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Abstract

In this work we address the problem of Knowledge Graph (KG) construction from
text, proposing a novel end-to-end multi-stage Grapher system, that separates
the overall generation process into two stages. The graph nodes are generated
first using pretrained language model, followed by a simple edge construction
head, enabling efficient KG extraction from the textual descriptions. For each
stage we proposed several architectural choices that can be used depending on
the available training resources. We evaluated the Grapher on a recent WebNLG
2020 Challenge dataset, achieving competitive results on text-to-RDF generation
task, as well as on a recent large-scale TEKGEN dataset, showing strong overall
performance. We believe that the proposed Grapher system can serve as a viable
KG construction alternative to the existing linearization or sampling-based graph
generation approaches.

1 Introduction

Automatic Knowledge Graph (KG) construction is an active research area aiming at representing
the information present in abundant textual corpora in a more organized, structured and compressed
form, which can be efficiently utilized in a variety of downstream applications, including reasoning,
decision making, question answering, to name a few. However, this is a challenging problem due to
the inherent non-unique graph representation (graph with N nodes can have N ! equivalent adjacency
matrices), complex node and edge structure (node set is not fixed and edges are not binary), large
output spaces (for graph with N nodes the system may need to output up to N2 edges to specify
its structure), lack of efficient architectures specialized for graph-structured generation output and
limited parallel training data.

The related problem of generating text from a given KG is generally more widely studied, with
many suggested architectures and approaches. Among the proposed methods, some of the current
state-of-the-art systems that work on small or moderately-sized graphs, [16, 24, 2], usually formulate
it as a simple sequence-to-sequence problem by representing the graph in a linearized form and
fine-tune the pre-trained language models (PLMs), such as T5 [22] or BART [13], on the task of
translating the sequence of triples to the corresponding textual description.

Nevertheless, KG generation remains a popular research area, receiving attention from many commu-
nities, including natural language processing (NLP), data mining, and machine learning. Traditionally,
KG construction has been addressed by data mining community using unsupervised Information
Extraction (IE) systems [20] such as Stanford Open IE [3], Open IE 5.1 [26, 27], NELL [5], or YAGO
[23], among many others. These systems are usually based on hand-crafted heuristics and rules to
extract the subject-relationship-object triples from the sentences and therefore can easily scale to
massive open-domain corpora. However, being the generic large-scale KG construction tools, the
extracted entities or predicates often lack in precision and quality.
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Figure 1: Overview of the proposed Grapher approach. Given text input, the graph generation is split
into two steps. In the first step, we leverage the representation power of pre-trained language models,
fine-tuned on the task of entity (graph nodes) extraction, while in the second stage the relationships
(graph edges) are generated using the available entity information to construct the final graph.

Recent success of the Transformer-based language models from the NLP community [30, 6, 22], pre-
trained on large textual corpora, led to a series of works that attempted to exploit the vast amounts of
learned linguistic knowledge for the downstream task of KG construction. Some of these approaches
looked into a simpler problem of graph completion [14, 33, 18], where, given a partial triple, usually
missing one of the entities, the objective is to complete the triple by generating the missing entry or
by ranking the given set of candidates. The drawback of these methods is that they are limited to
the task of extending existing graphs by local neighborhood modifications and are not suitable for
building the entire global graph structures. Alternatively, other works [21, 25, 12, 29, 15] proposed
to query the pre-trained models to extract the learned factual and commonsense knowledge. The
idea is to prompt the language model to predict the masked objects in cloze sentences describing the
partially complete triples. Similarly as before, these methods are usually only suitable for local graph
patching, lacking the ability to perceive the global graph structure.

Alternatively, there are a number of works that propose to generate the entire graph structure ground up.
One example is GraphRNN from [34], which models a graph as a sequence of additions of new nodes
using node-level RNN and edges using another edge-level RNN. Although promising for our task
of KG construction, the sequential and greedy nature of its generation can cause sub-optimal graph
structures. CycleGT of [11] is an unsupervised method for text-to-graph and graph-to-text generation,
where the graph generation part relies on off-the-shelf entity extractor followed by a classifier to
predict the relationships. The reliance on external NLP pipelines breaks the end-to-end continuity
of system training, potentially leading to sub-optimal results. Similarly, [7] proposed DualTKB
employing unsupervised cycle loss to enable the graph-text translation in both directions. However,
their method was applied only to single sentence-single triple generation, limiting applicability for
larger graphs. Other approaches, such as BT5 from [2] proposed to utilize large pre-trained T5 model
to generate KG in a linearized form, where the object-predicate-subject triples are concatenated
together and the entire text-to-graph problem is viewed as sequence-to-sequence modeling. The
potential issue with this approach is that the graph linearization is not unique and inefficient due to the
repetition of graph components multiple times, leading to long sequences and increased complexity.
Finally, [31] proposed MaMa for KG construction, where entities and relationships are first matched
using the attention weight matrices from the forward pass of the LM. Those are then mapped to the
existing KG schema to generate the final graph.

The proposed system: Grapher Analyzing the shortcomings of the existing methods, in this work
we propose to address them with a novel Knowledge Graph construction system which we call
Grapher, presented schematically in Fig. 1. Given input text, the graph generation is split into two
steps. In the first step, we leverage the representation power of pre-trained language models, e.g.,
T5 [22], fine-tuned on the task of entity (graph nodes) extraction, while in the second stage the
relationships (graph edges) are generated using the available entity information. There are three main
properties of Grapher: (i) The use of state-of-the-art language models pre-trained on large textual
corpora, used for node generation is key to the algorithm’s performance as it lays out the foundation
for the entire graph. The available parallel data for learning the text to graph translation is usually
small, therefore training custom-built entity extraction architectures from scratch on this limited
data is usually inferior to fine-tuning the already pretrained Transformer-based language models. (ii)
The partitioning of graph construction process into two steps ensures efficiency that each node and
edge is generated only once, which is in contrast to graph linearization approaches, e.g., [2], whose
graph sequence representation is non-unique and can be inefficient. (iii) Finally, the entire system is
end-to-end trainable, where the node and edge generation are optimized jointly, enabling efficient
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information transfer between the two modules, avoiding the need of any external NLP pipelines such
as entity/relation extraction, co-reference resolution, etc. We evaluate the proposed Grapher on two
datasets: the WebNLG+ 2020 Challenge [9] achieving new state-of-the-art results for Text-to-RDF
generation as well as on a recent larger-scale TEKGEN dataset [1] showing strong performance on
their validation and test splits.

2 Method

In this Section we cover the details of the proposed approach, first describing the functionality of the
node generation in Section 2.1, followed by the edge generation in Section 2.3 and the discussion
on edge imbalance problem in Section 2.4. In Fig. 2 we summarize all the architectural choices of
the Grapher system. The branches marked with a red cross denote the setups which in our earlier
evaluations did not show advantage over the neighboring branch, e.g., the focal loss underperformed
the sparse edge training for the text nodes combined with edge generation head. The branches with
green check marks are the ones we select for further evaluation. The bold dark green check mark
shows our best performing system across multiple experiments. In what follows, we now show the
details of these choices.
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Figure 2: Grapher architectural choices. 5 - setups that did not show advantage or did not perform
well during preliminary evaluations, X - selected for further evaluation , 4 - best performing system

2.1 Node Generation: Text Nodes

Given text input, the objective of this module is to generate a set of unique nodes, which define the
foundation of the graph. As we mentioned in Section 1, the node generation is key to the successful
operation of Grapher, therefore for this task we use a pre-trained encoder-decoder language model
(PLM), such as T5. Using a PLM, we can now formulate the node generation as a sequence-to-
sequence problem, where the system is fine-tuned to translate textual input to a sequence of nodes,
separated with special tokens, i.e., 〈PAD〉 NODE1 〈NODE_SEP〉 NODE2 〈NODE_SEP〉 NODE3 〈/S〉,
where NODEi represents one or more words.

Input
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Generated
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Figure 3: Node generation using traditional
sequence-to-sequence paradigm based on T5 lan-
guage model, where the input text is transformed
into a sequence of text entities. The features cor-
responding to each entity (node) is extracted and
sent to the edge generation module.
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Figure 4: Node generation using learned query
vectors. Here the input text and the query vec-
tors (in the form of embedding matrix) is trans-
formed into node features. Those are then de-
coded into graph nodes using node generation
head (e.g, LSTM or GRU). The same features are
also sent to the edge construction module.
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As seen in Fig. 3, in addition to node generation, this module supplies node features for the down-
stream task of edge generation. Since each node can have multiple associated words, we greedy-
decode the generated string and utilize the separation tokens 〈NODE_SEP〉 to delineate the node
boundaries and mean-pool the hidden states of the decoder’s last layer. Note that in practice we fix
upfront the maximum number of generated nodes and fill the missing ones with a special 〈NO_NODE〉
token.

2.2 Node Generation: Query Nodes

One issue with the above approach is ignoring the fact that the graph nodes are permutation invariant,
since any permutation of the given set of nodes should be treated equivalently. To address this
limitation, we propose a second architecture, inspired by the DETR image object detection method
of [4]. See Fig. 4 for an illustration, where we first learn node queries to get node features and then
estimate the permutation to align with target node order.

Learnable Node Queries The decoder receives as input a set of learnable node queries, represented as
an embedding matrix. We also disable causal masking, to ensure that the Transformer is able to attend
to all the queries simultaneously. This is in contrast to the traditional encoder-decoder architecture
that usually gets as an input embedding of the target sequence with the causal masking during training
or the embedding of the self-generated sequence during inference. The output of the decoder can
now be directly read-off as N d-dimensional node features Fn ∈ Rd×N and passed to a prediction
head (LSTM or GRU) to be decoded into node logits Ln ∈ RS×V×N , where S is the generated node
sequence length and V is the vocabulary size.

Permutation Matrix To avoid the system to memorize the particular target node order and enable
permutation-invariance, the logits and features are permuted as

L′n(s) = Ln(s)P, F
′
n = FnP, (1)

for s = 1, . . . , S and where P ∈ RN×N is a permutation matrix obtained using bipartite matching
algorithm between the target and the greedy-decoded nodes. We used cross-entropy loss as the
matching cost function. The permuted node features F ′n are now target-aligned and can be used in
the edge generation stage.

2.3 Edge Generation

The generated set of node features from previous step is then used in this module for the edge
generation. Fig. 5 shows a schematic description of this step. Given a pair of node features, a
prediction head decides the existence (or not) of an edge between their respective nodes. One option
is to use a head similar to the one in Section 2.2 (LSTM or GRU) to generate edges as a sequence of
tokens. The other option is to use a classification head to predict the edges. The two choices have
their own pros and cons and the selection depends on the application domain. The advantage of
generation is the ability to construct any edge sequence, including ones unseen during training, at the
risk of not matching the target edge token sequence exactly. On the other hand, if the set of possible
relationships is fixed and known, the classification head is more efficient and accurate, however if the
training has limited coverage of all possible edges, the system can misclassify during inference. We
explore both options in Section 4.

Note that since in general KGs are represented as directed graphs, it is important to ensure the
correct order (subject-object) between two nodes. For this, we propose to use a simple difference
between the feature vectors: F ′n(:, i) − F ′n(:, j) for the case when the node i is a parent of node j.
We experimented with other options, including concatenation and adding position information but
found the difference being the most effective, since the model learns that F ′n(:, i)− F ′n(:, j) implies
i→ j, while F ′n(:, j)− F ′n(:, i) implies j → i.

2.4 Imbalanced Edge Distribution

Observe that since we need to check the presence of edges between all pairs of nodes, we have to
generate or predict up to N2 edges, where N is the number of nodes. There are small savings that
can be done by ignoring self-edges as well as ignoring edges when one of the generated nodes is the
〈NO_NODE〉 token. When no edge is present between the two nodes, we denote this with a special
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Figure 5: Edge construction, using generation
(e.g., GRU) or a classifier head. Green circles
represent the features corresponding to the actual
graph edges (solid lines) and the orange circles
are the features that are decoded into 〈NO_EDGE〉
(dashed line).
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Figure 6: Edge generation with sparse adjacency
matrix, using same decoder heads as in Fig. 5.
Here while keeping all the actual edges, we re-
move most of the 〈NO_EDGE〉 tokens, leaving
only a few. This setup is only used during train-
ing to improve the edge imbalance problem and
speedup the training.

token 〈NO_EDGE〉. Moreover, since in general the number of actual edges is small and 〈NO_EDGE〉
is large, the generation and classification task is imbalanced towards the 〈NO_EDGE〉 token/class. To
remedy this, we propose two solutions: one is a modification of the cross-entropy loss, and the other
is a change in the training paradigm.

Focal Loss Here we replace the traditional Cross-Entropy (CE) loss with Focal loss [17], whose main
idea is down-weight the CE loss for well-classified samples (in our case 〈NO_EDGE〉) and increase
the CE loss for misclassified ones, as illustrated below for a probability distribution p corresponding
to a single edge and t is a target class:

CE(p, t) = − log(pt), FL(p, t, γ) = −(1−pt)γ log(pt), (2)

where γ ≥ 0 is a weighting factor, such that γ = 0 makes both losses equivalent. The application
of this loss to the classification head is straightforward while for the generation head we modify it
by first accumulating predicted probabilities over the edge sequence length to get the equivalent of
pt and then apply the loss. In practice, we observed that Focal loss improved the accuracy for the
classification head, while for the generation head the performance did not change significantly.

Sparse Edges To address the edge imbalance problem another solution is to modify the training
settings by sparsifying the adjacency matrix to remove most of the 〈NO_EDGE〉 edges as shown in
Fig. 6, therefore re-balancing the classes artificially. Here, we keep all the actual edges but then leave
only a few randomly selected 〈NO_EDGE〉 ones. Note that this modification is done only to improve
efficiency of the training, during inference the system still needs to output all the edges, as in Fig. 5,
since their true location is unknown. In practice, besides seeing 10-20% improvement in accuracy,
we also observed about 10% faster training time when using sparse edges as compared to using full
adjacency matrix.

3 Data

To evaluate the Grapher system performance and compare it to the baselines, we use two datasets:
small-scale WebNLG+ 2020 [9] dataset, and a recent large-scale dataset TEKGEN from [1].

3.1 WebNLG+ 2020

The WebNLG+ corpus v3.0 is part of the 2020 WebNLG Challenge that offers two tasks: the
generation of text from a set of RDF triples (subject-predicate-object), and the opposite task of
semantic parsing for converting textual descriptions into sets of RDF triples. For our work, we
evaluated the algorithm on the text-to-RDF task, whose statistics is shown in Table 1. Each triple
set is associated with one or more lexicalizations, so when the triple set is assigned to all the
lexicalizations, the total size of train, dev and test splits is shown in the second row of Table 1. The
data consists of 16 DBpedia categories: 11 of which are present only in the train and dev splits, and 5
unseen categories which are part of the test split only.

We preprocess the data to remove any underscores and surrounding quotes, in order to reduce noise
in the data. Moreover, due to a mismatch of vocabulary coverage between T5’s tokenizer and the
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Table 1: WebNLG dataset (Text-to-RDF)
Train Dev Test

RDf triple sets 13,211 1,667 752
Texts 35,426 4,464 2,155

Table 2: Statistics of the TEKGEN dataset.
Train Dev Test

Original 6,383,051 797,881 797,882
Processed 5,598,909 699,964 699,851

WebNLG dataset, some characters in WebNLG are not present in T5 vocabulary and ignored during
tokenization. We normalize the data to map those missing characters to the closest available, e.g., ‘ø’
is converted to ‘o’, or ‘ã’ is converted to ‘a’.

Since WebNLG is a fairly small dataset, we additionally augment it with extra text-RDF pairs from
the larger TEKGEN dataset (described later in Section 3.2). Since WebNLG does not use DBpedia
schema, while TEKGEN is based on Wikidata KG, we do an approximate mapping of Wikidata
predicates into the DBpedia ones. We only match the predicates in the training split. For example,
a TEKGEN triple (SUBJECT, ‘location of formation’ OBJECT) is converted to a WebNLG triple as
(SUBJECT, ‘foundationPlace’, OBJECT).

In total, we have added 17,855 pairs to the WebNLG dataset, making the total training set of size
53,281. To prepare data for Grapher training, we split the triples into nodes (extracting subjects
and objects) and edges (extracting predicates). The nodes are then either sequentially joined as
〈PAD〉 NODE1 〈NODE_SEP〉 NODE2 〈/S〉 for Text Nodes or passed separately as 〈PAD〉 NODE1 〈/S〉,
〈PAD〉 NODE2 〈/S〉 for Query Nodes, padding with 〈NO_NODE〉, if necessary. For edges, each
element i, j of the adjacency matrix is filled with 〈PAD〉 EDGEi,j 〈/S〉 if there is an edge between
NODEi and NODEj or with 〈PAD〉 NO_EDGE 〈/S〉 otherwise. In case sparse edges are used, we first
sparsify the adjacency matrix, and then flatten it to a sequence of edges, similar as for the nodes.
Finally, for the classification edge head we scan the training set and collect all the unique predicates
to be the edge class list. There are 407 edge classes in our train split, including the 〈NO_EDGE〉 class.

3.2 TEKGEN

TEKGEN is a recent large-scale parallel text-graph dataset built by aligning Wikidata KG to Wikipedia
text, and its statistics is shown in the first row of Table 2. The main challenge in using TEKGEN
is that the released data for triples is in the form (SUBJECT PREDICATE1 OBJECT1, PREDICATE2
OBJECT2, . . . ) separated by comas, which creates ambiguities during parsing as to what part of string
belongs which component of the graph, since the predicates can be composed of multiple words
(sometimes also separated by commas), where some of those words may also appear in the subject or
the object.

Nevertheless, using the available list of Wikidata predicates, and a set of hand-crafted heuristics we
were able to parse the data, additionally filtering out triples containing more than 7 predicates, with
triple components longer than 100 characters, and with corresponding textual descriptions longer
than 200 characters. This was done to match the approximate settings of the WebNLG data and to
reduce the computational complexity of the scoring functions. The final statistics of the dataset is
shown in the second row of Table 2. Note, that to further manage the limited computational resources,
we only evaluated the results on half of the Dev and Test splits.

4 Experiments

In this Section we provide details about the model setups for evaluations, describe the scoring metrics,
and present the results for both datasets.

4.1 Grapher Setup

For our base pre-trained language model we used T5 “large” (for a total number of 770M parameters)
from HuggingFace, Inc [32]. For Query Node generation we also defined the learnable query
embedding matrix M ∈ RH×N , where H = 1024 is the hidden size of T5 model, and N = 8 is the
maximum possible number of nodes in a graph. The node generation head uses single-layer GRU
decoder with HGRU = 1024 followed by linear transformation projecting to the vocabulary of size
32, 128. The same GRU setup is used for the edge generation head, where we also set the maximum
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number of edges to be 7. Finally, for the edge classification head, we defined four fully-connected
layers with ReLU non-linearities and dropouts with probability 0.5, projecting the output to the space
of edge classes of size 407.

During training we fine-tuned all the model’s parameters, using the AdamW optimizer with learning
rate of 10−4, and default values of β = [0.9, 0.999] and weight decay of 10−2. The batch size was
set to 10 samples while using a single NVIDIA A100 GPU for WebNLG training, while for TEKGEN
training we employed distributed training over 10 A100 GPUs, thus making the effective batch size
of 100. Under this settings, it takes approximately 5,300 steps to complete a training epoch for
WebNLG, together with the validations done every 1,000 steps, we get a model that reaches its top
performance in approximately 6-7 hours. For TEKGEN, each epoch takes approximately 56,000
steps, with the evaluations done every 1,000 steps we trained and validated the model for 25,000
iterations, taking approximately 6 days of compute time.

4.2 Baselines

To evaluate the performance of Grapher, we use for baselines the top performing teams reported
on the WebNLG 2020 Challenge Leaderboard, and briefly describe them as follows: Amazon AI
(Shanghai) [10] was the Challenge winner for Text-to-RDF task. They followed a simple heuristic-
based approach that first does entity linking to match the entities present in the input text with the
DBpedia ontology, and then query the DBpedia database to extract the relation between them. BT5 [2]
came in second place and used large pre-trained T5 model to generate KG in a linearized form, where
the object-predicate-subject triples are concatenated together and the entire text-to-graph problem
is viewed as a traditional sequence-to-sequence modeling. CycleGT [11], third place contestant,
followed an unsupervised method for text-to-graph and graph-to-text generation, where the KB
construction part relies on off-the-shelf entity extractor to identify all the entities present in the input
text, and a multi-label classifier to predict the relation between pairs of entities. Stanford CoreNLP
Open IE [19]: This is an unsupervised approach that was run on the input text part of the test set to
extract the subjects, relations, and objects to produce the output triplets to give a baseline performance
for the WebNLG 2020 Challenge. ReGen [8]: This work leverages T5 pretrained langugage model
and Reinforcement Learning (RL) for bidirectional text-to-graph and graph-to-text generation, which,
similarly to [2], also follows the linearized graph representation approach.

4.3 Evaluation Metrics

For scoring the generated graph, we used the evaluation scripts from WebNLG 2020 Challenge
[9], which computes the Precision, Recall, and F1 scores for the output triples against the ground
truth. In particular, since the order of generated and ground truth triples should not influence the
result, the script searches for the optimal alignment between each candidate and the reference triple
through all possible permutation of the hypothesis-reference pairs. Then, the metrics based on Named
Entity Evaluation [28] were used to measure the Precision, Recall, and F1 score in four different
ways. Exact: The candidate triple should match exactly the reference triple, while the type (subject,
predicate, object) is not important. Partial: The candidate triple should match at least partially with
the reference triple, while the type (subject, predicate, object) is irrelevant. Strict: The candidate
triple should match exactly the reference triple, and the element type (subject, predicate, object)
should match exactly as well.

4.4 WebNLG Results

The main results for evaluating all the compared methods on WebNLG test set are presented in
Table 3. As one can see, our Grapher system, based on Text Nodes followed by Class Edges, achieved
the second best performance, closely following ReGen [8]. This system also uses the Focal loss to
account for edge imbalance during training. We can also see that Grapher based on Text Nodes, where
the T5-based model generates the nodes directly as a string, outperforms the alternative approach
that generates the nodes through query vectors and permutes the features to get invariance to node
ordering. A possible explanations is that the graphs at hand and the training data are both quite
small. Therefore, the representational power of T5, pre-trained on textual corpora several orders of
magnitude larger, can handle the entity extraction task much better. As we mentioned earlier, the
ability to extract the nodes is very crucial to the overall success of the system, so if the query-based
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Table 3: Evaluation results on the test set of the WebNLG+ 2020 dataset. The top four block-rows
are the results taken from the WebNLG 2020 Challenge Leaderboard [9]. The bottom part shows the
results of our proposed Grapher system for several architectural choices, as discussed in Section 2.
Bold black and blue shows the best and second best performance, respectively.

Match F1 Precision Recall

Amazon AI (Shanghai) [10]
Exact 0.689 0.689 0.690
Partial 0.696 0.696 0.698
Strict 0.686 0.686 0.687

BT5 [2]
Exact 0.682 0.670 0.701
Partial 0.713 0.700 0.736
Strict 0.675 0.663 0.695

CycleGT [11]
Exact 0.342 0.338 0.349
Partial 0.360 0.355 0.372
Strict 0.309 0.306 0.315

Stanford Open IE [19]
Exact 0.158 0.154 0.164
Partial 0.200 0.194 0.211
Strict 0.127 0.125 0.130

ReGen [8]
Exact 0.723 0.714 0.738
Partial 0.767 0.755 0.788
Strict 0.720 0.713 0.735

Grapher
(Ours)

Query
Nodes

Gen
Edges

Exact 0.395 0.391 0.400
Partial 0.325 0.318 0.337
Strict 0.289 0.285 0.294

Class
Edges

Exact 0.466 0.463 0.469
Partial 0.360 0.356 0.368
Strict 0.347 0.345 0.351

Text
Nodes

Gen
Edges

Exact 0.641 0.635 0.651
Partial 0.672 0.664 0.687
Strict 0.638 0.632 0.647

Class
Edges

Exact 0.709 0.702 0.720
Partial 0.735 0.725 0.750
Strict 0.706 0.700 0.717

node generation constructs less reliable sets of nodes, the follow-up stage of edge generation will
underperform as well.
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Figure 7: Impact of Focal parameter γ defined in
equation (2) on Grapher performance, as measured
by the F1 score with exact matching.

Comparing the edge generation versus classifi-
cation, we see that the former approach already
brings up the system to the level of the top two
leaderboard performers, while the edge classifi-
cation adds extra accuracy and makes Grapher
the leading system. This again might be due to
a smaller training set, in which case GRU edge
decoder underperforms, generating less accurate
edges, while the classifier just needs to predict
a single class to construct an edge, making it a
better alternative in the low-data scenarios.

In Table 4 we present the results of the best per-
forming Grapher configuration, which uses Text
Nodes and Class Edges, with multiple random
initializations to examine the results variability.
As can be seen, the scores averaged across 3
runs (with different random initializations) show
low standard deviation with the mean, still out-
performing other baseline systems, further validating Grapher’s good performance.

For the Edge Imbalance problem, we proposed two solutions: using Focal loss in place of Cross-
Entropy loss, or using the sparse adjacency matrix during training. Since our best Grapher system
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Table 4: Mean and standard deviation for the results of 3 randomly initialized runs of the best Grapher
configuration which uses Text Nodes and Class Edges. The computed scores still make our method
the top performer.

Match F1 Precision Recall

Grapher
Exact 0.702± 0.05 0.695± 0.05 0.712± 0.06
Partial 0.730± 0.04 0.721± 0.03 0.745± 0.03
Strict 0.700± 0.05 0.693± 0.05 0.710± 0.05

uses Class Edges, it relies on Focal loss to address the above issue. In Fig. 7 we show the dependency
of the F1 score (under the exact matching) on the Focal parameter γ ≥ 0, defined in equation (2).
Recall that γ reduces the relative loss for well-classified examples, while puts more emphasis on hard,
mis-classified examples. We see that for our settings the performance is sensitive to the choice of γ,
with γ = 3 achieving better results.

Finally, note that although the query-based node generation did not perform well in our evaluations,
it is still informative to examine the behaviour of these vectors learned during the training. For this,
we analyze the cross-attention weights in the T5 model between the node query vectors and the
embeddings of the input text; the results are shown in Fig. 8. The ground truth nodes for this sentence
are ‘Agra Airport’, ‘India’ and ‘T.S. Thakur’. It can be seen that each query vector focuses on a set
of words that can potentially become a node. For example, the first query vector emphasizes the
words ‘Agra’, ‘Airport’, ‘T.S.’ and ‘Thakur’, but since the weight on the first two words is higher, the
resulting feature vector sent to the Node GRU module correctly decodes it as ‘Agra Airport’. The
same process happens for the third and forth query vectors. It is also interesting to see that the rest of
the queries were also correctly decoded as 〈NO_NODE〉 token, even though they had high attention
weights on some of the words (e.g., weight of 0.2 on ‘Agra’ and 0.18 on ‘India’ for the second query
vector). One potential explanation is that since no causal mask is used when feeding query vectors
to the decoder, T5 has an opportunity to exchange the information between all of the query vectors
across all the layers and heads. Thus, once the found nodes are assigned to specific vectors, the rest
of them are suppressed and decoded into 〈NO_NODE〉, irrespective of the attention weights.

Agra Airport is in India where one of its leaders is T.S. Thakur
0.5 0.19 0.06 0.07

Agra Airport

Agra Airport is in India where one of its leaders is T.S. Thakur
0.08 0.03 0.36 0.35

T.S. Thakur
0.05

Agra Airport is in India where one of its leaders is T.S. Thakur
0.1 0.04 0.16 0.15

India
0.10.2

Agra Airport is in India where one of its leaders is T.S. Thakur
0.2 0.09 0.09 0.140.18

<no_node>

Agra Airport is in India where one of its leaders is T.S. Thakur
0.27 0.1 0.12 0.080.16

<no_node>
0.08

Agra Airport is in India where one of its leaders is T.S. Thakur
0.25 0.09 0.16 0.10.13

<no_node>

Agra Airport is in India where one of its leaders is T.S. Thakur
0.2 0.08 0.17 0.15

<no_node>

Node Query 1:

Node Query 2:

Node Query 3:

Node Query 4:

Node Query 5:

Node Query 6:

Node Query 7:

Input Text

Figure 8: Visualization of the cross-attention weights in the T5 model between the node query
embedding vectors and the embeddings of the input text.

4.4.1 TEKGEN Results

The results on the test set (using only half of it to reduce the computational cost) of the TEKGEN
dataset [1] are shown in Table 5. For computing the graph generation performance, we use the same
scoring functions as in WebNLG 2020 Challenge [9]. As in Table 3, in this experiment we observe a
similar pattern in which the Grapher based on Text Nodes outperforms the query-based system. At
the same time we see now that the GRU-based edge decoding performs similarly or better than the
classification edge head. Recall that for the smaller-size WebNLG dataset the classification edge
head performed better, while now on the larger-size TEKGEN dataset, the GRU edge generation
is more accurate, matching or outperforming the simpler classification edge head. As can be seen,
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Table 5: Evaluation results on the test set of TEKGEN dataset for different configurations of the
Grapher system. The use of text-based nodes and either classification edges or generation edges
performs the best. Bold black and blue shows the best and second best performance, respectively.

Match F1 Precision Recall
ReGen [8] Exact 0.623 0.610 0.647

Grapher
(Ours)

Query
Nodes

Gen
Edges

Exact 0.386 0.361 0.430
Partial 0.438 0.405 0.496
Strict 0.386 0.361 0.430

Class
Edges

Exact 0.361 0.338 0.401
Partial 0.408 0.378 0.463
Strict 0.360 0.337 0.401

Text
Nodes

Gen
Edges

Exact 0.641 0.626 0.666
Partial 0.681 0.661 0.715
Strict 0.640 0.625 0.665

Class
Edges

Exact 0.641 0.626 0.666
Partial 0.681 0.661 0.715
Strict 0.640 0.626 0.665

our Grapher model now outperforms the ReGen baseline from [8], which utilizes the linearization
technique to represent the graph.

Fig. 9 also confirms the importance of large datasets for Grapher, where it shows the validation F1
score across training iterations using the classification edge head (red line) or the generation edge
head (blue line). During earlier training, the classification head has a clear advantage, while as the
model sees more and more data, both choices converge, with the GRU decoder matching or even
slightly outperforming the classifier edge head. From the plot we can also see that both models are
still on the trajectory to improve their performance since the training has not gone through a single
epoch, although the performance gain started to saturate, suggesting a limited improvement for the
additional training.

5 Conclusion
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Text Nodes, Class Edges
Text Nodes, Gen Edges

Figure 9: Validation F1 score (under ex-
act matching) across training iterations
on TEKGEN dataset for Grapher configu-
rations using text-based nodes and either
classification edges (red line) or genera-
tion edges (blue line).

In this work, we addressed the problem of Knowledge
Graph construction from text, for which we proposed a
novel multi-stage system named Grapher. The proposed
system separates the overall graph generation into two
steps. In the first step, the nodes are generated from the in-
put text using a pretrained language model. The resulting
node features are then used in the second step of edge gen-
eration to construct the output graph. We proposed several
architectural choices for each of the stages. In particular,
all the nodes can either be generated as a sequence of text
tokens or as a set of query-based feature vectors decoded
into tokens through generation head (e.g., GRU). Edges
can be either generated through a GRU-type decoding head
or picked from a predefined set of edges through a classi-
fication head. We also addressed the problem of skewed
edge distribution, where the token/class corresponding to
the missing edge is over-represented, leading to inefficient
training. To remedy this, we proposed use of either the
focal loss (in place of the traditional cross-entropy loss), or
the sparse adjacency matrix to make the training faster and
more efficient. The experimental evaluations showed that
the Grapher system showed strong overall performance for
the text-to-RDF task on smaller WebNLG dataset, as well
as for the graph generation on the recent larger-scale TEKGEN dataset, serving as a viable alternative
to the existing baselines.
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