting to obtain new item
15 Smelt - Execute smelting to obtain new item.

38

Under review as a conference paper at ICLR 2026

J.2.3 GOALS

We consider 67 goals from the long-horizon tasks benchmark suggested in (Li et al., 2024b)). These
goals are categorized into 7 groups based on Minecraft’s item categories: Wood @, Stone @, Iron &=,
Gold z», Diamond @, Redstone @, and Armor #. All goal items within each group are listed
in Table

Table 10: Setting of 7 groups encompassing 67 Minecraft long-horizon goals.

Group Goal Num. All goal items
@® Wood 10 bowl, crafting_table, chest, ladder, stick, wooden_axe,
wooden_hoe, wooden_pickaxe, wooden_shovel,

wooden_sword

@ Stone 9 charcoal, furnace, smoker, stone_axe, stone_hoe,
stone_pickaxe, stone_shovel, stone_sword, torch

@ Iron 16 blast_furnace, bucket, chain, hopper, iron_axe, iron_bars,
iron_hoe, iron_nugget, iron_pickaxe, iron_shovel,
iron_sword, rail, shears, smithing_table, stonecutter,
tripwire_hook

= Gold 6 gold_ingot, golden_axe, golden_hoe, golden_pickaxe,
golden_shovel, golden_sword

@ Redstone 6 activator_rail, compass, dropper, note_block, piston, red-
stone_torch

& Diamond 7 diamond, diamond_axe, diamond_hoe, diamond_pickaxe,
diamond_shovel, diamond_sword, jukebox

Armor 13 diamond_boots, diamond_chestplate, diamond_helmet,
diamond_leggings, golden_boots, golden_chestplate,
golden_helmet, golden_leggings, iron_boots,

iron_chestplate, iron_helmet, iron_leggings, shield

Additional goals for scalability experiments.. To evaluate the scalability of XENON with respect to
the number of goals Appendix [K.9] we extend the above 67-goal set (Table[T0) by adding additional
goal items to construct two larger settings with 100 and 120 goals; the added goals are listed in
Table [[1]

Specifically, in the setting with 100 goals, we add 33 goals in total by introducing new “leather”,
“paper”, and “flint” groups and by adding more items to the existing “wood” and “stone” groups. In
the setting with 120 goals, we further add 20 goals in the “iron”, “gold”, “redstone”, and “diamond”

groups.

J.2.4 EPISODE HORIZON

The episode horizon varies depending on the experiment phase: dependency learning or long-
horizon goal planning. During the dependency learning phase, each episode has a fixed horizon of
36,000 steps. In this phase, if the agent successfully achieves an intrinsic goal within an episode,
it is allowed to select another intrinsic goal and continue exploration without the episode ending.
After dependency learning, when measuring the success rate of goals from the long-horizon task
benchmark, the episode horizon differs based on the goal’s category group. And in this phase, the
episode immediately terminates upon success of a goal. The specific episode horizons for each group
are as follows: Wood: 3,600 steps; Stone: 7,200 steps; Iron: 12,000 steps; and Gold, Diamond,
Redstone, and Armor: 36,000 steps each.

J.2.5 ITEM SPAWN PROBABILITY DETAILS

Following Optimus-1’s public implementation, we have modified environment configuration different
from original MineRL environment (Guss et al.|[2019). In Minecraft, obtaining essential resources

39

Under review as a conference paper at ICLR 2026

Table 11: Additional goals used for the scalability experiments. The setting with 100 goals extends
the 67-goal set in Table [I0]by adding all items in the top block; the setting with 120 goals further
includes both the top and bottom blocks.

Group Goal Num. Added goal items

Additional items in the setting with 100 goals (33 items)

leather 7 leather, leather_boots, leather_chestplate, leather_helmet,
leather_leggings, leather_horse_armor, item_frame

paper 5 map, book, cartography_table, bookshelf, lectern

flint 4 flint, flint_and_steel, fletching_table, arrow

wood 8 bow, boat, wooden_slab, wooden_stairs, wooden_door,
wooden_sign, wooden_fence, woodenfence_gate

stone 9 cobblestone_slab, cobblestone_stairs, cobblestone_wall,

lever, stone_slab, stone_button, stone_pressure_plate,
stone_bricks, grindstone

Additional items only in the setting with 120 goals (20 more items)

iron 7 iron_trapdoor, heavy_weighted_pressure_plate, iron_door,
crossbow, minecart, cauldron, lantern

gold 4 gold_nugget, light_weighted_pressure_plate, golden_apple,
golden_carrot

redstone 7 redstone, powered_rail, target, dispenser, clock, repeater,
detector_rail

diamond 2 obsidian, enchanting_table

such as iron, gold, and diamond requires mining their respective ores. However, these ores are
naturally rare, making them challenging to obtain. This inherent difficulty can significantly hinder an
agent’s goal completion, even with an accurate plan. This challenge in resource gathering due to an
imperfect controller is a common bottleneck, leading many prior works to employ environmental
modifications to focus on planning. For example, DEPS (Wang et al.},[2023b) restricts the controller’s
actions based on the goal items|[’| Optimus-1 (Li et al.|, 2024b) also made resource items easier to
obtain by increasing item ore spawn probabilities. To focus on our primary goal of robust planning
and isolate this challenge, we follow Optimus-1 and adopt its item ore spawn procedure directly from
the publicly released Optimus-1 repository, without any modifications to its source code

The ore spawn procedure probabilistically spawns ore blocks in the vicinity of the agent’s current
coordinates (z,y, z). Specifically, at each timestep, the procedure has a 10% chance of activating.
When activated, it spawns a specific type of ore block based on the agent’s y-coordinate. Furthermore,
for any given episode, the procedure is not activate more than once at the same y-coordinate. The
types of ore blocks spawned at different y-levels are as follows:

* @ Coal Ore: between y=45 and y=50.

* @ Iron Ore: between y=26 and y=43.

* @ Gold Ore: between y=15 and y=26

* @ Redstone Ore: between y=15 and y=26
* @ Diamond Ore: below y=14

‘nttps://github.com/CraftJarvis/MC-Planner/blob/main/controller.py
5https://github.com/JiuTian—VL/Optimus—l/blob/main/src/optimusl/env/
Wrapper.py

40

https://github.com/CraftJarvis/MC-Planner/blob/main/controller.py
https://github.com/JiuTian-VL/Optimus-1/blob/main/src/optimus1/env/wrapper.py
https://github.com/JiuTian-VL/Optimus-1/blob/main/src/optimus1/env/wrapper.py

Under review as a conference paper at ICLR 2026

J.3 MINEFLAYER ENVIRONMENT

We use the Mineflayer (PrismarineJS| 2023) environment with Minecraft version 1.19. In Mineflayer,
resource item spawn probabilities do not need to be adjusted, unlike in MineRL Appendix [J.2.5]
This is because the controller, JavaScript APIs provided by Mineflayer, is competent to gather many
resource items.

J.3.1 OBSERVATION AND ACTION SPACE

The agent’s observation space is multimodal. For planning, the agent receives its current inventory
(i.e., item names and their quantities) as text. For plan execution, it receives a first-person RGB image
that includes the hotbar, health and food indicators, and player hand animations. For action space,
following ADAM (Yu & Lul 2024), we use the JavaScript APIs provided by Mineflayer for low-level

control. Specifically, our high-level actions, such as “craft”, “smelt”, and “mine”, are mapped to
corresponding Mineflayer APIs like craftItem, smeltItem, and mineBlock.

J.3.2 EPISODE HORIZON

For dependency learning, each episode has a fixed horizon of 30 minutes, which is equivalent to
36,000 steps in the MineRL environment. If the agent successfully achieves a goal within this horizon,
it selects another exploratory goal and continues within the same episode.

J.4 MC-TEXTWORLD

MC-Textworld is a text-based environment based on Minecraft game rules (Zheng et al.,[2025)). We
employ Minecraft version 1.16.5. In this environment, basic rules and goals are the same as those in
the MineRL environment Appendix Furthermore, resource item spawn probabilities do not need
to be adjusted, unlike in MineRL Appendix This is because an agent succeeds in mining an
item immediately without spatial exploration, if it has a required tool and “mine” is a valid operation
for that item.

In the following subsections, we detail the remaining aspects of experiment setups in this environment:
the observation and action space, and the episode horizon.

J.4.1 OBSERVATION AND ACTION SPACE

The agent receives a text-based observation consisting of inventory information (i.e., currently
possessed items and their quantities). Actions are also text-based, where each action is represented as
an high-level action followed by an item name (e.g., "mine diamond"). Thus, to execute a subgoal
specified as (a, g, v) (high-level action a, quantity g, item v), the agent repeatedly performs the action
(a, v) until ¢ units of v are obtained.

J.4.2 EPISODE HORIZON

In this environment, we conduct experiments for dependency learning only. Each episode has a fixed
horizon of 3,000 steps. If the agent successfully achieves an intrinsic goal within an episode, it is then
allowed to select another intrinsic goal and continue exploration, without termination of the episode.

J.4.3 PERTURBATION ON GROUND TRUTH RULES

To evaluate each agent’s robustness to conflicts with its prior knowledge, we perturb the ground-truth
rules (required items and actions) for a subset of goal items, as shown in Figure 21} The perturbation
is applied at different intensity levels (from 1 to 3), where higher levels affect a greater number of
items. These levels are cumulative, meaning a Level 2 perturbation includes all perturbations from
Level 1 plus additional ones.

* Vanilla Setting: In the setting with no perturbation (Figure 21} a), the ground-truth rules are
unmodified. In the figure, items in the black solid boxes are the goal items, and those with
arrows pointing to them are their true required items. Each goal item has “craft” as a valid
action.

41

Under review as a conference paper at ICLR 2026

(a) Vanilla (b) Perturbed True Required Items (c) Perturbed True Actions

sz_PIace
% et %
o= 4= Wi X_®
™ ™ i ™
i / Level1 E / f; Level1 E /’
G/ﬁ [;/‘ﬁ * ‘ [;]/‘
A o™ A
£>/ Level 2 & ____; Level 2 &>/
Mg WL BB /9
i 2 oa e »
—® L] —®
AN, 2 | AN,
— Level3 mzzf Levels
Valid action: craft Valid action: craft Valid action: eraft

mine OR smelt

Figure 21: Illustration of the ground-truth rule perturbation settings. (a) in the vanilla setting, goal
items (black boxes) have standard required items (incoming edges) and “craft” is the valid action; (b)
in the Perturbed Requirements setting, one required item (red dashed circle) is replaced by a new one
randomly from a candidate pool (blue dashed box); (c) in the Perturbed Actions setting, the valid
action is changed to either “mine” or “smelt”.

* Perturbed True Required Items: In this setting (Figure|21] b), one of the true required items
(indicated by a red dashed circle) for a goal is replaced. The new required item is chosen
uniformly at random from a candidate pool (blue dashed box). The valid action remains craft.

* Perturbed True Actions: In this setting (Figure[21] c), the valid action for a goal is randomly
changed from “craft” to either “mine” or “smelt”. The required items are not modified.

* Perturbed Both Rules: In this setting, both the required items and the valid actions are modified
according to the rules described above.

42

Under review as a conference paper at ICLR 2026

K ADDITIONAL EXPERIMENTAL RESULTS

K.1 LLM-PREDICTED INITIAL DEPENDENCY GRAPH ANALYSIS

Table 12: Performance analysis for the initial LLM-predicted requirement sets over 75 Minecraft
items, used to build the initial dependency graph. Note that while we began the prediction process
with 67 goal items, the total number of predicted items expanded to 75. This expansion occurred
because, as the LLM predicted requirement sets for items in the dependency graph (initially for those
goal items), any newly mentioned items that were not yet part of the graph are also included. This
iterative process is detailed in Section[zilf] (Dependency graph initialization) of our method.

Metric Value
Requirement Set Prediction Accuracy
Correct items (ignoring quantities) 23%
Exact items & quantities 8%
Non-existent Item Rates

Non-existent items 8%
Descendants of non-existent items 23%
Required Items Errors

Unnecessary items included 57%
Required items omitted 57%

Required Item Quantity Prediction Errors

Standard deviation of quantity error 2.74
Mean absolute quantity error 2.05
Mean signed quantity error -0.55

The initial dependency graph, constructed from predictions by Qwen2.5-VL-7B (Bai et al.,|2025),
forms the initial planning knowledge for XENON (Section . T). This section analyzes its quality,
highlighting limitations that necessitate our adaptive dependency learning.

As shown in Table[I2] the 7B LLM’s initial requirement sets exhibit significant inaccuracies. Ac-
curacy for correct item types was 23%, dropping to 8% for exact items and quantities. Errors in
dependency among items are also prevalent: 57% of items included unnecessary items, and 57%
omitted required items. Furthermore, 8% of predicted items were non-existent (hallucinated), making
23% of descendant items unattainable. Quantity predictions also showed substantial errors, with a
mean absolute error of 2.05.

These results clearly demonstrate that the LLM-generated initial dependency graph is imperfect. Its
low accuracy and high error rates underscore the unreliability of raw LLM knowledge for precise
planning, particularly for smaller models like the 7B LLLM which are known to have limited prior
knowledge on Minecraft, as noted in previous work (ADAM, |Yu & Lu/(2024), Appendix A. LLMs’
Prior Knowledge on Minecraft). This analysis therefore highlights the importance of the adaptive
dependency learning within XENON, which is designed to refine this initial, imperfect knowledge
for robust planning.

Table 13: Ratio of dependencies learned for items which are unobtainable by the flawed initial
dependency graph (out of 51). Analysis is based on the final learned graphs from the MineRL
experiments.

Learned ratio

Agent (initially unobtainable items)
XENON 0.51
SC 0.25
DECKARD 0.25
ADAM 0.00
RAND 0.02

43

Under review as a conference paper at ICLR 2026

K.2 ADDITIONAL ANALYSIS OF LEARNED DEPENDENCY GRAPH

As shown in Table[T3] XENON demonstrates significantly greater robustness to the LLM’s flawed
prior knowledge compared to all baselines. It successfully learned the correct dependencies for over
half (0.51) of the 51 items that were initially unobtainable by the flawed graph. In contrast, both
DECKARD (with no correction) and the SC baseline (with LLM self-correction) learned only a
quarter of these items (0.25). This result strongly indicates that relying on the LLM to correct its own
errors is as ineffective as having no correction mechanism at all in this setting. The other baselines,
ADAM and RAND, failed almost completely, highlighting the difficulty of this challenge.

K.3 IMPACT OF CONTROLLER CAPACITY ON DEPENDENCY LEARNING

We observe that controller capacity significantly impacts an agent’s ability to learn dependencies
from interaction. Specifically, in our MineRL experiments, we find that ADAM fails to learn any new
dependencies due to the inherent incompatibility between its strategy and the controller’s limitations.
In our realistic setting with empty initial inventories, ADAM’s strategy requires gathering a sufficient
quantity (fixed at 8, same with our hyperparameter aﬂ) of all previously used resources before
attempting a new item. This list of required resource items includes gold ingot &=, because of an
initially provided human-written plan for golden sword; however, the controller STEVE-1 never
managed to collect more than seven units of gold in a single episode across all our experiments.
Consequently, this controller bottleneck prevents ADAM from ever attempting to learn new items,
causing its dependency learning to stall completely.

Although XENON fails to learn dependencies for the Redstone group items in MineRL, our analysis
shows this stems from controller limitations rather than algorithmic ones. Specifically, in MineRL,
STEVE-1 cannot execute XENON’s exploration strategy for inadmissible items, which involves
gathering a sufficient quantity of all previously used resources before a retry (Section f-I). The
Redstone group items become inadmissible because the LLM’s initial predictions for them are entirely
incorrect. This lack of a valid starting point prevents XENON from ever experiencing the core item,
redstone, being used as a requirement for any other item. Consequently, our RevisionByAnalogy
mechanism has no analogous experience to propose redstone as a potential required item for other
items during its revision process.

In contrast, with more competent controllers, XENON successfully overcomes even such severely
flawed prior knowledge to learn the challenging Redstone group dependencies, as demonstrated
in Mineflayer and MC-TextWorld. First, in Mineflayer, XENON learns the correct dependencies
for 5 out of 6 Redstone items. This success is possible because its more competent controller can
execute the exploration strategy for inadmissible items, which increases the chance of possessing
the core required item (redstone) during resource gathering. Second, with a perfect controller in
MC-TextWorld, XENON successfully learns the dependencies for all 6 Redstone group items in
every single episode.

K.4 IMPACT OF CONTROLLER CAPACITY IN LONG-HORIZON GOAL PLANNING

Because our work focuses on building a robust planner, to isolate the planning from the significant
difficulty of item gathering—a task assigned to the controller—our main experiments for long-horizon
tasks (Section[5.3)) uses a modified MineRL environment following the official implementation of
Optimus-1. This modification makes essential resource items like iron, gold, and diamond easier
for the controller to find, allowing for a clearer evaluation of planning algorithms (modifications are
detailed in Appendix [J.2.3)). However, to provide a more comprehensive analysis, we also evaluated
our agent and baselines in the unmodified, standard MineRL environment. In this setting, items like
iron, gold, and diamond are naturally rare, making item gathering a major bottleneck.

The results are shown in Table[T4] Most importantly, XENON* consistently outperforms the baselines
in both the modified and standard MineRL. Notably, in the standard environment, XENON*’s
performance on the Iron group (0.24 SR) is comparable to that of the OracleActionPlanner (0.27 SR),
which always generates correct plans for all goals. This comparison highlights the severity of the
controller bottleneck: even the OracleActionPlanner achieves a 0.00 success rate for the Diamond

SThe scaling factor for required item quantities for inadmissible items.

44

Under review as a conference paper at ICLR 2026

Table 14: Long-horizon task success rate (SR) comparison between the Modified MineRL (a setting
where resource items are easier to obtain) and Standard MineRL environments. All methods are
provided with the correct dependency graph. DEPS{ and Optimus-17 are our reproductions of the
respective methods using Qwen2.5-VL-7B as a planner. OracleActionPlanner, which generates the
correct plan for all goals, represents the performance upper bound. SR for Optimus-1{ and XENON*
in the Modified MineRL column are taken from Table []in Section|[5.3]

Modified MineRL Standard MineRL
Method Dependency
Iron Diamond Gold Iron Diamond Gold
DEPS{ - 0.02 0.00 0.01 0.01 0.00 0.00
Optimus-11 Oracle 0.23 0.10 0.11 0.13 0.00 0.00
XENON* Oracle 0.83 0.75 0.73 0.24 0.00 0.00
OracleActionPlanner Oracle - - - 0.27 0.00 0.00

and Gold groups in the standard MineRL. This shows that the failures are due to the controller’s
inability to gather rare resources in the standard environment.

K.5 LONG-HORIZON TASK BENCHMARK EXPERIMENTS ANALYSIS

This section provides a detailed analysis of the performance differences observed in Table 3| between
Optimus-1t and XENON* on long-horizon tasks, even when both access to a true dependency graph
and increased item spawn probabilities (Appendix [J.2.5). We specifically examine various plan errors
encountered when reproducing Optimus-1T using Qwen2.5-VL-7B as the planner, and explain how
XENON* robustly constructs plans through step-by-step planning with FAM.

Table 15: Analysis of primary plan errors observed in Optimus-1t and XENON* during long-horizon
tasks benchmark experiments. This table presents the ratio of specified plan error among the failed
episodes for Optimus-1T and XENON* respectively. Invalid Action indicates errors where an invalid
action is used for an item in a subgoal. Subgoal Omission refers to errors where a necessary subgoal
for a required item is omitted from the plan. Note that these plan error values are not exclusive; one
episode can exhibit multiple types of plan errors.

Plan Error Type Optimus-1' Error Rate (%) XENON* Error Rate (%)

Invalid Action 37 2
Subgoal Omission 44 0

Optimus-1T has no fine-grained action knowledge correction mechanism. Furthermore, Optimus-
11’s LLM planner generates a long plan at once with a long input prompt including a sequence of
aggregated requirements ((q1,u1),. .., (qr,,ur,) = (1,v)) for the goal item v. Consequently, as
shown in Table[T3] Optimus-1 generates plans with invalid actions for required items, denoted as
Invalid Action. Furthermore, Optimus-1 omits necessary subgoals for required items, even they are
in the input prompts, denoted as Subgoal Omission.

In contrast, XENON discovers valid actions by leveraging FAM, which records the outcomes of each
action for every item, thereby enabling it to avoid empirically failed ones and and reuse successful
ones. Furthermore, XENON mitigates the problem of subgoal omission through constructing a plan
by making a subgoal for each required item one-by-one.

45

Under review as a conference paper at ICLR 2026

K.6 ROBUST DEPENDENCY LEARNING UNDER DYNAMIC TRUE KNOWLEDGE

XENON SsC ADAM DECKARD —d— RAND
1.0] 1.0 A ! 1.0 !
| | |
0.8 1 True requirements| 0.8 True actions 0.8 Both true rules
are changed are changed are changed
< 0.6 1 < 0.6 1 < 0.6 |
2 ! Q i U] !
i i] i i i
i i i
0.4 i 0.4 i 0.4 i
0.2 f’—'*_l,_q._q._ 024 " 02{ ¥
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Environment step Environment step Environment step
(a) Dynamic True Required Items (b) Dynamic True Actions (c) Dynamic Both Rules

Figure 22: Robustness against dynamic true knowledge. EGA over 3,000 environment steps in the
where the true item acquisition rules are changed during the learning process.

Additionally, We show XENON is also applicable to sce- Table 16: The ratio of correctly learned
narios where the latent true knowledge changes dynami- dependencies among whose rules are dy-
cally. We design three dynamic scenarios where the en- namically changed (out of 7 total) by
vironment begins with the vanilla setting, (0, 0), for the each agent. Columns correspond to the
first 1,500 steps, then transitions to a level-3 perturbation type of ground-truth rules changed dur-
setting for the subsequent 1,500 steps: either required ing learning: requirements only, actions
items-only (3, 0), action-only (0, 3), or both (3, 3). only, or both.

Upon this change, the agent is informed of which items’

rules are modified but not what the new rules are, forc- Agent 3,0 03 33
ing it to relearn from experience. As shown in Figure [22] XENON 1.0 1.0 1.0
XENON rapidly adapts by re-learning the new depen- SC 080 00 0.0
dencies and recovering its near-perfect EGA in all three ADAM 083 00 0.0
scenarios. In contrast, all baselines fail to adapt effectively, DECKARD 049 0.0 00
with their performance remaining significantly degraded RAND 029 00 00

after the change. Specifically, for the 7 items whose rules
are altered, Table|16|shows that XENON achieves a perfect re-learning ratio of 1.0 in all scenarios,
while all baselines score 0.0 whenever actions are modified.

K.7 ABLATION STUDIES FOR LONG-HORZION GOAL PLANNING

Table 17: Ablation experiment results for long-horizon goal planning in MineRL. Without Learned
Dependency, XENON employs a dependency graph initialized with LLM predictions and human-
written examples. Without Action Correction, XENON saves and reuses successful actions in FAM,
but it does not utilize the information of failed actions.

Learned Action CRe]] (=] @ @ i]
Dependency Correction Wood Stone Iron Diamond Gold Armor Redstone

054 039 0.10 0.26 0.45 0.0 0.0

0.54 038 0.09 0.29 0.45 0.0 0.0

v 0.82 0.69 0.36 0.59 0.69 0.22 0.0

v 0.82 079 045 0.59 0.68 021 0.0

v v v 085 0.81 0.46 0.64 0.74 0.28 0.0

To analyze how each of XENON’s components contributes to its long-horizon planning, we conducted
an ablation study in MineRL, with results shown in Table|I7| The findings first indicate that without
accurate dependency knowledge, our action correction using FAM provides no significant benefit
on its own (row 1 vs. row 2). The most critical component is the learned dependency graph, which

46

Under review as a conference paper at ICLR 2026

dramatically improves success rates across all item groups (row 3). Building on this, adding FAM’s
action correction further boosts performance, particularly for the Stone and Iron groups where
it helps overcome the LLM’s flawed action priors (row 4). Finally, Context-aware Reprompting
(CRe, Section[d.3)) provides an additional performance gain on more challenging late-game items,
such as Iron, Gold, and Armor. This is likely because their longer episode horizons offer more
opportunities for CRe to rescue a stalled controller.

K.8 THE NECESSITY OF KNOWLEDGE CORRECTION EVEN WITH EXTERNAL SOURCES

Even when an external source is available to initialize

g
o
L

an agent’s knowledge, correcting that knowledge from ¢ :ENON
interaction remains essential for dependency and action & 0.8+ ADAM

learning, because such sources can be flawed or outdated. ¢ DECKARD

To support this, we evaluate XENON and the baselinesin £ 067 RAND

the MC-TextWorld environment where each agent’s depen-

dency graph is initialized from an oracle graph, while the ~ § 0.4 1

environment’s ground-truth dependency graph is perturbed g

(perturbation level 3 in Table). We measure performance & 0.2

as the ratio of the 67 goal items obtained within a single P

episode. We use an intrinsic exploratory item selection 0 1000 2000 3000
method for all agents (i.e., which item each agent chooses Environment step

on its own to try to obtain next): they choose, among items ~Figure 23: Ratio of goal items obtained
not yet obtained in the current episode, the one with the 1 one MC-TextWorld episode when
fewest attempts so far. each agent’s dependency graph is ini-

o)] tialized from an oracle graph while the
As shown in Figure 23] this experiment demonstrates that, environment’s ground-truth dependency
even when an external source is available, (1) interaction graph is perturbed. Solid lines denote

experience-based knowledge correction remains crucial the mean over 15 runs; shaded areas de-
when the external source is mismatched with the environ- ote the standard deviation.

ment, and (2) XENON is also applicable and robust in this

scenario. By continually revising its dependency knowledge, XENON achieves a much higher ratio of
goal items obtained in an episode than all baselines. In contrast, the baselines either rely on unreliable
LLM self-correction (e.g., SC) or do not correct flawed knowledge at all (e.g., DECKARD, ADAM,
RAND), and therefore fail to obtain many goal items. Their performance is especially poor because
there are dependencies between goals: for example, when the true required items for stone pickaxe
and iron pickaxe are perturbed, the baselines cannot obtain these items and thus cannot obtain other
goal items that depend on them.

K.9 SCALABILITY OF DEPENDENCY AND ACTION LEARNING WITH MORE GOALS AND
ACTIONS

To evaluate the scalability of XENON’s dependency and action learning, we vary the number of goal
items and available actions in the MC-TextWorld environment. For the goal-scaling experiment, we
increase the number of goals from 67 to 100 and 120 by adding new goal items (see Table [TT]for the
added goals), while keeping the original three actions “mine”, “craft”, and “smelt” fixed. For the
action-scaling experiment, we increase the available actions from 3 to 15, 30, and 45 (e.g., “harvest”,
“hunt”, “place”), while keeping the original 67 goals fixed.

The results in Figure 24]show that XENON maintains high EGA as both the number of goals and
the number of actions grow, although the number of environment steps required for convergence
naturally increases. As seen in Figure 24a] increasing the number of goals from 67 to 100 and 120
only moderately delays convergence (from around 1,400 to about 2,100 and 2,600 steps). In contrast,
Figure 24b] shows a larger slowdown when increasing the number of actions (from about 1,400 steps
with 3 actions to roughly 4,000, 7,000, and 10,000 steps with 15, 30, and 45 actions), which is
expected because XENON only revises an item’s dependency after all available actions for that item
have been classified as empirically invalid by FAM. We believe this convergence speed could be
improved with minimal changes, such as by lowering x(, the failure count threshold for classifying
an action as invalid, or by triggering dependency revision once the agent has failed to obtain an item
a fixed number of times, regardless of which actions were tried in subgoals.

47

Under review as a conference paper at ICLR 2026

1.04 1.0 4
0.8 1 0.8 1
< 0.6 4 < 0.6 4
G} V)
w w
0.4 1 0.4 1 —— # of actions: 3
—— # of goals: 67 —— # of actions: 15
0.2 1 —— # of goals: 100 0.2 4 —— # of actions: 30
—— # of goals: 120 —— # of actions: 45
T T T T T T T
0 1000 2000 3000 0 5000 10000
Environment step Environment step

(a) Effect of increasing the number of (b) Effect of increasing the number of
goals actions

Figure 24: Scalability of XENON with more goals and actions. EGA over environment steps
in MC-TextWorld when (a) increasing the number of goal items and (b) increasing the number of
available actions. In (a), we keep the three actions (“mine”, “craft”, “smelt”) fixed, while in (b) we
keep the 67 goal items fixed. Solid lines denote the mean over 15 runs; shaded areas denote the

standard deviation.

K.10 ABLATION ON ACTION SELECTION METHODS FOR MAKING SUBGOALS

—A— Random+FAM ucB —#— LLM SC XENON
1.0 (» { @ 3001
[
S 250 1
0.81 2
[] o
- = 200 -
& 0.6 1 a
7)) [
] & 150 1
S 0.4 =
o C
=] [4
n £ 100
0.2 4 S
S 504
=
0.0 4 w
T T T T 0 - T T T
3 15 30 45 3 15 30 45
of actions # of actions
(a) Success rate (b) Steps to success (lower is better)

Figure 25: Ablation on action selection methods for subgoal construction. We evaluate different
action selection methods for solving long-horizon goals given an oracle dependency graph, as the
size of the available action set increases. (a) Success rate and (b) number of environment steps per
successful episode. Note that in (a), the curves for LLM and SC overlap at 0.0 because they fail on
all episodes, and in (b), they are omitted since they never succeed.

We find that, while LLMs can in principle accelerate the search for valid actions, they do so effectively
only when their flawed knowledge is corrected algorithmically. To support this, we study how different
action selection methods for subgoal construction affect performance on long-horizon goals. In this
ablation, the agent is given an oracle dependency graph and a long-horizon goal, and only needs to
output one valid action from the available actions for each subgoal item to achieve that goal. Each
episode specifies a single goal item, and it is counted as successful if the agent obtains this item
within 300 environment steps in MC-TextWorld. To study scalability with respect to the size of the
available action set, we vary the number of actions as 3, 15, 30, and 45 by gradually adding actions

CEIT) CLINT3

such as “harvest” and “hunt” to the original three actions (“mine”, “craft”, “smelt”).

Methods and metrics. We compare five action selection methods: Random+FAM (which randomly
samples from available actions that have not yet repeatedly failed and reuses past successful actions),

48

Under review as a conference paper at ICLR 2026

XENON SC ADAM DECKARD —4#— RAND

0.2 0.2 4 — T
"

1 3 1 3
of provided human-written plans # of provided human-written plans

(a) Planner LLM size: 4B (b) Planner LLM size: 7B

Figure 26: Effect of planner LLM size and initial dependency graph quality in dependency
and action learning. The plots show EGA after 3,000 environment steps of dependency and action
learning in MC-TextWorld, obtained by varying the planner LLM size and the amount of correct
knowledge in the initial dependency graph (controlled by the number of provided human-written
plans). In (a), the planner is Phi-4-mini (4B) (Microsoft et al.,[2023); in (b), the planner is Qwen2.5-

VL-7B (7B) (Bai etal}, 2025).

UCB, LLM without memory, LLLM self-correction (SC), and XENON, which combines an LLM
with FAM. We report the average success rate and the average number of environment steps to success
over 20 runs per goal item, where goal items are drawn from the Redstone group.

As shown in Figure[23] among the three LLM-based methods (LLM, SC, XENON), only XENON—
which corrects the LLM’s action knowledge by removing repeatedly failed actions from the set of
candidate actions the LLM is allowed to select—solves long-horizon goals reliably, maintaining a
success rate of 1.0 and requiring roughly 50 environment steps across all sizes of the available action
set. In contrast, LLM and SC never succeed in any episode, because they keep selecting incorrect
actions for subgoal items (e.g., redstone), and therefore perform worse than the non-LLM baselines,
Random+FAM and UCB. Random+FAM and UCB perform well when the number of available
actions is small, but become increasingly slow and unreliable as the number of actions grows, often
failing to reach the goal within the episode horizon.

K.11 ROBUSTNESS TO SMALLER PLANNER LLMS AND LIMITED INITIAL KNOWLEDGE

We further evaluate robustness of XENON and the baselines to limited prior knowledge by measuring
dependency and action learning in MC-TextWorld while (i) varying the planner LLM size and (ii)
degrading the quality of the initial dependency graph. For the planner LLM, we compare a 7B model
(Qwen2.5-VL-7B 2025))) against a 4B model (Phi-4-mini (Microsoft et al.| [2025)); for the
initial graph quality, we vary the number of provided human-written plans used to initialize the graph
from three (“craft iron_sword”, “mine diamond”, “craft golden_sword”) to one (“craft iron_sword”).

As shown in Figure[26) XENON remains robust across all these settings: its EGA stays near-perfect
even with the smaller 4B planner and the weakest initial graph, indicating that leveraging experiences
can quickly compensate for weak priors. In contrast, baselines that rely on LLM self-correction (SC)
or that strongly depend on the LLM or initial graph (ADAM, DECKARD) suffer substantial drops in
EGA as the planner LLM becomes smaller and the initial graph contains less correct prior knowledge.
This suggests that, in our setting, algorithmic knowledge correction is more critical than scaling up
the planner LLM or richer initial human-provided knowledge.

49

Under review as a conference paper at ICLR 2026

K.12 FULL RESULTS ON THE LONG-HORIZON TASKS BENCHMARK

In this section, we report XENON’s performance on each goal within the long-horizon tasks bench-
mark, detailing metrics such as the goal item, number of sub-goals, success rate (SR), and evaluation

episodes.

Table [T§] and [T9] present XENON’s results when utilizing the dependency graph learned through
400 episodes of exploration. Conversely, Table [20]and 21| display XENON*’s performance, which
leverages an oracle dependency graph.

Table 18: The results of XENON (with dependency graph learned via exploration across 400 episodes)
on the Wood group, Stone group, and Iron group. SR denotes success rate.

Group Goal Sub-Goal Num. SR Eval Episodes
bowl 4 92.68 41
chest 4 95.24 42
crafting_table 3 95.83 48
ladder 5 0.00 31
stick 3 95.45 44
Wood wooden_axe 5 90.91 44
wooden_hoe 5 95.35 43
wooden_pickaxe 5 93.02 43
wooden_shovel 5 93.75 48
wooden_sword 5 95.35 43
charcoal 8 87.50 40
furnace 7 88.10 42
smoker 8 0.00 47
stone_axe 7 97.78 45
Stone stone_hoe 7 90.70 43
stone_pickaxe 7 95.45 44
stone_shovel 7 89.58 48
stone_sword 7 89.80 49
torch 7 93.02 43
blast_furnace 13 0.00 42
bucket 11 0.00 47
chain 12 0.00 42
hopper 12 0.00 47
iron_axe 11 75.56 45
iron_bars 11 80.43 46
iron_hoe 11 89.13 46
Iron iron_nugget 11 79.55 44
iron_pickaxe 11 77.08 48
iron_shovel 11 75.56 45
iron_sword 11 84.78 46
rail 11 0.00 44
shears 11 0.00 43
smithing_table 11 93.75 48
stonecutter 12 0.00 43
tripwire_hook 11 78.43 51

50

Under review as a conference paper at ICLR 2026

Table 19: The results of XENON (with dependency graph learned via exploration across 400 episodes)
on the Gold group, Diamond group, Redstone group, and Armor group. SR denotes success rate.

Group Goal Item Sub Goal Num. SR Eval Episodes
gold_ingot 13 76.92 52
golden_axe 14 72.00 50
Gold golden_hf)e 14 66.67 48
golden_pickaxe 14 76.00 50
golden_shovel 14 71.74 46
golden_sword 14 78.26 46
diamond 12 87.76 49
diamond_axe 13 72.55 51
diamond_hoe 13 63.79 58
Diamond diamond_pickaxe 13 60.71 56
diamond_shovel 13 84.31 51
diamond_sword 13 76.79 56
jukebox 13 0.00 48
activator_rail 14 0.00 3
compass 13 0.00 3
dropper 13 0.00 3
Redstone | te_block 13 0.00 4
piston 13 0.00 12
redstone_torch 13 0.00 19
diamond_boots 13 64.29 42
diamond_chestplate 13 0.00 44
diamond_helmet 13 67.50 40
diamond_leggings 13 0.00 37
golden_boots 14 69.23 39
golden_chestplate 14 0.00 39
Armor golden_helmet 14 60.53 38
golden_leggings 14 0.00 38
iron_boots 11 94.44 54
iron_chestplate 11 0.00 42
iron_helmet 11 4.26 47
iron_leggings 11 0.00 41
shield 11 0.00 46

K.13 EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on an internal computing cluster equipped with RTX3090, A5000,
and A6000 GPUs. We report the total aggregated compute time from running multiple parallel exper-
iments. For the dependency learning, exploration across 400 episodes in the MineRL environment,
the total compute time was 24 days. The evaluation on the long-horizon tasks benchmark in the
MineRL environment required a total of 34 days of compute. Experiments within the MC-TextWorld
environment for dependency learning utilized a total of 3 days of compute. We note that these values
represent aggregated compute time, and the actual wall-clock time for individual experiments was
significantly shorter due to parallelization.

51

Under review as a conference paper at ICLR 2026

Table 20: The results of XENON* (with oracle dependency graph) on the Wood group, Stone group,
and Iron group. SR denotes success rate.

Group Goal Item Sub-Goal Num. SR Eval Episodes
bowl 4 94.55 55
chest 4 94.74 57
crafting_table 3 94.83 58
ladder 5 94.74 57
stick 3 95.08 61
Wood L doden_axe 5 94.64 56
wooden_hoe 5 94.83 58
wooden_pickaxe 5 98.33 60
wooden_shovel 5 96.49 57
wooden_sword 5 94.83 58
charcoal 8 92.68 41
furnace 7 90.00 40
smoker 8 87.50 40
stone_axe 7 95.12 41
Stone stone_hoe 7 94.87 39
stone_pickaxe 7 94.87 39
stone_shovel 7 94.87 39
stone_sword 7 92.11 38
torch 7 92.50 40
blast_furnace 13 82.22 45
bucket 11 89.47 38
chain 12 83.33 36
hopper 12 77.78 36
iron_axe 11 82.50 40
iron_bars 11 85.29 34
iron_hoe 11 75.68 37
Tron iron_nugget 11 84.78 46
iron_pickaxe 11 83.33 42
iron_shovel 11 78.38 37
iron_sword 11 85.42 48
rail 11 80.56 36
shears 11 82.05 39
smithing_table 11 83.78 37
stonecutter 12 86.84 38
tripwire_hook 11 91.18 34

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used an LLM as a writing assistant to improve the text. Its role
included refining grammar and phrasing, suggesting clearer sentence structures, and maintaining a
consistent academic tone. All technical contributions, experimental designs, and final claims were
developed by the human authors, who thoroughly reviewed and take full responsibility for the paper’s
content.

52

Under review as a conference paper at ICLR 2026

Table 21: The results of XENON* (with oracle dependency graph) on the Gold group, Diamond
group, Redstone group, and Armor group. SR denotes success rate.

Group Goal Item Sub Goal Num. SR Eval Episodes
gold_ingot 13 78.38 37
golden_axe 14 65.12 43

Gold golden_hf)e 14 70.27 37
golden_pickaxe 14 75.00 36
golden_shovel 14 78.38 37
diamond 12 71.79 39
diamond_axe 13 70.00 40
diamond_hoe 13 85.29 34

Diamond diamond_pickaxe 13 72.09 43
diamond_shovel 13 76.19 42
diamond_sword 13 80.56 36
jukebox 13 69.77 43
activator_rail 14 67.39 46
compass 13 70.00 40
dropper 13 75.00 40

Redstone te_block 13 89.19 37
piston 13 65.79 38
redstone_torch 13 84.85 33
diamond_boots 13 60.78 51
diamond_chestplate 13 20.00 50
diamond_helmet 13 71.79 39
diamond_leggings 13 33.33 39
golden_boots 14 75.00 40
golden_chestplate 14 0.00 36

Armor golden_helmet 14 54.05 37
golden_leggings 14 0.00 38
iron_boots 11 93.62 47
iron_chestplate 11 97.50 40
iron_helmet 11 86.36 44
iron_leggings 11 97.50 40
shield 11 97.62 42

53

	Introduction
	Related work
	LLM-based planning in Minecraft
	LLM-based self-correction

	Preliminaries
	Methods
	Adaptive Dependency Graph (ADG)
	Failure-aware Action Memory (FAM)
	Additional technique: context-aware reprompting (CRe) for controller

	Experiments
	Setups
	Robust dependency learning against flawed prior knowledge
	Effective planning to solve diverse goals
	Robust dependency learning against knowledge conflicts
	Ablation studies on knowledge correction mechanisms
	Ablation studies on hyperparameters

	Conclusion
	Additional experiments in another domain
	Experiment Setup
	Results

	Prompts and qualitative results of LLM self-correction
	Dependency correction
	Action correction

	Experienced requirement set and dependency graph update
	Full procedure of XENON
	Details in Adaptive Dependency Learning (ADG)
	Rationale for initial knowledge
	Details in dependency graph initialization
	Pseudocode of RevisionByAnalogy

	Step-by-step planning using FAM
	Difficulty-based Exploration (DEX)
	Context-aware Reprompting (CRe)
	Implementation details
	Hyperparameters
	Human-written plans

	Details for experimental setup
	Compared baselines for dependency learning
	MineRL environment
	Basic rules
	Observation and action space
	Goals
	Episode horizon
	Item spawn probability details

	Mineflayer Environment
	Observation and Action Space
	Episode Horizon

	MC-TextWorld
	Observation and action space
	Episode horizon
	Perturbation on ground truth rules

	Additional experimental results
	LLM-predicted initial dependency graph analysis
	Additional analysis of learned dependency graph
	Impact of controller capacity on dependency learning
	Impact of Controller Capacity in Long-horizon Goal Planning
	Long-horizon task benchmark experiments analysis
	Robust Dependency learning under dynamic true knowledge
	Ablation studies for long-horzion goal planning
	The Necessity of Knowledge Correction even with External Sources
	Scalability of Dependency and Action Learning with More Goals and Actions
	Ablation on action selection methods for making subgoals
	Robustness to Smaller Planner LLMs and Limited Initial Knowledge
	Full results on the long-horizon tasks benchmark
	Experiments compute resources

	The Use of Large Language Models (LLMs)

