
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING THE REPRESENTATIONAL POWER OF
SPIKING NEURAL NETWORKS
VIA DIVERSIFIED SPIKE PATTERNS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the fundamental aspects of spiking neural networks (SNNs) is how they
encode and process information through the generation of spikes, and direct cod-
ing is one of the most widely used coding schemes for its simplicity and promising
performance. In this study, we examine the traits of the encoded spike trains under
the direct coding scheme and reveal that the severe imbalance in the distribution of
spike train patterns can pose a major obstacle to SNN performance. Based on our
analyses, we propose diverse-pattern coding (DPC), a novel neural coding scheme
that diversifies encoder output spike patterns through two technical components:
temporal embedding and temporal feedback layer. The former incorporates infor-
mation over time into the input, and the latter applies a recurrent layer for each
timestep to deliver heterogeneous features to the input spiking neuron. Our ex-
tensive experimental results demonstrate that DPC improves SNN performance
through diversified encoded spikes, achieving superior performance across multi-
ple datasets and model architectures with minimal increase in memory costs.

1 INSTRUCTION

Spiking neural networks (SNNs), a promising next generation of artificial neural networks (ANNs),
are inspired by the event-driven computation of human brains (Maass, 1997). They have garnered at-
tention for their high efficiency, bio-plausibility, and low power consumption on neuromorphic hard-
ware such as TrueNorth (Merolla et al., 2014), Loihi2 (Orchard et al., 2021), and NorthPole (Modha
et al., 2023). Unlike ANNs, which transmit information using floating-point values, SNNs convey
information efficiently through binary spikes with temporal dynamics. To address the mismatch be-
tween inputs and the temporal nature of SNNs, static data must be transformed into spatio-temporal
spike trains by introducing a time dimension and binarizing real-valued inputs (Eshraghian et al.,
2023). This process, known as neural coding, serves as a bridge between static real-valued input and
binary spike trains and is essential for enabling SNNs to perform their tasks.

Neural coding schemes can be distinguished based on how they convert real-valued signals into spike
trains; most widely-adopted methods include rate coding (Van Rullen & Thorpe, 2001), temporal
coding (Zhou et al., 2021), and direct coding (Rathi & Roy, 2021; Wu et al., 2019). Rate coding
generates spikes proportional to the input value. Temporal coding, such as TTFS coding (Park et al.,
2020), encodes information at the time of spike firing. However, due to the gradient vanishing prob-
lem in deep neural networks, temporal coding has not been broadly used in deep SNNs (Eshraghian
et al., 2023; Shrestha & Orchard, 2018; Zheng et al., 2018). Direct coding, as the name implies,
involves transmitting the real-valued features produced by the encoding layer directly to the first
spiking neuron, and this allows direct coding to deliver better performance in various deep archi-
tectures (Rathi & Roy, 2021). Due to its promising results and simplicity of implementation, direct
coding has been unquestionably chosen as a standard approach across various studies without further
scrutiny (Hu et al., 2024; Yao et al., 2023).

As mentioned above, direct coding feeds the same input value at every timestep during forward
propagation. Our thorough analyses demonstrate that repeated inputs cause a severe imbalance in
spike train patterns, subsequently limiting their diversity. We use the entropy of spike train pattern
distribution as a metric to quantify the diversity of spike trains and conduct an empirical study to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

assess its impact on model performance. The results show that this intrinsic lack of spike train
diversity under a direct coding scheme constrains the performance of SNNs.

To address this problem, we propose diverse-pattern coding (DPC), a novel neural coding scheme
that improves the representational power of SNNs by diversifying the encoded spike trains. DPC
introduces two novel technical components to improve the diversity of spike trains by integrating
time-varying information into the encoded spikes. First, a temporal embedding that integrates learn-
able temporal information into the input space is used to remove the repetitiveness of static inputs.
We also utilize a temporal feedback layer, which leverages a recurrent connection that projects spikes
from the previous timestep to the features of the current timestep. Previous works that aim to address
the limitation of direct coding have targeted specific model structures (e.g., modifying the attention
mechanism within Transformers), which makes them inherently incompatible with other architec-
tures (Shen et al., 2024; Zhu et al., 2024). In contrast, our method is a general approach that can
easily be integrated in a plug-and-play manner into the neural coding stage of various architectures.

To evaluate the effectiveness of our DPC, we conduct extensive experiments across diverse tasks,
including static/neuromorphic image classification, time series forecasting, and natural language
understanding. We also verify the general applicability of DPC on various model architectures, such
as ResNets and Transformers. The results clearly demonstrate that incorporating DPC consistently
improves SNN performance across diverse data types and architectures by mitigating the imbalance
in encoded spike trains, underscoring its robustness and broad generalizability. Efficiency analysis
shows that DPC introduces only a marginal increase in model parameters and energy consumption
compared to direct coding. In addition, component ablation demonstrates how each element of
DPC contributes to spike-train diversity, and a spike-shuffling test confirms that DPC encodes richer
temporal information than direct coding. Our main contributions can be summarized as follows:

• We investigate the pattern diversity of encoded spikes under a direct coding scheme in SNN
models and empirically show the correlation between diversity and performance with spike
train entropy.

• We propose diverse-pattern coding (DPC), a simple yet effective method that addresses the
shortcomings of direct coding. By integrating temporal information into encoded spike
trains, our approach enhances their pattern diversity.

• We demonstrate the effectiveness of the proposed method across various datasets and model
architectures. By substituting direct coding with DPC, our method not only surpasses pre-
vious state-of-the-art approaches but also maintains efficiency across diverse timesteps.

2 RELATED WORKS

Neural coding schemes for SNNs One of the fundamental aspects of SNNs is how they encode
and process information through discrete spikes that represent neuronal activity over time. Neural
coding schemes play a key role in translating input stimuli into spike patterns (Auge et al., 2021;
Chen et al., 2024; Kim et al., 2022). Rate coding (Van Rullen & Thorpe, 2001) is one of the simplest
coding schemes, where information is encoded by the average firing rate of neurons over a time
window. In rate coding, higher input magnitudes lead to higher firing rates. While straightforward to
implement, rate coding requires long timesteps to reduce quantization error (Tavanaei et al., 2019).
Temporal coding, in contrast, utilizes the precise timing of spikes, such as time-to-first spike and
inter-spike intervals, to convey information (Park et al., 2020; Thorpe et al., 2001). Though more
expressive, it is sensitive to noise and often requires longer timesteps, making it difficult to use in
complex architectures (Eshraghian et al., 2023). Phase coding involves encoding information in the
relative phase of spikes with respect to a global oscillatory signal, allowing for a more efficient and
precise representation of temporal patterns (Kim et al., 2018). Burst coding is an encoding strategy
where information is conveyed through rapid sequences of spikes, known as bursts, from individual
neurons (Park et al., 2019). These bursts consist of multiple spikes occurring in quick succession
within a short time window. Direct coding represents a significant advancement over traditional
methods by enabling more efficient information encoding (Rathi & Roy, 2021; Wu et al., 2019). It
works by feeding the inputs through an ANN encoding layer first to produce real-valued features.
The features are then passed to spiking neurons, which generate spikes. This reduces the need for
extensive spike trains and enables faster, more accurate decision-making (Kim et al., 2022). Such
efficiency is crucial for tasks requiring low latency and high accuracy, which is why direct coding

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

has been widely adopted in many state-of-the-art SNN applications. Nevertheless, recent work
has pointed out that direct coding generates periodic spike trains through the repeated injection of
the same input values and criticized them as being powerless (Qiu et al., 2024). Their proposed
gated attention coding (GAC) introduces an encoding layer with a gated attention unit that blends
spatiotemporal information into the encoded spikes. However, the temporal attention in GAC is still
extracted from repeated inputs, which lack feedback from previous timesteps.

3 DIRECT CODING ANALYSIS

3.1 PRELIMINARY

3.1.1 SPIKING NEURON

The Leaky Integrate-and-Fire (LIF) model is a commonly used spiking neuron model, which is
discretely formulated as follows:

Ut = τVt−1 + It, (1)
St = Θ(Ut − Vth), (2)

Vt = (1− St) ·Ut + VrstS
t. (3)

U and V are the membrane potentials before and after spike generation, respectively. I is input
feature from the preceding layer and τ ∈ [0, 1] is the decaying factor. S ∈ {0, 1} is spike determined
by Heaviside step function Θ(·) and threshold Vth. When a spike occurs, the membrane potential is
reset to the rest potential Vrst. The timestep t denotes the discrete moment when the variables are
updated. The sequence of spikes generated over timesteps is referred to as a spike train, and the
associated 0, 1 values are called its pattern.

3.1.2 ENCODED SPIKE TRAINS IN DIRECT CODING

Under a direct coding scheme, the forward pass starts with a frame-based input passing through a
typical ANN layer. The generated feature is accumulated in the spiking neuron at each timestep.
The features obtained from the encoding layer can be expressed as follows:

It = Wenc ·Xt, (4)

where Wenc is the encoding layer weight and Xt is the input image at timestep t. In direct coding,
the same inputs are repeatedly given to the encoding layer such that X1 through XT all have the
same value X, with T being the total simulated timestep. This also makes I1 to IT to have the
same value I = Wenc ·X. At each timestep, I accumulates in Ut until it surpasses Vth, and at that
moment, a spike is fired. If a spiking neuron in the encoding layer generates its first spike at timestep
Tp, STp becomes 1 and VTp resets to Vrst (= 0). As VTp is 0 and the input is always the fixed value
I, the behavior of the spiking neuron from Tp + 1 to 2Tp exactly follows that from 1 to Tp, inducing
the periodicity of output spike trains. The resulting period Tp of the spike trains generated under a
direct coding scheme is determined by the relationship between τ , Vth, and I (Qiu et al., 2024). The
conditions that determine Tp are formulated as follows:

Tp = 1, if I > Vth,

Tp = k, if 1−τ
1−τkVth < I < 1−τ

1−τk−1Vth,

Tp =∞ if I < (1− τ)Vth.

(5)

The full derivation of the periodicity of direct coding and the length of its period is in Appendix A.

3.2 REPRESENTATIONAL POWER OF DIRECT CODING

3.2.1 DISTRIBUTION IMBALANCE OF SPIKE TRAINS

Using Eq. 5 to gain insights into the distribution of spike trains, we visualize the relationship between
I and Tp in Fig. 1 (a). The ranges where Tp equals 1, k, or∞ correspond to regions C, B, and A,
respectively. The patterns of the spike trains are written above each range, with the case of T = 4 as
an example. It can be seen that the range of most I values corresponds to only a few patterns, such
as ⟨0000⟩ (all-zero) or ⟨1111⟩ (all-one) patterns (regions A and C in Fig. 1 (a), respectively).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0000 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Direct Coding
Diverse-Pattern Coding

(b) Pattern distribution of encoded spike trains(a) Visualization of I - p relationship
Spike train pattern

R
at

io

1

2

3

4

inf

Encoded feature size (I)

tsrif ot petse
miT

-
(ekips

p
)

~~

Region A Region B Region C
0000

0001

1- Vth Vth

0010

0101
1111

Figure 1: (a) Relationship between the feature size (I) and the length of spike train periods (Tp). (b)
The output spike train distribution of the encoder layer under direct coding (DC) and our diverse-
pattern coding (DPC). Ratio of the patterns relative to the total number of spike trains is represented,
except for the all-zero pattern (0.63 and 0.57 for DC and DPC, respectively) for better visibility.

Based on this insight, we conduct experiments to observe the distribution of spike trains by prob-
ing the encoding layers of direct-coded SNN models. Fig. 1 (b) visualizes the pattern distribution
of spike trains generated from the encoding layer of an SNN model (Spike-driven Transformer-2-
512 (Yao et al., 2023) trained on CIFAR100 (Krizhevsky et al., 2009)) under a direct coding scheme
and our proposed neural coding scheme, with details in Section 4. Experimental results on other
SNN architectures and the exact number of spike trains for each pattern are in Appendix B, sup-
porting the consistency of the observed trend across various models. We note that more than half
of the spike trains correspond to the all-zero pattern (63%) due to the sparse nature of SNN. The
all-one pattern, although not as dominant as the all-zero pattern, still occupies a large portion due to
its broad range (region C in Fig. 1) (a). The portion of remaining periodic patterns that belong to
region B declines dramatically as Tp increases, and non-periodic patterns are never generated.

In summary, our findings show that the distribution of spike trains under a direct coding scheme is
significantly imbalanced. Not only is the utilization of patterns limited by inherent periodicity, but
the spike trains are also concentrated in a few specific patterns. Our analyses reveal that spike trains
are not being generated diversely in the encoding layer due to the nature of direct coding.

3.2.2 SPIKE TRAIN DIVERSITY AND PERFORMANCE

Following the theoretical analysis, we also empirically investigate how the distribution of spike
trains in the encoding layer affects the performance of SNN models. To this end, we explore the
role of the decaying factor (τ) and threshold (Vth), which determine the boundary of regions in Fig 1
(a). Adjusting these values allows us to control the distribution of spike trains. According to Fig. 1
(a), increasing τ causes the AB boundary to shift leftward, resulting in a narrowing of region A and
a widening of region B, which alleviates distribution imbalance. Meanwhile, lowering Vth causes
both the AB and BC boundaries to shift leftward, narrowing regions A and B and widening region
C. To quantitatively assess the differences in diversity between spike train distributions, the entropy
of spike trains Q is measured as follows:

Q = −
2T∑
i=1

p
(
AT = AT

i

)
log p

(
AT = AT

i

)
, (6)

where AT is the spike train up to timestep T , and AT
i is its specific pattern indexed by i ∈

{1, 2, . . . , 2T }. The validity of spike train entropy as a diversity metric is detailed in Appendix C.

We measure the classification accuracy of a Spike-driven Transformer-2-512 on the CIFAR100
dataset while varying τ and Vth of the LIF neurons in the encoding layer to investigate the cor-
relation between the diversity of spike trains and model performance under a direct coding scheme.
Fig. 2 (a) and (b) show the empirical results on different values of τ and Vth, respectively. As vi-
sualized in (a-1) and (b-1), adjusting τ and Vth enables altering the spike distribution. This change
was quantified using spike train entropy, where (a-2) and (b-2) demonstrate that more imbalanced
distributions correspond to lower entropy values. Both experiments lead to a shared conclusion re-
garding the relationship between entropy and accuracy: Models with higher spike train entropy tend
to excel in model performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0000 00100001 0101 1111

(a-1) Distribution of spike trains

0.00 0.25 0.50 0.75 1.00
0

20

40

60

80

100

Pe
rc

en
ta

ge

(a-2) Entropy vs. Accuracy

Entropy
Accuracy

1.8 79.3

En
tro

py

A
ccuracy

0.6 78.7
0.00 0.25 0.50 0.75 1.00

AoS 1.197 1.075 0.989 0.926 0.894
0.00 0.25 0.50 0.75 1.00

0

20

40

60

80

100

Pe
rc

en
ta

ge

0000 00100001 0101 1111

(b-1) Distribution of spike trains (b-2) Entropy vs. Accuracy

1.8 79.2

0.6 78.7

2.506 1.531 1.254 1.112 0.989
0.00 0.25 0.50 0.75 1.00

AoS

En
tro

py

A
ccuracy

Entropy
Accuracy

(a) Analysis on various (b) Analysis on various Vth

Vth Vth

Figure 2: Spike train entropy and model performance with different τ and Vth, along with pattern
distributions of encoded spike trains. (a) Varying τ . (b) Varying Vth. The average number of spikes
(AoS) is also reported.

It can also be deduced that the number of spikes or the periodicity of the encoding layer is not the
primary issue in model performance. When comparing the average number of spikes (termed AoS)
in Fig. 2, it is evident that, contrary to the common belief that an increase in the number of spikes
generally benefits model performance (Sakemi et al., 2023), models with lower AoS demonstrated
better results. This suggests that excessive imbalance among patterns has a more dominant negative
impact on accuracy. Additionally, since all experiments are conducted under direct coding, period-
icity remains inherently present, demonstrating that spike train entropy can interpret performance
variations that cannot be accounted for by periodicity alone. Our analyses elucidate the phenomenon
of spike train imbalance and highlight the importance of pattern diversity through the theoretically-
derived repetitiveness of direct coding with empirical observations.

4 DIVERSE-PATTERN CODING

In the previous section, we showed that repeated inputs in direct coding lead to an imbalanced dis-
tribution of spike trains, hindering performance improvement. As a simple yet effective solution
to enhance the pattern diversity of spike trains, we propose augmenting direct coding by explicitly
injecting temporal information. Unlike direct coding, which treats inputs as temporally uniform, the
proposed diverse-pattern coding (DPC) processes distinct information at each timestep, enabling a
more diverse representation across the temporal dimension. As illustrated in Fig. 3, our DPC frame-
work consists of two components: Temporal embedding (TE) and temporal feedback (TF) layer.
Each injects temporal information into the inputs and encoded features, respectively. DPC can be
seamlessly integrated into various models that previously employed direct coding, including convo-
lutional neural networks (CNNs) and Transformers. In this section, we present the DPC framework
and illustrate how it diversifies encoded spike trains with temporal dynamics.

4.1 TEMPORAL EMBEDDING

Temporal embedding (TE) is a learnable embedding tailored for SNNs designed to vary input data
across different timesteps. TE generally enhances spike pattern diversity by adding a learnable,
time-dependent variation to the input, so that the encoder observes a slightly different tensor at
every timestep while the spatial content of the original frame is preserved. Based on Eq. 4, the
dynamics of TE can be formulated as follows:

Itemb = WencX̃
t, where X̃t = Xt +Et. (7)

Static frame X ∈ RC×H×W is replicated across T timestep and perturbed by a learnable, time-
dependent embedding E∈RT×C×H×W , resulting in an embedded input X̃t. Our implementation
resembles the learnable positional embeddings in video Transformers, where such embeddings serve
as indicators of chronological order for representations from different frames (Zhang et al., 2023).
Similarly, TE in DPC injects temporal variation to differentiate inputs across timesteps and avoid
repetition. Inspired by the positional encoding designs from vision and video transformers (Hassani
et al., 2021; Yuan et al., 2021; Zhang et al., 2023), we initialize TE with 3D sinusoidal positional
encoding, the 3D generalization of the 2D sinusoidal scheme of (Wang & Liu, 2019). This 3D si-
nusoidal initialization encourages coherent spatio-temporal frequencies from the very first iteration,
accelerating optimization without adding inference overhead. Let π0 = c, π1 = h, π2 = w and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Direct Coding (DC)

LIF

Diversity

1000
1001
1010
1011
1100
1101

1111
1110

0010
0001

0011
0100
0101
0110
0111

0.150.100.050.0

(b) Diverse-Pattern Coding (DPC)

Diversity

1000
1001
1010
1011
1100
1101

1111
1110

0010
0001

0011
0100
0101
0110
0111

0.150.100.050.0

++ LIF

Temporal
Embedding

Temporal
Feedback

Timestep Timestep

Figure 3: Overview of (a) direct coding (DC) scheme and (b) diverse-pattern coding (DPC) scheme.
Temporal embedding and temporal feedback layer of DPC provide time-varying information to the
encoded spike trains, resulting in a more diverse distribution of spike train patterns.

define d(t) = ⌊3t/T ⌋. For all indices t, c, h, w TE is initialized as follows:

Et,c,h,w
(0) =

{
sin

(
ωt πd(t)

)
, t even,

cos
(
ωt πd(t)

)
, t odd,

ωt = 10000− 6
⌊
(t mod T/3)/2

⌋
/T , (8)

where πd(t) ∈ {c, h, w} picks the coordinate according to d(t) = ⌊3t/T ⌋. All elements are subse-
quently updated by direct training with surrogate gradients (Wu et al., 2018), allowing the optimizer
to refine the temporal cues in an SNN-optimized, data-driven fashion. TE introduces effective tem-
poral variation at the input stage, mitigating the repetition inherent in traditional direct coding.

4.2 TEMPORAL FEEDBACK LAYER

While TE reduces input repetition through learnable time-dependent embeddings, temporal dynam-
ics can be further enriched by leveraging information from previous timesteps. To this end, we
propose the Temporal feedback (TF) layer, an encoding layer with a recurrent feedback connection
that targets enhancing the encoded features. Feedback is generated by projecting earlier spike output
through feedback kernels and injecting it into the current features. Combining Eq. 1 with Eq. 7 and
adding a feedback connection, the dynamics of the TF layer can be formulated as follows:

Ut = τVt−1 + Itemb +Wfb · St−1, (9)

where Wfb represents feedback weights, configured identically to Wenc and optimized end-to-end
along with other model parameters. At each timestep, the embedded input feature and the feedback
from the preceding timestep apply temporal variation to the LIF neuron. TF layer enables interaction
between subsequent timesteps, further enhancing the temporal information encoded in spike trains.

Although recurrent connections have previously been applied to SNNs (Shen et al., 2024; Zhang &
Zhou, 2022), they have not been studied as a means of diversifying spike trains in neural coding.
GAC (Qiu et al., 2024) utilizes temporal attention, but it works by squeezing repeated inputs on
the temporal dimension and does not leverage information from past timesteps. DPC is the first to
enhance temporal dynamics by incorporating information from previous timesteps directly within
the neural coding stage. The effectiveness of DPC is shown in Fig. 1 (b), where the distribution im-
balance of spike trains is successfully alleviated. The detailed algorithm is provided in Appendix E.

5 EXPERIMENTS

We evaluate the effectiveness of DPC across a diverse set of datasets and model architectures. DPC
is applied in a plug-and-play manner, replacing direct coding as the encoding method, and we com-
pare its performance against this baseline. Our experiments cover visual, time-series, and natural
language understanding tasks to comprehensively assess the generality of DPC. In addition, we
provide a detailed analysis of DPC’s efficiency in terms of energy and memory consumption.

5.1 EXPERIMENTAL SETUP

We adopt direct training to train deep SNN models from scratch using spatio-temporal backpropaga-
tion (STBP) (Wu et al., 2018). To demonstrate the generalizability and effectiveness of our DPC, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of DPC with other encoding schemes on CIFAR datasets. SDT is a short-
ened term for Spike-driven Transformer and HST for Hierarchical Spiking Transformer used in
QKFormer. Results are reported as classification accuracy (%).

Architecture Encoding
CIFAR10 CIFAR100

T=2 T=4 T=6 T=2 T=4 T=6

MS-ResNet-18
DC - - 94.58 - - 76.80

GAC 96.18 96.24 96.46 78.92 79.83 80.45
DPC 96.39 96.79 96.81 80.23 80.82 81.04

SDT-2-512 DC - 95.6 - - 78.4 -
DPC 95.24 95.85 96.05 78.24 79.94 80.43

HST-4-384 DC - 96.18 - - 81.15 -
DPC 95.94 96.31 96.59 80.37 81.42 81.79

Table 2: Comparison of DPC with other encod-
ing schemes on the ImageNet dataset. Encodings
marked with † indicate results reproduced using
the official code. The timestep is set to 4.

Architecture Encoding Acc. (%)

MS-ResNet-34
DC† 65.78

GAC† 66.71
DPC 69.04

HST-10-384 DC 78.80
DPC 79.22

Table 3: Comparison of DPC with other encod-
ing schemes on the CIFAR10-DVS dataset. The
timestep is set to 10 and 16 for MS-ResNet and
QKFormer, respectively.

Architecture Encoding Acc. (%)

MS-ResNet-18 DC 78.2
DPC 79.4

HST-2-256 DC 84.0
DPC 85.0

conduct experiments on diverse datasets, including static image datasets (CIFAR10/100 (Krizhevsky
et al., 2009), ImageNet (Deng et al., 2009)), a neuromorphic dataset (CIFAR10-DVS (Li et al.,
2017a)), time-series forecasting datasets (Metr-la (Li et al., 2017b), Electricity (Lai et al., 2018)),
and natural language understanding datasets (MR (Pang & Lee, 2005), Subj (Pang & Lee, 2004),
SST-5, SST-2 (Socher et al., 2013)). To further assess DPC’s broad applicability, we evaluate it
across multiple architectures, including CNN (MS-ResNet (Hu et al., 2024)) and Transformer vari-
ants (Spikformer (Zhou et al., 2023), Spike-driven Transformer (Yao et al., 2023), QKFormer (Zhou
et al., 2024), iSpikformer (Lv et al., 2024)). More details on training our SNN models, including hy-
perparameters, architecture configuration, and data augmentation, can also be found in Appendix F.

5.2 BENCHMARK RESULTS

We demonstrate the plug-and-play ability of DPC to enhance spike-train diversity and improve SNN
performance across a wide range of architectures and modalities. Compared to prior SNN encoding
approach (Qiu et al., 2024), our experiments cover a broader set of datasets and model configura-
tions, establishing DPC as a effective replacement for direct coding. As shown here and in Ap-
pendix G.2, we also compare DPC with several temporally variant encoding techniques, including
GAC and other temporal augmentation baselines, and observe more stable and robust improve-
ments. These results highlight not only the practical utility of DPC but also its theoretical insight by
explicitly addressing the diversity bottleneck in SNNs, further underscoring the significance of our
contribution. Further analyses, including ablations on individual DPC components and analysis of
temporal information in the encoded spike trains, are presented in Appendices G and J.

Image classification We first evaluate DPC on CIFAR-10 and CIFAR-100. As shown in Table 1,
DPC outperforms direct coding on both ResNet and Transformer architectures, even with fewer
timesteps, highlighting its efficiency. In particular, DPC surpasses both the baseline MS-ResNet and
GAC—the previous state-of-the-art neural coding method—with our timestep-4 model outperform-
ing GAC’s timestep-6 results on both benchmarks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison of the proposed DPC with other encoding schemes on time-series bench-
marks with four different prediction lengths (horizons). “Avg.” denotes the mean across all 8
dataset–horizon pairs, and “Avg. Rank↓” indicates the average rank (lower is better) across these
pairs. ↑(↓) indicates that higher(lower) is better. ”*” denotes non-convergent cases.

Encoding Metric
Metr-la Electricity

Avg. Avg. Rank↓
6 24 48 96 6 24 48 96

Repetition (DC) R2 ↑ .692 .548 .238 .021⋆ .962 .953 .849 .710⋆ .622 4.0
RSE↓ .573 .708 .847 1.04⋆ .289 .557 .705 1.03⋆ .719 4.0

Delta R2 ↑ .804 .601 .434 .272 .972 .969 .960 .944 .744 2.8
RSE↓ .496 .666 .759 .910 .274 .302 .391 .455 .532 2.6

Convolutional R2 ↑ .817 .618 .440 .279 .977 .974 .972 .963 .755 1.8
RSE↓ .475 .668 .752 .905 .263 .284 .338 .348 .504 1.9

R2 ↑ .847 .620 .413 .247 .991 .988 .984 .978 .759 1.5DPC
RSE↓ .413 .653 .808 .915 .172 .195 .229 .264 .456 1.5

Table 5: Comparison of DPC with other encoding schemes on natural language understanding
benchmarks. The timestep is fixed at 8, and results are reported as classification accuracy (%).

Encoding MR SST-2 Subj SST-5

DC 76.27 81.19 90.65 42.08
DPC 77.20 82.22 92.50 43.26

We next validate DPC on ImageNet using MS-ResNet-34 and HST-10-384 models with a timestep
of 4. As reported in Table 2, DPC consistently outperforms direct coding and GAC across both the
ResNet and Transformer families. These improvements are achieved through a simple substitution
of the encoder, underscoring the model-agnostic nature and broad applicability of DPC.

Neuromorphic data classification To validate the effectiveness of DPC beyond static images, we
conduct experiments on CIFAR10-DVS, a standard neuromorphic benchmark, comparing against
direct coding using MS-ResNet-18 and QKFormer. As shown in Table 3, DPC consistently out-
performs direct coding, underscoring DPC’s robustness across modalities. We further apply DPC
to PSN (Fang et al., 2023), another high-performing SNN model. The reproduced PSN achieved
81.3% accuracy, while the DPC-augmented version achieved 82.3%. We emphasize that DPC is
orthogonal to architectural innovation and can be complementarily integrated into powerful SNN
models to potentially boost their performance even further.

Time series forecasting Time-series forecasting requires accurate temporal dependency model-
ing, making it a strong benchmark for evaluating SNNs’ temporal processing capacity. Based on
the iSpikformer architecture proposed by (Lv et al., 2024), we conduct experiments on two standard
benchmarks: Metr-la and Electricity. We compare DPC with other encoding methods: repetition
(equivalent to direct coding), delta and convolutional encoders, the latter two introduced in (Lv
et al., 2024) to better capture intrinsic temporal structures. As shown in Table 4, DPC achieves
the highest average R2 and lowest average RSE across multiple prediction horizons, demonstrat-
ing superior temporal encoding capabilities. Notably, DPC significantly outperforms direct coding
across all dataset–horizon combinations, highlighting the importance of spike pattern diversity and
the strong potential of DPC for complex temporal tasks.

Natural language understanding To evaluate DPC in the language domain, we conduct exper-
iments on standard natural language understanding benchmarks. Following the implementation of
SpikeBERT (Lv et al., 2023), we train a Spikformer model with T = 8 using our DPC on four text
classification datasets: MR, SST-2, Subj, and SST-5. All models are trained from scratch using di-
rect training with surrogate gradients, and the results are summarized in Table 5. Across all datasets,
DPC consistently outperforms direct coding. These results show that DPC generalizes beyond vision
and time-series tasks, making it a versatile component for modeling diverse temporal domains.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: A comparative analysis of parameter
sizes across two SDT architectures with DC and
DPC schemes. The parameter counts for both
schemes are reported in millions.

Architecture T DC DPC

SDT-2-256
2 2.6 2.607 (+0.24%)
4 2.6 2.613 (+0.47%)
6 2.6 2.619 (+0.71%)

SDT-2-512
2 10.318 10.325 (+0.06%)
4 10.318 10.331 (+0.12%)
6 10.318 10.337 (+0.18%)

Table 7: A comparative analysis of compu-
tational energy consumption of MS-ResNet-18
with DC and DPC schemes. The timestep is set
to6 and energy is reported in millijoules (mJ).

Layer Op.
type DC DPC

Encoding
layer

Wenc MAC 0.049 0.049
TE AC - ∼0
TF AC - 0.053

Deeper layers AC 1.407 1.430

Total - 1.456 1.532

5.3 EFFICIENCY ANALYSIS

As DPC can be adopted by simply replacing the encoding layer, we consequently evaluate its effi-
ciency in terms of parameter size, energy consumption, and latency.

Table 6 summarizes parameter counts for SNNs trained on CIFAR100 at timesteps 2, 4, and 6.
Due to their structure design, TE parameters scale with timestep, and those of TF scale with the
size of encoded features. SDT-2-256 and SDT-2-512 incur the same overhead for a fixed timestep
(e.g., +0.007M at T=2), so the relative cost shrinks for larger models. Increasing T raises overhead
linearly. For comparison with other schemes, we also measure the model size with GAC. On MS-
ResNet-18, DPC adds only +0.05M parameters at T=6 (0.44%) versus +0.13M for GAC (1.04%),
highlighting DPC’s memory efficiency.

We also quantify and report the energy overhead introduced by DPC. We perform the analysis on
MS-ResNet-18 with CIFAR-100 at T=6, a representative moderately deep SNN architecture. De-
tails on the calculation are provided in Appendix H, and the measured results are summarized in
Table 7. TE incurs a negligible energy increase, and TF consumes energy comparable to the base-
line DC encoder. Because the encoder accounts for only a small fraction of total model energy, the
overall increase in end-to-end energy is approximately 5%. Moreover, since DPC modifies only the
encoding stage, its relative contribution diminishes further in deeper networks. In summary, DPC
yields consistent accuracy gains while adding only a marginal energy cost by virtue of TE and TF
using only AC operations and introducing no new MACs, preserving the fundamental low-power
compute pattern of SNNs.

For latency, we measure wall-clock time for both training and inference and report the results in
Tables A12 and A13 of Appendix I. Depending on the architecture and timestep, DPC introduces
only marginal slowdowns relative to DC. Training time increases by approximately 0.7%–7%, and
inference time by about 2%–4%.

6 CONCLUSION

In this paper, we demonstrate that the widely used direct coding scheme for SNNs shows an imbal-
anced distribution of spike train patterns due to repeated input. We verify that this lack of diversity
contributes to performance degradation through experiments examining the relationship between
spike train entropy and performance. To improve the diversity of spike trains, we propose diverse-
pattern coding (DPC), a novel neural coding scheme that integrates two key components: Temporal
embedding (TE) and temporal feedback (TF) layer. Using this simple design, DPC injects tempo-
ral information into the original features without compromising their content, thereby effectively
diversifying spike-train patterns. Extensive experiments on vision, neuromorphic, time-series, and
language benchmarks confirm that applying DPC consistently improves performance across multi-
ple architectural baselines while adding only marginal parameter and energy overhead. We believe
our investigation will provide valuable insights into designing effective coding schemes for high-
performing and efficient SNNs. Future research will focus on further improving energy efficiency
to develop even more effective and lightweight neural coding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We outline here the efforts made to ensure the reproducibility of our work. Details of the exper-
imental setup are provided in Section 5.1 and Appendix F. All reported results are averaged over
three random seeds, and the standard deviations for the main results are presented in Appendix D.
A complete proof of the claims regarding the representational capacity limits of direct coding is in-
cluded in Section 3 and Appendix A. Furthermore, a clear justification for using spike train entropy
as a diversity metric is provided in Appendix C.

REFERENCES

Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A survey of encoding techniques for
signal processing in spiking neural networks. Neural Processing Letters, 53(6):4693–4710, 2021.

Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
deep spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7896–7906, 2023.

Xinyi Chen, Qu Yang, Jibin Wu, Haizhou Li, and Kay Chen Tan. A hybrid neural coding approach
for pattern recognition with spiking neural networks. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 46(05):3064–3078, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-
hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36:53674–53687, 2023.

Yufei Guo, Liwen Zhang, Yuanpei Chen, Xinyi Tong, Xiaode Liu, YingLei Wang, Xuhui Huang,
and Zhe Ma. Real spike: Learning real-valued spikes for spiking neural networks. In European
conference on computer vision, pp. 52–68. Springer, 2022.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704,
2021.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward
deep residual learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373–386, 2018.

Youngeun Kim, Hyoungseob Park, Abhishek Moitra, Abhiroop Bhattacharjee, Yeshwanth Venkate-
sha, and Priyadarshini Panda. Rate coding or direct coding: Which one is better for accurate,
robust, and energy-efficient spiking neural networks? In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 71–75. IEEE, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
sion. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp.
3953–3962, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017a.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017b.

Ziqi Li, Tao Gao, Yisheng An, Ting Chen, Jing Zhang, Yuanbo Wen, Mengkun Liu, and Qianxi
Zhang. Brain-inspired spiking neural networks for energy-efficient object detection. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 3552–3562, 2025.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge dis-
tillation. arXiv preprint arXiv:2308.15122, 2023.

Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Efficient and effective time-series forecasting with spiking neural networks. arXiv preprint
arXiv:2402.01533, 2024.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Dharmendra S Modha, Filipp Akopyan, Alexander Andreopoulos, Rathinakumar Appuswamy,
John V Arthur, Andrew S Cassidy, Pallab Datta, Michael V DeBole, Steven K Esser, Carlos Or-
tega Otero, et al. Ibm northpole neural inference machine. In 2023 IEEE Hot Chips 35 Symposium
(HCS), pp. 1–58. IEEE Computer Society, 2023.

Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal processing with loihi 2. In
2021 IEEE Workshop on Signal Processing Systems (SiPS), pp. 254–259. IEEE, 2021.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. arXiv preprint cs/0409058, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. arXiv preprint cs/0506075, 2005.

S Park, S Kim, B Na, and S Yoon. T2fsnn: deep spiking neural networks with time-to-first-spike
coding, in 2020 57th acm/ieee design automation conference (dac), 2020.

Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information
transmission with burst spikes in deep spiking neural networks. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated atten-
tion coding for training high-performance and efficient spiking neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 601–610, 2024.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174–3182, 2021.

Yusuke Sakemi, Kakei Yamamoto, Takeo Hosomi, and Kazuyuki Aihara. Sparse-firing regulariza-
tion methods for spiking neural networks with time-to-first-spike coding. Scientific Reports, 13
(1):22897, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sicheng Shen, Dongcheng Zhao, Guobin Shen, and Yi Zeng. Tim: An efficient temporal interaction
module for spiking transformer. arXiv preprint arXiv:2401.11687, 2024.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in neural information processing systems, 31, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Qiaoyi Su, Shijie Mei, Xingrun Xing, Man Yao, Jiajun Zhang, Bo Xu, and Guoqi Li. Snn-
bert: Training-efficient spiking neural networks for energy-efficient bert. Neural Networks, 180:
106630, 2024.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural networks, 111:47–63, 2019.

Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid processing.
Neural networks, 14(6-7):715–725, 2001.

Rufin Van Rullen and Simon J Thorpe. Rate coding versus temporal order coding: what the retinal
ganglion cells tell the visual cortex. Neural computation, 13(6):1255–1283, 2001.

Zelun Wang and Jyh-Charn Liu. Translating math formula images to latex sequences using deep
neural networks with sequence-level training, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311–1318, 2019.

Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo XU, and Guoqi Li. Spike-driven
transformer. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=9FmolyOHi5.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Shao-Qun Zhang and Zhi-Hua Zhou. Theoretically provable spiking neural networks. Advances in
Neural Information Processing Systems, 35:19345–19356, 2022.

Yajing Zheng, Shixin Li, Rui Yan, Huajin Tang, and Kay Chen Tan. Sparse temporal encoding of
visual features for robust object recognition by spiking neurons. IEEE transactions on neural
networks and learning systems, 29(12):5823–5833, 2018.

Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer
using qk attention. arXiv preprint arXiv:2403.16552, 2024.

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 11143–11151, 2021.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=frE4fUwz_h.

12

https://openreview.net/forum?id=9FmolyOHi5
https://openreview.net/forum?id=frE4fUwz_h
https://openreview.net/forum?id=frE4fUwz_h

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rui-Jie Zhu, Malu Zhang, Qihang Zhao, Haoyu Deng, Yule Duan, and Liang-Jian Deng. Tcja-
snn: Temporal-channel joint attention for spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PERIODICITY IN DIRECT CODING

We provide a detailed derivation showing that the encoded spike trains generated under the direct
coding scheme are periodic. If a spiking neuron in the encoding layer generates its first spike at
timestep Tp, i.e., no spike is generated for Tp − 1 timesteps, the membrane potentials until timestep
T − 1 satisfies:

Vt = τVt−1 + It for t ≤ Tp − 1. (A1)
Letting t = Tp − 1 and unfolding the recursive part for V, we get:

VTp−1 = τTp−1V0 +

Tp−1∑
t=1

τTp−t−1It, (A2)

where V0 is the initial membrane potential, commonly set to 0. Because It = I in direct coding as
previously mentioned, VTp−1 can be formulated as:

VTp−1 =

Tp−1∑
t=1

τTp−t−1I =
1− τTp−1

1− τ
I. (A3)

At timestep Tp, when a spike occurs, VTp resets to 0, and since the magnitude of the input remains
constant, the dynamics described in Eq. A3 repeat periodically with a cycle of Tp.

Next, we derive the conditions that determine Tp. When an initial spike fires at the first timestep,
U1 > Vth, which is I > Vth. When an initial spike fires at timestep k, the membrane potential
satisfies the range:

Vk−1 < Vth < Uk. (A4)
Using Eq. A3 the condition becomes:

1− τk−1

1− τ
I < Vth <

1− τk

1− τ
I, (A5)

and I lies in the range of:
1− τ

1− τk
Vth < I <

1− τ

1− τk−1
Vth. (A6)

When no spikes are fired until the final timestep, the situation can be described as follows:

lim
Tp→∞

VTp−1 < Vth. (A7)

Simplifying the left-hand side yields the following expression:

lim
Tp→∞

VTp−1 = lim
Tp→∞

1− τTp−1

1− τ
I

=
I

1− τ
.

(A8)

Therefore, the condition for I that does not generate any spike comes down to:

I < (1− τ)Vth. (A9)

B DISTRIBUTION OF ENCODED SPIKE TRAINS

B.1 DISTRIBUTION FROM CNNS

We conduct experiments to observe the distribution of spike trains of the encoding layers on MS-
ResNet. After training MS-ResNet-18 on the CIFAR100 dataset with direct coding and diverse-
pattern coding (DPC), we plot the spike pattern distribution of the encoding layer in Fig. A1. Spike
patterns generated from the encoding layer show similar consistency with those of Spike-driven
Transformers. Distribution from direct training shows a significant imbalance, but DPC mitigates
this lack of diversity to a large extent. These results suggest our DPC’s effectiveness in improving
temporal dynamics in neural coding, which applies to various architectures.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0
0.05

0.10
0.15

00100001 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 11111110

Spike Pattern Ratio
Direct Coding
Diverse-Pattern
Coding

Figure A1: The output spike pattern distribution of the encoder layer of MS-ResNet-18, T = 4.

B.2 SPIKE TRAIN COUNTS

We also report the actual number of appearances of each spike pattern. Tables A1, A2, and A3
lists the number of spikes generated from the encoding layer under direct coding and DPC scheme
when T equals 2, 4, and 6, respectively. The spike train entropy Q is also calculated to quantify
the diversity of spike trains. The experiments were conducted with Spike-driven Transformer-2-512
trained on CIFAR100. The total sum is calculated as N * H * W * C, where N is the number of
samples and H, W, and C are the height, width, and channel size of the encoded spike features,
respectively. In our experiments, N=10000 (validation set size of CIFAR100), H=W=32, and C=64.
It can be observed that for all timesteps, DPC generates significantly more diverse patterns compared
to direct coding.

C ANALYSIS ON SPIKE TRAIN ENTROPY

Following the analysis from the previous study (Qiu et al., 2024), the probability of a spike occurring
at timestep t, given the spike train up to t− 1, can be calculated as follows:

pt(a) = p
(
at = a | At−1 = At−1

i

)
, (A10)

where at ∈ [0, 1] is the spike value at t, At−1 = [a1, a2, . . . , at−1] is the spike train up to timestep
t − 1, and At−1

i is an instance of At−1 indexed by i ∈ {1, 2, . . . , 2t−1}. Note that A0
1 = ∅ and

p(A0 = A0
1) = 1. The entropy value of pt(a) distribution, which we denote the one-step entropy

H(t), can be expressed as follows:

H(t) = −
∑
a=0,1

pt(a) log pt(a). (A11)

A higher H(t) value indicates that more information has been encoded at step t. By performing a
weighted summation of the one-step entropy at each timestep with respect to the frequency of the
spike train generated until the previous timestep, the resulting measure can serve as a proxy for the
total quantity of information. This can be formulated as follows:

Qinfo =

T∑
t=1

2t−1∑
i=1

p
(
At−1 = At−1

i

)
H(t). (A12)

Eq A12 is equivalent to the entropy of the complete spike trains:

Qdiv = −
2T∑
i=1

p
(
AT = AT

i

)
log p

(
AT = AT

i

)
. (A13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table A1: Spike train counts and spike train entropy when T = 2.

Patt. Direct Coding Diverse-pattern Coding

Count Ratio Count Ratio

⟨00⟩ 483,891,801 0.738 410,279,828 0.626
⟨01⟩ 85,673,169 0.131 71,538,437 0.109
⟨10⟩ 0 0 55,150,351 0.084
⟨11⟩ 85,795,030 0.131 118,391,384 0.181

Sum 655,360,000 1 655,360,000 1
Q - 1.091 - 1.518

Table A2: Spike train counts and spike train entropy when T = 4.

Patt. Direct Coding Diverse-pattern Coding

Count Ratio Count Ratio

⟨0000⟩ 413,090,768 0.630 373,974,960 0.571
⟨0001⟩ 15,131,991 0.023 17,100,070 0.026
⟨0010⟩ 37,040,305 0.057 19,357,752 0.030
⟨0011⟩ 0 0 12,524,515 0.019
⟨0100⟩ 0 0 29,443,087 0.045
⟨0101⟩ 87,890,854 0.134 16,954,674 0.026
⟨0110⟩ 0 0 8,169,607 0.012
⟨0111⟩ 0 0 25,660,264 0.039
⟨1000⟩ 0 0 36,779,298 0.056
⟨1001⟩ 0 0 6,687,881 0.01
⟨1010⟩ 0 0 7,847,649 0.012
⟨1011⟩ 0 0 10,972,251 0.017
⟨1100⟩ 0 0 9,077,695 0.014
⟨1101⟩ 0 0 4,663,172 0.007
⟨1110⟩ 0 0 5,381,946 0.008
⟨1111⟩ 102,206,082 0.156 70,765,179 0.108

Sum 655,360,000 1 655,360,000 1
Q - 1.586 - 2.474

We demonstrate the equivalence through mathematical induction.

Base case: If T = 1, Qinfo = Qdiv = H(1).

Induction step: Assume Qinfo = Qdiv for T = k. Then, Qinfo for T = k + 1 becomes:

Qinfo =

k+1∑
t=1

2t−1∑
i=1

p
(
At−1 = At−1

i

)
H(t)

=

2k∑
i=1

p
(
Ak = Ak

i

)
H(k + 1) +

k∑
t=1

2t−1∑
i=1

p
(
At−1 = At−1

i

)
H(t).

=

2k∑
i=1

p
(
Ak = Ak

i

)
H(k + 1)−

2k∑
i=1

p
(
Ak = Ak

i

)
log p

(
Ak = Ak

i

)
.

(A14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A3: Spike train counts and spike train entropy when T = 6.

Patt. Direct Coding Diverse-pattern Coding Patt. Direct Coding Diverse-pattern Coding

Count Ratio Count Ratio Count Ratio Count Ratio

⟨000000⟩ 430,515,704 0.657 326,637,665 0.498 ⟨100000⟩ 0 0 29,111,606 0.044
⟨000001⟩ 4,161,034 0.006 7,791,219 0.012 ⟨100001⟩ 0 0 2,835,417 0.004
⟨000010⟩ 8,614,496 0.013 8,001,636 0.012 ⟨100010⟩ 0 0 2,313,028 0.004
⟨000011⟩ 0 0 5,536,172 0.008 ⟨100011⟩ 0 0 1,479,110 0.002
⟨000100⟩ 18,325,143 0.028 10,927,392 0.017 ⟨100100⟩ 0 0 2,015,643 0.003
⟨000101⟩ 0 0 4,615,266 0.007 ⟨100101⟩ 0 0 2,111,363 0.003
⟨000110⟩ 0 0 2,600,847 0.004 ⟨100110⟩ 0 0 839,095 0.001
⟨000111⟩ 0 0 5,985,575 0.009 ⟨100111⟩ 0 0 1,654,197 0.003
⟨001000⟩ 0 0 13,006,876 0.020 ⟨101000⟩ 0 0 2,641,130 0.004
⟨001001⟩ 39,774,954 0.061 3,479,252 0.005 ⟨101001⟩ 0 0 949,179 0.001
⟨001010⟩ 0 0 6,698,685 0.01 ⟨101010⟩ 0 0 1,979,267 0.003
⟨001011⟩ 0 0 3,018,633 0.005 ⟨101011⟩ 0 0 2,080,959 0.003
⟨001100⟩ 0 0 3,549,591 0.005 ⟨101100⟩ 0 0 887,118 0.001
⟨001101⟩ 0 0 3,560,558 0.005 ⟨101101⟩ 0 0 1,460,738 0.002
⟨001110⟩ 0 0 2,940,594 0.004 ⟨101110⟩ 0 0 1,153,658 0.002
⟨001111⟩ 0 0 8,278,173 0.013 ⟨101111⟩ 0 0 6,423,709 0.010
⟨010000⟩ 0 0 17,357,517 0.026 ⟨110000⟩ 0 0 3,512,156 0.005
⟨010001⟩ 0 0 2,762,294 0.004 ⟨110001⟩ 0 0 333,269 0.001
⟨010010⟩ 0 0 4,694,922 0.007 ⟨110010⟩ 0 0 430,428 0.001
⟨010011⟩ 0 0 1,683,660 0.003 ⟨110011⟩ 0 0 406,883 0.001
⟨010100⟩ 0 0 5,460,468 0.008 ⟨110100⟩ 0 0 1,195,241 0.002
⟨010101⟩ 77,195,618 0.118 5,289,294 0.008 ⟨110101⟩ 0 0 739,321 0.001
⟨010110⟩ 0 0 3,098,299 0.005 ⟨110110⟩ 0 0 591,565 0.001
⟨010111⟩ 0 0 4,260,721 0.007 ⟨110111⟩ 0 0 1,858,898 0.003
⟨011000⟩ 0 0 3,835,034 0.006 ⟨111000⟩ 0 0 2,154,117 0.003
⟨011001⟩ 0 0 1,150,057 0.002 ⟨111001⟩ 0 0 268,225 0.000
⟨011010⟩ 0 0 3,028,255 0.005 ⟨111010⟩ 0 0 811,764 0.001
⟨011011⟩ 0 0 3,079,647 0.005 ⟨111011⟩ 0 0 1,048,501 0.002
⟨011100⟩ 0 0 2,597,938 0.004 ⟨111100⟩ 0 0 2,351,544 0.004
⟨011101⟩ 0 0 3,233,555 0.005 ⟨111101⟩ 0 0 1,227,837 0.002
⟨011110⟩ 0 0 3,649,535 0.006 ⟨111110⟩ 0 0 2,729,828 0.004
⟨011111⟩ 0 0 30,527,987 0.047 ⟨111111⟩ 76,773,051 0.117 63,427,889 0.097

Sum 655,360,000 1 655,360,000 1
Q - 1.642 - 3.462

The first term inside the summation can be rewritten as follows:

p
(
Ak = Ak

i

)
H(k + 1) = −

∑
a=0,1

p
(
Ak+1 =

[
Ak

i , a
])

log p
(
ak+1 = a | Ak = Ak

i

)
= −

∑
a=0,1

p
(
Ak+1 =

[
Ak

i , a
])

log p
(
Ak+1 =

[
Ak

i , a
])

+
∑
a=0,1

p
(
Ak+1 =

[
Ak

i , a
])

log p
(
Ak = Ak

i

)
= −

∑
a=0,1

p
(
Ak+1 =

[
Ak

i , a
])

log p
(
Ak+1 =

[
Ak

i , a
])

+ p
(
Ak = Ak

i

)
log p

(
Ak = Ak

i

)
.

(A15)

Combining Eq. A14 and Eq. A15, we can get the final result as follows:

Qinfo = −
2k+1∑
i=1

p
(
Ak+1 = Ak+1

i

)
log p

(
Ak+1 = Ak+1

i

)
= Qdiv,

(A16)

showing that Qinfo = Qdiv holds for T = k + 1. Therefore, we prove by mathematical induction
that the proposition holds for all T ≥ 1, implying that the spike train entropy, which quantifies the
pattern diversity of spike trains, is equivalent to the cumulative information added at each timestep.
In other words, more diverse spike trains encode more information, which is then transmitted to
deeper layers, resulting in improved model performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A4: Mean and standard deviation results of DPC on image classification tasks over three
runs with different seeds. SDT is a shortened term for Spike-driven Transformer and HST for
Hierarchical Spiking Transformer. T represents the simulated timesteps.

Dataset Architecture Acc. (%)

T=2 T=4 T=6

CIFAR10
MS-ResNet-18 96.39±0.08 96.79±0.13 96.81±0.07

SDT-2-512 95.24±0.12 95.85±0.10 96.05±0.09
HST-4-384 95.94±0.06 96.31±0.07 96.59±0.03

CIFAR100
MS-ResNet-18 80.23±0.03 80.82±0.14 81.04±0.15

SDT-2-512 78.24±0.18 79.94±0.13 80.43±0.13
HST-4-384 80.37±0.15 81.42±0.12 81.79±0.10

ImageNet MS-ResNet-34 - 69.04±0.14 -
HST-10-384 - 79.22±0.11 -

Table A5: Mean and standard deviation results of DPC on neuromorphic data classification tasks
over three runs with different seeds.

Dataset Architecture Timestep Acc. (%)

CIFAR10-DVS MS-ResNet-18 10 79.40±0.12
HST-2-256 16 85.00±0.05

D EXPERIMENT STATISTICS

We report the mean and standard deviation over three runs with different random seeds for all main
experiments. Detailed statistics corresponding to Tables 1–5 in the main text are provided in Ta-
bles A4–A7 in the appendix.

E DIVERSE-PATTERN CODING ALGORITHM

In this section, we provide the pseudo-code for the proposed DPC algorithm in Algorithm A1.

Algorithm A1 Diverse-pattern coding (DPC) algorithm
Input: static frame data: X∈RC×H×W ; simulated timestep: T ; neuron hyperparameters: (decay-
ing factor τ , firing threshold Vth, rest potential Vrst)
Output: spike train {St}Tt=1

1: Initialize membrane V 0← 0, spike S0← 0
2: Initialize temporal embedding E by Eq. equation 8
3: Initialize encoder weights Wenc, feedback weights Wfb
4: for t← 1 to T do
5: X̃t ← X+Et // Eq. equation 7
6: Itemb ←Wenc X̃

t

7: if t = 1 then
8: U t ← Itemb
9: else

10: U t ← τ V t−1 + Itemb +Wfb S
t−1 // TF, Eq. equation 9

11: end if
12: St ← Θ

(
U t − Vth

)
// spike generation

13: V t ← (1− St)U t + St Vrst // membrane reset
14: end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table A6: Mean and standard deviation results of DPC on time series forecasting tasks over three
runs with different seeds. The iSpikformer model is used with a timestep of 4.

Metric Metr-la Electricity

6 24 48 96 6 24 48 96

R2
↑ .847±.003 .620±.003 .413±.009 .247±.015 .991±.001 .988±.001 .984±.003 .978±.006

RSE↓ .413±.002 .653±.003 .808±.010 .915±.009 .172±.006 .195±.007 .229±.010 .264±.008

Table A7: Mean and standard deviation results of DPC on natural language understanding tasks over
three runs with different seeds. The Spikformer model is used with a timestep of 8.

MR SST-2 Subj SST-5

77.20±0.49 82.22±0.23 92.50±0.93 43.26±0.56

F IMPLEMENTATION DETAILS

We describe the implementation details for our experiments. Parameters not explicitly specified,
such as those other than TE, are initialized following the default methods provided by standard
libraries, typically drawn from normal distributions. Hyperparameters and training settings for MS-
ResNet and Transformer models are in Table A8. We follow the implementation standards estab-
lished in the previous papers (Hu et al., 2024; Lv et al., 2023; 2024; Qiu et al., 2024; Yao et al.,
2023; Zhou et al., 2024). MS-ResNet-18, iSpikformer, Spikformer experiments are conducted on
NVIDIA A40 GPUs, SDT and QKFormer experiments on NVIDIA V100 GPUs, and MS-ResNet-
34 experiments on NVIDIA H100 GPUs.

F.1 IMAGE CLASSIFICATION DETAILS

For direct training of MS-ResNet models on CIFAR and ImageNet datasets, we follow the surrogate
gradient training convention from the original MS-ResNet paper (Hu et al., 2024). We use the data
augmentation policies from the MS-ResNet implementation of GAC (Qiu et al., 2024), including
CutMix and AutoAugment. For a fair comparison, we follow the architecture configuration from
(Hu et al., 2024; Qiu et al., 2024), as in Table A9.

For experiments on Transformers, we adopt Spike-driven Transformer (Yao et al., 2023) and QK-
Former (Zhou et al., 2024) for our baselines. We experiment with SDT-2-512, HST-4-384, and
HST-10-384 models, in which the first and second numbers represent the number of encoder blocks
and channels, respectively. For a fair comparison with the baseline model, we follow the implemen-
tation convention from the original papers, including surrogate gradient learning and architecture
configuration.

F.2 NEUROMORPHIC DATA CLASSIFICATION DETAILS

For QKFormer experiments on the CIFAR10-DVS dataset, we strictly follow the original imple-
mentation, including the simulation timestep of 16. For MS-ResNet-18, we adopt the same training
configuration used in our CIFAR experiments, except for the simulation timestep, which is set to
10 following the settings in (Guo et al., 2022). For PSN experiment, we followed the same experi-
mental setup as the original paper (Fang et al., 2023). Although we were unable to exactly replicate
the original performance due to missing implementation details such as the train-test split ratio, we
carefully reproduced the training pipeline to match the original configuration as closely as possible.

F.3 TIME SERIES FORECASTING DETAILS

To evaluate the time-series forecasting capabilities of our proposed DPC, we conduct experiments
on two widely used benchmarks:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table A8: Hyperparameter and training settings for MS-ResNet and Transformer-based models.
MS-ResNet-18 and SDT-2-512/HST-4-384 are for CIFAR; MS-ResNet-34 and HST-10-384 are for
ImageNet.

MS-ResNet-18 MS-ResNet-34 SDT-2-512 HST-4-384 HST-10-384

Vth 1 0.5 1 1 1
Vrst 0 0 0 0 0
τ 0.5 0.25 0.5 0.5 0.5
lr 0.1 0.1 3e-4 1e-3 6e-4

batch size 128 256 64 64 64
epoch 250 300 300 500 200

weight decay 5e-5 1e-5 6e-2 6e-2 5e-2
optimizer SGD SGD AdamW AdamW AdamW

lr scheduler CosineAnnealingLR

Table A9: Architecture details of MS-ResNet models.

Stage MS-ResNet-18 MS-ResNet-34

Conv1 3x3, 64, stride=1 7x7, 64, stride=2

Conv2
[

3x3, 64
3x3, 64

]
∗ 3

Conv3
[

3x3, 128
3x3, 128

]
∗ 3

[
3x3, 128
3x3, 128

]
∗ 4

Conv4
[

3x3, 256
3x3, 256

]
∗ 3

[
3x3, 256
3x3, 256

]
∗ 6

Conv5
[

3x3, 512
3x3, 512

]
∗ 2

[
3x3, 512
3x3, 512

]
∗ 3

FC AveragePool, FC

• Metr-la(Li et al., 2017b): Contains average traffic speed readings collected from sensors
deployed across highways in Los Angeles County.

• Electricity(Lai et al., 2018): Consists of hourly electricity consumption data (in kWh).

We adopt iSpikformer (Lv et al., 2024), a spiking variant of iTransformer specifically designed to
handle time-series data. We use two standard metrics for evaluation: coefficient of determination
(R2) and root relative squared error (RSE). Our implementation strictly follows the official settings
and framework provided in (Lv et al., 2024), including dataset preprocessing, simulation timestep of
4, 2 encoding blocks, and a feature dimension of 512. These configurations are consistently applied
across all experiments to ensure fair comparisons.

F.4 NATURAL LANGUAGE UNDERSTANDING DETAILS

To evaluate the natural language understanding (NLU) capability of our proposed DPC, we conduct
experiments on four widely used text classification benchmarks:

• MR (Pang & Lee, 2005): The Movie Review (MR) dataset contains movie-review sen-
tences labeled for binary sentiment classification (positive or negative).

• Subj (Pang & Lee, 2004): This dataset consists of 10,000 sentences from movie reviews
and plot summaries, labeled as subjective or objective for binary classification.

• SST-5 (Socher et al., 2013): The Stanford Sentiment Treebank (SST-5) includes 11,855
movie-review sentences annotated with five sentiment categories: very negative, negative,
neutral, positive, and very positive.

• SST-2: The binary version of SST-5, containing only positive and negative sentiment labels.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table A10: The contribution of each component of DPC.

Type TE TF layer
CIFAR100 Tiny ImageNet

SDT-2-512 MS-ResNet-18 MS-ResNet-34

(1) 79.12% 49.10% 51.44%
(2) ✓ 79.21% 49.22% 52.40%
(3) ✓ 79.44% 50.50% 52.90%
(4) ✓ ✓ 79.94% 51.04% 53.36%

Table A11: Performance of other time-variant encoding strategies.

Method Random spatial seg. Directed spatial seg. Random noise injection DPC

Acc. 95.73% 95.91% 96.10% 96.81%

Our implementation strictly follows the official settings and framework described in (Lv et al., 2023),
employing the Spikformer (Zhou et al., 2023) architecture with a simulation timestep of 8, encoder
depth of 6, and feature dimension of 768. These configurations are applied consistently across all
datasets to ensure fair and reproducible comparisons.

G ABLATION STUDIES

G.1 COMPONENT ANALYSIS

We examine the impact of each component in the DPC scheme on two datasets. One of the datasets
is CIFAR100, trained using SDT-2-512 with a timestep of 4, which was also used in the main results.
The other is Tiny ImageNet, a subset of ImageNet comprising 100,000 images across 200 classes,
resized to 64×64 colored images. We employ minimal data augmentation and training techniques
and trained the models for 250 epochs with a timestep of 4. The results are reported in Table A10.
Entropy measures show that compared to the baseline (1), which uses vanilla direct coding, those
utilizing TE (2) and TF (3) each generate significantly more diverse spike trains. The model with
both TE and TF (4) showed the highest performance improvement, emphasizing the combined effect
of the two components.

G.2 ALTERNATIVE TIME-VARIANT ENCODING STRATEGIES

In this section, we discuss other trials that also increase the pattern diversity of spike trains. We
devised a method where images were segmented to ensure that spatially distinct inputs were pro-
vided at each timestep, compared to the temporal variation of DPC. We investigated two encoding
strategies accordingly. In the first approach, we apply two augmentation policies, RandomCrop and
RandomHorizontalFlip, to the input image at each timestep using different random seeds, allowing
the model to randomly focus on different regions of the input over time. In the second approach,
we reduce randomness and shift the bounding box of the CutMix augmentation along a fixed path,
allowing the model to examine the entire region of the input over all timesteps. We refer to the
first approach as random spatial segmentation and the second as directed spatial segmentation. We
also designed a scheme in which random noise is injected at each timestep, assuming a scenario
where variance is added across timesteps without any temporal information. To explore this idea,
we conducted an experiment where Gaussian noise was added at each timestep for both training and
inference, i.e., It = Wenc ·Xt + ϵt, where ϵt ∼ N(0, s2).

The experimental results are reported in Table A11. We use MS-ResNet-18 on the CIFAR10 dataset
with a timestep of 6. While the first two strategies introduce spatial variations across time, their
performances were inferior to our proposed DPC, which incorporates temporal embedding and feed-
back. It can be observed that the SNN encoder struggles to effectively process spatially dynamic
inputs at each timestep. The third strategy also showed lower performance compared to DPC, high-
lighting the importance of temporal information. This approach also requires an additional hyperpa-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table A12: Training latency per epoch (in seconds) for direct coding (DC), DPC, and GAC schemes
across datasets, architectures, and timesteps. The values in parentheses indicate the relative increase
in training time compared to the direct coding scheme.

Dataset Architecture T DC DPC GAC

CIFAR100

MS-ResNet-18 2 104.6 109.2 (+4.4%) 122.6 (+17.2%)
MS-ResNet-18 4 238.8 241.9 (+1.3%) 259.8 (+8.8%)
MS-ResNet-18 6 400.8 407.2 (+1.6%) 429.3 (+7.1%)

HST-4-384 2 68.4 68.9 (+0.7%) -
HST-4-384 4 103.1 108.2 (+4.9%) -
HST-4-384 6 142.9 148.2 (+3.7%) -

ImageNet HST-10-384 4 1184.4 1267.6 (+7.0%) -

Table A13: Inference latency of validation set (in seconds) for DC and DPC schemes across
timesteps. The values in parentheses indicate the relative increase in inference time compared to
the direct coding scheme.

Dataset Architecture T DC DPC

CIFAR100 HST-4-384
2 4.3 4.4 (+2.3%)
4 7.6 7.9 (+3.9%)
6 11.1 11.5 (+3.6%)

rameter (noise intensity s), which involves tuning, and since the optimal value can vary depending
on the dataset or model, it must be manually adjusted in each case (s = 1 in this experiment). In
contrast, DPC introduces learnable temporal variation through TE and TF, enabling more controlled
spike train diversity that better integrates with the SNN architecture. By presenting the entire input
throughout all timesteps and incorporating temporal variation to prevent repetition, our DPC best
fits the characteristics of SNNs among diverse strategies.

G.3 ENTROPY REGULARIZATION IN THE OBJECTIVE FUNCTION

To further improve the diversity of spike trains, we experimented with incorporating an entropy
regularization constraint into the training objective. Specifically, we added an entropy regularization
term to the loss function of our DPC-based iSpikformer (T = 4) trained on the Electricity dataset,
encouraging higher entropy in the encoded spike patterns. We varied the regularization weight λ
from 0.01 to 1.0. This intervention successfully increased the spike train entropy from 2.388 to
3.028; however, the overall model performance remained nearly unchanged.

We hypothesize that this is because the DPC framework already promotes sufficient spike pattern
diversity through its temporal embedding and temporal feedback mechanisms. Additional entropy
maximization may introduce variability without yielding further improvements in task-relevant rep-
resentations. This observation suggests that while entropy regularization can enhance diversity, its
benefit for downstream performance may be limited when architectural components already address
this aspect.

Finally, we note that DPC is designed as a plug-and-play module that replaces the encoder without
requiring changes to the loss function or optimization procedure. We therefore conclude that DPC
offers a more practical and robust solution compared to modifying the objective function, particu-
larly for general applicability across diverse architectures.

H ENERGY CONSUMPTION ANALYSIS

Our energy analysis follows the standard methodology widely adopted in prior SNN studies (Li
et al., 2025; Kundu et al., 2021; Su et al., 2024): total per-inference energy is estimated by count-
ing multiply–accumulate (MAC) and accumulate-only (AC) operations and weighting them by their
respective energy costs (Horowitz, 2014). The energy computation, considering MAC and AC op-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table A14: Results of spike shuffling test to quantify the temporal information embedded in encoded
spike trains. Clean Acc. and Shuffled Acc. represent the classification accuracy of models before
and after applying spike shuffling, respectively. ∆ Acc. represents the difference between them. A
larger ∆ Acc. indicates that the temporal information has been significantly disrupted.

Encoding T Clean Acc. (%) Shuffled Acc. (%) ∆ Acc.

DC
2 76.99 76.44 0.55
4 78.96 78.90 0.06
6 79.14 78.96 0.18

DPC
2 78.24 76.96 1.28
4 79.58 78.73 0.85
6 80.43 79.76 0.67

erations, is defined as follows:

E = T (fr ∗ EAC ∗OAC + EMAC ∗OMAC) (A17)

, where T is the number of timesteps, fr is the firing ratio, OAC and OMAC are the number of AC
and MAC operations, EMAC ≃ 4.6pJ, and EAC ≃ 0.9pJ (Horowitz, 2014).

I LATENCY ANALYSIS

We report the average training time of DPC, measured over 5 epochs after training has stabilized
in Table A12. In all cases, DPC introduces a slight increase in training time over direct coding
(ranging from 0.7% to 7%). Notably, for the GAC model, we observe a larger increase due to the
additional cost of learning spatiotemporal attention in the encoder. We also report an inference
time comparison of DPC and DC in Table A13. The additional latency introduced by DPC remains
consistently below 4%. This comparison highlights the simplicity and the efficiency of DPC in terms
of training time, especially considering the benefits it provides.

J TEMPORAL INFORMATION ANALYSIS

Algorithm A2 Spike shuffling for a single spike train
Input: A ∈ {0, 1}t - a string of length t

Output: Â ∈ {0, 1}t - shuffled string of length t

1: if A is not all-zero or all-one then
2: Â← A
3: while Â = A do
4: Â← randomPermute(A) //randomly get one of the permutations of the string
5: end while
6: end if
7: return Â

To assess whether encoded spike trains contain temporal information, we conduct a shuffling exper-
iment inspired by (Bu et al., 2023). For each trained SNN, spike trains from the encoding layer are
randomly permuted in time to disturb their temporal information except all-zero and all-one patterns,
which remain unaffected. This shuffling experiment is conducted on both direct-coded and diverse-
pattern-coded models, measuring accuracy to assess how much temporal information is encoded in
the spike trains of each scheme. Experiments are conducted using SDT-2-512 on CIFAR100 with
timesteps of 2, 4, and 6. The pseudo-code for the shuffling algorithm is provided in Algorithm A2,
and the results are presented in Table A14. The direct coding shows only a slight drop in accuracy,
consistent with prior findings that spike trains under direct coding lack temporal information (Bu
et al., 2023). In contrast, DPC exhibited a notable decline, indicating that its spike trains carrying
meaningful temporal structure are disrupted by shuffling.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K LLM USAGE

During manuscript preparation, we employed OpenAI’s ChatGPT, a large language model, solely
for proofreading and improving the clarity of writing. Our interaction with the LLM was iterative
and strictly limited to language refinement. We confirm that the LLM did not contribute to the
conception of research ideas, experimental design, data analysis, or the results reported in this paper.
All scientific content and claims are entirely the responsibility of the authors.

24

	Instruction
	Related works
	Direct coding analysis
	Preliminary
	Spiking neuron
	Encoded spike trains in direct coding

	Representational power of direct coding
	Distribution imbalance of spike trains
	Spike train diversity and performance

	Diverse-pattern coding
	Temporal embedding
	Temporal feedback layer

	Experiments
	Experimental setup
	Benchmark Results
	Efficiency analysis

	Conclusion
	Reproducibility Statement
	Periodicity in direct coding
	Distribution of encoded spike trains
	Distribution from CNNs
	Spike train counts

	Analysis on spike train entropy
	Experiment statistics
	Diverse-pattern coding algorithm
	Implementation details
	Image classification details
	Neuromorphic data classification details
	Time series forecasting details
	Natural language understanding details

	Ablation studies
	Component analysis
	Alternative time-variant encoding strategies
	Entropy regularization in the objective function

	Energy consumption analysis
	Latency analysis
	Temporal information analysis
	LLM Usage

