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Abstract

Recently, Topological Data Analysis (TDA) has revealed insights into the topological struc-
ture of neural population activity. However, existing TDA methods for neural population
activity are computationally demanding, noise-sensitive, and sometimes difficult to inter-
pret. We develop a simple and more interpretable analysis approach to infer the topological
structure of behaviorally relevant neural response variability. Our approach first maps the
neural activity onto firing rate maps of behavioral variables, and then performs analysis
based on these rate maps. Application of our method to grid cell recordings demonstrates
its effectiveness without sophisticated preprocessing as required in prior methods. Further
test of the methods based on synthetic data suggests that our method is more informative of
the deviations from standard topological shapes. Our results also point to the importance
of joint analysis of the geometry and topology of neural manifolds.
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1. Introduction

While classic work in neuroscience emphasized individual neurons, recently there is surge
of interest to understand the population-level structure of neural activity (Vyas et al.,
2020) by conceptualizing it as a “neural manifold” (Seung and Lee, 2000; Kriegeskorte and
Wei, 2021; Perich et al., 2025; Chung and Abbott, 2021). At each moment, the neural
population activity represents a point on the manifold, which is determined by stimulus,
internal states, and noise. The geometrical (Kriegeskorte and Wei, 2021) and topological
(Giusti et al., 2015) structure of neural manifolds can be informative of the underlying
neural computation.

Advances in modern recording techniques for simultaneously recording large popula-
tions of neurons (Grienberger and Konnerth, 2012; Jun et al., 2017) provide unprecedented
opportunity to investigate the structures of neural manifolds. Recent studies applied Topo-
logical Data Analysis (TDA; Wasserman (2017)) to analyze neural data in various neural
systems, e.g., V1 (Singh et al., 2008), the hippocampus (Giusti et al., 2015), head direction
cells (Chaudhuri et al., 2019), and grid cells (Gardner et al., 2022). In particular, Gardner
et al. (2022) provided evidence for toroidal structures in the grid cells by evaluating the
persistent homology (Zomorodian and Carlsson, 2004). However, existing methods based
on neural population activity are prone to noise and rely on the pre-processing steps, thus
complicating the interpretation and the reliability of the result.

Here, we introduce a simple method that extracts the topological structures of neu-
ral population activity that are relevant for encoding certain behavioral variables. Our
approach achieves comparable topology characterization with simpler data curation steps
compared to previous methods, while enabling robust interpretation of topological features.
We also demonstrate a challenge for Neural TDA: when neural manifolds deviate from
standard shapes (e.g., circle/torus), it can be difficult to detect these deviations with TDA.
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We show that our method better captures these deviations. These findings suggest that
future research can benefit from the joint analysis of the geometry and topology of neural
manifolds (Kriegeskorte and Wei, 2021; Ye and Wessel, 2025).

2. Methods

Figure 1: A comparison of the two TDA pipelines.

Analysis pipeline Fig. 1 illustrates the comparison of the previous analysis approach
and ours. For the previous approach (see Fig. 1(i)) developed in (Gardner et al., 2022), first
the firing rate of individual neurons were computed based on the spike trains. Substantially
downsampling were needed to select the most active time bins. After further downsampling,
z-scoring, and projecting the data onto the first 6 principal components, the persistent dia-
grams were computed. The persistent barcodes in a persistent diagram indicate topological
features of a certain dimension (see Appendix B.4). When applying to grid cell data, two
outstanding long barcodes in the H1 diagram indicated two independent circular features,
jointly composing the torus manifold. Each circular feature was used to assign a circular
parameter to all data points. The dual circular parameters were summed up across neurons
to compute two arrays of spatial firing strengths over time bins, visualizing two circular
firing patterns with a 60° angle, together yielding a hexagonal grid pattern.

In our analysis pipeline (Fig. 1(ii)), we first project the neural activity onto the spatial
locations to yield the firing rate maps of individual neurons. We then compute the persistent
homology using the z-scored firing rate maps. No additional preprocessing steps are needed.
By projecting the neural activity onto behavioral variables, our method enables analyzing
topological features of behavior-relevant neural variability.

Persistence ratio Since the length of a persistent barcode can indicate the significance of
a topological feature, we propose the following metric to evaluate the relative significance of
a topological feature: we first rank the lengths of all the barcodes in the bottom H1 diagram
(see Fig. 1), and then compute the ratio of the i-th and (i + 1)-th longest barcodes. We
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will refer to it as the i-th persistence ratio, denoted as PR(i). A larger PR(i) indicates
stronger significance of the first i dominant circular features relative to other features, thus
indicating the whole manifold closer to a product of i circles in its shape. For instance, the
ratio of lengths between the second and third longest barcodes in the H1 persistent diagram
is the second persistence ratio PR(2), and a manifold with a larger PR(2) has a shape closer
to a torus.

3. Results

Rat grid cell recordings We analyzed the Neuropixels (Jun et al., 2017) recordings
of rat MEC provided in (Gardner et al., 2022). We performed TDA analyses on all the
open-field (OF) foraging task recordings. See Appendix B.2 about the dataset.

We first replicated the results reported in Gardner et al. (2022) by following their exact
analysis procedure. The firing rate (FR) inputs to TDA computation are arrays of [1200, N ]
where N is the number of recorded neurons in one session. For fair comparisons, in our
method (RM), we chose a spatial bin size so the dimensionality of the RM inputs are
comparable to theirs. Fig. 2 reports the TDA results from the OF session of rat R, module
1, recording day 1. Fig. 2(a) shows the persistent diagrams computed with firing rate
(FR) input. Two significantly longer barcodes in the bottom (H1) diagram indicates two
dominant circular feature that are irrelevant to each other, hence a toroidal topological
feature. Fig. 2(b) displays persistent diagrams computed with our rate-map (RM) method.
Fig. 2(c) depicts decoded circular features for FR (top) and RM (bottom) inputs. Two
circular patterns tend to have a 60 degree angle, and form a hexagonal grid together. The
results with all OF recording sessions are shown in Fig. 4. We find the mean PR(2) for
FR input is slightly higher than that for the RM input (3.43 v.s. 3.13), suggesting that
method based on FR has more evidence for toroidal topological shapes. For decoded circular
patterns, the results from our proposed RM method are significantly cleaner.

(a) FR input (b) RM input
(c) Decoded patterns

Figure 2: A comparison of two TDA methods with different types of input.

We further analyzed the robustness of two methods when removing certain data curation
processes. Results in Fig. 5 suggest that our method, while simple, can robustly recover
clear topological features. In contrast, firing-rate-based method may fail to recover clear
features when missing certain preprocessing steps.

Synthetic heterogeneous 1D “grid cells” While applying TDA on grid cells reveals a
toroidal feature, in reality the underlying topology often deviates from a perfect torus due
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to the heterogeneity within firing rate tuning. To examine how well the TDA methods can
detect deviations from simple shapes like circle/torus, we conducted an analysis on simulated
data, focusing on populations of 1-dimensional “circular cells” due to their simplicity and
high interpretability.

(a) Tuning geometry with 0 decay (b) Tuning geometry with 0.5 decay

(c) Decoded patterns with heterogeneity
(d) PR(1) of FR and RM inputs

Figure 3: Visualization of heterogeneous tuning amplitude.

In this simulation (for details see Appendix B.3), we introduce heterogeneity in the
response gain of individual firing fields for each neuron. Specifically, we construct the
tuning curves by multiplying a periodic tuning with a linear function over space. The slope
of the linear function (linear decay factor) controls the heterogeneity of firing. Importantly,
when the decay factor is larger than 0, the manifold is topologically equivalent to a line,
but not a cicle. As the decay factor increases, the ground-truth manifold becomes like a
spring being stretched by force. Fig. 3(b) shows the representational distance matrix and a
3D visualization using Multi-dimensional Scaling (Kruskal and Wish, 1978) when the decay
factor is 0.5, from which it is clear that the geometry deviates from a circle.

Fig. 3(c) shows the representative persistent diagrams and decoding results with hetero-
geneity. The results suggest that the H1 (bottom) diagram becomes messy with an induced
decay factor, and our RM-based method can better decode the circular pattern. We then
systematically analyzed models with a range of decaying factors from 0 to 0.5 with a 0.05
increment, repeating the computation of persistent diagrams 10 times for each setting. Fig.
3(d) shows the inferred persistence ratios for different decaying factors. We find that the
circular feature becomes less dominant with the decay, in accordance with tuning geome-
tries shown above. While the persistence ratio inferred from both methods are affected by
increasing heterogeneity, our method is substantially more informative of the change of the
decaying factor and thus the deviations in tuning amplitudes.

Together, these results suggest that practically it may be challenging for the existing
TDA method to detect mild deviations from standard shapes. Our RM-based method is
more informative for revealing these deviations, at least for the settings we have tested.
Integrating TDA with the analysis of geometry may lead to more powerful approaches.
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Appendix A. Extended figures and tables

(a) TDA results with FR input

(b) TDA results with RM input

Figure 4: Computed persistent diagrams of all the open-field (OF) sessions, together with
two circular patterns decoded from the two longest barcodes in the bottom (H1)
diagram.
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Figure 5: Computed persistent diagrams of rat R, grid cell module 1, open field session
in recording day 2; together with two circular patterns decoded from the two
longest barcodes in the bottom (H1) diagram, and their combined grid structure.
FR inputs are downsampled to 1,200 time points in advance, while RM inputs
are set as 1,225 (35× 35) spatial bins. Each row: results with firing rate and rate
map inputs. Each column: results with different data curation steps.
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Appendix B. Experimental details

B.1. Code base and computing devices

We use NumPy (Harris et al., 2020) to store, formulate, and compute our data as arrays, and
Ripser (Bauer, 2021) to perform all the topological data analysis and topological decoding
steps. All the code runs on a CPU with 32GB RAM.

B.2. Grid cell recording dataset

The grid cell recording dataset is provided in (Gardner et al., 2022), and can be available at
https://figshare.com/articles/dataset/Toroidal_topology_of_population_activity_

in_grid_cells/16764508.

The dataset consists of recordings of rat Medial Entorhinal Cortex (MEC) with Neu-
ropixels silicon probes (Jun et al., 2017). In the dataset, there are recordings of 3 animals
named “rat Q”, “rat R”, and “rat S”. The grid cells in rat Q are classified as 2 mod-
ules, and the grid cells in rat R are classified as 3 modules. The recording sessions cross
2 days, and are classified as open-field foraging sessions (OF), wagon-wheel foraging ses-
sions (WW), rapid-eye-movement sleeping sessions (REM), and slow-wave sleeping sessions
(SWS). For a detailed introduction of the experimental techniques and procedures, please
refer to “Methods” of (Gardner et al., 2022).

In (Gardner et al., 2022), the authors retracted toroidal topological features from all
of the recording sessions with firing rate based inputs. While our rate map based method
requires an input of animal movement positions, so we only performed our method with OF
sessions in comparison with their OF results.

B.3. Simulation settings

We performed simulations of circularly tuned “1-dimensional grid cells”, or “circular cells”.

We first constructed circular tuning curves for 100 artificial “circular cells”, while each
cell has a random shift in its tuning phase, sampled from a uniform distribution of [0, 2π].
After that, we apply a linear decay on the tuning curves, with a heterogeneity factor set as
the lowest peak amplitude.

We then apply the spatial tuning curves on the real movement trajectory of rat R, OF
session, day 1 to obtain a ground-truth firing rate. After that, we apply a Poisson firing
model to get spike trains of 100 circular cells. We then smooth the spike trains into a
[15000, 100] empirical firing rate tensor.

The firing rate tensor was z-scored, projected to 6 principal components, and downsam-
pled to shape [2500, 6] as the FR input; and the firing rate tensor was binned against 50×50
positional bins to form a firing rate map, z-scored, projected to 6 principal components,
and sent in as a shape [2500, 6] RM tensor.

B.4. Topological analysis

Here we introduce the topological analysis process implemented in our work.
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Topology configuration After applying topological data analysis (TDA) to the neural
activity, we obtain two persistent diagrams denoted as H0 and H1 diagrams, each indicating
the 0-th and first dimensional topological features. Intuitively, H0 features indicate discon-
nected clusters within the data, while H1 topological features correspond to circles in the
data manifold.

Since our focus is on neural manifolds with hypothesized toroidal (grid cells) or circular
(“circular cells”) topology, we analyze the longest bars in the H1 diagram to determine
whether the data supports the presence of one or two prominent circles. To quantify this,
we rank the lengths of the persistent barcodes in the H1 diagram, then compute the PR(1)
and PR(2) values to evaluate the dominance of a “single circle” or “two disentangled circles
(forming a torus)” in the topological shape.

Topological decoding Once circular features are identified, the next step is to interpret
what they represent. The decoding procedure follows Gardner et al. (2022).

Each circular feature assigns a cocycle value to the data points, with which we solve a
least-square problem (Ax = b) to obtain an angular parameter for each data point, so that
the angular parameters can span the edges to obtain the distance matrix among cocycles.

To connect these circular parameters with spatial behavior, we compute weighted ac-
tivity maps. Specifically, we compute a scaled activity value for each spatial bin across all
neurons by multiplying the RM value with the angular parameter. Finally, by summing up
across all neurons, we can obtain spatial coordinates associated with each spatial bin, and
visualize them as a circular spatial firing pattern.

In (Gardner et al., 2022), however, the FR input was first downsampled to 1,200 tempo-
ral bins. To extend decoding to the full dataset, they introduced an interpolation step: each
neuron was assigned a weighted factor by summing up the scaled values across downsampled
temporal bins, then the original firing rates were scaled with the weighted factors, where
each factor is shared for all original activity across one neuron. Then temporal coordinates
were computed by summing up across all neurons, and scattered on a 2D open-field map in
correspondence to their x-y positions to visualize a circular spatial firing pattern.
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Appendix C. Alternative simulation experiments

(a) Tuning geometry with decay factor 0.5

(b) Decoded patterns with fluctuation

(c) PR(1) of FR and RM inputs

Figure 6: A demonstration of “fluctuating” tuning curve simulation

In addition to the “linear decay” simulation scheme described in the main text, we
also implemented an alternative simulation setting. Each artificial “circular cell” retains
an intrinsic phase shift sampled from a uniform distribution over [0, 2π]. To introduce
heterogeneity in tuning amplitude, we assign a “fluctuation factor” within [0, 1] and sample
a scaler for each waveform (between two local minima) of a circular cell, hereby allowing each
waveform to exhibit a random scaling of tuning amplitude. We argue that this mechanism
of tuning heterogeneity better approximates realistic neural variability compared to the
linear decay scheme, although its effects on the topology of tuning curves, firing rates, and
open-field rate maps are less straightforward and need further investigation.

11



Extended Abstract Track
Following the simulation, we derived empirical firing rate tensors and converted them

into FR and RM inputs using the same preprocessing steps described in Appendix B.3. We
then applied the same TDA analysis and topological decoding procedure in the main text.

As shown in Fig. 6(a), with a fluctuation factor of 0.5, the tuning geometry deviates
noticeably from a perfect ring topology. The tuning curves of three representative circular
cells illustrate variability in both phases and amplitudes across neurons. Correspondingly,
the distance matrix and MDS visualization of the tuning curves also deviate from the
idealized setting. In Fig. 6(b), we present the persistent diagrams computed with FR and
RM inputs. Notably, the RM-based method recovers a one-dimensional circular spatial
pattern with discernible color gradient, whereas the FR-based decoding result presents
a step-like switching pattern. Finally, Fig. 6(c) plots the average PR(1) values across
11 fluctuation factors with 10 repeated runs each. The results indicate that our RM-
based method captures the influence of tuning heterogeneity more effectively, demonstrating
greater sensitivity to perturbations under behavioral constraints in neural data.
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