
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEUZIP: MEMORY-EFFICIENT TRAINING AND IN-
FERENCE WITH DYNAMIC COMPRESSION OF NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of neural networks improves when more parameters are used.
However, the model sizes are constrained by the available on-device memory
during training and inference. Although applying techniques like quantization
can alleviate the constraint, they suffer from performance degradation. In this
work, we introduce NeuZip, a new weight compression scheme based on the en-
tropy of floating-point numbers in neural networks. With NeuZip, we are able to
achieve memory-efficient training and inference without sacrificing performance.
Notably, we significantly reduce the memory footprint of training a Llama-3 8B
model from 31GB to less than 16GB, while keeping the training dynamics fully
unchanged. In inference, our method can reduce memory usage by more than half
while maintaining near-lossless performance.

1 INTRODUCTION

Deep learning with neural networks has become the backbone of numerous artificial intelligence
applications. The search for better-performing networks is a longstanding topic in deep learning.
Without modifying the design, scaling up the number of parameters (e.g., number of hidden dimen-
sions or layers) has been demonstrated as an effective practice to boost the performance of neural
networks of the same kind (Kaplan et al., 2020). This idea has been successfully applied to text, im-
age, audio, and multi-modal tasks with a wide range of model architectures (Yu et al., 2022; Radford
et al., 2019; Brown et al., 2020). Recently, the number of parameters in the state-of-the-art models
has become more than 100 billion or even a trillion parameters. For example, one of the state-of-the-
art language models in 2020, GPT-3, has 175B parameters (Brown et al., 2020), growing by nearly
100 times compared with the largest Transformer architecture in the 2017 paper (Vaswani et al.,
2017).

Despite the growth in the model size, the hardware capacity is not keeping up with the pace: the
largest on-device memory of GPUs was 32GB in 2017, and is 80GB to this date in 2024, growing
by only 2.5 times. The available hardware supply poses a limitation on the trainable model size,
bottlenecking the scaling capacity. Although this problem can be alleviated by using more GPUs
and sharding the model in multiple devices (Rajbhandari et al., 2019), such a practice introduces
more communication overheads among GPUs, making large-scale distributed training less efficient.
Therefore, saving the total memory usage is critical in scaling up neural networks.

The peak memory usage is dominated by three relatively independent parts: the optimizer, the saved
activations for back-propagation, and the model itself. For the optimizer, there are already memory-
efficient optimizers achieving a sublinear space complexity (Shazeer & Stern, 2018; Hao et al.,
2024); for the activations, the memory can be saved by enabling activation checkpointing (Chen
et al., 2016), which saves the storage by recomputing the forward activations during the back-
propagation. For the model parameters, there has not been an effective method to save the memory
while preserving the ability to train the model. Recently, Dettmers et al. (2023) proposed the quan-
tized low-rank adaptation (QLoRA), which freezes the parameters using a 4-bit data type for the
backbone pre-trained model. While significantly saving the memory for the model, it imposes a
constraint on the overall change of the model to be low-rank, limiting the model capacity.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we propose NeuZip, an algorithm to compress the neural networks while maintaining
their full abilities. Specifically, each floating-point number is represented by three parts: the sign
bit, the exponent bits, and the mantissa bits. Following the observation that weights are concentrated
around zero (Kalamkar et al., 2019), we demonstrate that this corresponds to the low-entropy nature
of the exponent bits. We hence compress the exponent bits using the asymmetric numeral system
(ANS Duda (2013)), a lossless compression algorithm that achieves a high throughput on parallel
computing devices like GPUs. Since the compression is lossless, the memory reduction comes
without compromising any precision loss and enables full-parameter training.

In addition to lossless compression for training, we also propose a lossy variant of NeuZip for
inference that further reduces the memory footprint. Specifically, we control the relative change of
each parameter by storing only the top-k significant bits of the mantissa. We empirically show that
lossy NeuZip lies at the Pareto frontier of the memory–performance trade-off when compared with
several state-of-the-art quantization baselines.

2 OUR APPROACH

The Shannon entropy (Shannon, 1948) is used to measure the “stochasticity” of a random variable
with the following definition:

H(X) := E
X∼p(X)

[− log2 p(X)] (1)

for a random variable X with probability p. A lower entropy indicates a less stochasticity of a
random variable. In fact, the entropy equals the minimum number of bits required, in expecta-
tion, to represent a random variable, therefore corresponding to data compressibility. For the non-
concentrating random variable with all possible values sharing an equal probability, the entropy of
which reaches the maximum value log2 n, where n is all possible values X can take. On the other
hand, for highly-concentrating (e.g., fully deterministic) random variables, the entropy can be as low
as 0.

2.1 LOW-ENTROPY NATURE OF NEURAL NETWORK PARAMETERS

We argue that the parameters in neural network tend to have low entropy. First, parameters are typ-
ically initialized with Gaussian distribution for matrices (Glorot & Bengio, 2010; He et al., 2015).
This encourages all weights to be centered around zero, effectively reducing the entropy (or random-
ness). In addition, regularization is also applied for better generalization ability. For example, the
weight decay technique reduces the magnitudes of weights at every update iteration. Similarly in
Bayesian inference, prior distributions (e.g., Gaussian and Laplace distributions) are often applied,
imposing a zero-concentrated preference over the parameters.Even without explicit regularization,
stochastic gradient descent (SGD) or its variants are shown to have the implicit regularization ef-
fect on neural networks, meaning the model parameters are implicitly encouraged to have smaller
magnitudes during training (Soudry et al., 2018; Vardi & Shamir, 2021). All the above effects and
techniques lead to the following observation:

Observation 2.1 Assuming neural network parameters are i.i.d. random variables, the entropy of
the distribution is likely to be low.

Specifically, each parameter is represented is represented by three components: the sign bit, the
exponent bits, and the mantissa bits in the IEEE 754 standard (IEEE, 2019).1 Therefore, we conduct
a fine-grained analysis and investigate the distribution of each component of a floating-point number
in neural networks.

As shown in Figure 1, the sign bit has a high entropy as it is evenly distributed; hence, it is not
compressible. For the exponent bits, there is a clear pattern that they demonstrate a low-entropy
nature, carrying only less than 3 bits of information with 8 bits of capacity. For the mantissa bits,
they store nearly 7-bit information with 7-bit capacity. In fact, we shown in Appendix A that this is
common in deep learning.

1We use BF16 (Kalamkar et al., 2019) in this paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: The histograms of different components of the parameters of LLama-3 8B model (Dubey
et al., 2024). The x-axis is all possible binary values and the y-axis represent the frequency of each
value.

This phenomenon suggests that by simply compressing the exponents, we are able to recover the
overall optimal compression ratio. In this example, an ideal compression algorithm is able to achieve
a ratio as high as 1.501 (the sum of the three entropy values), only marginally below the overall
compression ratio 1.505.

2.2 LOSSLESS NEUZIP: COMPRESSING EXPONENTS FOR TRAINING

Compressed representation. Based on observation, we see that the number of bits per exponent
is largely inflated compared with the information entropy. However, previous research demonstrates
that the dynamic range provided by the 8-bit exponents are critical for neural networks (Kalamkar
et al., 2019). We therefore propose to compress the exponent bits in a lossless manner based on the
entropy. This practice mainly has three benefits: (1) it increases the throughput of compression as
only part of the bits are processed by the compression; (2) it reduces the burden of maintaining the
statistics of a large set of symbols (e.g., 256 symbols for 8-bit exponents versus 65,536 symbols for
16-bit representations), enabling a great efficiency of compression algorithms; (3) most importantly,
it recovers most of the compressibility as shown in Figure 1.

Multi-layer neural networks. The compression alone does not save any memory for maintaining
a single array. This is because, either compression or decompression, requires at least one buffer
of the same size as the uncompressed array. In the scope of neural networks, the whole model is
prohibitively large and it is infeasible to duplicate the memory. In NeuZip, however, we exploit the
multi-layer structure of modern neural networks to avoid creating a large buffer. Without loss of
generality (see Appendix F), we focus on the linear function as a common building block in neural
networks at layer l:

xl ←Wlxl−1 + bl, (2)

where Wl ∈ Rm×n is the weight matrix, bl ∈ Rm is the bias vector of layer l, and xl is the input of
layer l. We propose to modify the compressed forward pass in the following form

Ŵ ←decompress(cl) (3)

xl ←Ŵxl−1 + bl, (4)

where cl is the compressed storage of the matrix Wl. In this way, we only need to store ci for
each layer, enjoying low-memory usage. During each forward pass, weight matrices stay in the
compressed form until the original data is needed, in which case it is decompressed into a temporary
space Ŵ for computation. As a result, the entire network is never fully decompressed at any point
in time, making the overall forward pass memory efficient. The per-layer procedure is shown in
Figure 2.

Note that although we alter the forward pass, the back-propagation for each linear layer is fully
unaffected. This is because

∂L
∂Wl

=
∂L
∂xl

∂xl

∂Wl
= (∇xl

L)x⊤
l−1. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(a) Vanilla

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(b) AC

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(c) AC+LOMO

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weightCompressed

Layer-wise
Global

(d) NeuZip

Figure 2: Reverse-mode automatic differentiation (e.g., back-propagation) with different memory-
saving techniques for a linear layer. Blocks colored blue are loaded in memory temporarily for the
calculation of this layer, whereas the blocks colored red are always in memory throughout training.

Therefore, we are able to obtain the gradient as long as the activations are saved. Similarly, we can
also propagate the gradient of inputs with

∂L
∂xl−1

=
∂L
∂xl

∂xl

∂xl−1
= (∇xl

L)⊤ Wl, (6)

where Wl can be constructed by decompression. It is worth noting that our NeuZip is compatible
with activation checkpointing (Chen et al., 2016) by recomputing the activations, opening more
opportunity for memory saving.

For weight updates, we decompress the matrix into the original floating-point format and compress
the updated matrix again. This procedure is done in a layer-by-layer fashion, similar to LOMO (Lv
et al., 2023). The overall training procedure is described in Appendix B.

Compression algorithm. In our implementation, we choose to use the asymmetric numeral sys-
tems (ANS) (Duda, 2013) as our backbone compression algorithm because it can be easily paral-
lelized and achieves a high throughput with parallel execution, making it an ideal candidate on deep
learning accelerators like GPUs. Specifically, ANS encodes a sequence of symbols by treating them
as base-n numbers. However, unlike the common numerical system that uses a uniform base for
each digit, ANS treats every single digit with a different base ⌈1/p̂i⌉, where p̂ is the frequency of
symbols. As a result, it achieves a near-optimal compression rate by suing around 1/p̂i bits for the
ith symbol.

2.3 LOSSY NEUZIP: ADDITIONALLY TRUNCATING MANTISSA FOR INFERENCE

In the algorithm above, we show that the training of neural networks can be completely unaffected
by lossless compression. On the other hand, inference is known to be less sensitive to precision loss
compared with training (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023). This enables further
memory reduction of NeuZip by reducing the precision. In our study, we conduct a pilot experiment
that perturbs each weight with a noise proportional to the weight magnitude. We observe that with
a small noise ratio there is little or no effect on the overall performance (Appendix C). Motivated by
this, we propose a variant of NeuZip that compresses mantissa in a lossy way during inference.

In its core, we simply round and truncate the mantissa to fewer bits. Specifically, we assume the
original floating-point number f has an exponent e and mantissa m. After rounding, the mantissa is
denoted by m̂ and the resulting floating-point number is denoted by f̂ .

The rounding introduces an error expressed as:

|f − f̂ | =
∣∣∣∣2e−127 · m

27
− 2e−127 · m̂

27

∣∣∣∣ = 2e−134 · |m− m̂| (7)

where e − 127 interprets the exponent bits e as an integer, which can be either positive, negative,
or 0. In the fraction m/27, m is the significand (an unsigned integer) and 7 is the precision. It is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

straightforward to see that the relative error is given by

|f − f̂ |
|f |

=
2e−134 · |m− m̂|

2e−134 · |m|
=
|m− m̂|

m
. (8)

Suppose our rounding keeps k most significant bits in m̂, the earliest point where m̂ could differ
from the original number m is at the (k + 1)th bit. This means that the maximum possible relative
change introduced by this rounding is 1/2k. Given that the mantissa bits are highly uniform as
shown in Figure 1, such a practice resembles the weight perturbation based on relative magnitudes,
justifying the rounding trick applied to mantissas.

In our implementation, we store the sign and mantissa bits together as a signed integer to minimize
the requests of memory write. Further, given that modern architectures are mostly byte (8-bit)
addressable, we pack multiple such signed integers into a single byte for memory efficiency. To
align with an 8-bit byte, we let the precision after rounding to be {0, 1, 3}, ensuring that all the bits
in a byte are utilized efficiently. We illustrate the process in Figure 8b.

Lastly, we enable a block-wise normalization technique (Dettmers et al., 2023), where a block is
a chunk of weights that are stored contiguously in memory. Such block-wise normalization makes
sure that the weight with the largest magnitude in a block will always be normalized to 1, invariant
to mantissa rounding and truncation. The normalization coefficient—which handles mantissa while
ignoring the exponent—is stored with 8 bits, and is used for de-normalization during the decom-
pression of the weight. This strategy is based on the observation that larger weights play a more
important role in neural networks (Han et al., 2015).

3 EXPERIMENTS

We empirically verify the effectiveness of NeuZip across different model architectures and datasets.
Given the success of large language models, we mainly consider Transformer-based models for our
experiments. We choose two designs of Transformer, decoder-only and encoder–decoder models, to
show the generality of our method. Each experiment is conducted on a single RTX A6000 GPU to
avoid complications with the memory-usage in the multi-gpu scenario. The uncompressed data type
is set to BF16 for all experiments.

3.1 LOSSLESS NEUZIP FOR PRE-TRAINING

Settings. We choose decoder-only models to evaluate our method on the pre-training task. We
select 3 models with different sizes to study the scaling effect, including GPT-Neo 2.7B (Black
et al., 2021), Llama-3 8B (Dubey et al., 2024), and LLama-2 13B (Touvron et al., 2023). For fair
comparison, all competing methods are initialized with the same random weights.

For the task, we consider language modeling, which requires the model to predict the next token
given the context. We use the Wikitext-2 dataset (Merity et al., 2016), where each data sample
is a fixed-length sequence from an article on Wikipedia. We set the length to 1024 following the
common practice (Radford et al., 2019).

For each experiment, we report the loss (negative log-likelihood) on unseen samples. To study
memory saving, we report the peak memory usage for each run during the training process. The
numbers are shown in gibibyte (GiB, 10243 bytes). We also report the speed by the number of
iterations per second to demonstrate the time-efficiency of each method.

We apply the vanilla SGD update to all runs for efficiency. The activation checkpointing tech-
nique (Chen et al., 2016) is enabled by default. It is worth noting that pre-training these large models
to the optimal performance is extremely expensive (Rajbhandari et al., 2019). Given that our NeuZip
training method is lossless, we only train the models for 1 epoch to showcase its effectiveness. We
use the same hyper-parameters for all runs.

Results. We present the results in Table 1. We first test the vanilla training method, where only the
activation checkpointing is applied (shown in Figure 2b). As shown, the vanilla training requires the
highest amount of memory because it stores the uncompressed weights and gradients for all layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Pre-training decoder-only models on the language modeling task. The loss numbers are
calculated on the validation set with the cross-entropy loss. Memory is reported in GiB (10243 B).
Speed represents the number of iterations per second. The bold numbers represent the top results.

GPT-Neo-XL 2.7B Llama-3 8B LLama-2 13B

Name Loss Mem Speed Loss Mem Speed Loss Mem Speed

Vanilla 8.81 11.22 0.96 8.61 30.97 0.77 - OOM -
LOMO 8.81 6.97 0.94 8.61 19.47 0.78 9.10 26.26 0.49
+NeuZip Lossless 8.81 5.54 0.70 8.61 15.25 0.45 9.10 18.58 0.28

Table 2: Fine-tuning encoder–decoder models on the SQL generation task. The BLEU scores are
calculated with SacreBLEU. Memory is reported in GiB (10243 B). Speed represents the number of
iterations per second. The bold numbers represent the top results.

T5 1B T5 3B T5 11B

Name BLEU Mem Speed BLEU Mem Speed BLEU Mem Speed

Vanilla 79.9 3.82 3.69 85.1 11.32 2.43 - OOM -
LOMO 79.9 2.75 3.68 85.1 7.07 2.47 82.3 25.95 0.69
+ NeuZip Lossless 79.9 2.39 2.02 85.1 5.21 1.33 82.3 20.68 0.46

QLoRA INT8 70.4 5.84 1.11 72.1 11.54 1.12 63.5 33.36 0.37
QLoRA FP4 70.1 3.63 1.70 72.1 7.35 1.74 63.3 22.73 0.58
QLoRA FP42 70.6 3.61 1.63 72.0 7.27 1.61 60.6 22.38 0.57
QLoRA NF4 70.4 3.63 1.83 71.2 7.35 1.65 59.4 22.73 0.57
QLoRA NF42 70.5 3.61 1.64 71.2 7.07 1.57 57.9 22.38 0.57

We also test the LOMO technique (Lv et al., 2023), which promptly updates the weights in a layer-
by-layer fashion (shown in Figure 2c). This allows LOMO to reuse a buffer to store the gradients
for each layer. As a result, LOMO approximately reduces the peak memory usage by the size of a
model.

Finally, we apply our NeuZip on top of LOMO (shown in Figure 2d). For all models, NeuZip
additionally reduces more than 20% percentage of memory compared with LOMO, accounting for
a total memory reduction of more than 50%. Notably, NeuZip reduces the peak memory of training
a Llama-2 13B model to less than 20GB, enabling training a 13B model on consumer-grade GPUs
without any precision loss.

3.2 LOSSLESS NEUZIP FOR FINE-TUNING

Settings. A benefit of using lossless compression comes from retaining the pre-trained weight
without any information loss. We conduct a fine-tuning experiment with encoder–decoder models
to test the performance of our NeuZip on broader architectures. In particular, we choose three T5
models: T5 1B, T5 3B, and T5 11B (Raffel et al., 2020), where the pre-trained parameters are used
for initialization.

The T5 models are pre-trained on the C4 dataset (Lin et al., 2020), which is filtered to
contain natural language only. To avoid data leaks from pre-training, we choose a non-
natural language generation dataset for fine-tuning. Specifically, we use a public SQL gen-
eration dataset (Zhong et al., 2017; Yu et al., 2018) as the test bed. For each sam-
ple, the model is required to generate the SQL command from a human question. For
example, the question could be “CREATE TABLE head (age INTEGER). How many
heads of the departments are older than 56 ?”. The model is expected to generate
“SELECT COUNT(*) FROM head WHERE age > 56”. We feed the question and response
into the encoder and decoder, respectively. The objective is to minimize the cross-entropy loss on
the response.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Evaluating lossy NeuZip on different models and tasks. ‘PPL” represents the perplexity
values. Memory is reported in GiB. Speed represents the number of iterations per second. The bold
numbers represent the top results, whereas the underlined numbers are the second-best ones.

(a) Evaluating decoder-only models on the language modeling task. Here, the perplexities are adjusted to word
level to compare across different tokenizations.

Llama-3 8B Llama-2 13B Yi-1.5 34B

Name PPL Mem Speed PPL Mem Speed PPL Mem Speed

Vanilla 9.89 15.08 5.07 10.87 24.36 3.59 - OOM -

Quant INT8 10.07 8.63 3.54 10.97 12.74 2.27 10.87 33.41 1.13
Quant FP4 11.51 5.77 3.45 11.38 7.37 1.87 11.57 19.54 1.75
Quant NF4 10.75 5.77 3.38 11.15 7.37 1.83 11.06 19.54 1.67
Quant FP42 11.50 5.44 3.41 11.38 6.87 1.86 11.57 18.11 1.61
Quant NF42 10.75 5.44 3.34 11.15 6.87 1.81 11.06 18.11 1.54

NeuZip 0-bit 13.64 5.24 3.44 12.46 6.30 1.87 12.06 16.20 0.94
NeuZip 1-bit 10.77 6.05 3.38 11.17 7.77 1.86 11.04 20.14 0.93
NeuZip 3-bit 9.93 7.70 3.38 10.90 10.73 1.84 10.76 27.92 0.93
NeuZip 7-bit (lossless) 9.89 10.95 3.39 10.87 16.66 1.84 10.72 43.40 0.94

(b) Evaluating encoder–decoder models on the language modeling task. Since all models use the same tok-
enizer, we reported perplexities at the token level for simplicity.

T5 1B T5 3B T5 11B

Name PPL Mem Speed PPL Mem Speed PPL Mem Speed

Vanilla 2.614 1.37 23.73 2.571 5.31 19.86 2.568 21.06 6.20
Quant INT8 2.615 1.28 4.24 2.573 4.94 4.28 2.569 19.59 2.58
Quant NF4 2.632 1.08 11.64 2.588 4.12 11.82 2.579 16.28 4.48
Quant FP4 2.646 1.08 11.92 2.594 4.12 11.99 2.585 16.28 4.59
Quant FP42 2.646 1.05 10.39 2.594 4.03 9.72 2.585 15.93 4.52
Quant NF42 2.632 1.05 10.39 2.587 4.03 9.96 2.579 15.93 4.39

NeuZip 0-bit 2.731 0.40 11.82 2.668 1.41 8.70 2.651 5.35 3.24
NeuZip 1-bit 2.641 0.48 11.68 2.591 1.78 8.61 2.581 6.65 3.21
NeuZip 3-bit 2.614 0.66 11.99 2.574 2.42 8.60 2.569 9.27 3.19
NeuZip 7-bit (lossless) 2.614 0.99 11.55 2.571 3.73 8.77 2.568 14.46 3.23

Similar to the pre-training experiments, we also sweep the learning rate from 10−3 to 3× 10−1 for
each run. After fine-tuning, we generate with the model on the validation set with greedy decoding.
The generated SQL commands are then compared with the ground truths by SacreBLEU (Post,
2018), a metric that evaluates the similarity between corpora based on precision scores.

Results. The results are reported in Table 2. All baselines in the pre-training experiment (i.e., the
vanilla training, LOMO, and NeuZip) are included in this table. Similar to the results in Section 3.1,
they achieve the same BLEU scores for each model. Specifically, our NeuZip is able to train a 11B
model within 24GB.

For fine-tuning, it is possible to apply other memory-efficient training techniques. For example,
QLoRA (Dettmers et al., 2023) compresses the pre-trained model by using low-precision data types
and train the LoRA modules only (Hu et al., 2022). In our comparison experiment, we choose the
widely used quantization data types for QLoRA, including INT8 (Dettmers et al., 2022), FP4, and
NF4 (Dettmers et al., 2023). We apply the LoRA modules (Hu et al., 2022) on all linear layers,
where every LoRA rank is set to 8 to control the memory usage.2 As shown in the second half
of Table 2, all quantization methods underperform NeuZip in terms of both generation quality and

2It should be noted that the down-projection matrices in each T5 feed-forward network are not quantized
for stability, as otherwise the model performance is seriously jeopardized. See https://github.com/
huggingface/transformers/issues/20287 for more details.

7

https://github.com/huggingface/transformers/issues/20287
https://github.com/huggingface/transformers/issues/20287

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: The trade-off between memory and performance for different methods.

memory usage. In terms of time efficiency, some quantization methods are slower than others, but in
general, they are in the same magnitude as our method. Overall, NeuZip achieves the least memory
usage while maintaining the highest performance. The results strongly suggests the practicality of
our NeuZip.

3.3 LOSSY COMPRESSION FOR INFERENCE

As mentioned in Section 2.3, the inference process is less sensitive in precision loss, which pro-
vides an opportunity for compressing mantissa in a lossy fashion during inference. We evaluate the
performance of our lossy NeuZip in such scenarios.

Settings. Following the settings in previous sections, we test our approach with both decoder-only
and encoder–decoder architectures. For the decoder-only models, we select the LLama-3 8B (Dubey
et al., 2024), LLama-2 13B (Touvron et al., 2023), and Yi-1.5 34B (Young et al., 2024). For the
encoder–decoder architecture, we use the T5 1B, 3B, and 11B models as in Section 3.2.

Since all decoder-only models are trained for language modeling, we evaluate the performance with
language modeling tasks. Specifically, we test all methods on the Wikitext-2 validation set (Merity
et al., 2016) following Section 3.1, where each sequence consists of 1024 tokens. On the other hand,
the encoder–decoder models (T5 series) contain multiple tasks in pre-training. Since they excel at
zero-shot translation, we evaluate them on the WMT14 En-De translation task (Bojar et al., 2014),
where each source sentence is prepended with “translate from English to German:” based on the
pre-training format (Raffel et al., 2020).

Following the standard evaluation pipeline for lossy compression (Frantar et al., 2023; Dettmers &
Zettlemoyer, 2023), we evaluate all models with the perplexity metric, which is sensitive to how
distorted the compressed model is.

Results. The results for decoder-only and encoder–decoder models are shown in Tables 3a and 3b,
respectively. We see that the vanilla (uncompressed BFloat16) models achieve the best perplexity
scores in all experiments at a cost of the excessive memory usage. For quantization methods, we
choose the same INT8 (Dettmers et al., 2022), FP4, and NF4 (Dettmers et al., 2023) data types men-
tioned in Section 3.2. In general, quantization methods suffer from notable perplexity degradation.
Although the INT8 variant (Dettmers et al., 2022) manages to better preserve the perplexity, it uses
around 50% more memory compared with other quantization methods.

For our lossy NeuZip, we set three different levels of precision: 0-bit, 1-bit, and 3-bit mantissa
preserved. We choose these values because they are aligned in 8-bit byte arrays (discussed in Sec-
tion 2.3). All these variants use a block size of 512 for normalization. We additionally include the
lossless NeuZip (7-bit mantissa) for a full comparison. As shown in the table, our lossy NeuZip
demonstrates a spectrum of memory saving and performance preservation. The 0-bit NeuZip attains
the best memory efficiency in all experiments, whereas the lossless 7-bit NeuZip obtains the best
perplexity scores. Notably, the 3-bit NeuZip achieves nearly lossless performance in all experiments
while using less than 50% memory compared with the uncompressed model. The results confirm
the effectiveness of our method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The effect of block size.

Block 32 Block 64 Block 128 Block 256 Block 512

Name PPL Mem PPL Mem PPL Mem PPL Mem PPL Mem
NeuZip 0-bit 6.341 35.7 6.694 34.6 6.853 34.2 7.639 33.8 7.104 33.5
NeuZip 1-bit - OOM 4.611 42.7 4.662 42.2 4.640 41.8 4.649 41.4

3.4 IN-DEPTH ANALYSES

The memory–performance trade-off. In Section 3.3, we observe that the performance is gener-
ally decreased with less memory usage. We analyze this trade-off of our NeuZip as well as quantiza-
tion methods in Figure 3. Note that the optimal methods are the ones on the Pareto frontier (Pareto,
2014), i.e., the more bottom-left, the better. In addition to measuring the perplexity, we also include
a preliminary study by evaluating the end-to-end performance on the MMLU dataset (Hendrycks
et al., 2020) in Appendix E.

As shown, three out of four NeuZip variants are on the Pareto frontier, with the remaining one
staying fairly close to the frontier. On the other hand, there is only one quantization technique that
lies on the Pareto frontier. This result demonstrates that our NeuZip generally achieves a better
memory–performance trade-off than quantization.

The effect of block size in lossy compression. As introduced in Section 2, we apply normaliza-
tion to lossy NeuZip to ensure the weight with the largest absolute value will not be affected by
truncation. We show the effect of block size in this experiment with a giant model, Llama-3 70B
evaluated on the Wikitext-2 dataset.

As seen in Table 4, a smaller block size clearly leads to better performance at the cost of compro-
mising memory efficiency due to the overhead of storing normalization coefficients. Therefore, the
block-wise normalization provides a more fine-grained trade-off between memory and performance
by varying the block size.

Figure 4: The throughput experiment. (a) Comparison of CPU-offloading, quantization, lossy
NeuZip compression, and lossless NeuZip compression. (b) Comparison of GPU-reloading, de-
quantization, lossy NeuZip decompression, and lossless NeuZip decompression.

Throughputs of NeuZip. In addition to overall time efficiency presented in Tables 1–3, we ana-
lyze the throughput of matrix compression and decompression with our NeuZip, in comparison with
the throughput of matrix quantization and de-quantization based on the NF4 data type (Dettmers
et al., 2023) using the popular library bitsandbytes.3 We additionally include the CPU-
offloading technique as a baseline, which lowers the GPU memory pressure by transferring data
to CPU and reloading them to GPU when needed. Figure 4 measures the throughput of matrix
processing in GiB/s when we vary the matrix size from 105 to 108 bytes.

We see that CPU-offloading is generally slow across different sizes of matrices. This is due to the
bottleneck of CPU–GPU communication through PCIe. For quantization, the bitsandbytes

3Available at https://github.com/bitsandbytes-foundation/bitsandbytes

9

https://github.com/bitsandbytes-foundation/bitsandbytes

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

package has been highly optimized for GPU, and its throughput is one magnitude higher than the
CPU-offloading technique when the matrix size is large. Profoundly, our NeuZip achieves the high-
est throughput for compression among all methods (Figure 4a), and a high throughput for decom-
pression similar to de-quantization (Figure 4b). The results suggest that our NeuZip, albeit causing
overhead compared with uncompressed vanilla models, is still highly efficient in practice.

4 RELATED WORK

Model compression. Previous work has explored different techniques to reduce the memory usage
of neural networks, including knowledge distillation (Hinton et al., 2015) and pruning (Kwon et al.,
2022). Most related to our work is the quantization technique, which represents each parameter
with fewer bits; common approaches include k-means-based quantization (Han et al., 2016), lin-
ear quantization (Han et al., 2016), mixed precision quantization (Dettmers et al., 2022; 2023), and
non-uniform grid quantization (Chikin & Antiukh, 2022). Our NeuZip differs from these methods
by utilizing the exponent entropy and achieving lossless compression (see Appendix G for details).
When training data are available, one may incorporate the quantization into the training process to
improve performance (Xiao et al., 2023; Frantar et al., 2023). In this paper, our NeuZip compression
is a zero-shot method, and therefore, our experiments consider the widely used zero-shot quantiza-
tion methods (Dettmers et al., 2022; 2023) for fair comparison. We leave the utilization of additional
data of NeuZip to future work.

Memory-efficient optimizers. The optimizer also occupies a considerable amount of memory
during training (Rajbhandari et al., 2019). To address this, memory-efficient optimizers (Shazeer
& Stern, 2018; Zhao et al., 2024; Hao et al., 2024) are developed to reduce the memory footprint
of training. Our NeuZip is orthogonal to these optimization techniques, as it can be seamlessly
combined with any of these methods for further memory saving. In particular, the lossless NeuZip
is expected to have exactly the same results with less memory.

Parameter-efficient training. Another line of research saves memory by training a subset of pa-
rameters (Houlsby et al., 2019; Zaken et al., 2022) so the optimizer only stores information about
a small set of trainable parameters. One notable example is the low-rank adaptation (LoRA (Hu
et al., 2022)). However, such a practice restricts the optimization space of parameters, and thus usu-
ally leads to significant performance degradation. Moreover, low-rank methods are unsuitable for
pre-training.

It is important to mention that memory-efficient optimizers and parameter-efficient training cannot
reduce the memory cost during inference. By contrast, our NeuZip is suitable for both training and
inference.

5 CONCLUSION

Summary. In this work, we present NeuZip, a novel compression scheme for neural networks that
achieves memory-efficient training and inference. By analyzing the floating-point structures, we
propose to compress the exponent in a lossless way and to compress the mantissa in a lossy way.
The lossless variant of our NeuZip may be applied to both training and inference, while yielding
exactly the same result as the uncompressed model. The lossy NeuZip provides additional memory
saving for inference, achieving superior memory–performance trade-off.

Limitations and future work. Due to the hardware constraint, the largest model that we consider
in this paper is 70B. We would like to verify our NeuZip on even larger models like GPT-3 (Brown
et al., 2020) with more capable hardware. Another limitation of NeuZip is that the throughput is
lower than the vanilla model. However, it has a comparable speed with highly optimized quanti-
zation methods while achieving significantly better performance. By using NeuZip, we expect to
create opportunities for researchers to explore and study large models on more accessible or edge
devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our research focuses on accelerating pre-trained Transformers to reduce power and time consump-
tion in inference. As far as we are aware, it does not pose any new ethical or societal risks that
require specific attention.

REPRODUCIBILITY STATEMENT

In our paper, all of our models and datasets are publicly accessible. For the models, we download
them from HuggingFace’s hub using the following identifiers (ranked from small to large):

• google-t5/t5-large

• EleutherAI/gpt-neo-2.7B

• google-t5/t5-3b

• meta-llama/Meta-Llama-3-8B

• google-t5/t5-11b

• meta-llama/Llama-2-13b-hf

• 01-ai/Yi-1.5-34B

• meta-llama/Meta-Llama-3-70B

• state-spaces/mamba-2.8b-hf

For the datasets, we follow the previous work and similarly obtain them from HuggingFace:

• Salesforce/wikitext

• b-mc2/sql-create-context

• wmt/wmt14

For the procedure of NeuZip, we have detailed descriptions in Section 2 and also with Algorithm 1.
We plan to release our code at this anonymous link.

REFERENCES

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large scale au-
toregressive language modeling with Mesh-Tensorflow, 2021. URL https://doi.org/10.
5281/zenodo.5297715.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Lev-
eling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Spe-
cia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, 2014. URL
http://www.aclweb.org/anthology/W/W14/W14-3302.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, pp. 1877–1901, 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016. URL https://arxiv.org/abs/
1604.06174.

11

https://anonymous.4open.science/r/NeuZip-Submission-FDED
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://www.aclweb.org/anthology/W/W14/W14-3302
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vladimir Chikin and Mikhail Antiukh. Data-free network compression via parametric non-uniform
mixed precision quantization. In CVPR, pp. 450–459, 2022. URL https://ieeexplore.
ieee.org/document/9879309.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
ICML, 2023. URL https://proceedings.mlr.press/v202/dettmers23a.html.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix
multiplication for Transformers at scale. In NeurIPS, 2022. URL https://openreview.
net/forum?id=dXiGWqBoxaD.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In NeurIPS, 2023. URL https://openreview.net/forum?id=
OUIFPHEgJU.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and et al. The Llama 3 herd of models.
arXiv preprint arXiv: 2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Jarek Duda. Asymmetric numeral systems: Entropy coding combining speed of Huffman cod-
ing with compression rate of arithmetic coding. arXiv preprint arXiv: 1311.2540, 2013. URL
https://arxiv.org/abs/1311.2540.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained Transformers. In ICLR, 2023. URL https://openreview.net/
forum?id=tcbBPnfwxS.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, pp. 249–256, 2010. URL https://proceedings.mlr.press/
v9/glorot10a.html.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. URL https://arxiv.org/abs/2312.00752.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In NeurIPS, 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In ICLR, 2016. URL http://arxiv.
org/abs/1510.00149.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient com-
pressors. In ICML, 2024. URL https://openreview.net/forum?id=uubBZKM99Y.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. ICCV, pp. 1026–1034, 2015. URL https:
//doi.org/10.1109/ICCV.2015.123.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. URL https://arxiv.org/abs/1606.08414.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:
2009.03300, 2020. URL https://arxiv.org/abs/2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv: 1503.02531, 2015. URL https://arxiv.org/1503.02531.

N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and S. Gelly. Parameter-efficient transfer learning for NLP. In ICML,
pp. 2790–2799, 2019. URL https://proceedings.mlr.press/v97/houlsby19a.
html.

12

https://ieeexplore.ieee.org/document/9879309
https://ieeexplore.ieee.org/document/9879309
https://proceedings.mlr.press/v202/dettmers23a.html
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1311.2540
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/2312.00752
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://openreview.net/forum?id=uubBZKM99Y
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1606.08414
https://arxiv.org/abs/2009.03300
https://arxiv.org/1503.02531
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

IEEE. IEEE standard for floating-point arithmetic, 2019. URL https://doi.org/10.1109/
IEEESTD.2019.8766229.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of BFloat16 for
deep learning training. arXiv preprint arXiv: 1905.12322, 2019. URL https://arxiv.org/
abs/1905.12322.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv: 2001.08361, 2020. URL https://arxiv.org/abs/2001.
08361.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024. URL https://arxiv.org/abs/2411.04330.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for Transformers. In NeurIPS, pp. 24101–24116,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. In EMNLP Findings, pp. 441–459, 2020. URL https:
//aclanthology.org/2020.findings-emnlp.41.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv: 2306.09782,
2023. URL https://arxiv.org/abs/2306.09782.

Stephen Merity, Caiming Xiong, James Bradbury, and R. Socher. Pointer sentinel mixture models.
ICLR, 2016. URL https://arxiv.org/abs/1609.07843.

Vilfredo Pareto. Manual of Political Economy: A Variorum Translation and Critical Edition. Oxford
University Press UK, 2014. URL https://global.oup.com/academic/product/
manual-of-political-economy-9780198867661.

Matt Post. A call for clarity in reporting BLEU scores. In WMT, pp. 186–191, 2018. URL https:
//aclanthology.org/W18-6319.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019. URL https://openai.
com/research/better-language-models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-
text Transformer. JMLR, 21(1):5485–5551, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. International Conference For High Performance Com-
puting, Networking, Storage And Analysis, 2019. URL https://arxiv.org/abs/1910.
02054.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. URL https://doi.org/10.1002/j.1538-7305.1948.tb01338.
x.

13

https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2411.04330
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html
https://aclanthology.org/2020.findings-emnlp.41
https://aclanthology.org/2020.findings-emnlp.41
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/1609.07843
https://global.oup.com/academic/product/manual-of-political-economy-9780198867661
https://global.oup.com/academic/product/manual-of-political-economy-9780198867661
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In ICML, pp. 4596–4604, 2018. URL https://proceedings.mlr.press/v80/
shazeer18a.html.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. JMLR, 19(70):1–57, 2018. URL http:
//jmlr.org/papers/v19/18-188.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023. URL https://arxiv.org/abs/2307.09288.

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In COLT,
pp. 4224–4258, 2021. URL http://proceedings.mlr.press/v134/vardi21b.
html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
NIPS, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023. URL
https://arxiv.org/abs/2211.10438.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,
Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and
Zonghong Dai. Yi: Open foundation models by 01.ai. arXiv preprint arXiv: 2403.04652, 2024.
URL https://arxiv.org/abs/2403.04652.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, B. Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-
rich text-to-image generation. TMLR, 2022. URL https://openreview.net/forum?
id=AFDcYJKhND.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In EMNLP,
pp. 3911–3921, 2018. URL https://aclanthology.org/D18-1425.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for Transformer-based masked language-models. In ACL, volume 2, pp. 1–9, 2022. URL
https://aclanthology.org/2022.acl-short.1.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In ICML, 2024.
URL https://arxiv.org/abs/2403.03507.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017. URL
https://arxiv.org/abs/1709.00103.

14

https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
http://jmlr.org/papers/v19/18-188.html
http://jmlr.org/papers/v19/18-188.html
https://arxiv.org/abs/2307.09288
http://proceedings.mlr.press/v134/vardi21b.html
http://proceedings.mlr.press/v134/vardi21b.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2403.04652
https://openreview.net/forum?id=AFDcYJKhND
https://openreview.net/forum?id=AFDcYJKhND
https://aclanthology.org/D18-1425
https://aclanthology.org/2022.acl-short.1
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/1709.00103

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A INSPECTING THE ENTROPY ON MORE MODELS

Random initialization. When training from scratch, the parameters are randomly initialized. To
verify the compressibility in this case, we check the parameter entropy of a randomly initialized
model with the same architecture as Lllama-3. The initialization methods follow the standard pro-
cedure provided in the Hugging Face library. The results show a similar pattern to what the released
Llama model has, suggesting the compressibility with NeuZip occurs even with random weights.

Figure 5: The histograms of different floating-point components of the parameters of a randomly
initialized Llama-3 8B model.

Diffusion. We also inspect the parameter entropies beyond Transformer models. In Figure 6, we
check all four models in a diffusion pipeline. We see that the low-entropy exponents not only occur
in Transformer models but other architectures like convolution-based VAE and U-Net models.

Figure 6: The histograms of the exponent bits in different components of Stable Diffusion 1.5 model.
We omit the sign and mantissa bits for simplicity as we do not compress them based on their en-
tropies.

Both experiments show that the occurrence of low-entropy components is a common phenomenon
in deep learning.

B THE ALGORITHM FOR TRAINING WITH LOSSLESS NEUZIP

In this section, we describe the forward-backward procedure of NeuZip. First, we compress all
the linear layers in the original model and store the compressed information on-device. During
the training iterations, we decompress the compressed weights in a layer-by-layer manner for the
forward pass. For the backward pass, the input is recalculated again following the forward pass like
activation checkpointing (Chen et al., 2016). A linear operation calculates the gradients for both
the weight matrix and input. To do so, we need to decompress the weight again, which is used
to calculate the gradient of input. After the gradient is calculated, we directly update the weight
without storing it similar to LOMO (Lv et al., 2023).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 Memory-efficient training with NeuZip

Require: number of linear layers L, linear layer weights {Wi}Li=1.
Require: data stream D that yields training data x for each iteration

▷ Initialization
1: for l ∈ 1 . . . L do
2: sl, el,ml ← split(Wl) ▷ Split each element in the matrix into three components
3: cl ← compression(el) ▷ Compress the exponents losslessly
4: store(sl, cl,ml) ▷ Store the compressed exponents cL on device
5: end for

▷ Training loop
6: for x in D do
7: ▷ Model forward
8: x0 ← x
9: for l ∈ 1 . . . L do

10: ê← decompression(cl) ▷ Decompress the exponents using temporary space
11: Ŵ ← merge(sl, êl,ml) ▷ Concatenate into a floating-point number matrix using temporary space

12: xl ← Ŵ⊤xl−1 + bl ▷ Linear calculation
13: save for backward(xl) ▷ Label the variable required for back-propagation
14: end for
15: ▷ Model backward and update
16: ∆x ← ∂L/∂xL ▷ Calculate the gradient w.r.t. the model output
17: for l ∈ L . . . 1 do
18: ê← decompression(cl) ▷ Decompress the exponents using temporary space
19: Ŵ ← merge(sl, êl,ml) ▷ Concatenate into a floating-point number matrix using temporary space

20: ∆W ← (∆x)x
⊤
l−1 ▷ Calculate gradient by Equation (5)

21: Ŵ ← Ŵ − optimizer(∆W) ▷ Update the weight on-the-fly
22: sl, el,ml ← split(Ŵ) ▷ Split each element in the matrix into three components again
23: cl ← compression(ei) ▷ Compress the exponents losslessly again
24: store(sl, cl,ml) ▷ Replace the stored components for layer l on device
25: ∆x ← Ŵ∆x ▷ Calculate the gradient of input for next layers
26: end for
27: end for

C THE TOLERANCE OF RANDOM PERTURBATION

In this experiment, we would like to explore the sensitivity of neural network weights to random
perturbations. For each parameter, we have two types of magnitudes: absolute and relative magni-
tudes. The former one represents the actual numerical error, whereas the second one is calculated
based on the original value. For example, when the original value is −1.5, an absolute magnitude
of 0.125 means the perturbed range is [−1.5 − 0.125,−1.5 + 0.125]. On the other hand, a relative
magnitude of 0.125 means the perturbed range is [−1.5∗(1+0.125),−1.5∗(1−0.125]. We conduct
such a experiment with the perturbation grid in Figure 7. For each cell, we choose the maximum
error between relative error and absolute value for perturbing. A random value is sampled from the
perturbed range uniformly as the perturbation. The weight value is then set to the random sample.

As shown in Figure 7, we see a clear pattern that the model tends to tolerate the relative change
rather than the absolute change.

D THE STORAGE FOR LOSSLESS AND LOSSY COMPRESSION

In this section, we describe the underlying storage layout for NeuZip in Figure 8.

Essentially, each BFloat16 number is first split into an exponent and a signed mantissa. We group all
the exponents in the matrix and perform the lossless compression. The signed mantissa is optionally
truncated, depending on the required precision. The signed mantissa is then stored separately in
memory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Evaluating the byte-level perplexity with perturbed LLama-3 8B model (Dubey et al.,
2024) on Wikitext-2 (Merity et al., 2016). Each parameter is perturbed with controlled noises. Both
the x- and y-axes are log-scale with base 2.

(a) Lossless compression scheme. (b) Lossy compression scheme (with 3 bits).

Figure 8: The storage structures for NeuZip.

E EVALUATING ON MMLU

We provide the results on MMLU (Hendrycks et al., 2020) in Figure 9. Here, the theoretical optimal
point should be at the top left corner.

Figure 9: The memory–performance trade-off on the MMLU dataset.

Similar to the results in Section 3.4, all of our NeuZip variants are on the Pareto frontier, suggesting
the optimal trade-off between memory and performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F BEYOND LINEAR LAYERS

Generalization to advanced architectures. Given the design of Transformer models, we mainly
compress linear layers and present the corresponding back-propagation algorithm during training.
However, it is straightforward that NeuZip can be applied to broader architectures. For example,
we can compress the convolution layers or recurrent units in the same way. This is because both
operations involve the linear operation as the basic component (e.g. convolution can be viewed as
multiple local linear transformations). The forward and backward passes follow the same analyses
presented in Section 2.2. We further demonstrate this by evaluating a state space model, Mamba
2.8B (Gu & Dao, 2023). Mamba model is an ideal testbed because it uses convolution layers with
the recurrence feature in inference. The test results on Wikitext-2 (Merity et al., 2016) are shown in
Table 5.

Table 5: Evaluating NeuZip with Mamba 2.8B on Wikitext-2. ‘PPL” represents the word-level
perplexity values. Memory is reported in GiB. Speed represents the number of iterations per second.

PPL Memory Speed

Vanilla 16.54 5.23 0.190

Quant FP4 17.52 (+5.9%) 1.68 (-67.9%) 0.189 (-0.5%)
Quant NF4 17.12 (+3.5%) 1.68 (-67.9%) 0.193 (+1.6%)
Quant FP42 17.55 (+6.1%) 1.57 (-70.0%) 0.185 (-2.6%)
Quant NF42 17.15 (+3.7%) 1.57 (-70.0%) 0.186 (-2.1%)

NeuZip 0-bit 17.26 (+4.4%) 1.43 (-72.7%) 0.184 (-3.2%)
NeuZip 1-bit 17.26 (+4.4%) 1.73 (-66.9%) 0.188 (-1.1%)
NeuZip 3-bit 16.61 (+0.4%) 2.34 (-55.3%) 0.186 (-2.1%)

NeuZip 7-bit (lossless) 16.54 (+0.0%) 3.62 (-30.8%) 0.189 (-0.5%)

As displayed, lossless NeuZip saves around 30% of the memory usage without compromising the
perplexity and inference speed. Moreover, lossy NeuZip like the 3-bit version saves more than half
of the memory while only marginally decreases the perplexity (by only 0.4%). The results not only
shows the versatility of NeuZip on a wide range of model architectures but also indicate a strong
ability in compressing the memory.

Non-linear activation functions. In some implementations, more intermediate activation values
are saved to accelerate back-propagation. For example, the Gaussian error linear unit (GELU,
Hendrycks & Gimpel (2016)) activation function may save the exponential values of the inputs
for gradient calculation.4 In these cases, the memory saving percentage will be slightly lower for
parameter compression methods like quantization and NeuZip. However, we can apply activation
checkpointing (Chen et al., 2016) during training for more memory saving by recomputing the ad-
ditional activations.

G DISCUSSION ON QUANTIZATION AND COMPRESSION

Our NeuZip resembles quantization in the sense that both methods save the parameter memory.
However, their mechanisms for memory saving are fundamentally different. Specifically, quantiza-
tion is inherently lossy regardless of the chosen quantization values. The introduced error in this
lossy process hinders its applicability in scenarios where precision plays an important role. As a
concrete example, quantization-based training methods underperform NeuZip in both quality and
memory saving in Section 3, displaying the importance of precisions.

4This might only hold for certain implementations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Undoubtedly, some quantization schemes may have lower levels of precision loss. For example, if
the quantized values are uniformly distributed (i.e. linear quantization Han et al. (2015); Dettmers
et al. (2022)), the overall precision loss could be enormous because it overlooks the distribution of
the raw data. On the other hand, using non-uniform quantization could alleviate this issue by pro-
viding tighter approximations for common values (Chikin & Antiukh, 2022; Dettmers et al., 2023).
However, even non-uniform schemes cannot entirely eliminate precision loss and often rely on sub-
optimal mixed-precision approaches to compensate for the reductions (Dettmers et al., 2022; 2023).
More importantly, recent studies have highlighted that precision becomes increasingly critical in
large-scale settings (Kumar et al., 2024). This observation reinforces the importance of applying
NeuZip, which enables precision control up to a lossless level.

It is important to note that NeuZip is specifically designed for the raw parameters of neural networks
and is not practical for application to quantized values. This is because optimal quantization schemes
yield (approximately) equal frequency distributions across all quantized values (Chikin & Antiukh,
2022; Dettmers et al., 2023). As a result, applying additional compression would neither improve
the compression rate nor preserve efficiency, instead halving the throughput.

19

	Introduction
	Our Approach
	Low-Entropy Nature of Neural Network Parameters
	Lossless NeuZip: Compressing Exponents for Training
	Lossy NeuZip: Additionally Truncating Mantissa for Inference

	Experiments
	Lossless NeuZip for Pre-Training
	Lossless NeuZip for Fine-Tuning
	Lossy Compression for Inference
	In-Depth Analyses

	Related Work
	Conclusion
	Inspecting the Entropy on More Models
	The Algorithm for Training with Lossless NeuZip
	The Tolerance of Random Perturbation
	The Storage for Lossless and Lossy Compression
	Evaluating on MMLU
	Beyond Linear Layers
	Discussion on Quantization and Compression

