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Abstract

We tackle the task of recovering an animatable 3D human avatar from a single or a
sparse set of images. For this task, beyond a set of images, many prior state-of-the-
art methods use accurate “ground-truth” camera poses and human poses as input
to guide reconstruction at test-time. We show that pose-dependent reconstruction
degrades results significantly if pose estimates are noisy. To overcome this, we
introduce NoPo-Avatar, which reconstructs avatars solely from images, without
any pose input. By removing the dependence of test-time reconstruction on human
poses, NoPo-Avatar is not affected by noisy human pose estimates, making it
more widely applicable. Experiments on challenging THuman2.0, XHuman, and
HuGe100K data show that NoPo-Avatar outperforms existing baselines in practical
settings (without ground-truth poses) and delivers comparable results in lab settings
(with ground-truth poses).

1 Introduction

Animatable human rendering aims to 1) reconstruct an animatable 3D representation from given
images, and to 2) synthesize novel views of possible novel human poses. The task is of great utility
in VR/AR applications. Recent advances in rendering techniques have significantly improved the
realism and fidelity of the rendered results.

Concretely, recent generalizable human rendering approaches [8-10l 28] reconstruct an animatable
representation in a single deep net feed-forward pass. This significantly speeds up the reconstruction to
subsecond levels without compromising the rendering quality. In addition, large-scale training enables
these methods to perform well even with very sparse inputs. These advances make generalizable
human rendering more practical for real-world applications compared to per-scene optimized methods.
Despite the pros, most generalizable human rendering approaches assume that accurate camera poses
and human poses are available for reconstruction at test-time. These input poses serve as strong
guidance in locating the correspondences and gathering the aligned image features. However, the
use of accurate input poses during test-time reconstruction introduces a challenge, as illustrated in
Fig. [} we assess the dependence of the rendering quality on test-time input pose quality used for
reconstruction, either by 1) injecting Gaussian noise of different standard deviations into accurate
ground-truth test-time input poses used for reconstruction; or by 2) using a predicted pose for
reconstruction at test-time. For the results shown in Fig. [T} we always used ground-truth poses for
test-time rendering. The noisier the test-time poses used for reconstruction, the worse the rendering
quality the methods achieve. For in-the-wild scenarios where poses are estimated, the performance
of existing methods degrades significantly, as shown in Fig.[I(a) horizontal axis label “pred”. This
sensitivity to input poses is not a desirable property. Ideally, we expect the method to produce
consistent and high-quality results, no matter the quality of the input poses at reconstruction.
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Figure 1: (a) Sensitivity to input pose noises. Previous methods [10, 28] take camera poses and
human poses as inputs. We measure their sensitivity to input poses by injecting Gaussian noise of
different standard deviations or using a predicted pose. (Averaged over 5 runs for Gaussian noise;
std are multiplied by 3 for better visualization.) (b) Comparisons on rendering quality. With the
predicted inaccurate input poses, LIFe-GoM cannot produce high-fidelity rendering. In contrast, our
methods, which does not take any poses as inputs, produce high-quality rendering.

To achieve this, we develop NoPo-Avatar, which completely eliminates the dependence of the
animatable avatar reconstruction on camera poses and human poses. Hence, our reconstruction and
the subsequent rendering is not affected by the quality of the input poses used for reconstruction, as
shown in Fig.[I{a). Importantly, we represent our reconstruction in the canonical T-pose, which can
be animated to arbitrary novel poses without any post-processing. To obtain the canonical T-pose
representation, we design a dual-branch model that captures observed details and inpaints missing
regions. Specifically, our model consists of two types of branches, a template branch and image
branches. The template branch starts from an encoding of the shape in the canonical pose and
outputs Gaussians relative to the average SMPL-X template in T-pose. The image branches predict
pixel-aligned Gaussians (splatter images) in the same coordinate system as the template branch. Not
only can we model the fine details in the observed input images via the spatter images obtained from
the image branches, but we can also inpaint unseen regions via the template branch. For this, we
adopt an encoder-decoder architecture, similar to NoPoSplat [34]: the template and the input images
are independently embedded in each encoder and interact with each other via cross-attention in the
decoder. Our model is trained end-to-end using photometric losses and auxiliary regularization on
Gaussians’ 3D positions as well as linear blend skinning weights. We note that recent works such as
LHM [16] and IDOL [37] scale training to improve generalization, and, like our method, eliminate
the need for pose data. However, unlike IDOL and LHM which operate on a single input image,
we support multiple input views. More importantly, we introduce a dual-branch design. In contrast,
LHM and IDOL rely solely on a template branch, which subtly differs from ours in the template
encoding and the fusion of template embeddings and image features. We find the image branch
enhances reconstruction of details in observed regions.

We evaluate our method on THuman2.0, XHuman and HuGe100K and compare to the state-of-
the-arts. Our method reconstructs the avatars in high quality without any pose priors, significantly
outperforming state-of-the-arts that use predicted poses, as shown in Fig.[I{b), and on par with those
that use ground-truth poses.

Our contributions are twofold:

* We propose NoPo-Avatar, a novel model that reconstructs an animatable human avatar given only
input images. Our model does not use camera and human poses.

* We demonstrate that the reconstruction obtained without camera and human poses leads to high-
quality novel view and novel pose rendering.

2 Related Work

Generalizable human rendering from sparse inputs or a single image. Generalizable methods
learn inductive biases from large-scale datasets, enabling use of these methods in case of sparse inputs,
or even a single image. We categorize methods tackling this task into one-stage and multi-stage
methods. Multi-stage methods [29} [7} 2} [12} |5, 131}, 125]] usually generate multiview images or videos
using a 2D generative model such as a diffusion model, and then reconstruct the 3D representation



from the multiview images. One-stage methods adopt a feed-forward neural network to produce the
3D representation [8, 19,36} 10, 28, (38} 133} 14} 137, [16] or directly generate the representation with a
diffusion model given a single image as the condition [32]. Among these works, several [4} 9, 28 |16|
5., 138]] reconstruct in a canonical pose space, which enables animatation without post-processing such
as skeleton binding. Our approach is a one-stage method and requires only a single feed-forward
pass for reconstruction. We also reconstruct in the canonical pose space to support animation.

To maximize the use of human priors, most of the recent work [4, 9} |10} 28| 38| 33]] takes the
posed SMPL [11] or SMPL-X [14]] meshes as input and assumes that accurate human poses and
camera poses are available during test-time reconstruction. The SMPL/SMPL-X poses are used to
sample aligned features from the inputs explicitly or implicitly. While this assumption eases the
task, it also limits generalization to in-the-wild subjects, as accurate pose estimation either takes too
long or estimated poses are not accurate enough. More recently, RoGSplat [30] tackles the task of
generalizable rendering with inaccurate pose estimation. Differently, we eliminate the need for both
human pose and camera pose altogether and only operate on images and subject masks. Consequently,
our method is not only insensitive to the accuracy of input poses, but also saves the time required for
pose estimation.. The very recent two works IDOL [37]] and LHM [16]] also consider reconstructing
in the canonical pose space without use of human poses and camera poses. Our method differs
from IDOL and LHM in two main ways: 1) Our method operates on any number of input images,
while IDOL and LHM only address the single image setting, leaving an extension to multiple images
open. 2) We predict two sets of Gaussians, one in the projected UV space and the other aligned
with all foreground pixels in the input images, while IDOL and LHM only predict Gaussians in
SMPL/SMPL-X’s projected UV space. This enables our method to model the observed details.

Generalizable scene rendering without pose priors. Our setup aligns with recent efforts in
generalizable scene rendering without pose priors. Note that pose priors here refer to camera
poses only. The success of DUSt3R [26]] sheds light on pixel-aligned geometry estimation without
knowledge of the relative camera poses. This idea was adopted by generaliable rendering [34. 13} 124]],
since inaccurate camera localization can potentially lead to corrupted renderings.

While the above works reconstruct the scene in one input image’s coordinate system, our task is
inherently more challenging: the reconstruction is in a canonical T-pose which differs from the human
poses in input images. Use of the T-pose reconstruction is important as it enables us to animate new
poses without post processing.

3 NoPo-Avatar

Given input images {I,}_, I, € RA"*W'x3 and masks {M, N, M, € {0, I}HI W indi-
cating the pixels which correspond to a human subject, we aim to synthesize novel views/poses given
target camera extrinsics E, intrinsic K, and the target human shape and pose P = (3, 0). Here, N
is the number of input images, and H' and T/ denote the height and width of the input images.
The human shape 3 and pose @ are represented in SMPL-X’s format. Importantly, unlike prior
work [36l 10, 28]], our method does not use any human poses and camera poses of the input images.

To achieve this goal, we develop NoPo-Avatar, which consists of two modules: reconstruction and
rendering. Given target camera intrinsics K, extrinsics E, and human poses P, the rendering module
(Render) computes the target image and alpha opacity mask:

(I, M) = Render(G; E, K, P) )

from the reconstructed canonical 3D T-pose representation G. It is the output of the reconstruction
module (Recon), which operates on input images and subject masks, i.e.,

G =6"ug" =Recon({L,}}_;, {M,},). )

The reconstructed 3D T-pose representation G includes two sets of Gaussians represented as splatter

images [22]: G = {G, fi;’g from the template branch and G’ = {G/, ;; i\/:h_H:’ljvzfl from
the image branches. We will provide details regarding the two branches in Sec. HT W7 and
HT W are the height and width of the template branch and image branches, respectively. Each

element of the splatter image consists of the following components:
G* :(N*7S*7r*50*ah*aw*)a (3)
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Figure 2: Model architecture of the reconstruction module. The reconstruction module reconstructs
the canonical T-pose representation solely from images. It follows the encoder-decoder structure and
consists of two types of branches: a template branch and image branches. We show two views of
the predictions of each branch: the splatter images in the 2D format and their visualizations in 3D.
Gaussians predicted from all branches are combined and fed into the articulation and rendering.

which refers to either Gg;- or Géyij, and subsumes a set of variables: pu* € R? is the mean of the
Gaussian at location “-” in branch “*””, s* € R3 and r* € R* are the scale and rotation representated
via quaternions, o is the opacity, h* € RP®*3 refers to the spherical harmonics of degree Deg,

w* € R? denotes the LBS weights assigned to the bones with O being the number of bones.

We detail the reconstruction module in Sec. the articulation and rendering module in Sec.[3.2}
and we describe the training losses in Sec.

3.1 Reconstruction

The reconstruction module (Recon), defined in Eq. @), reconstructs the Gaussian primitives G in
the canonical T-pose space given N input images {I,,}_, and the corresponding subject masks
{M,,}_,. To achieve this we use the architecture illustrated in Fig.[2| Inspired by DUSt3R and its
follow-ups [26} 34, 23], we adopt an encoder-decoder architecture: the encoders embed each input
into tokens independently, and the decoders exchange information between inputs. Lastly, we use a
regression head to predict the Gaussian primitives from the tokens.

Our model consists of two types of branches: the template branch and N image branches, one for
each input image I,,, with n € {1,..., N}. Abstractly, the template branch captures the overall
structure of the human body and reconstructs the unseen regions of the subject, while the image
branches predict pixel-aligned Gaussians that focus only on the visible regions in the input images,
yielding a fine-grained but incomplete reconstruction.

Encoder: The template encoder is intended to capture articulated human-shape knowledge agnostic to
subjects identity —here, the average SMPL-X template in T-pose. To this end, we simply implement
it as a learnable embedding map FZ € R70 *Wo xC where HI and W{ denote the embedding’s
height and width, and C'its channel dimension. Since this embedding takes no input, it is identical for
all subjects and independent of the input images. The N image encoders share weights and embed
each input image I,, into tokens with a ViT-based architecture, i.e., F,Il,O = Enc/(I,) € RY o XWg xC
withn € {1,...,N}.

Decoder: The ViT-based decoders exchange information across all branches. Formally, let F}'
denote the tokens in the template branch, and let FfL , refer to those in the n-th image branch, while
b € {1,..., B} indicates the b-th decoder block. We compute the tokens as follows: At the b-th
decoder stage, the decoder block updates each feature—either F{ or Ffl ,—by cross-attending its
own feature to all other features from stage b — 1. Information across images and between images
and the template is exchanged and implicitly aligned—this is key to enabling pose independence
and allowing the template to “inpaint” missing content in unseen regions. Note, we employ separate



decoder blocks for the template and image branches, however, all N image-branch decoders are
multi-layer transformers with shared weights.

Prediction head: The last modules are the DPT-based [17] prediction heads. As before, we use
different heads for the template branch and the /N image branches. In the template branch, the
network predicts residuals relative to the SMPL-X T-pose template in the average shape. When added
to the rasterized template in UV space, this yields G7 in Eq. (2). The image branches are rather

straightforward: in the n-th image branch, we directly predict the Gaussian primitives {G/, ;; }flzlljvfl
in Eq. (2), except that we multiply the predicted opacities by the input subject mask to exclude the
background pixels from rendering. Here, H' and W are the height and width of the input image.
That is, we predict one Gaussian for each foreground pixel in the input image, ensuring that all
visible fine-grained details are captured by the representation. Note that the set of Gaussians in the
image branches G is in the canonical space (T-pose), not the space of the input poses, making it

independent of the human poses in the input images.

Finally, we merge the predicted template and image Gaussians into our final reconstructed avatar by
taking the union of the two sets: G = gTugl.

3.2 Articulation and Rendering

We now describe how to render the target image using our recovered avatar G, given target ex-
trinsics E, intrinsics K, and human shape and pose P = (3, 60). We use two steps: articulation
and splat rendering. In the articulation step, we warp the canonical T-posed Gaussian avatar G
into an articulated Gaussian under the target pose via linear blend skinning, i.e., Gp = LBS(G; P),
where the LBS weights for each Gaussian are part of the reconstruction module’s output (shown
in Eq. (3). Given the warped Gp, we render the image and its mask via Gaussian splatting,
(I, M) = SplatRender(Gp; E, K). Hence, the Render function defined in Eq. (I) can be written
as: Render(G; E, K, P) = SplatRender(LBS(G; P); E, K). We discuss the details of this stage
and the justification of the design choices in the appendix.

3.3 Training losses

The reconstruction and rendering modules are end-to-end trainable. During training, we assume
that we have the corresponding camera poses and human poses for the target ground-truth images,
which are only used for rendering during training. Neither at training-time nor at test-time does
reconstruction depend on any poses of the input images.

Our training loss is
L = Ly + alpipsLlpips + Qchamfer Lehamfer + aproijroj + aips Libs, 4

where a, are hyper-parameters.

Linse and Lypips are the MSE loss and the LPIPS loss between the rendered image I and the ground
truth Ly, Lehamfer i the chamfer distance between the Gaussians from the template branch and the

image branches G” and G'.

We use two additional losses. First, the projection loss Ly..; encourages each image-branch Gaus-
sian can well explain its corresponding image. It consists of two terms: 1) MSE and LPIPS
between the n-th input image and the rendering using only Gaussians from image branches. 2)
{5 distance between each pixel (i,j) and the projected mean of its predicted Gaussian G{L,ij:
H(i,j) — Project (LBS(NLWWTIL,W P);K,E) Hz Here, LBS(u; w, P) warps p via linear blend
skinning with weights w under pose P, and Project(u; K, E) projects the 3D point p to 2D using
intrinsics K and extrinsics E. Second, the LBS loss Ly, which encourages the predicted LBS weights
w in Eq. (3) to follow the pseudo LBS weights obtained from the SMPL-X mesh provided in the
training data. We call the LBS weights “pseudo” as they are rasterized from the SMPL-X mesh
without clothes and are not strictly aligned with the clothed bodies.



w/ ground-truth input poses w/ predicted input poses w/o input poses
4 ) i Y i 7y ‘- § ) I L)
.r" ‘ gh‘% .: , ‘/\— .t : ‘f‘_ .3»/ p ‘;, ) }C‘ =0 | "‘:,:_
\ L - : L -\ 2 | 4 Y, -+ & = é e’ N
’ B
. L L ® ] e
> F ~=7 e — P k i~
7 | 23 ’ > L ATz Sl 24 Lo
& = |#1E) "":;r:g/fsg = a2 5::)

: l

Ground truth GHG LIFe-GoM GHG LIFe-GoM Ours

Figure 3: Novel view synthesis from sparse input images on THuman2.0. Our approach performs
on par with the state-of-the-art in the lab setting (with ground-truth input poses in the reconstruction
phase in test-time). Sometimes, ours even captures sharper details. In the real setting (with predicted
input poses in the reconstruction in test-time), the rendering quality of GHG and LIFe-GoM is largely
decayed. However, our approach without pose priors does not suffer from the bad poses.

4 Experiments

4.1 Experimental setup

Datasets. We train our model on THuman2.0 [35]], THuman2.1 [35]], and HuGe100K [37]]. For
evaluation purposes, we adopt THuman2.0, HuGel100K and XHuman [21]. We follow GHG’s
split [10] on THuman2.0. On HuGe 100K, we use the scripts provided by IDOL [37]] and split each
directory into 10 validation subjects, 50 test subjects and the rest for training. Please see the appendix
for details.

Baselines. For novel view synthesis from sparse view images we compare to GoMAvatar [27], 3DGS-
Avatar [15)], iHuman [13]], NHP [8], NIA [9]], GHG [10], and LIFe-GoM [28] on THuman2.0. We use
three input images in this task. Note that all baselines use camera poses and human poses as input
for reconstruction in test-time, while we do not. Among the baselines, GoMAvatar, 3DGS-Avatar
and iHuman require to be optimized for each subject, while others and our method are generalizable.
We evaluate two test-time settings: 1) Use of human poses predicted by the state-of-the-art SMPL-X
prediction model MultiHMR [[1]] for test-time reconstruction, which is a realistic real-world setup; 2)
Use of ground truth human poses provided by the dataset for test-time reconstruction, which is not
a realistic real-world setup, but nonetheless insightful. The target rendering poses in test-time are
always ground-truths from THuman2.0. We also evaluate on the XHuman dataset for cross-domain
novel view synthesis and novel pose synthesis, which we defer to the appendix due to the page
limit. For the task of novel view synthesis from a single image, we compare to IDOL [37]] and
LHM [16] on HuGe100K. Like our approach, both methods eliminate the need for input poses during
the reconstruction phase at test-time. We train IDOL and our method with the same training set on
HuGel00K. Since LHM does not open-source the training script and the training dataset, we are
unable to compare fairly. Hence, we directly assess the released checkpoints on HuGe100K’s test set.

Evaluation metrics. We assess PSNR, LPIPS*, and FID following GHG [10] on THuman2.0 [35]],
XHuman [21]], and HuGe100K [37]. We additionally compare the reconstruction time, i.e., the time
spent to compute the 3D representation given input images.

4.2 Comparisons with baselines

Novel view synthesis from sparse images. We evaluate novel view synthesis from sparse images on
the THuman2.0 dataset in Tab. [T} using three input views. Other than input images and subject masks,
for reconstruction at test-time, GHG and LIFe-GoM also use the predicted SMPL-X poses from
MultiHMR [[1]], the state-of-the-art SMPL-X predictor. For rendering, all methods use the ground-



Table 1: Comparisons to novel view synthesis from sparse input images on THuman2.0. All the
baselines take the predicted poses in reconstruction in test-time from MultiHMR [1]] as inputs. We
compare in the setting of no test-time optimization, only optimizing the camera poses, and optimizing
both camera poses and human poses in test time. Our approach, without pose priors, does not suffer
from the errors in the predicted poses. Therefore, ours significantly outperforms the baselines.

w/o test-time optim. w/ test-time cam pose optim. | w/ test-time all pose optim.

PSNRT LPIPS*| FID| | PSNRT LPIPS*, FID| | PSNRT LPIPS*| FID|

GHG 16.96 185.67 71.46 19.50 160.52  70.37 - - -
LIFe-GoM 19.70 146.19 63.34 20.52 142.53 62.78 22.59 130.71 60.74
Ours 22.49 105.45 42.19 22.94 103.94  42.25 25.33 92.32  39.66

Table 2: Comparisons on novel view synthesis from sparse input images in reconstruction in
test-time on THuman2.0. All the baselines take the ground-truth poses as inputs, which is an
unrealistic setting in real-world applications. We use three images as inputs. We compare to baselines
w/o test-time pose optimization in the first block and w/ test-time pose optimization in the second
block, where we mark the methods with stars. Our approach, without any pose priors, achieves
comparable PSNR and better LPIPS* and FID than baselines with ground-truth input poses.

\ Method \ PSNRT LPIPS*| FID|

w/o test-time | NHP [§] 23.32 184.69 136.56
optimization | NIA [9] 23.20 181.82 127.30
GHG [10] 21.90 133.41 61.67

LIFe-GoM [28]] 24.65 110.82 51.27

Ours 22.49 105.45 42.19

w/ test-time LIFe-GoM* [28]] 25.87 108.67 50.78
optimization | Ours* 25.33 92.32  39.66

truth camera poses and human poses provided by the dataset. Due to potential misalignments in scale
and human pose between the predicted poses (used during reconstruction) and the ground-truth poses
(used for rendering), we further conduct test-time pose optimization. Specifically, we optimize the
target rendering camera and human poses while keeping the reconstructed representation fixed. This
procedure is only used for evaluation purposes. Notably, since GHG is designed solely for novel view
synthesis and lacks support for animation, it cannot accommodate changes in human pose during
test-time optimization. Accordingly, we report three sets of numbers: w/o test-time pose optimization,
w/ test-time camera pose optimization, and w/ test-time camera and human pose optimization. Here,
“pose” refers to the target pose used in rendering. Our approach consistently outperforms GHG and
LIFe-GoM by a margin in all evaluation protocols. We decrease LPIPS* by over 35 points and FID
by over 20 points compared to LIFe-GoM. We further compare with the baselines qualitatively in
Fig.[3] When the input poses are insufficiently accurate, the baseline methods struggle to reconstruct
high-fidelity details, particularly in fine-grained regions such as the face and feet. In contrast, our
approach remains unaffected.

To complete the quantitative comparison, we also report the standard evaluation setting on THu-
man2.0 (10} 28]] in Tab. 2} poses for reconstruction and rendering are both ground truths provided by
the dataset. Note that this setting is unrealistic in real-world applications, since the ground-truth input
poses are not available for reconstruction at test-time and must be predicted by off-the-shelf tools.
Even without any pose priors as inputs, our approach improves upon methods that use ground-truth
poses in LPIPS* and FID. Our PSNR is slightly worse than the baselines. This is because PSNR
focuses more on pixel-level accuracy. The pose priors provide better alignment between the canonical
reconstruction and the target poses (same as input poses). Test-time optimization for target poses in
rendering can resolve the potential ambiguity in our approach, as shown in the bottom part of Tab. 2}
The qualitative comparisons in Fig. [3} shows that our method can 1) capture details better than the
baselines, e.g., the prints on the back of the second person; and, aided by the two-branch design, 2)
improves inpainting of unseen regions, e.g., the pants in the first example.



Table 3: Comparisons on novel view synthesis from a single image on HuGel00K. All methods
do not take input poses in the reconstruction phase. Our approach achieves better PSNR, LPIPS* and
FID compared to IDOL. We are not able to fairly compare to LHM due to missing training scripts of
LHM. However, our reconstruction is much faster than LHM.

Method \ PSNRT LPIPS*| FID| Reconstruction time|
IDOL [37] 20.89 111.68 1691 311.89ms
Ours 23.15 90.63 15.56 321.58ms

In terms of the reconstruction time, our method needs 1.32s on an NVIDIA A100 when processing
three input images of resolution 1024 x 1024. This is slightly slower than LIFe-GoM’s 908ms, but
still faster than the fastest per-scene optimization approach, iHuman, which requires more than 7s.

Novel view synthesis from a single image. For
novel view synthesis from a single image we
compare to two recent works, IDOL [37] and
LHM [16]. All three methods are similar in
three aspects: 1) They do not require poses as
input for reconstruction; 2) They need SMPL-
X shape and pose for rendering; 3) The recon-
structions are in a pre-defined canonical pose.
We split HuGel100K [37] into training, valida-
tion and test set using the scripts provided by
IDOL. We report the performance on the test
set in Tab. [3] and qualitative results in Fig. [
We use the same training setting for IDOL and
our method. Since LHM training code wasn’t
available prior to the submission, we are unable
to conduct a fair comparison. Therefore, we
directly apply the pretrained weights provided
by LHM to HuGe100K’s test set. Our method
improves upon IDOL, especially in PSNR and
LPIPS*. Benefitting from the image branch, our method captures observed details better. To verify,
we assess results on HuGe100K data separately for all-observed views (front-facing) and for views
with little/no overlap with the input image (three back views, camera rotated by at least 120 degree)
in Tab.[] The larger gain in all-observed views than views with little/no overlap with the input image
(in LPIPS*, -38.72 vs. -19.37 over IDOL, -56.35 vs. -37.84 over LHM) highlights efficacy of our
image branch in capturing observed details. We also measure the reconstruction time, i.e., the time
taken to compute the canonical representation. Our method uses 321.58ms, taking a single image of
resolution 896 x 640 as input. This is similar to IDOL, and much faster than LHM.

Ground truth LHM-1B IDOL Ours

Figure 4: Comparisons on novel view synthesis
from a single image on HuGel00K. Our model
details better than IDOL and LHM. Meanwhile, it
can also reconstruct the challenging clothes, such
as long dresses.

We further conduct the experiment of the single-view setting on THuman2.0 in Tab.[5] We use white
background following IDOL’s default setting. Same as on HuGe100K, we train our approach and
IDOL on THuman2.0 while not finetuning LHM. Our approach significantly outperforms IDOL and
LHM on PSNR, SSIM and LPIPS*.

4.3 Ablation studies

We demonstrate the effectiveness of the key design choices. We use THuman?2.1 as the training set
and 100 held-out subjects from THuman2.0 as the test set in this section.

Ablations on the template branch and image branches. Our model consists of two branches: a
single template branch that injects prior knowledge about the human and inpaints the missing parts,
and NV image branches that output pixel-aligned Gaussians to ensure the fine-grained details observed
in the input images are represented. We demonstrate the importance of both types of branches in
Tab. [6]and Fig. 5left). When input images are very sparse, e.g., one single input image (N = 1), the
template branch plays a vital role in inpainting large unseen regions. This is shown in the first block
of Tab. [6} the model with only image branches performs the worst, especially in LPIPS* and FID, as
it fails to inpaint the missing regions; the model with only a template branch yields results similar to



Table 4: Comparisons on novel view synthesis from single image dividing views to all-observed
views and views with little/no overlap with the input image on HuGel00K. We split the test views
by their overlap with the input image. We evaluate approaches on all-observed views (front-facing,
same view as the input images) and views with little/no observation (three back views, camera rotated
by at least 120 degree from the input views). Compared to the baselines, our approach gains larger in
all-observed views than views with little/no overlap with the input image highlights efficacy of our
image branch in capturing observed details.

All-observed views Views with little/no observation
Method PSNRT LPIPS*| FID| | PSNRT LPIPS*] FID|
IDOL [37] 23.16 88.23 20.30 20.38 119.87 26.99
Ours 26.64 4951 14.81 22.53 100.50 24.14

Table 5: Comparisons on novel view synthesis from a single image on THuman2.0. All methods
do not take input poses in the reconstruction phase. Our approach achieves better PSNR, LPIPS* and
FID compared to IDOL.

Method | PSNRT LPIPS*| FID|
IDOL [37] 23.47 66.62 83.37
Ours 24.64 49.69 34.82

the model with all branches. When we increase the number of input images to 3, the image branches
model most of the regions in better detail. Using the template branch only fails to capture the fine
textures, hence performing the worst in FID. The model with both types of branches attains the best
overall results across different numbers of inputs.

Ablations on auxiliary losses Lpro; and L in Eq. (@). We report the quantitative results in Tab.[7]
The projection loss Lyy,j encourages the image branches to predict pixel-aligned Gaussians so that
the observed details are modeled. Without the project loss, the image branches do not output any
visible Gaussians. Only the coarse template Gaussians are used in the rendering, which results in
missing fine-grained textures, as shown in Fig. [5(middle).

Our approach reconstructs the avatar in the canonical T-pose, different from the poses in the input
images. Together with the predicted linear blend skinning weights, this reconstruction can be easily
animated to novel poses. Removing L,y does not affect novel view synthesis, but the image branches
sometimes reconstruct in the pose shown by the input images instead of the canonical T-pose. Further,
the model cannot learn appropriate LBS weights, affecting novel pose synthesis. We visualize the
learned LBS weights and the canonical space of the corresponding image branch in Fig. 5{right).

Lehamer in Eq. (@) speeds up convergence of the image branches at the beginning of the training, but

we do not find it useful in the final model. ~ '
4.4 Zero-shot downstream tasks i / $ 5
In addition to novel view and pose synthesis, our model can /
potentially generalize to downstream tasks in a zero-shot 7 -
manner—that is, without being explicitly trained for any of _
them. ( '
Part segmentation. We predict the pixel-aligned linear Y /
blend skinning weights together with other Gaussian prim- Inputimage PO Onestage Twostages
itives in the image branches. The weights can be converted . segmentation Pose estimation

. L igure 6: Zero-shot downstream
to segmentation masks, which indicate the body part that

. . tasks. Our model can be adapted to
a pixel belongs to. In the second column of Fig. [6] we . pted
. part segmentation and pose estimation
showcase the parts in different colors.

without finetuning.




Table 6: Ablations on the template branch and image Table 7: Ablations on auxiliary losses
branches. Taking N = 1 or N = 3 input images, we train Lpyoj and Lj,s. We compare three train-
and evaluate our approach with the template branch only,ing losses: (a) W/0 Ly, (b) W/0 Lips
image branches only and both types of branches. Using and (c) w/ all losses. Without L;, the
both types of branches offers the best performance across image branches cannot predict pixel-
different numbers of input images. aligned Gaussians. Without Ly, the

N inputs | Branch types | PSNRT LPIPS*| FID| image branches fail to reconstruct in
2136 12146 56,01 the canonical T-pose.

21.51 134.96  66.53
21.41 12436 5778  Lyy Lis | PSNRT LPIPS*| FID]

22.13 108.85 47.60 X v 22.09 110.37 4898

Template branch only
Image branches only
All branches

Template branch only
Image branches only
All branches

1

22.03 109.23  42.05 v X 22.18 107.28 43.17
2223 106.98 42.18 v v 2223 106.98 42.18

(98]

LBS  Canonical LBS Canonical
weights rendering  weights  rendering

P i b i Ad 8-4 -8

TAEREREL !J

Ground Tem 1ate Image branch All branches| Ground w/o Loroj W/ Lproj 'input W/o Lips ’ W/ Lips :
truth branch only only truth

Figure 5: Ablation studies. Left: Ablations on the template branch and image branches. Taking
a single image as input, template branch only cannot model fine details, such as the prints on the
T-shirts (orange boxes). Image branches only miss unseen regions (green boxes). Using both branches
offers the best overall quality. Middle: Ablation on L. Without Ly, only the template Gaussians
are effective in the rendering, leading to blurry results. Right: Ablation on L. Without supervised
with the pseudo LBS weights, the image branch fails to reconstruct in the canonical T-pose and to
predict the correct LBS weights.

Human pose estimation. In the image branches, we also predict pixel-aligned 3D points in the
canonical T-pose. This naturally provides correspondences between the 3D canonical points and
the 2D pixel coordinates. Using correspondences, we can optimize the body poses, as shown in the
third column of Fig. [6](“Pose estimation (one stage)”). Since there can be multiple valid poses that
satisfy the correspondences, we then adopt a second stage for pose optimization, where we optimize
the poses via photometric losses, i.e., we treat P initialized from the first stage as the optimizable
parameters in Eq. (I). The results are shown in the last column of Fig. [6] (“Pose estimation (two
stages)”’). We highlight the improved poses with orange boxes.

5 Conclusions

We propose NoPo-Avatar, a novel model that reconstructs the canonical representation from sparse
input images, while not using any human poses. Our model consists of two branches: a template
branch that injects prior knowledge about human shapes and inpaints the missing parts, and image
branches that predict pixel-aligned Gaussians to depict the fine-grained details. Our approach
achieves comparable results to state-of-the-arts which use ground-truth pose priors during test-time
reconstruction, and significantly outperforms those that use predicted pose priors during test-time
reconstruction.

Broader Impact. The proposed method can benefit AR/VR applications. Concerns remain regarding
the identity and authenticity of reconstructed avatars. To address these issues, we advocate for the
use of strict licensing agreements and responsible usage practices for the proposed methods.

Acknowledgements. Work supported in part by NSF grants 2008387, 2045586, 2106825, NIFA
award 2020-67021-32799, and OAC 2320345.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims in the abstract and introduction match the main contributions.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations and possible solutions in the supplementary due to
page limits.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide essential implementation details in the main paper and the supple-
mentary.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release the codes and model weights upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the detailed experimental settings in the main paper and the
supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the training details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in the paper.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly respected and credited the assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix — NoPo-Avatar: Generalizable and Animatable Avatars from
Sparse Inputs without Human Poses

The appendix is structured as follows:

* We provide implementation details in Sec. [A]
* We elaborate on the baseline setup and experimental details in Sec.

* Due to space limitations in the main paper, we clarify the experimental settings and provide
additional results in Sec.

¢ We discuss the limitations and future works in Sec.

We also provide a webpage index.html in the supplementary. It lists videos for freeview rendering
comparisons to baselines, novel pose synthesis, and cross-domain generalization.

A Implementation Details

A.1 Articulation

We describe in detail how we articulate the canonical representation into pose P = (3, ), where
(3 is the shape and 0 is the pose represented by the orientation of each joint. We assume that the
canonical representation G follows the skeleton of the average template shape in T-pose, i.e., the
skeleton acquired by setting the shape parameters and pose parameters to all zeros in SMPL-X. When
warping with pose P, we first reshape the canonical representation consuming the target shape 3,
and then rotate the reshaped Gaussians in T-pose by the pose 6.

Step 1: Reshaping by 3. People are of various heights and bone lengths. To reshape the canonical
representation, we first compute the skeleton of the average shape and the skeleton of shape 3, both
in T-pose. Then we calculate the transformation between each pair of corresponding bones in two
skeletons, denoted as {s;, R;, ti}?zl. Here, s; € R accounts for the scaling factor of the bone length,
and R; € SO(3) and t; € R? are the rotation and translation, respectively. O denotes the number
of bones. In Eq. (), we define the LBS weights as w* = {w*}? , € RY. We then transform the
Gaussian’s mean p*, and rescale and rotate a Gaussian’s covariance:

o

o T (@]
WP =S (s R 1), 5P = (Z wi‘i(siRi)> RS S R (Z w.*i(SiRi)> e
i=1

=1 i=1

R*T'S*T S* R* is the original covariance matrix, where R* and S* are the matrix form of the predicted
rotation and scale of the Gaussian. We rescale the covariance matrices accordingly to avoid artifacts
due to reshaping.

Step 2: Rotating by 6. 1*? and X* are still in T-pose. We then warp it by pose 6, which represents
the orientations of each joint. This step is a standard linear blend skinning. However, we need to
convert the predicted LBS weights associated with bones w* € R? to weights associated with joints.
As the skeleton is defined in a tree structure, each bone connects a parent joint and a child joint. We
simply assign the LBS weights associated with the bone to its parent joint. We illustrate this choice
in Fig.

Alternatively, the reconstruction module could directly predict the canonical representation in the
target shape, thereby eliminating the need for Step 1 in the articulation. However, we find that
decoupling the shape from the canonical representation and retaining Step 1 is empirically important.
Due to the decoupling, the canonical representation G from the reconstruction stage follows a
fixed skeleton, i.e., the skeleton of the average template shape in T-pose, which alleviates the scale
ambiguity inherent in this task. We show the artifacts without decoupling the shape from G and Step
1 in Fig.[§(middle) and the improved rendering quality with our design choice in Fig. [§]right).

At test-time, we use the predicted or user-specified shape and pose as 3 and 6, similar to IDOL [37]]
and LHM [16]. These parameters are only used in the articulation and rendering stage, not the
reconstruction stage. Importantly, our approach remains pose-free in the reconstruction stage.
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Figure 7: Converting LBS weights assigned to bones to LBS weights assigned to joints. We
illustrate the LBS weights around the pelvis root. Our model predicts the LBS weights corresponding
to the three bones connected to the pelvis root. The pelvis root serves as the parent joint of three child
joints. The LBS weights of the three bones (left) are aggregated and reassigned to the pelvis root
(right).
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Figure 8: Decoupling the shape from the canonical representation. Without the decoupling
(middle), the model sometimes fails to reconstruct the thin structures, e.g., hands. Decoupling the
shape from the canonical representation eases the reconstruction ambiguity.

A.2 Training and Inference Details

The learnable embedding in the template encoder F is in the shape of 16 x 16 x 1024. We use
Ulpips = 005, Olchamfer — 0.1, Qlproj = 1.0, and Ulps — 0.01in Eq @)

The model is pretrained from NoPoSplat [34]. To reduce training time, we first train using a low-
resolution template and images. The model is first trained at a resolution of 256 x 256 for 300K
iterations, then upsampled to 512 x 512 for another 300K iterations, and finally fine-tuned at full
resolution for an additional 50K iterations. We train for 80K iterations in the full resolution of
896 x 640 on HuGel00K.

We use a batch size of 4 for all experiments on THuman2.0, THuman2.1, and THuman2.1 +
HuGe100K. The training process takes roughly 12 days, 4 days for each stage. For the comparison
to LHM and IDOL on HuGe100K, we use a batch size of 16 in the first two stages and 8 in the last
stage.

We use two NVIDIA L40S for training at a resolution of 256 x 256, four NVIDIA L40S for
512 x 512 resolution training, and four NVIDIA H200 for the last stage, i.e., for full resolution
training. Inference, including both reconstruction and rendering, requires approximately 24GB of
GPU memory for three input images at a resolution of 1024 x 1024, and around 11GB for a single
image at 896 x 640.

A.3 Zero-shot Human Pose Estimation

We show that our model can perform human pose estimation via analysis-by-synthesis in a zero-shot
manner in Sec. [#.4] For this, we use a two-stage optimization process.

21



Stage 1: Optimization with projection losses. Recall that the image branches in our model predict
pixel-aligned Gaussians, which means that we obtain one Gaussian with mean u{m- ; and LBS weights

I

wy, ;. for each pixel (Z,j) in the n-th image branch. We optimize for the human shape and pose

n,ij
P by minimizing || (i,j) — Project (LBS(u,Iw»j, w{mj7 P);K, E) ||; summed over all foreground
pixels, where LBS(u; w, P) warps p via linear blend skinning with weights w under pose P, and
Project(u; K, E) projects the 3D point u to 2D using intrinsics K and extrinsics E. We set E to

the identity matrix and let K have fixed focal lengths and principal points.

Stage 2: Optimization with photometric losses. There can be multiple valid poses that satisfy
the correspondences. Meanwhile, the reconstruction from image branches is sometimes unreliable
for fine-grained structures. We therefore optimize with a photometric loss in the second stage.
Specifically, we treat P as the learnable parameter, initialized by the result of the first stage. We warp
the Gaussians by P and fixed LBS weights, render the images, and compute the photometric loss
between the rendered images and the ground-truth, which is the image we estimate the pose from in
pose estimation.

As is shown in Sec.[4.4] optimizing with projection losses solely already leads to good results. This is
a side benefit from our design choice of predicting pixel-aligned Gaussians from the image branches.
Adding the second stage which optimizes with photometric losses further improves the estimation.
Note that optimizing with photometric losses alone does not lead to meaningful results, since it
requires a good initialization.

B Experimental Details

B.1 Datasets

THuman2.0. THuman2.0 provides 526 3D scans as well as the corresponding SMPL-X parameters.
We follow GHG [[10] to render them into 64 multiview images in the resolution of 1024 x 1024 and
split them into 426 subjects for training and 100 for evaluation. THuman?2.0 uses a special license
agreemenﬂ which we follow.

THuman2.1. THuman2.1 extends THuman2.0 to ~2500 scans. Note that the 526 scans from
THuman2.0 are included in THuman?2.1. The newly added subjects are combined with THuman2.0’s
426 training subjects as the new training set. The license agreement is the same as THuman2.0.

XHuman. XHuman consists of 20 subjects. It provides the 3D scans and corresponding SMPL-X
poses of multiple motion sequences for each subject. We follow LIFe-GoM [28] to evaluate the
cross-domain generalization in novel view synthesis on XHuman. The pose estimator MultiHMR
fails in one sample so that we cannot get the estimated input poses for the reconstruction phase of
GHG and LIFe-GoM. So we remove that sample from the test set. We additionally evaluate novel
pose synthesis on the XHuman dataset. For each subject, images from the first frame of a sequence
are used as input. The two sequences designated as test sequences are selected as target poses for
novel pose synthesis. For each target pose, we render images from three different views. XHuman
uses a special license agreemenﬂ which we follow.

HuGel00K. HuGelOOK is a synthetic dataset that contains more than 100K subjects. For each
subject, it provides a video of 360-degree freeview rendering, camera poses of each frame and
the SMPL-X parameters. We use SAM [6] to acquire the subject masks. The dataset groups the
subjects into directories. We follow the scripts provided by IDOL [37/]] and split each directory into 10
validation subjects, 50 test subjects and the rest for training. We use frame 19 as the input view and
sample 6 views as the target views for evaluation. HuGe100K uses DeepFashion’s licenseﬂ which
we follow.

B.2 Pose Estimation

The baselines, including GHG [10] and LIFe-GoM [28]], require camera poses and human poses of
the input images as input for the reconstruction phase. As mentioned in the paper, the ground-truth

"https://github.com/ytrock/THuman2.0-Dataset ?tab=readme-ov-file#agreement
Zhttps://xhumans.ait.ethz.ch
*https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
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poses are typically not available in real applications. Instead, the poses have to be estimated by
off-the-shelf tools prior to reconstruction.

We choose MultiHMR [[1]] as the pose estimator for all our experiments requiring estimated poses.
MultiHMR is the state-of-the-art end-to-end pose estimator. Different from RoGSplat [30], we do
not use EasyMoCa;ﬂ as the pose estimator, since EasyMoCap requires calibrated camera poses,
which are unavailable in real settings. Complex pose estimation pipelines such as the one used in
ExAuvatar [21] are also not preferred. Though accurate, they take over 20 minutes to acquire the poses
from a monocular video, which is impractical in real-world applications.

MultiHMR predicts per-image poses. Since LIFe-GoM can take images with different poses as
input, we feed the poses independently predicted from each view as the input poses to LIFe-GoM.
GHG, however, must take multiview images with the same pose. Therefore, we use the human poses
predicted from one view (most frontal view) as the input human pose and register the other views.

B.3 Additional Information on Test-time Pose Optimization

We perform test-time optimization of both camera pose and human pose in Tab. [T]and Tab. 2] In
Tab. [T} we use predicted poses for GHG and LIFe-GoM during test-time reconstruction. During
rendering, we always use the ground-truths from the dataset as the target poses for evaluation. The
poses in the reconstruction stage may not align with the poses in the rendering stage. For example,
the predicted poses assume a tall person photographed by a faraway camera, while the ground-truth
target poses assume a shorter person captured by a closer camera. We want to rule out the potential
drop in the evaluation metrics due to such misalignment. Though not taking any poses in the test-time
reconstruction, our approach may also have the same misalignment between the reconstruction and
the rendering poses. Therefore, we optimize the target camera poses and human poses only for
evaluation purposes. We similarly apply test-time optimization to our method, as shown in Tab. 2}
and also apply it to LIFe-GoM using ground-truth input poses for a fair comparison.

C Addtional Experiments

We present additional experiments, including cross-domain generalization results, a quantitative
analysis of how different types of noise in input poses affect baseline performance during test-
time reconstruction, and evidence that injecting noise during training does not necessarily enhance
robustness to noisy poses at test time. Additional qualitative video comparisons are provided in
the supplementary material at index.htm1l.

C.1 Cross-dataset Evaluation With Sparse Images as Input

We show results of experiments with different training settings in Tab.[8] We choose three training
settings of different scales: 1) THuman2.0 which has 426 subjects; 2) THuman2.1 which has 2345
subjects, around 5x the scale of THuman2.0; 3) THuman2.1 + HuGe 100K which has over 100K
subjects, over 200 x the scale of THuman2.0. Meanwhile, we evaluate on three settings: 1) In-domain
evaluation on novel view synthesis: The test set is 100 subjects in THuman2.0. We call it in-domain
since the training and test sets are both from THuman2.0. 2) Cross-domain evaluation on novel view
synthesis: The test set consists of subjects from XHuman, which differ from the training set. 3)
Cross-domain evaluation on novel pose synthesis: The test set is also from XHuman, but we evaluate
novel poses.

For both in-domain and cross-domain evaluation, novel view synthesis or novel pose synthesis, ours
consistently outperforms LIFe-GoM with predicted input poses.

More importantly, we find that our method benefits from scaling up, especially in the cross-domain
evaluation. When switching the training data from THuman2.0 to THuman?2.1, our approach improves
by 0.6 in PSNR for novel view synthesis and by 0.4 for novel pose synthesis in the cross-domain
evaluation. Similar improvements can also be observed in LPIPS* and FID scores: LPIPS* improves
from 129.04 to 119.84 and FID improves from 47.58 to 41.55. However, LIFe-GoM, which incor-
porates more hand-crafted inductive biases, does not exhibit such a scaling ability. Equipped with
an even larger dataset, such as HuGel100K, we also observe an improvement in PSNR. But LPIPS*

*https://github.com/zju3dv/EasyMocap
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Figure 9: Novel pose synthesis and cross-domain generalization from sparse input images using
different training set sizes. Our approach scales with the size of the training set, achieving improved
identity recovery, whereas LIFe-GoM does not exhibit this behavior.

Table 8: Comparison on in-domain evaluation and cross-domain generalization using different
training set sizes. We evaluate in-domain novel view synthesis on THuman2.0 and cross-domain
novel view synthesis and novel pose synthesis on XHuman. The input poses to LIFe-GoM are
predicted. Our approach improves with larger-scale training data, while LIFe-GoM does not. The
lines labeled with * indicate results w/ test-time pose optimization. We optimize both camera poses
and human poses to eliminate the misalignment between the poses used during the reconstruction
and the target poses used for rendering. In all settings, ours consistently outperforms LIFe-GoM.

Training set THuman2.0 THuman2.1 THuman2.1 + IDOL
PSNRT LPIPS*| FID| | PSNRT LPIPS*| FID| | PSNRT LPIPS*| FID|
In-domain evaluation on THuman2.0, novel view synthesis
LIFe-GoM 19.70 146.19 63.34 19.41 14775 62.11 19.50 15421 67.99
LIFe-GoM* 23.01 129.56  60.68 22.86 128.34 58.96 22.65 139.30  65.77
Ours 22.49 105.45 42.19 2223 106.98 42.18 2241 114.14 48.69
Ours* 25.33 9232  39.66 25.94 87.94 3845 25.73 97.39 46.07
Cross-domain evaluation on XHuman, novel view synthesis
LIFe-GoM 20.94 136.42  56.02 20.50 141.24  59.94 20.60 153.43  69.54
LIFe-GoM* 24.39 116.25 52.19 24.22 117.07 54.43 2391 132.16 64.47
Ours 20.96 129.04 47.58 21.56 119.84 41.55 22.52 11495 4359
Ours* 25.05 100.86 41.82 26.23 91.17 37.41 26.70 92.18 40.05
Cross-domain evaluation on XHuman, novel pose synthesis
LIFe-GoM 20.95 132.86 45.22 20.49 137.62  47.69 20.56 147.52  55.05
LIFe-GoM* 23.98 116.42 42.64 23.70 117.81 44.37 23.56 129.09 52.01
Ours 20.93 130.89 38.65 21.36 12496 34.67 21.74 12491 38.27
Ours* 24.79 103.09 34.68 25.48 97.81 31.79 25.76 99.12  35.13

and FID do not improve further. This is likely because HuGe100K synthesizes multiview images of
avatars using diffusion models. The multiview consistency is hence not guaranteed. Inconsistency in
the training data may induce blurred rendering, which eventually affects perceptual-based evaluation
metrics. We showcase the scaling ability qualitatively in Fig.[9} Since THuman2.0 and THuman2.1
only contain Asian people, our approach may not generalize well to other ethnicities. Our approach
benefits from the increasing diversity in HuGel00K and reconstructs better in the cross-domain data.
LIFe-GoM, due to hand-crafted inductive biases in its architecture, works better when trained with a
small-scale dataset.

C.2 Comparison of Different Noise Levels in the Input Poses During Test-time Reconstruction

In Fig.[T[a), we show that the baselines including GHG and LIFe-GoM are sensitive to noise in input
poses during test-time reconstruction. We achieve this by injecting Gaussian noise or by predicting
the input poses. We provide the quantitative results of injecting Gaussian noise or using predicted
poses in Tab. [9] matching the results in Fig. [T(a). We also provide a qualitative comparison with
LIFe-GoM under noisy input poses in Fig.[I0] As the noise level of the input poses increases during
test-time reconstruction, LIFe-GoM’s performance degrades noticeably. In contrast, our method,
which does not rely on pose priors, remains robust and unaffected by such noise.
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Table 9: Comparison of different noise levels in input poses during test-time reconstruction.
GHG and LIFe-GoM take input camera and human poses during test-time reconstruction. We
evaluate their robustness to noisy input poses by injecting Gaussian noise into ground-truth poses or
by predicting the input poses. For each Gaussian noise level, we average over 5 runs and report the
means and standard deviations. Our method, which does not take any pose priors, outputs the same
result, regardless of the noise in input poses. The numbers reported in this table are the same as those

in Fig.[T(a).
Noise level No noise std=0.01
Method PSNR?T LPIPS*| FID| PSNR?T LPIPS*| FID|
GHG 21.90 133.41 61.67 | 21.2840.04 136.714+0.25 62.06+0.24
LIFe-GoM 24.65 110.82 51.27 | 22.954+0.03 118.344+0.21 52.874+0.08
Ours 22.51 105.85 42.37 22.51 105.85 42.37
Noise level std=0.03 std=0.05
Method PSNRT LPIPS*| FID, PSNRT LPIPS*| FID|
GHG 19.734+0.08 150.08+0.54 64.9940.31 | 18.55+0.09 163.39+0.70 68.45+0.75
LIFe-GoM | 20.904+0.07 133.07+0.35 57.2840.26 | 19.73+£0.08 144.13+0.47 63.60+0.76
Ours 22.51 105.85 42.37 22.51 105.85 42.37
Noise level pred
Method PSNR?T LPIPS*| FID,|
GHG 16.96 185.67 71.46
LIFe-GoM 19.70 146.19 63.34
Ours 22.51 105.85 42.37

Input pose: Ground-truth std=0.01 std=0.03 std=0.05

L )

Ground truth LIFe-GoM Ours

Figure 10: Comparison of different noise levels in input poses during test-time reconstruction.
We qualitatively demonstrate the performance degradation of LIFe-GoM under noisy input poses
during test-time reconstruction. To simulate noisy conditions, we inject Gaussian noise with varying
standard deviations or use predicted poses as inputs. In contrast, our method—relying on no pose
priors—remains unaffected by pose noise.

C.3 Training LIFe-GoM With Noisy Inputs

We train both GHG and LIFe-GoM using ground-truth input poses, but employ predicted poses
during test-time reconstruction in the experiments discussed in the main paper and above. This raises
a natural question: is the performance drop caused by the gap in input pose quality between training
and testing? In this section, we demonstrate that training with noisy input poses does not improve
the models’ robustness to pose inaccuracies. In fact, training with accurate ground-truth poses often
yields the best performance across all levels of input pose noise during test-time reconstruction.

Taking LIFe-GoM as an example, we train it using 1) ground-truth input poses, 2) input poses with
synthetic Gaussian noise of std=0.01, 3) input poses with synthetic Gaussian noise of std=0.03, 4)

25



Table 10: Training LIFe-GoM with noisy inputs. We train LIFe-GoM using ground-truth input
poses, poses with synthetic Gaussian noise, and predicted poses (pred) during the reconstruction
stage. Training with ground-truth poses often yields the best performance across varying levels of
pose noise at test time. This indicates that the performance drop observed when using predicted
poses during reconstruction is not due to a training—testing gap and cannot be mitigated simply by
introducing noise during training.

PSNRT LPIPS*, FID| | PSNRT LPIPS*| FID| | PSNRT LPIPS*| FID|

Test input noise

No noise std=0.01 std=0.03

No noise 24.13 110.12  49.65 22.95 118.34 52.87 20.90 133.07 57.28

Training | std=0.01 24.11 114.97 52.87 22.74 121.70  53.85 20.67 136.17 57.36
input std=0.03 23.80 118.92 55.60 22.58 124.89 56.33 20.54 139.03 59.26
noise std=0.05 23.38 122.18 57.55 22.32 127.71 58.57 20.41 141.24 61.39

Pred 23.38 121.66 57.34 22.32 127.44 58.22 20.65 139.44 62.38

Test input noise

std=0.05 Pred
No noise 19.73 144.13  63.60 19.70 146.19 63.34
Training | std=0.01 19.48 146.97 6245 19.63 148.11 64.02

input std=0.03 19.18 151.75 62.58 19.63 150.64 66.46
noise std=0.05 19.10 153.60 64.42 19.54 152.07 68.48
Pred 19.59 148.79  66.80 19.78 149.49  65.77

Table 11: Robustness to noisy training poses. We train our approach with noisy training poses. We
add synthetic Gaussian noise to the training poses.

Noise in training poses | PSNRT LPIPS*| FID|

No noise 22.49 10545 42.19
std=0.1 22.59 110.12  49.39
std=0.3 20.58 138.67 73.20

input poses with synthetic Gaussian noise of std=0.05 and 5) predicted poses from MultiHMR, and
evaluate each in all levels of noise. The results are shown in Tab. The more noise we add to the
input poses during training, the worse the performance we get across all levels of input pose noise
during test-time reconstruction. Hence, the performance drop observed when using predicted poses
during reconstruction cannot be mitigated simply by introducing noise during training. Our approach,
which takes no pose priors, is an option to eliminate the need for accurate camera and human poses
during test time. It is more suitable for real-world applications.

C.4 Sensitivity to noise in training poses

We use the ground-truth poses provided by the dataset during training. To analyze the robustness to
poses during training, we add synthetic Gaussian noise. We report the quantitative results in Tab. [TT]
We find that our approach is robust to some noise, e.g., Gaussian noise of std=0.1: On THuman?2.0, it
achieves a PSNR/LPIPS*/FID of 22.59/110.12/49.39, compared to 22.49/105.45/42.19 with ground-
truth training poses reported in Tab. 2] If we further perturb the ground-truth poses with more
significant Gaussian noise of std=0.3, the PSNR/LPIP*/FID drops to 20.58/138.67/73.20. We do not
think robustness to the target poses in training is a big concern. Collecting high-quality training data
is a one-time effort. Once trained, the model does not rely on poses for reconstruction at inference
time. This is different from pose-dependent methods, which still require high-quality input poses
during inference for reconstruction.

C.5 Validating the identity shift

We assess identity shift quantitatively via the facial verification tool DeepFace [19, 20, [18], on
HuGel00K. It verifies if two images show the same person. We think this is a good surrogate for
identity shift. We adopt all 400 front-facing HuGe100K images and report the verified-rate, i.e., the
percentage of “rendered image”-“ground-truth image”-pairs recognized as the same person, and the
cosine distance between the rendered face and the ground-truth image in VGG-Face’s feature space
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Table 12: Validating the identity shift on HuGel00K. To quantify the identity shift, we report
the verified-rate and the cosine distance between the rendered image and the ground-truth image in
VGG-Face’s feature space.

Noise in training poses \ Verified-rateT Cosine distance|

IDOL 93.75% 0.45
Ours 95.25% 0.32
hs N\
] . 4
E | |
An example of inconsistent data in ~ Semi-transparent regions in Rendered front view Rendered back view
HuGel00K rendering

Figure 11: Limitations. Left: Incorrect hand geometry. Middle: When trained on HuGe100K,
our model sometimes produces semi-transparent regions. We suspect the reason is that the data in
HuGel100K lack multiview consistency. Right: Taking the front view as the only input view, our
model renders a sharp front view. But the back view is blurry due to inpainting.

in Tab.[I21 Our method without dedicated face module achieves a verified-rate of 95.25% and an
average cosine distance of 0.32. LHM-1B has 95.75%/0.30. Note, LHM uses a dedicated face image
crop as additional input and a feature pyramid for improved facial modeling. Both ours and LHM
outperform IDOL’s 93.75%/0.45. We think this shows that our model does not suffer from a severe
identity shift as results are comparable to methods with dedicated face module.

D Limitations

Failure in modeling expressions and hands. Our model currently does not support expression
retargeting. In most of the input images, hands occupy very few pixels or are heavily occluded.
Therefore, predicting the LBS weights and corresponding 3D locations in the canonical T-pose for
each pixel in the image branches is sometimes challenging. So the hands are not as sharp as other
regions, as is shown in Fig. [TT|left). Similar issues happen in LHM. A possible solution is to train
two separate models, especially for faces and hands, respectively, compromising the training time
and reconstruction speed.

Sensitivity to inconsistent training data. Our model sometimes predicts blurry results in unseen
regions and semi-transparent regions on the boundary when trained on HuGe100K. Notably, such
issues do not happen when training on THuman2.0. We suspect that this is because the HuGe 100K
data is synthesized by diffusion models. It hence sometimes lacks multiview consistency. We
showcase a HuGe100K human subject which is inconsistent in different views in Fig.[TT(middle). As
a regression-based method, ours is prone to output blurry results, semi-transparent regions, or small
floaters on the boundary. A more consistent and higher-quality training set will resolve this issue.

Blurry inpainting. Even though our model improves upon LIFe-GoM in inpainting small unseen
regions, our model, as a regression-based method, struggles to hallucinate sharp and high-frequency
details in large unseen regions, e.g., the dotted pattern on the shirt in Fig. [TT(right). Generative
models are generally more suitable for hallucinating high-frequency details, which is important for
reconstruction and rendering from a single image.
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