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Abstract

Visual In-Context Learning (VICL) is a prevailing way to transfer visual foun-
dation models to new tasks by leveraging contextual information contained in
in-context examples to enhance learning and prediction of query samples. The
fundamental problem in VICL is how to select the best prompt to activate its power
as much as possible, which is equivalent to the ranking problem of testing the
in-context behavior of each candidate in the alternative set and selecting the best
one. To utilize a more appropriate ranking metric and more comprehensive infor-
mation among the alternative set, we propose a novel in-context example selection
framework to approximately identify the global optimal prompt, i.e. choosing
the best performing in-context examples from all alternatives for each query sam-
ple. Our method, dubbed Partial2Global, adopts a transformer-based list-wise
ranker to provide a more comprehensive comparison within several alternatives
and a consistency-aware ranking aggregator to generate globally consistent rank-
ing. The effectiveness of Partial2Global is validated through experiments on fore-
ground segmentation, single object detection and image colorization, demonstrating
that Partial2Global selects consistently better in-context examples compared with
other methods, and thus establishes the new state-of-the-arts. Code is available at
https://github.com/chmxu/ranking_in_context.git.

1 Introduction

Foundation models like those used in AIGC, such as GPT and Gemini, play a big role in its success.
Different ways to fine-tune these models are being suggested to use them more effectively. One
popular idea is called Visual In-Context Learning (VICL), which is a way to teach Visual Foundation
Models (VFMs) using context from images. This helps the models learn better and make more
accurate ‘guesses’ based on what they see. Basically, VICL gives the models prompt examples
to learn from, like pairs of images and labels, termed in-context examples, based on which query
samples are inferred. This mimics how humans learn with the guidance. Using this method, VFMs
can take lots of different tasks, like understanding point clouds [6], editing images [29] , as well as
multi-modal inference [34], even if they were not trained specifically for those tasks.

The main challenge of VICL is picking the best in-context example that matches the query images, so
the VFM can perform well. Empirically, we have found that randomly picking an example does not
always work well, while a carefully selected example can really boost performance, as observed in
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Figure 1: Qualitative comparison between our method and VPR, specifically SupPR, in foreground
segmentation. In each item we present the image grid in the same order as the input of MAE-VQGAN,
i.e. in-context example and its label in the first row, query image and its prediction in the second row.
The IoU is listed below each image grid.

previous works [32, 21], and visualized comparison in Fig. 1. Typically, VICL has a set of options to
choose from (like the training data). We can think of picking the best in-context example as a ranking
problem – we want to choose the one that helps the most. Ideally, we would like to test each option
with a new image, rank how well they work, and then pick the best one. However, doing that for
every image is not practical. So, one of the biggest challenges in VICL is figuring out how to do this
ranking without actually testing each option.

There are a few key challenges in choosing the best prompt for VICL. (1) Choosing the Right Metric:
Since we cannot directly test how well a prompt works on a specific image, we need to find a different
way to measure it. Previous methods like VPR [32] mainly use two metrics from ranked observations
in the training set: visual similarity and pair-wise relevance instantiated through contrastive learning.
However, visual similarity does not always work well as in our experiments. The contrastive learning
method naturally restricts how much the model can learn because of how its objective function
is designed. To make contrastive learning effective, VPR needs to collect the most representative
positive and negative examples for each query, which are the best and worst in-context examples.
Consequently, a large amount of ranking observations remain unused during training. (2) Deciding
on the Comparison Set: When considering the ranking metric, it is best to exhaustively compare each
example against all the candidates available. However, directly ranking all alternatives globally is
often not always possible. Instead, we have to aggregate rankings from partial predictions. Pair-wise
ranking, like in VPR, ensures consistent ranking predictions by comparing each option’s similarity
to the query individually. But it cannot grasp the overall relationship between options. Conversely,
methods with larger capacity, such as list-wise ranking, struggle to create a unified ranking due to
inconsistencies among different partial predictions. Anyway, balancing feasibility and capacity is
crucial for VICL sample selection algorithms.

To solve these problems, this paper proposes a systematic VICL example selection framework, dubbed
Partial2Global, towards the global optimal in-context examples selection. Partial2Global involves
several list-wise partial rankers based on transformers to rank multiple alternative samples, and a
consistency-aware ranking aggregator to achieve globally consistent ranking from the partial rankers.
(1) To approximate the ground-truth ranking metric, we propose a transformer-based list-wise ranker
to rank multiple alternative samples in a more informative and comprehensive manner. This model
takes features of several alternatives together with the query sample from pretrained foundation models
as input. The ranking predictions can then be inferred with more comprehensive knowledge from
multiple alternatives and query sample by merging information among class tokens regarding each
sample. Through meta-learning based training strategy, our model can learn a generalizable ranking
metric for each specific task, thus better facilitating VICL example selection. (2) To approximate the
global ranking, we propose a consistency-aware ranking aggregator to strike the balance between
feasibility and ranking capacity. Particularly, partial and noisy ranking predictions from the trained
ranking model are collected and divided into several groups, which can be reorganized and aggregated
by learning a global ranker that has minimized average distance with all ranking groups. The resulted
global ranking enjoys better ranking consistency and thus provides better in-context examples to
boost VICL performance.
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Figure 2: Systematic comparison between three different frameworks for in-context example selection.
(a) VPR, which uses pair-wise ranker trained with contrastive learning to calculate the relevance
score for each alternative. (b) List-wise ranker with naive aggregation, in which alternatives are
split into non-overlapped subsets. These subsets are ranked with the proposed list-wise ranker.
Then we iteratively select the best example in each subset and rank them. (c) List-wise ranker with
consistency-aware aggregator, in which alternatives are first shuffled and predicted with list-wise
ranker into an observation pool. These partial observations are then aggregated with the proposed
aggregator to achieve a global ranking.

In order to validate the effectiveness of our method, we conduct experiments on three different tasks
including foreground segmentation, single object detection and image colorization with datastet
including Pascal VOC and ImageNet, following the previous works. Extensive results show that
Partial2Global not only can provide consistently better in-context examples, which results in new
state-of-the-art performance, but also shed light on the selection heuristics of in-context examples,
facilitating further research on visual in-context learning.

Contributions of this work are as follows:

• We emphasize the importance of the global consistent ranking relationships and correct ranking
metric approximation in the selection of in-context samples for VICL.

• We propose to approximate the optimal global ranking with a transformer based list-wise ranker,
which can process more comprehensive information and produce stronger predictions.

• We adopt a consistency-aware ranking aggregator to aggregate the partial predictions generated by
our ranking model.

• Extensive experiment results show that our method consistently works well in various visual tasks
based on pretrained in-context learning model, showing the practical value of such a method.

2 Related works

In-context learning. Given the current trend of scaling up model sizes, the large-scale models such
as large language models (LLMs) [2] and their multi-modal counterparts [10] are shown to gradually
learn the ability to perform in-context learning, i.e. inference with knowledge provided by few-shot
context samples, rather than training the model with extra data. For example, Pan et. al. [15] designed
an in-context learning system to generate symbolic representation, which can then be used for logical
inference. Zhang et. al. [33] proposed to leverage in-context learning to edit factual knowledge
in LLMs. Handel et. al. [7] showed that in-context learning works by compressing training set
into task representations which can modulate models during inference for desired output. Such a
property enables nonprofessional users to drive the model simply with several examples, the same as
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someone teachers his children. Recently, MAE-VQGAN [1] and Painter [24] show that by learning
to inpaint the image grid composited by support and query pairs, the vision models can also learn the
in-context learning ability. VPR [32] follows MAE-VQGAN and focuses on the specific problem of
selecting good in-context examples. They propose a simple strategy by learning a contrastive learning
based metric network with performance metrics. Prompt-SelF [21] analyzes VPR’s strategy and
extends it to take into account both pixel-level visual similarity and patch-level similarity. Moreover,
prompt-SelF proposes an test-time ensemble strategy to gather predictions with different permutation
of in-context image grids. Our work inherits the idea of VPR to concentrate on in-context example
selection. Different from VPR, we stress the importance of make full use of training sample, and
the post-process of model predictions. To this end, we propose a novel framework which first trains
ranking models with the performance metric data and then process the ranking predictions with
consistency-aware ranking aggregator.

Sample selection and Ranking in deep learning. Sample selection is crucial for improving model
training [20, 13, 27, 28, 26, 25]. In in-context learning, sample selection focuses on finding the best
prompt example for a given query. This is typically done by training additional ranking models. These
models compare a list of examples with the query based on their similarity in a specific property.
Burges et al. [3] proposed an objective function for pairwise ranking, which was further extended to
listwise ranking [23]. Recently several works focus on learning ranking with transformer structures.
For example, Kumar et al. [9] proposed to adopt attention mechanism to interact between samples to
be ranked. Liu et al. [11] proposed to build the ranking model based on GPT model. In this paper
we propose to leverage the learning to rank technique to build a transformer-based list-wise ranker,
which can learn more comprehensive information than previously used pair-wise ranker learned with
contrastive learning.

Aggregating partial ranking predictions. Jiang et. al. [8] proposed HodgeRank as a Hodge-
theoretic approach to statistical ranking, which can provide global ranking with incomplete and
inconsistent ranking data. The comprehensive insight of HodgeRank made it widely applicable to
quality of experience assessment. For example, Xu et al. [30] adopts HodgeRank for subjective video
quality assessment based on random graph models. The similar idea is also applied to crowdsourced
pairwise ranking aggregation [31]. In this paper we take inspiration from Hodge theory to build a
novel framework for visual in-context learning. While such a strategy has never been studied before,
we show that our framework can significantly boost the visual in-context performance by selecting
better examples.

3 Methodology

Preliminary: Visual in-context learning. Visual In-Context Learning (VICL) aims to build the
inference procedure of each testing sample based on knowledge provided by in-context examples.
MAE-VQGAN [1] instantiates such an idea through image inpainting. Concretely, given a query
sample, an example image is selected randomly along with its annotations (e.g., bounding boxes,
masks, etc.) from training set. Then the example image, example label, query image and a random
query label to be predicted are arranged as an image grid so that the query label is placed in the lower
right corner. Then this composed image is used as input to an inpainting model. The masked patches
are predicted by a transformer autoencoder and further decoded with the pretrained VQ-VAE [22]. To
ensure the generalization ability, MAE-VQGAN is pretrained on a large-scale dataset collected from
arxiv papers. While it shows promising results among different kinds of tasks, the important problem
of in-context example selection is omitted, which leaves this method great potential for improvement.

Preliminary: Visual Prompt Retrieval. Visual Prompt Retrieval (VPR) [32] mainly focuses on the
in-context example selection based on MAE-VQGAN. Specifically, VPR starts with the heuristic
that more similar an image is to the query image, the better it is as the in-context example. Based
on this, the unsupervised and supervised variants of VPR are designed. In the unsupervised setting,
VPR directly selects the most visually similar training images for each query image. As for the
supervised setting, VPR first creates of a performance metric dataset collected from the training set,
symbolized as {xi

q,X i
R, y

i}NTr
i=1 , where xq denotes query sample, XR denotes a set of K alternatives

to be ranked, and y denotes the performance metric, e.g. IoU for segmentation or accuracy for
classification, for pretrained MAE-VQGAN when testing xq on specific task using XR as in-context
examples respectively. Then a metric learning model is trained to learn the in-context performance
of training samples, i.e. the best performing samples are labeled as positive samples and learned
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against the worst performing ones as negative samples. Such a method, while outperforming the
naive MAE-VQGAN, still cannot fully explore the knowledge regarding the ranking of in-context
examples with the unprocessed partial observations. To this end, we propose a novel method to boost
VICL with more proper in-context example selection.

Overview. To boost VICL with better in-context example selection, we in this paper propose a novel
pipeline including two main steps. First we train a ranking model (Sec. 3.1) based on the performance
metric dataset collected in the same way as VPR. Different from VPR, we utilize an extra transformer
model to learn list level ranking instead of instance level scoring so that inner relationship between
alternatives can be better utilized for ranking. Once the ranking model is trained, the global ranking
of alternative set needs to be gathered from partial ranking predictions. To this end, we propose to
adopt a consistency-aware ranking aggregator (Sec. 3.2) to process predictions to provide globally
consistent ranking results, thus better facilitating VICL.

3.1 Ranking in-context examples with list-wise ranker

In order to learn a more proper ranking metric approximation, we propose to adopt a transformer-
based list-wise ranker. Our methodology is rooted in the principles of VPR. Given the query
sample xq and the alternative set XR, we first sample a k size subset x from XR. Then a ranking
model ϕk is built to provide ranking prediction of x as ϕk(x, xq). Concretely, features zq ∈
R(N+1)×C , z ∈ Rk×(N+1)×C corresponding to xq, x are extracted with pretrained transformer
model ϕ such as CLIP [17] or DINO [4], where N + 1 features include class token and patch tokens,
C denotes feature channels. Following the feature extraction, we concatenate all these features to
form a feature sequence ẑ ∈ R(k+1)(N+1)×C . For the sake of simplicity and to facilitate further
processing, we rearrange this sequence such that all class tokens are positioned at the beginning. This
sequence ẑ is then processed through several newly introduced transformer layers. These layers are
designed to enhance interaction between the global-level and local-level features contained in different
images. This interaction is crucial as it allows the model to gather the necessary information for
ranking the alternatives. Upon completion of these layers, we collect the class tokens of alternatives
zcls = ẑ[1:k+1,:]. These tokens are then processed through linear layers to generate the ranking
prediction ŷ ∈ Rk. This prediction ŷ serves as an indicator of the ranking of the alternatives,
providing a quantitative measure of their relevance to the query sample.

Training objectives. Our ranking model is optimized with a composed objective as follow:

L =

k∑
i,j=1,i̸=j

max(0,1(yi > yj)(xi − xj + δ))︸ ︷︷ ︸
Lmargin

+NeuralNDCG(τ)(ŷ, y)︸ ︷︷ ︸
Lsort

+MSE(ŷ′, y)︸ ︷︷ ︸
Lreg

(1)

where Lmargin denotes the pair-wise marginal ranking loss, Lsort denotes list-wise Neural-
NDCG [16], δ and τ represents the loss coefficients for two loss terms respectively. Lmargin

and Lreg act a similar role as the supervised contrastive loss in VPR, which encourages the model
the predict higher score for better samples in each pair. Lsort, on the other hand, can drive the model
to learn inner relationship among more alternatives, thus leading to better ranking predictions.

3.2 Consistency-aware ranking aggregator

For this section, we will introduce how to obtain consistent global rank for the alternative set given
the trained ranking model as introduced above.

Motivation. In the process of selecting in-context examples, it is crucial to identify the most suitable
candidates from the available pool. However, the ranking model we employ only provides partial
ranking predictions on a subset instead of the full alternative set. A naive solution would be splitting
the alternative set into non-overlapping subsets, which are then processed with the trained ranking
model respectively. Then the top ranked samples from each subset are gathered together as a new
alternative set, which is then repeatedly split and ranked again until there is only one sample.

While such a method can provide reasonable results as we will show in the experiment, it can suffer
from three main problems: (1) In total,

(
K
k

)
subsets with size k can be randomly sampled from an

alternative set with size K. However, the naive method only utilizes ⌈K
k ⌉ subsets, which is extremely
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Algorithm 1 Consistency-aware ranking aggregator
Input: Train set Xtrain, query sample xq , trained ranking models {ϕk}, alternative set size K.

1: Alternative set XR = topKx̂∈Xtrain
(sim(x̂, xq))

2: Initial preference matrix set S := ∅
3: for rank-k model ϕk do
4: Build observation pool Xk from XR

5: for randomly shuffled X i
k from Xk do

6: Ri
k =

⋃
x∈X i

k
ϕk(x, xq)

7: Aggregate Si from Ri
k

8: S = S
⋃
Si

9: end for
10: end for
11: Aggregate global ranking r as Eq. 3
12: return Top ranked sample.

limited and can result in selecting poor performing in-context examples. (2) Since this naive method
is iterative, the selection error would accumulate, leading to unbearably wrong prediction. (3) It
is inefficient to fetch other top ranked samples such as second or third best ones with this method.
Therefore a new method, which can directly provide global ranking prediction by fully utilizing
information contained in the alternative set, can thus better serve the purpose of in-context example
selection. To this end we propose the consistency-aware ranking aggregator, which allows us to
derive a global ranking from the partial information, thereby making it possible to rank all candidates
in relation to each other while guaranteeing global consistency.

Algorithm. Our method starts with gathering enough sufficient information from all alternatives.
Given the query sample xq , alternative set XR and a trained k-length ranking model ϕk, we can first
build an observation pool Xk = {X i

R}
Np

i=1, where X i
R denotes a randomly shuffled variant of XR.

Then for each X i
R we follow the naive ranking method to split it into ⌈K

k ⌉ non-overlapped k-length
sequences and rank these sequences with ϕk, resulting in a predicting set Ri

k. The predictions are
further aggregated into a preference matrix Si ∈ RK×K . If the m-th alternative is favored over
the n-th alternative, we let Si

mn = 1 otherwise Si
mn = −1. If no predictions are related with m

and n-th alternatives, then Si
mn = 0. Si can then be transformed into an pair-wise indication set

Ei = {(m,n)|Si
mn ̸= 0}. In this way we can finally get a preference matrix set S = {Si}.

Denoting the global ranking of XR as a score vector r ∈ RK , in which higher score denotes higher
ranking. If we have the oracle ranking r∗K , then if m-th candidate is favored than n-th candidate we
can get r∗m − r∗n > 0. As a result, we can formulate the ranking problem as follows,

min
r

Np∑
i=1

∑
(m,n)∈Ei

(rm − rn − Si
mn)

2 (2)

To get the solution we can reformulate Eq. 2 as a Least Square problem by introducing a transformation
matrix Di ∈ R⌈K

k ⌉×K , each row of which is a sparse vector with only the two indices from the
pairwise set Ei as 1 and -1. Then we have the following formulation,

min
r

Np∑
i=1

1

2Np
∥Dir − Si∥22 (3)

By solving Eq. 3 we can directly get a proper global ranking r. Furthermore, multiple ranking
models can be engaged in this process by extending S with preference matrices calculated from
these different models, which can in turn enhance the ranking process with more comprehensive
information. Compared with the naive ranking method, this method involves more partial observations
from XR, while avoiding the accumulative error, thus being both effective and efficient.

Analysis. It is straightforward to see the merits of the proposed method. First, compared with the
naive strategy, solving Eq. 3 can directly lead to a complete ranking results, avoiding repetitive
computation for more top ranked examples. Second, it is inevitable that the trained ranking model
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wrongly predicts the ranking of some alternatives. Under such circumstance, the naive strategy has
now way to fix such an error. On the contrary, since a same alternative pair can result in different
predictions by our list-wise ranker, the proposed algorithm as in Alg. 1 can take into account all
contradicting predictions, thus leaving potential for rectifying the wrong predictions.

4 Experiments

4.1 Dataset and setting

Dataset. We follow MAE-VQGAN [1] and VPR [32] to adopt three tasks including foreground
segmentation, single object detection and colorization. For foreground segmentation, Pascal-5i [19]
is utilized which contains 4 data splits. We conduct experiments and report the mean intersection
over union (mIoU) on all splits together with the averaged mIoU among these splits. For single
object detection, Pascal VOC 2012 [5] is used. Images and predictions are processed the same as in
MAE-VQGAN, in which mIoU is adopted as metric. For colorization, we first sample 50000 training
data from ILSVRC2012 [18] training set. Then a test set randomly sampled from the validation set of
ILSVRC2012 is used to test the model with mean squared error (MSE) as metric.

Implementation Detail. Considering the training data size for each task, we adopt different sequence
length for ranking. Specifically, we train rank-5 and rank-10 models for foreground segmentation and
single object detection, while rank-3 and rank-5 models are trained for colorization. The training
data is built by first selecting 50 most similar images from the whole training set for each image
as its alternative set. Then we randomly sample 20 sequences with the required length from this
alternative set for training. For all experiments we adopt DINO v2 [14] as feature extracter. AdamW
optimizer [12] is used with learning rate set as 5e-5 and batch size set as 64. We utilize 4 V100 gpus
to cover all experiments.

Competitors. We choose three methods as our competitors, including MAE-VQGAN, VPR which
contains UnsupPR and SupPR and prompt-SelF [21], which mainly facilitates an ensemble strategy.
To fairly compare our methods with these previous ones, we report main results of our models both
with and without the test-time ensemble.

4.2 Main results

The experiment results are shown in Tab. 1. Note that we omit the result of our model with voting
strategy for colorization since prompt-SelF does not report this term and there is no fair competitors
in this setting.

As in Tab. 1, for all three tasks, our model receives best performance on both variant. Specifically,
when not using voting strategy, our model outperforms the strongest competitors SupPR by 2.84 in
terms of average segmentation mIoU, while the superiority is consistent on other two tasks. When
using voting strategy, our model receives about 4 higher mIoU for segmentation and 2 higher mIoU
for detection, leading to better results than prompt-SelF. One would note that while SupPR was
designed to learn a better metric than the naive visual similarity used for UnsupPR, its performance
on colorization is exactly the same as UnsupPR. On contrary to that, our model makes a huge leap
with 0.04 less MSE, which is not only much better than both UnsupPR and SupPR but also doubles
the improvement these two methods have against the random strategy in MAE-VQGAN. This can
prove the effectiveness of our proposed ranking model for selecting in-context examples.

To further illustrate the advantage of Partial2Global, we visualize several samples for segmentation
and detection in Fig. 3 and Fig. 5. We find that in some cases the in-context examples selected by
VPR can let MAE-VQGAN generate totally wrong results, especially when multiple objects are
presented in the query. For example, in the first sample of Fig. 3, the query image contains two
monitors, while the target label is only related to the left one. While both VPR and our method select
images of monitors as in-context example, VPR results in 0 IoU while prediction using our example
is much better. This may be resulted from the spatial relation of the object of interest in the example
images. In the example selected by VPR, the monitor is placed at the right, which is the same as
the non-target monitor in the query image, thus leading to wrong guidance and prediction. Apart
from that, VPR tends to select small objects for detection, as shown in Fig. 5. This can lead to failed
detection even though the query objects are large enough for huamns to detect them. In comparison,
our method can generally select more proper in-context examples, thus enjoying better performance.
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Table 1: Comparison of our method with previous in-context learning methods.

Model Seg. (mIoU) ↑ Det. (mIoU) ↑ Color. (MSE) ↓Fold-0 Fold-1 Fold-2 Fold-3 Avg.

MAE-VQGAN 28.66 30.21 27.81 23.55 27.56 25.45 0.67
UnsupPR 34.75 35.92 32.41 31.16 33.56 26.84 0.63
SupPR 37.08 38.43 34.40 32.32 35.56 28.22 0.63
Ours 38.81 41.54 37.25 36.01 38.40 30.66 0.58

prompt-SelF 42.48 43.34 39.76 38.50 41.02 29.83 —
Ours+voting 43.23 45.50 41.79 40.22 42.69 32.52 —

Ours

SupPR
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31.86

83.87

0
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30.55

61.31
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Figure 3: Qualitative comparison between our method and VPR, specifically SupPR, in foreground
segmentation. In each item we present the image grid in the same order as the input of MAE-VQGAN,
i.e. in-context example and its label in the first row, query image and its prediction in the second row.
The IoU is listed below each image grid.

4.3 Model analysis

To fully validate the effectiveness of each module in our method, we conduct a series of ablation
studies. For all ablation studies, we do not use voting strategy. The experiments contain both
foreground segmentation and single object detection if not specified.

Effectiveness of different modules. First of all we provide comparison among variants with different
designs. Specifically, we consider three models: (1) Rank-10 Naive: A rank-10 model is trained,
of which the ranking predictions are directly used for example selection. (2) Rank-10 Aggr.: After
training the rank-10 model and getting the ranking predictions, we use the proposed consistency-
aware ranking aggregator described in Sec. 3.2 to process these data, then we pick the top-ranked
sample in the post-processed global ranking as in-context example. (3) Rank-{5,10} Aggr.: Our
full model, in which the ranking prediction of both ranking models are mixed and processed with
consistency-aware ranking aggregator to get the final global ranking. The results are presented in
Tab. 2. We find that the naive ranking model enjoys 1.54 higher average mIoU than SupPR, which
supports our motivation of using ranking model instead of pair-wise contrastive learning model. Since
ranking model can make better use of the training data, and comparing multiple samples enables
the model to discover the inner relationship between them, rather than simply judging if one sample
is better than another one. Moreover, We find that using consistency-aware ranking aggregator to
process the ranking predictions can lead to further improvement, which can be enlarged by including
results from rank-5 model. This is because the predictions of ranking models can be thought of
as from different annotators. Even for a single model, its predictions will not be consistent when
given two sequences which share partial same samples. Therefore, simply utilizing the inconsistent
predictions can lead to suboptimal results, and consistency-aware ranking aggregator helps regulate
the predictions to produce more globally consistent ranking results, thus having better results.

Is quality of in-context examples really aligned with visual similarity? A basic claim in VPR
is that the more similar an image is to the query image, the better it is as an in-context example.
Nonetheless, VPR utilizes performance metrics instead of visual similarity for contrastive learning
and provides better results, which makes one wonder if such a claim is indeed solid. To check this
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Table 2: Ablation study among different variants of our method.

Model Seg. (mIoU) ↑ Det. (mIoU) ↑Fold-0 Fold-1 Fold-2 Fold-3 Avg.

SupPR 37.08 38.43 34.40 32.32 35.56 28.22
Rank-10 Naive 37.51 39.69 36.62 34.58 37.10 29.58
Rank-10 Aggr. 38.70 41.08 37.04 35.54 38.09 29.79
Rank-{5,10} Aggr. 38.81 41.54 37.25 36.01 38.40 30.66

out, we take a look at the best performing in-context examples selected by our method. The results
are shown in Fig. 4(a) and (b). We first visualize the correlation between visual similarity, which
is computed by extracting CLIP features for each image and then calculating and averaging the
cosine similarity between the alternatives and query, and mIoU on segmentation for both VPR and
our method. It is clear that visual similarity can be a basic heuristic for choosing visual in-context
examples. Generally well performing examples appear to share high similarity with query samples.
On the other hand, there are also large amount of failure cases with high similarity, which indicates the
ground principle should be much more complex than visual similarity. Based on this conclusion, we
further visualize several cases in Fig. 4(c) selected by our method, which better shows that one should
consider more than visual similarity and stress other factors such as object size, spatial position. On
the opposite, we find that the background similarity, which can contribute significantly to the visual
similarity, is hardly related to the quality of in-context examples.

1.64, 0.88 1.33, 0.90 1.72, 0.90 1.87, 0.90 3.15, 0.91 14.67, 0.88

45.22, 0.60 61.79, 0.64 61.01, 0.66 62.05, 0.67 61.29, 0.70 48.53, 0.71

(c)(a) (b)

Figure 4: (a) Scatter plot of visual similarity against IoU for VPR on segmentation. (b) Scatter plot of
visual similarity against IoU for our method on segmentation. (c) Visualization of several cases with
uncorrelated visual similarity and IoU. The first row presents samples with low similarity but proper
in-context performance. The second row presents samples with high similarity but poor in-context
performance. Captions below each image grid denote IoU and visual similarity sequentially.

Robustness among different backbones. We compare our model with two variants with other
pretrained feature extractor: CLIP ViT-L/14 and DINO v1. The results are shown in Tab. 3. First,
directly using ranking prediction from our ranking models through the naive ranking strategy performs
better than VPR no matter which backbone is utilized. VPR also conducted such an experiment
to try their method with different backbones such as CLIP, EVA and supervised ViT, but none of
those results can outperform ours, which illustrates the efficacy of our design of ranking model
against the contrastive learning based model. Second, adopting consistency-aware ranking aggregator
consistently improves the naive ranking method by nearly 1-2 mIoU for both segmentation and
detection, which is compatible with the results in Tab. 2, showing the robustness of the proposed
method among different backbone choices. Third, the in-context performance is not totally correlated
with the capacity of backbones. It is commonly known that DINO v2, as an improved version of
DINO v1 with more comprehensive objective functions and more data, should be equipped with
higher capacity. However, we find that DINO v2 performs worse than DINO v1 on segmentation
whether naive ranking or consistency-aware ranking aggregator is adopted. We think such results
can be attributed to the different learning difficulty when using these backbones, and it would be
interesting to have further research on the impact of backbones for visual in-context learning.

Consistent optimality of ranking results. Apart from the strong performance of our method, we
further find that the proposed consistency-aware ranking aggregator can interestingly introduce
consistent optimality to the ranking results. That is to say, apart from the top ranked sample, the
second best and third best samples should also be generally better than other samples in the alternative
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Table 3: Ablation study among different backbones of our method.

Backbone Strategy Seg. (mIoU) ↑ Det. (mIoU) ↑Fold-0 Fold-1 Fold-2 Fold-3 Avg.

CLIP Naive 37.37 40.11 36.84 33.88 37.05 29.69
Aggr. 38.58 41.34 37.66 35.91 38.37 30.79

DINOv1 Naive 38.78 40.02 36.92 35.12 37.71 28.03
Aggr. 39.25 42.27 38.45 36.77 39.19 29.19

DINOv2 Naive 37.51 39.69 36.62 34.58 37.10 29.58
Aggr. 38.81 41.54 37.25 36.01 38.40 30.66

Table 4: Ablation study among different example selection strategies of our method.

Strategy Seg. (mIoU) ↑ Det. (mIoU) ↑Fold-0 Fold-1 Fold-2 Fold-3 Avg.

#1 rank 38.81 41.54 37.25 36.01 38.40 30.66
#2 rank 38.13 41.66 37.62 35.35 38.19 30.76
#3 rank 38.66 41.08 37.36 35.91 38.25 30.61
top2 fusion 39.08 42.61 38.17 36.67 39.13 30.16
top3 fusion 40.07 42.48 38.77 37.61 39.73 31.85
top5 fusion 40.12 42.59 39.09 37.28 39.77 32.08

set as in-context example. To show that we test two strategies: (1) directly using samples ranked
second and third as in-context examples and (2) adopting a simple late fusion method to average
predictions generated with 2, 3, 5 top ranked samples. The results are shown in Tab. 4. One can
find that using top-3 best ranked sample have comparable results. For segmentation, the #2 rank
samples only have 0.21 lower mIoU than #1 rank samples, and #3 rank samples are even slightly
better than #2 rank samples, which evidences the consistent optimality. The results are consistent
for detection. Moreover, fusing 2 or 3 samples together leads to 0.73 and 1.43 higher average mIoU,
which also supports the consistent optimality brought by the consistency-aware ranking aggregator.
Such improvement saturates when using 5 samples, indicating that samples ranked 5-th or later are
significantly worse and cannot provide more useful information for the in-context inference.

5 Conclusion and discussion

This paper proposes a novel pipeline for in-context example selection in Visual In-Context Learning
(VICL). Specifically, we design a transformer-based ranking model, which can provide desirable
ranking predictions by well utilizing the inner relationship among alternatives. The ranking results
are further aggregated by the proposed consistent-aware ranking aggregator, which achieves desirable
global ranking prediction by transforming the problem into a least square problem. Our method
receives state-of-the-art performance on three different tasks including foreground segmentation,
single object detection and image colorization, showing great potential of improving VICL researches.

Limitations. While our proposed method can provide good in-context examples, the basic perfor-
mance still highly relies on the quality of the in-context learning model. The MAE-VQGAN used in
this paper is rather an early stage trial for visual in-context learning, with many limitations in terms
of its structures and applications. We believe that our model can further help other stronger visual
in-context learning methods, leading to better in-context performance.

Broader impacts. Our work will not lead to significant negative social impacts. One main problem is
that if the data used for in-context learning contains biases, the models trained on this data may also
exhibit these biases, leading to unfair or discriminatory outcomes. This is particularly concerning in
areas like facial recognition or predictive policing, where biased models could disproportionately
affect certain groups. Solving such problems would be a large future research topic.
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A More details

NeuralNDCG. The list-wise ranking loss NeuralNDCG adopted in this paper is a differentiable
approximation of Normalised Discounted Cumulative Gain (NDCG). We simply quote the definition
here from [16] for better understanding. Specifically, for x denoting a sample and y denoting its
score, NDCG can be calculated as

DCG(π, y) =

n∑
i=1

2yi − 1

log2(1 + π(i))
(4)

NDCG(πf , y) =
DCG(πf , y)

DCG(π∗, y)
(5)

where πf denotes the predicted ranking, π∗ is the ground truth ranking regarding score y. Neural-
NDCG works by substituting the discontinuous sorting operator with NeuralSort, which results in an
approximated permutation matrix

P̂sort(s) [i, :] (τ) = softmax

[
(n+ 1− 2i)s−As1

τ

]
(6)

where Ax[i, j] = |si − sj |, 1 denotes a vector filled with value 1, τ is a temperature parameter. Then
the NeuralNDCG can be calculated as

ˆDCG(τ)(π, y) =

n∑
i=1

scale(P̂2yi − 1)

log2(1 + π(i))
(7)

NeuralNDCG(τ)(πf , y) =
ˆDCG(τ)(π, y)

DCG(π∗, y)
(8)

where scale(·) is Sinkhorn scaling.
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Figure 5: Qualitative comparison between our method and VPR, specifically SupPR, in single object
detection. For simplicity we present the bounding boxes on images instead of showing the image
grids. In each item the left image denotes the in-context example and the right one denotes the query.

B Additional ablation study

Transferability of Partial2Global. To test the transferability of the prompt selection method and
further reveal the potential of our method, we can add the demonstration suggested by conducting
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the following experiment for both SupPR and our method: we use models trained on each fold of
segmentation and apply it to other folds. The results are shown in Tab. 6. We find that while both two
methods degrade in the transfer learning setting, our method still outperforms SupPR in general. This
interesting results indicate that, the training data size of each fold is insuifficient for training a robust
and generalizable ranking model. On the other hand, this again indicates that prompt selection for
VICL cannot be simply based on visual similarity, as claimed in our paper.

Table 5: Cross-fold performance of our
method on segmentation task.

Source/Target Fold 0 1 2 3

0 — 36.38 32.63 30.90
1 35.74 — 32.94 31.32
2 34.16 36.16 — 30.44
3 34.28 35.93 32.98 —

Table 6: Cross-fold performance of SupPR
on segmentation task.

Source/Target Fold 0 1 2 3

0 — 35.46 32.44 30.95
1 34.92 — 32.96 31.03
2 34.71 36.48 — 30.08
3 34.01 35.83 32.15 —

Efficiency of our method. One would ask if the proposed method would suffer from poor efficiency,
compared with SupPR. In general, the usage of list-wise ranker and the ranking aggregation will
inevitably introduce additional computational cost, while the increased complexity during inference
is affordable under common circumstances. Specifically, we provide the training and inference time
cost as follows. (1) The training of list-wise ranker on the colorization task, which contains about
500000 ranking sequences, takes about 10 hours on 8 V100s. Once the model is trained it can be
directly used for any other queries with the same ranking criteria as the training task without any
further finetuning. (2) During inference on one V100 gpu, our proposed pipeline requires about 1.17s
to rank 50 alternatives for each query sample in the complete process, including feature extracting
(0.3s), sub-sequence ranking with list-wise ranker (0.8s), and ranking aggregation (0.07s). Note
that some techniques could be utilized to accelerate this process. For example, when we prepare
the extracted features in advance (which is reasonable given the candidate set can be prepared in
advance), we can skip the feature extraction stage and reduce the time cost by 0.3s. With engineering
works, the inference time cost can be further reduced. The detailed inference speed (feature extraction
included) given different alternative set size is presented as in Tab. 7.

Table 7: Inference speed with different alternative set size.

alternative set size inference time for each query (s)

25 1.03
50 1.17

100 1.40

Upper bound of selecting different in-context prompts. Another interesting problem is to examine
the ’upper bound’ of performance by adopting different in-context prompts. To further provide insight
to this task, we try to examine an upper bound: directly testing all alternatives for each query in the
segmentation task and presenting the best IoU in Tab. 8. While our proposed method is much better
than SupPR, it still leaves great potential for better performance, which we will take as future works.

Table 8: Oracle in-context learning performance on segmentation.

fold0 fold1 fold2 fold3

SupPR 37.08 38.43 34.40 32.32
Ours 38.81 41.54 37.25 36.01

best iou among 50 alternative (oracle) 48.75 52.62 49.75 49.03

Sensitivity test for hyper-parameters. In general, our method is robust against changes of hyper-
parameters. To show this, we try the suggestions to conduct ablation studies on these two hyper-
parameters, whose results are presented in the following table. For delta which denotes the margin,
using 0 margin leads to worse results while larger margins would be better for learning ranking
models. For tau which is the temperature coefficient in NeuralNDCG, we simply use the best setting
tau=1 from the original paper. As can be seen in Tab. 9, using smaller temperature would not lead
to better results. Nonetheless, all hyperparameter settings enjoy better performance than SupPR,
validating the effectiveness of our method.
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Table 9: Ablation study for hyper-parameters.

δ = 0 δ = 2 τ = 0.01 τ = 0.1

MSE 0.594 0.588 0.608 0.592

Impact of alternative set size on performance. Our choice of alternative set is the same as VPR,
i.e. selecting 50 most visually similar samples based on CLIP features. Typically, this choice is
good enough as shown in previous works like VPR. Here, to further investigate the impact of data
quality, we thus tried the suggestion to test our method on all folds of segmentation task with 25 or
100 alternatives for each query. The results are shown in Tab. 10. One can find that our method is
also very robust against different sizes of alternative set.

Table 10: Ablation study for different alternative set sizes.

set size fold0 fold1 fold2 fold3

25 38.48 41.82 37.14 35.60
50 (main) 38.81 41.54 37.25 36.01

100 38.81 41.80 37.90 36.00

Effectiveness of different terms in our proposed loss. We have conducted an additional ablation
study to compare models trained for colorization without each loss term. The results are shown in
Tab. 11. In general all three loss terms contribute the final performance, with Lsort plays the most
important role.

Table 11: Ablation study for loss terms.

w/o Lsort w/o Lmargin w/o Lmse full loss

MSE 0.601 0.595 0.585 0.583
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract claims that we propose a novel pipeline for visual in-context
learning example selection, which is consistent with our main paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have analyzed the limitation of our main in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our proposed method does not involve theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided experiment details in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the data source in Sec. 4.1. The corresponding code is also
available now.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We cannot provide error bar for some competitors. Besides, the current results
are sufficient to show the efficacy of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research focuses on general visual tasks, which totally conforms the Ethics
Code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the Sec. 5 in the main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not released our model weight yet.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all used public datasets and pre-trained models in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We only use objective experiments in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We only use objective experiments in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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