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Abstract

Envisioned application areas for reinforcement learning (RL) include autonomous driving,
precision agriculture, and finance, which all require RL agents to make decisions in the real
world. A significant challenge hindering the adoption of RL methods in these domains is
the non-robustness of conventional algorithms. In this paper, we argue that a fundamental
issue contributing to this lack of robustness lies in the focus on the expected value of the
return as the sole “correct” optimization objective. The expected value is the average
over the statistical ensemble of infinitely many trajectories. For non-ergodic returns, this
average differs from the average over a single but infinitely long trajectory. Consequently,
optimizing the expected value can lead to policies that yield exceptionally high returns
with probability zero but almost surely result in catastrophic outcomes. This problem can
be circumvented by transforming the time series of collected returns into one with ergodic
increments. This transformation enables learning robust policies by optimizing the long-term
return for individual agents rather than the average across infinitely many trajectories. We
propose an algorithm for learning ergodicity transformations from data and demonstrate its
effectiveness in an instructive, non-ergodic environment and on standard RL benchmarks.

1 Introduction

Reinforcement learning (RL) has experienced remarkable progress in recent years, particularly within virtual
environments (Mnih et al., 2015; Silver et al., 2017; Duan et al., 2016; Vinyals et al., 2019). However, the
seamless transition of RL methods to real-world, e.g., robotics, applications lags behind, primarily due
to the non-robust nature of conventional RL approaches (Amodei et al., 2016; Leike et al., 2017; Russell
et al., 2015). In addressing this issue, researchers have explored a spectrum of methods from risk-sensitive
RL (Prashanth et al., 2022) to robust (worst-case) RL (Pinto et al., 2017). In this paper, we take a step
back and look at the optimization objective in RL and how it may, by design, result in non-robust policies.
Traditional RL literature, including influential references and introductory textbooks such as the ones by
Sutton & Barto (2018); Bertsekas (2019); Powell (2021), typically frames the RL problem as maximizing the
expected return, i.e., the expected value of the sum of rewards collected throughout a trajectory. Intuitively,
at each time step, an agent shall choose an action that maximizes the return it can expect when choosing
this action and following the optimal policy from then onward. While this indeed seems intuitive, it becomes
problematic when the returns are non-ergodic. When the returns are non-ergodic, the average over many
trajectories—which resembles an expected value—differs from the average along one long trajectory. We find
non-ergodic returns in various contexts, as we discuss in more detail in section 6. One example are settings in
which we have “absorbing barriers,” i.e., states, from which there is no return. Such as when an autonomous
car crashes in an accident. Suppose an autonomous car learns a driving policy through RL. At deployment
time, when we have a passenger in the car, it does not matter to the passenger whether the policy of the
autonomous car receives a high return when averaging over multiple trajectories—a high ensemble-average
return could also result from half of the journeys reaching the destination very fast and half crashing and
never reaching it. The return in a single instance of a long journey would be negligible if a crash occurred
somewhere along the way—and this is the return that would matter to the individual. Thus, the time average
would be the better choice for an optimization objective in such scenarios.
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Optimizing the time average might require developing entirely new RL algorithms. Nevertheless, existing RL
algorithms have demonstrated remarkable performance by optimizing expected returns. An alternative is to
find a suitable transformation. This is related to human decision-making. In economics and game theory,
researchers have found that humans typically do not optimize expected monetary returns (Bernoulli, 1954),
which would correspond to optimizing across a statistical ensemble. Instead, they seem to optimize along
individual time trajectories, corresponding to different behavioral protocols unless monetary returns are
state-independent, i.e., independent of the current wealth level. Optimization along time trajectories can be
implemented by a state-dependent transformation of monetary returns chosen so as to make changes in the
transformed quantity ergodic. Optimizing expected values of these changes then also optimizes long-term
growth along an individual trajectory. As for the autonomous car, so for the human, it appears more natural
to care about long-term performance. For the individual person, it typically does not matter whether a
particular investment pays off when averaged over a statistical ensemble—instead, what matters is whether
or not investing according to some protocol pays off in the long run in the single trajectory.

Motivated by economics, in particular, by utility (Bernoulli, 1954) and prospect (Kahneman & Tversky, 1997)
theory, the field of risk-sensitive RL (Prashanth et al., 2022) has emerged. In most of risk-sensitive RL, e.g.,
algorithms using an entropic risk measure, the agents try to optimize the expected value of transformed returns.
By learning with transformed returns, the agents can achieve higher performance with lower variance. Utility
and prospect theory do not consider potential non-ergodicity. Instead, these theories rely on psychological
arguments to argue that some humans are more “risk-averse” than others. Peters & Adamou (2018) have
shown how acknowledging non-ergodicity and that humans are more likely to optimize the long-term return
than an average over an ensemble of infinitely many trajectories can recover widespread transformations
used in utility theory. Empirical research (Meder et al., 2021; Vanhoyweghen et al., 2022) has further shown
that this treatment can better predict actual human behavior. The ergodicity perspective does not rely
on psychology as an explanation; instead, it explains psychological observations. It is, in this sense, more
fundamental and, as a result, more general, namely applicable to cases where psychology cannot be invoked,
particularly to inanimate optimizers such as machines devoid of a psyche.

Inspired by Peters & Adamou (2018), we analyze for which dynamics a popular transformation from risk-
sensitive RL optimizes the long-term return. Further, we propose an algorithm for learning a suitable
transformation when the reward function is unknown, which is the typical setting in RL.

Contributions. In this paper, we make the following contributions:

• We illustrate and assess the impact of non-ergodic returns on RL algorithm policies through an
intuitive example. This showcases the implications of optimizing for the expected value in non-ergodic
settings—which we commonly encounter in RL problems—and makes a case for the need for an
ergodicity transformation.

• We propose a transformation that can convert a trajectory of returns into a trajectory with ergodic
increments. This enables off-the-shelf RL algorithms to optimize their long-term return instead
of the conventional expected value, resulting in more robust policies without developing novel RL
algorithms.

• We demonstrate the performance of this transformation in an intuitive example and, as a proof-of-
concept, on standard RL benchmarks. In particular, we show that our transformation indeed yields
more robust policies when returns are non-ergodic.

2 Problem setting

We consider a standard RL setting in which an agent with states s ∈ S ⊆ Rn in the state space S and actions
a ∈ A ⊆ Rm in the action space A shall learn a policy π : S → A. Its performance is measured by an
unknown reward function r : S × A → R. The agent’s goal is to maximize the accumulated rewards r(tk) it
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Figure 1: Simulation of the coin toss experiment. We simulate the game for 1000 time steps and 10 agents.
The dashed red horizontal line marks the initial reward of 100, and the dashed blue ascending line the expected
value. After 1000 time steps, all agents end up with a lower return than they started with (note the logarithmic
scaling of the y-axis).

receives during a trajectory, i.e., the return R(T ) at tk = T ,

R(T ) =
T∑

τk=0
r(τk), (1)

where r(tk) := r(s(tk), a(tk)). For this, the agent interacts with its environment by selecting actions, receiving
rewards, and utilizing this feedback to learn an optimal policy. The RL problem is inherently stochastic, as it
involves learning from finite samples, often within stochastic environments and with potentially stochastic
policies. In standard RL, we, therefore, typically aim at maximizing the expected value of equation 1 (cf. the
“reward hypothesis” stated by Sutton & Barto (2018, p. 53))

Eπ

[
T∑

τk=0
r(τk)

]
. (2)

Nonetheless, this conventional approach may encounter challenges when the dynamics are non-ergodic. To
illustrate this point, we consider an instructive example introduced by Peters (2019).

2.1 Illustrative example

Imagine an agent starting with an initial reward of r(t0) = 100 is offered the following game. We toss a (fair)
coin. If it comes up heads, the agent wins 50 % of its current return. If it comes up tails, the agent loses
40 %. Mathematically, this translates to

r(tk) =
{

0.5R(tk−1) if η = 1,

−0.4R(tk−1) otherwise,

where η is a Bernoulli random variable with equal probability for both outcomes.

When analyzing the game dynamics, we find that the agent receives an expected reward r(tk) equal to 5 % of
its current return. Consequently, the expected return for any trajectory length T appears favorable, growing
exponentially with T :

E[R(T )] = 100 · 1.05T .

However, when we simulate the game for ten agents and 1000 time steps, we find that all of them end up
having a return of almost zero (see figure 1). The reason is that the coin toss game is non-ergodic. If the
dynamics of a stochastic process are non-ergodic, the average over infinitely many samples may be arbitrarily
different from the average over a single but infinitely long trajectory. Translated to the coin toss example,
if we simulate infinitely many trajectories of the game, each of finite duration T , we obtain a small set of
agents that end up exponentially “rich” so that averaging over all of them, i.e., taking the expected value,
yields 100 · 1.05T . However, if we increase the duration, T → ∞, the set of agents ending up exponentially
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rich shrinks exponentially to measure zero. That is, if we only simulate one agent for T → ∞ and average
over time, we receive a time average limT →∞

1
T

∑T
τk=0 r(τk) = 0 almost surely. Hulme et al. (2023) provide a

more detailed analysis of the statistical properties of the coin-toss game in their appendix.

To define ergodicity properly and connect it explicitly to RL, let us abstract from the coin-toss example and
consider an arbitrary discrete-time stochastic process X. We can now generate multiple realizations of this
process, in the example, by playing the game multiple times. Let X(j)(tk) denote the value of realization j at
time step tk. The process X is ergodic if, for any time step tk and realization i,

lim
N→∞

1
N

N∑
j=1

X(j)(tk) = lim
T →∞

1
T

T∑
τk=1

X(i)(τk) (3)

almost surely. The left hand side is E[X(tk)], the expected value of X at time tk. The right-hand side is the
time average of realization i. For an ergodic process, these averages are equal. In the RL setting, we are
interested in whether or not the rewards r(tk) are ergodic:

E[r(tk)] = lim
T →∞

1
T

T∑
τk=1

r(τk) = lim
T →∞

R(T )
T

(4)

almost surely. For ergodic rewards, maximizing the expected value at each step corresponds to maximizing the
long-term growth rate of the return for any given realization. However, as the coin-toss example demonstrates,
when rewards are non-ergodic, optimizing the expected value may yield policies with negative long-term
growth rate.

2.2 Solving the ergodicity problem

Redefining the optimization objective of RL algorithms may require a complete redesign. Alternatively, we
can take existing algorithms and modify the returns to make their increments ergodic. Peters & Adamou
(2018) have shown, in a continuous-time setting, that for a broad class of stochastic processes, we can find
transformations h(R) such that their increments ∆h are ergodic and follow a standard Brownian motion. In
our discrete-time setting, this translates to

h(R(tk + 1k+1
:::

)) = h(R(tk)) + µ + σv(tk), (5)

with drift µ, volatility σ, and standard normal random variable v(tk). For our purposes, where we want to
learn a transformation h from data instead of deriving it analytically as Peters & Adamou (2018), it even
suffices if v(tk) has finite variance, i.e., it does not have to be normally distributed.

In the following, we assess the performance of standard RL algorithms in the coin toss game, with and
without a transformation h. We then propose an algorithm for learning a transformation h with ergodic
increments and relate our findings to risk-sensitive RL.

3 RL with non-ergodic dynamics

For the coin toss example, we can easily verify that the dynamics are non-ergodic. Optimizing the expected
value then yields a “policy” in which the agent decides to play the game, leading to ruin in the long run almost
surely. While standard RL algorithms aim to optimize the expected value, they need to approximate it from
finitely many samples. Thus, in this section, we evaluate whether a standard RL algorithm indeed proposes a
detrimental policy and discuss how we can transform the returns to prevent this. In the version presented in
the previous section, the coin toss game offers the agent a binary decision: either play or not. Here, we make
the game slightly more challenging by letting the agent decide how much of its current return (“wealth”) it
invests at each time step. Thus, we have a continuous variable F ∈ [0, 1] and the reward dynamics are

r(tk) =
{

0.5FR(tk−1) if η = 1,

−0.4FR(tk−1) otherwise.
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(a) Without transformation.
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(b) With transformation.

Figure 2: Learning bet strategies for the adapted coin toss game. Without transformation, most agents end
up losing, while they end up winning with transformation.

We use the popular proximal policy optimization (PPO) algorithm (Schulman et al., 2017), leveraging the
implementation provided by Raffin et al. (2021) without changing any hyperparameters to learn a policy.
Having trained a policy for 1 × 105 episodes, we execute it 100 times for 1000 time steps and show the first
ten trajectories in figure 2a. We see that all ten agents end up with a return lower than the initial reward of
100. While this could still be caused by a bad choice of agents, it is confirmed by computing statistics over
all 100 trajectories. When computing the median of the return after 1000 time steps, we obtain 2.5 × 10−4,
i.e., the average agent ends up with a return close to zero. The mean over all agent yields 115. That is, a
small subset of agents obtains a high return. This confirms the discussion from the previous section. Even if
it only approximates the expected value, PPO does learn a policy that leads to ruin for most agents.

One possibility for coping with non-ergodic dynamics is finding a suitable transformation. For the coin
toss game, where the dynamics are relatively straightforward , and the outcomes are fully known, we can
analytically identify an appropriate transformation: the logarithm (Hulme et al., 2023, Appendix)

:
.
::::::
While

::::::::::::::::::
Hulme et al. (2023)

::::::
provide

::::
the

::::::::
technical

:::::::::::
explanation

:::
for

::::
why

:::
the

:::::::::
logarithm

::
is
:::
an

:::::::::::
appropriate

:::::::::
transform

:::
for

:::
the

::::::::
coin-toss

:::::
game,

:::
we

::::
here

::::
give

:::
an

::::::::
intuitive

:::::::::::
explanation.

::::
The

:::::::::
dynamics

::
of

:::
the

::::::::
coin-toss

:::::
game

:::
are

:::::::::::
exponential.

::::::::
Through

:::
the

::::::::::
logarithm,

:::
we

::::::::
basically

::::::::::
“linearize”

:::
the

:::::::
return

:::::::::
dynamics,

:::::
thus

::::::::
achieving

:::::::::
dynamics

:::
of

:::
the

:::::
form

::
of equation 5. We subsequently train the PPO algorithm once more with the logarithmic transformation.
Specifically, we redefine the rewards as r̃(tk) := log(R(tk)) − log(R(tk−1)). As before, we run 100 experiments
for 1000 time steps each and show the first ten trajectories in figure 2b. We see that all agents end up with a
significantly higher return than the initial reward. A statistical analysis confirms this observation, yielding a
median return of 5645 and a mean of 15 883. Both values substantially surpass those obtained by the agents
trained with untransformed returns.

This evaluation underscores that standard RL algorithms may inadvertently learn policies leading to unfavor-
able outcomes for most agents when dealing with non-ergodic dynamics. Furthermore, it demonstrates that
an appropriate transformation can mitigate this.

:::::::
Besides,

:::
we

:::
see

:::::
that

::::
even

:::
the

:::::::
average

:::::::
return

:
is
::::::
lower

:::
for

:::
the

::::::::
standard

:::::
PPO

::::::
agent,

::::
even

:::::::
though

::::
this

::::::
should

:::
be

:::::
what

:::
the

:::::
agent

:::::::::::
maximizes.

::::
The

::::::
reason

:::
for

::::
this

::
is
:::::
that

:::
the

::::::::::
probability

::
of

::::::
ending

:::
up

::::
with

::
a
::::
very

:::::
high

::::::
reward

:::::
with

:
a
:::::
risky

::::::
policy

::
is

::::::::
non-zero

:::
for

:::::
finite

:::::::
episode

::::::
lengths

::::
but

::::
very

::::::
small.

::::::
Thus,

::::::
during

::::::::
training,

::
in
::::::

some
::
of

:::
the

:::::::
1 × 105

:::::::::
episodes,

:::
the

::::::
agent

::::
will

:::::::::
experience

:::::
some

:::
of

:::::
these

::::
very

::::
high

::::::::
returns,

:::::::
leading

::
to

::
it
:::::::::
assigning

:::::
high

::::::
values

::
to

:::::
those

:::::
risky

::::::::
policies.

::::::
When

:::::::
testing

:::
on

::::
100

:::::::
policies,

:::
the

::::::::::
probability

::
of

::::::::::::
encountering

:::::
such

:
a
:::::

high
::::::
return

:::::::
rollout

::
is

:::::
again

::::
very

:::::
low.

:::::::::
Therefore,

:::
as

::::::::
training

::
on

:::::
even

::::
more

:::::
than

:::::::
1 × 105

::::::::
episodes

::
is

::::
not

::::::::::
uncommon

::
in

:::::
deep

::::
RL,

::::
one

::::
may

:::::
claim

:::::
that

::::
even

:::::
when

:::
we

::::
are

:::::::::
interested

::
in

:::
the

:::::::
average

:::::
over

:::::
many

:::::::
agents,

:::
for

::::::::::::
“reasonable”

::::::
agent

::::::::
numbers,

:::::
there

:::
is

::::
still

:
a
:::::
high

::::
risk

::::
that

:::
we

::::
end

:::
up

::::
with

::
a

:::
low

:::::::
return.

:

Remark 1. The quantitative results clearly differ between runs, as the environment and training process are
stochastic. Nevertheless, the qualitative results are consistent: the training with transformed returns results in
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better performance. With transformed returns, the agents sometimes get trapped in local optima with F = 0,
which still results in significantly higher returns for the average agent.

4 Learning an ergodicity transformation

In scenarios like the coin toss game, due to the perfect information of future returns, it is possible to
derive a suitable transformation analytically—for a more detailed discussion, we refer the reader to Peters
& Adamou (2018). However, the true power of reinforcement learning (RL) lies in its ability to handle
complex environments for which we lack accurate analytical expressions. Therefore, it is desirable to learn
transformations directly from data.

The central characteristic of the transformation is that it should render the increments of the transformed
return ergodic . Ideally, we aim for a transformation whose increments are

::::::::
captured

:::
by

:
equation 5

:
:
:::
we

:::::
want

:::
the

::::::::::
increments

::
to

:::
be

:::::::
ergodic

:::::
and,

::
in

::::::::::
particular,

::
to

:::
be

:
independent and identically distributed (i.i.d.)

::::
with

:::::::
constant

::::::::
variance. However, determining this i.i.d. property with a high degree of accuracy, especially from

real-world data, can be challenging. Instead, we approximate the behavior of the transform to that of a
variance-stabilizing transform.
Definition 1 (Bartlett (1947)). A variance stabilizing transform is defined as

h(x) =
x∫

0

1√
v(u)

du,

with variance function v(u) describing the variance of a random variable as a function of its mean.

A variance stabilizing transform aims to transform a given time series into one with constant variance,
independent of the mean (Bartlett, 1947). This is a generalization of our desired i.i.d. property as if the
transformation h(R(tk)) has i.i.d. increments, then the increments also have constant variance, independent
of the mean.

::
In

::::::::::
particular,

::
it
:::::::
reflects

:::::
what

:::
we

::::::
define

::
in

:
equation 5,

::::::
where

::::
the

:::::
mean

::
is

:::::::::::
determined

::
by

::::
the

::::
drift

::
µ,

::::
and

:::
we

:::::
have

:::::::
defined

::::
that

::::
the

:::::::
random

:::::::
variable

:::::
v(tk)

:::::
must

:::::
have

:::::
finite

:::::::::
variance.

:
Thus, our objective

becomes finding a variance stabilizing transform following definition 1. In our case, as we want to stabilize
the variance of the increments, we adapt the original definition of the variance function v(u) in definition 1 to

v(u) = Var[R(tk+1) − R(tk) | R(tk) = u].

This variance function represents the variance of the following increment as a function of the current
transformed return.

The approach for estimating v(u) from data is inspired by the additivity and variance stabilization method for
regression (Tibshirani, 1988). Estimating v(u) first involves plotting R(tk) against log((R(tk+1)−R(tk)− µ̂)2),
with µ̂ the empirical mean of the increments. In our setting, the mean of the increments of the original
untransformed process may not be constant throughout a trajectory. Hence, assuming a constant µ̂ results in
small values having an over-estimated variance and large values having an under-estimated variance. The
straightforward way to fix this would be to estimate µ(u) as a function of u; however, this introduces a further
estimation problem. Instead, we can estimate the second-moment function and use this as a proxy for the
variance function,

µ2(u) = E[(R(tk+1) − R(tk))2 | R(tk) = u].

In appendix A.1, we show that µ2(u) ∝ v(u), which is satisfactory for our needs as if the process R(tk) has
i.i.d. increments, then so will the process a · R(tk) for any a ∈ R.

To estimate the function log(µ2(u)) we plot R(tk) against log((R(tk+1)−R(tk))2). Then, fitting a curve repre-
sents taking the expected value. We use the locally estimated scatter-plot smoothing (LOESS) method (Cleve-
land, 1979). The reason behind estimating log(µ2(u)) is that this guarantees µ2(u) always to be positive,
which is vital as the variance stabilizing transform requires us to take the square root. This approach follows
the reasoning by Tibshirani (1988).
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Figure 3: Learning bet strategies for the adapted coin toss game with learned transformation. Similar to the
logarithm, also with the learned transformation, the majority of the agents ends up winning.

Having derived this transformation, we apply it to the coin toss game. We first collect a return trajectory with
F = 1. Based on this trajectory, we learn an ergodicity transformation following the steps described in this
section. Then, we again train a PPO agent but feed it the increments of transformed returns as previously
with the logarithmic transformation. As before, we execute the learned policy 100 times for 1000 time steps
each and show rollouts for the first ten agents in figure 3. Also with this transformation, most agents end
up learning winning strategies. The statistics confirm this: across all 100 agents, we have a median return
of around 17 517 and an average return of around 956 884. Thus, we conclude that we can learn a suitable
transformation from data, enabling PPO to learn a policy that benefits individual agents in the long run.
We provide a Python implementation of the transformation and the coin toss example in the supplementary
material.

5 Risk-sensitive RL

The ergodicity transformation serves as a means for RL agents to optimize the long-term performance of
individual returns, enabling the learning of robust policies, as demonstrated in figure 3. Another approach
to improving the robustness of RL algorithms is through risk-sensitive RL. While risk-sensitive RL is not
motivated by ergodicity, it also proposes transforming returns. Inspired by Peters & Adamou (2018), we
can analyze these transformations and determine under which dynamics they yield transformed returns with
ergodic increments. This analysis allows us to gain insights into which type of transformation may offer
robust performance in which settings.

Here, we focus on the exponential transformation,

hrs(R) := β exp(βR),

where β ∈ R \ {0} is a hyperparameter with β < 0 the “risk-averse”, and β > 0 “risk-seeking” case. If this
transformation were an ergodicity transformation, then its increments hrs(R(tk)) − hrs(R(tk − 1)) would
follow equation 5. If we now assume that the dynamics of the return R(tk) belong to the class of Itô processes,
i.e., a general class of stochastic processes, we can derive a concrete equation describing the return dynamics.
This derivation becomes relatively technical, and we defer it to the appendix (appendix A.2). Here, we only
present the result and discuss its implications. We can derive the return dynamics as

Rt = 1
β

ln
∣∣∣∣σ

β

∣∣∣∣ + 1
β

ln
∣∣∣∣µ

σ
t + Wt + β

σ

∣∣∣∣. (6)

The obtained return dynamics are logarithmic in time. Logarithmic returns (or regrets) are common in the
RL literature. Consider a scenario where a robot arm must reach a set point, and the reward is defined as the
negative distance to that set point. Initially, rapid progress can be made by moving quickly in the roughly
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correct direction. As the robot gets closer, the movement becomes more fine-grained and slower, resulting in
slower progress. By using an exponential transformation, we counteract this phenomenon, ensuring that all
time steps contribute equally to the return.

We next apply the exponential transformation to the coin-toss game and test both the “risk-averse” and the
“risk-seeking” setting. For the risk-seeking setting (β > 0), we quickly run into numerical problems. The
coin-toss problem has itself exponential dynamics, and thus, returns can get large. Exponentiating those
again lets us reach the limits of machine precision. For the risk-averse setting (β < 0), we consistently learn
constant policies with F = 0. While this is still better than the policies standard PPO learned, it cannot
compete with the results from figure 3.

This outcome is not surprising. From an ergodicity perspective, the exponential transformation is only
suitable if the dynamics are logarithmic. The dynamics of the coin-toss game are exponential, which is
precisely the inverse behavior. Thus, we would not expect the transformation to yield good policies, as is
confirmed by our experiments.

6 Ergodicity in RL and related work

The coin-toss game is an excellent example to illustrate the problem of maximizing the expected value of
non-ergodic rewards. When maximizing non-ergodic rewards, we may end up with a policy that receives an
arbitrarily high return with probability zero but leads to failure almost surely. Also in less extreme cases, the
expected value prefers risky policies if their return in case of success outweighs the failure cases. This results
in learning non-robust policies, a behavior frequently observed in standard RL algorithms (Amodei et al.,
2016; Leike et al., 2017; Russell et al., 2015).

Non-ergodicity is not unique to the coin-toss game. Peters & Klein (2013) have shown that geometric
Brownian motion (GBM) is a non-ergodic stochastic process. GBM is commonly used to model economic
processes, a domain where RL algorithms are increasingly applied (Charpentier et al., 2021; Zheng et al., 2022).
Thus, especially in economics, ergodicity should not simply be assumed. Nevertheless, the example of GBM
is also informative for other applications. Generally, RL is most interesting when the environment dynamics
are too complex to model, i.e., we usually deal with nonlinear dynamics. If already a linear stochastic process
such as GBM is non-ergodic, we cannot assume ergodicity for the general dynamics we typically consider in
RL.

Another way of “ergodicity-breaking” is often motivated using the example of Russian roulette (Ornstein,
1973). When multiple people play Russian roulette for one round each, and their average outcome is considered,
the probability of death is one in six. However, if a single person plays the game infinitely many times,
that person will eventually die with probability one. In the context of RL, this is akin to the presence of
absorbing barriers or safety thresholds that an agent must not cross. Particularly in RL applications where
the consequences of failure can be catastrophic, such as in autonomous driving (Brunke et al., 2022), these
safety thresholds become vital.

Consequently, in the literature on Markov decision processes (MDPs), we find work that argues about the
(non-)ergodicity of MDPs; see, for instance, Chapter 10 by Sutton & Barto (2018) or Chapter 8 by Puterman
(2014). Therein, the notion of ergodicity is mainly used to describe MDPs in which every state will be
visited eventually. Following this notion, there has been work within the RL community that provides
guarantees while explicitly assuming ergodicity (Pesquerel & Maillard, 2022; Ok et al., 2018; Agarwal et al.,
2022) or by guaranteeing to avoid any states within an “absorbing” barrier, i.e., only exploring an ergodic
sub-MDP (Turchetta et al., 2016; Heim et al., 2020). For Q-learning, Majeed & Hutter (2018) has shown
convergence even for non-ergodic and non-MDP processes. Nevertheless, none of these works, as a consequence
of non-ergodicity, question the use of the expectation operator in the objective function.

In this paper, we have proposed transforming returns to deal with non-ergodic rewards. In the previous section,
we have shown how a popular transformation from risk-sensitive RL (Mihatsch & Neuneier, 2002; Shen et al.,
2014; Fei et al., 2021; Noorani & Baras, 2021; Noorani et al., 2022; Prashanth et al., 2022) can be motivated
from an ergodicity perspective. Reward-weighted regression (Peters & Schaal, 2007; 2008; Wierstra et al.,
2008; Abdolmaleki et al., 2018; Peng et al., 2019) also proposes to use transformations, but the transformations
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are typically justified using intuitive arguments instead of from an ergodicity perspective. Interestingly, most
existing work also uses an exponential transformation, which is the cornerstone of risk-sensitive control. Thus,
the analysis we have done for risk-sensitive RL also applies to reward-weighted regression.

Another approach that optimizes transformed returns is Bayesian optimization for iterative learning
(BOIL) (Nguyen et al., 2020). BOIL is developed for hyperparameter optimization. While this setting
differs from the one we consider, we show in appendix A.3.1 that the transformation used in BOIL can be
replaced with ours, leading to similar or better results.

Through the ergodicity transformation, we seek to optimize the long-term performance of RL agents. Improving
the long-term performance of RL agents in continuous tasks is also the goal of average reward RL. The idea
of optimizing the average reward criterion originated in dynamic programming (Howard, 1960; Blackwell,
1962; Veinott, 1966), and has already in the early days of RL been taken up to develop various algorithms,
see, for instance, the survey by Mahadevan (1996). Also in recent years, the average reward criterion has
been used for novel RL algorithms (Zhang & Ross, 2021; Wei et al., 2020; 2022). In average reward RL, we
still take the expected value of the reward function and let time go to infinity. Were the reward function
ergodic, it would not matter whether we first take the expected value or first let time go to infinity. However,
for a non-ergodic function, it does. In average reward RL, we first take the expected value. For the coin-toss
game, that would yield an optimization criterion that grows exponentially while the set of agents that obtain
a return larger than zero shrinks to a set of measure zero as time goes to infinity. Thus, average reward RL
may fall into the same trap as conventional RL when dealing with non-ergodic reward functions.

::
A

:::::::
further

:::::::::
research

:::::::::
direction

::::
in

::::
RL

:::
to

:::::::
which

:::::
our

:::::::::
approach

:::::
can

:::
be

::::::::
related

:::
is

::::::::
reward

::::::::
shaping

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ng et al., 1999; Tang et al., 2017; Zheng et al., 2018; Memarian et al., 2021).

::::::
In

:::::::
reward

:::::::::
shaping,

::::
we

::::::::
typically

:::
try

::
to

::::::
adapt

:::
the

:::::::
existing

:::::::
reward

::::::::
function,

:::
for

:::::::::
instance,

::
to

::::
deal

:::::
with

::::::
sparse

:::::::
rewards

::
or

:::
to

:::::::::
encourage

::::::::::
exploration.

::::::::
Usually,

::::
the

::::
new

::::::
reward

::::::::
function

::
is

::::
then

::
a

::::::::::
summation

::
of

::::
the

:::::::
original

::::::
reward

::::
and

:
a
::::
new

::::::::
element.

::::
This

::::
new

::::::::
element

::::::::::
introduced

::::
by

::::::::::::::
reward-shaping

::::::::::
techniques

::::
can

:::
be

:::::::::
designed

::::::
based

:::
on

:::::
prior

::::::::::
knowledge

:::::
about

::::
the

:::::::::::
environment

:::
or

:::::::
learned

:::::
from

:::::
data.

:::
In

::::
our

::::
case,

::::::::
instead

::
of

:::::::
adding

:
a
:::::
new

:::::::
element

:::
to

::
an

::::::::
existing

::::::
reward

:::::::::
function,

:::
we

:::::::::
transform

::::
the

:::::
entire

:::::::
return.

:::::::
Thus,

:::
our

:::::::::
approach

:::::::::::::
fundamentally

:::::::
differs

::::
from

::::::::
existing

:::::::::::::
reward-shaping

:::::::::::
techniques.

::::::::
However,

::::
the

:::::
result

:::
of

:::
the

::::::::::::::
transformation

::
is

::::
that

:::
the

:::::::::::
increments

::
of

:::::::::::
transformed

::::::
returns

::::::
follow

:
equation 5.

:::::::
Thus,

:::
we

:::::
have

::::::
linear,

::::::::::
stochastic

::::::
return

::::::::::
dynamics.

:::::
Such

:::::::::
dynamics

:::::::
should

:::
be

:::
way

::::::
easier

::
to

::::::::
optimize

::::::::
through

:::::::::::::
gradient-based

::::
RL

:::::::::
algorithms

:::::
than

:::
the

:::::::::
arbitrary

:::::::::
dynamics

::::
that

:::
we

::::::::
typically

:::::::
assume.

::::::::::
Therefore,

::::::::::::::
reward-shaping

::::
may

:::::
serve

::
as

:::
an

::::::::::
additional

::::::::::
motivation

:::
for

:::
our

:::::::::
approach.

:

7 Proof-of-concept

The coin-toss game, while illustrative, represents a simplified scenario. To establish the broader applicability
of the ergodicity perspective and associated transformations in RL, we conducted experiments on two classical
RL benchmarks: the cart-pole system and the reacher, using the implementations provided by Brockman
et al. (2016). Both environments feature discrete action spaces. Thus, instead of PPO, which is designed for
continuous action spaces, we use the REINFORCE algorithm (Williams, 1992). The REINFORCE algorithm
is a Monte Carlo algorithm. It always collects a return trajectory and then uses this trajectory to update
its weights. In our setting, this is advantageous as it allows us to learn a transformation using the collected
trajectory.

We here compare two settings. First, we train the algorithm in the standard way. Second, after collecting a
return trajectory, we first derive the transformation, transform the returns, and then use the transformed
returns to update the REINFORCE algorithm. In the plots, we always show the untransformed returns. In
both settings, we change the length of pole and

:::
one

::
of

:::
the

:
links for cart-pole and reacher

:::::
(from

:::
0.5

:::
to

::
1)

::::
and

::::::
teacher

::::::
(from

:
1
:::
to

::::
1.5), respectively, during testing to evaluate the robustness of the learned policies. Further

details on hyperparameter choices are provided in appendix A.4.

Cart-pole. In the cart-pole environment, the objective is to maintain the pole in an upright position for
as long as possible. To evaluate the long-term performance of the ergodicity transformation, we train the
algorithm using episode lengths of 100 time steps but test it with episodes lasting 200 time steps. Thus, as
we see in figure 4a, the return during testing is higher than during training. We can also see that for ergodic
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Figure 4: Ergodic vs. standard REINFORCE on common benchmarks. For the cart-pole, we see slight
improvements when using the ergodicity transformation, while for the reacher, only ergodic REINFORCE
learns a successful policy.

REINFORCE, the agent is close to the optimal reward of 200 during testing. The standard REINFORCE
algorithm performs significantly worse. Thus, we can see that leveraging the ergodicity transformation
improves the long-term performance compared to the standard algorithm.

Reacher. In the reacher environment, we aim to track a set point with the end of the last link. Thus, extending
the episode length does not make sense in this setting. However, this is unnecessary to demonstrate the
advantage of using the ergodicity transformation. In figure 4b, we see that, while both algorithms successfully
improve their return during training, ergodic REINFORCE even more than standard REINFORCE, ergodic
REINFORCE can generalize to the new link length and mass during testing. Standard REINFORCE ends
up with close to minimal reward during testing.

8 Conclusions and limitations

This paper discussed the impact of ergodicity on the choice of the optimization criterion in RL. If the rewards
are non-ergodic, focusing on the expected return yields non-robust policies that we currently find with
conventional RL algorithms. An alternative to changing the objective and, with this, having to come up
with entirely new RL algorithms is trying to find an ergodicity transformation. We presented a method for
learning an ergodicity transformation that converts a time series of returns into a time series with ergodic
increments. Then, optimizing the expected value of those ergodic increments is equivalent to maximizing the
long-term growth rate of the return. We further showed how the ergodicity perspective provides a theoretical
foundation for transformations used in risk-sensitive RL. We demonstrated the effectiveness of the proposed
transformation on standard RL benchmark environments.

This paper is the first step toward acknowledging non-ergodicity of reward functions and focusing on the
long-term return and, with that, robustness in RL. This opens various directions for future research. Firstly,
addressing the challenge of transforming returns in RL algorithms that update weights incrementally rather
than relying on episodic data remains an open question. Secondly, our transformation currently focuses
solely on the current return, but returns may also depend on the current state of the system, suggesting the
possibility of state-dependent transformations.

::::::
Then,

::::
also

::::::::::::
investigating

::::
the

:::::::::::::
computational

::::::::::
complexity

::::
and

::::::
trading

:::
off

::::::::::
potentially

:::::
more

::::::
robust

::::::::::::
performance

::::
with

::::
the

:::::::::
additional

::::::::::
complexity

::::::::
through

:::
the

::::::::::::::
transformation

:
is
::

a
:::::::
crucial

::::::
aspect. Thirdly, extending this research to multi-agent RL could be promising, building on

insights by Fant et al. (2023) and Peters & Adamou (2022) regarding the impact of non-ergodicity on the
emergence of cooperation in biological multi-agent systems. Finally, investigating the connection between
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optimizing time-average growth rates instead of expected values and discount factors, as explored by Adamou
et al. (2021), could make the discount factor as a hyperparameter in RL dispensable.
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A Appendix

A.1 Proportionality of variance and second moment functions

The variance-stabilizing transform h(x) is unique up to linear transformations. That is, the function
ah(x) + b for a ∈ R+, b ∈ R will also produce a time series with the desired properties. Thus, we
only need to estimate the variance function up to a scalar multiplier. In the following, we approximate
µ2(u) := E[(R(tk+1) − R(tk))2 | R(tk) = u] using a Taylor series expansion and show that v(u) ∝ µ2(u). In
particular, we have

µ2(u) = E[(R(tk+1) − R(tk))2 | R(tk) = u]
= E[R(tk+1)2 | R(tk) = u]
− 2E[R(tk+1) | R(tk) = u][R(tk) | R(tk) = u]
+ E[R(tk)2 | R(tk) = u]
= E[R(tk+1)2 | R(tk) = u]
− 2uR[R(tk+1) | R(tk) = u] + u2. (7)

We now perform a second-order Taylor expansion with the function h−1 on the random variable h(R(tk+1))
to find E[R(tk+1) | R(tk) = u],

E[R(tk+1) | R(tk) = u]
=E[h−1(h(R(tk+1))) | R(tk) = u]
=E[h−1(h(u) + h(R(tk+1)) − h(u)) | R(tk) = u]
≃E[h−1(h(u)) + (h−1)′(h(u))(h(R(tk+1)) − h(u))

+1
2(h−1)′′(h(u))(h(R(tk+1)) − h(u))2 | R(tk) = u]

=m1(h−1)′(h(u)) + m2
2 (h−1)′′(h(u)).

In the final step, as h(u) is a function that transforms the original time series into a time series with
independent increments, we can assume that, for all n ∈ N,

E[(h(R(tk+1)) − h(u))n | R(tk) = u] = mn ∈ R.

That is, the moments of the transformed increments are stationary over the state space. We can then use the
inverse-function rule to calculate the derivatives as

(h−1)′(h(u)) = 1
h′(h−1(h(u))) = 1

h′(u)

(h−1)′′(h(u)) = −h′′(h−1(h(u)))
h′(h−1(h(u)))3 = −h′′(u)

h′(u)3 .

Hence, we have

E[R(tk+1)2 | R(tk) = u] ≃ u + m1
h′(u) − m2h′′(u)

2h′(u)3 .

We use a similar method to find E[R(tk+1)2 | R(tk) = u]. However, this time, we perform the Taylor expansion
with the squared-inverse function h−2(x) := (h−1(x))2,

E[R(tk+1)2 | R(tk) = u]
=E[h−2(h(R(tk+1))) | R(tk) = u]

≃u2 + m1(h−2)′(h(u)) + m2
2 (h−2)′′(h(u)).
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We can use the chain rule to calculate the derivatives of the squared-inverse function,

(h−2)′(h(u)) = 2(h−1)′(h(u))h−1(h(u)) 2u

h′(u)
and

(h−2)′′(h(u)) = 2((h−1)′′(h(u))h−1(h(u)) + (h−1)′(h(u))2)

= −2uh′′(u)
h′(u)3 + 2

h′(u)2 .

Hence, we have

E[R(tk+1)2 | R(tk) = u] ≃ u2 + 2um1
h′(u) − m2uh′′(u)

h′(u)3 + m2
h′(u)2 .

Substituting into equation 7 gives us

µ2(u) = E[R(tk+1)2 | R(tk) = u]
− 2uE[R(tk+1) | R(tk) = u] + u2

≃
(

u2 + 2um1
h′(u) − m2uh′′(u)

h′(u)3 + m2
h′(u)2

)
− 2u

(
u + m1

h′(u) − m2h′′(u)
2h′(u)3

)
+ u2

= m2
h′(u)2 .

Finally, we can use the fundamental theorem of calculus on definition 1 to get

v(u) = 1
h′(u)2 =⇒ µ2(u) ∝ v(u) (approximately).

A.2 Derivation of the risk-sensitive reward function equation 6

For the sake of clarity, we perform our analysis in continuous time. We assume that the return follows an
arbitrary Itô process

dR = f(R) dt + g(R) dW (t), (8)
where f(R) and g(R) are arbitrary functions of R and W (t) is a Wiener process. This captures a large
class of stochastic processes, as both f and g can be nonlinear and even stochastic. Assume now that the
risk-sensitive transformation hrs extracts an ergodic observable from equation 8. Then, its increments follow
a Brownian motion, i.e., the continuous-time version of equation 5:

dhrs = µ dt + σ dW (t). (9)

As we know hrs, we now seek to find f and g for which equation 9 holds.

Following Itô’s lemma (Itô, 1944), we can write dR as

dR =
(

∂R

∂t
+ µ

∂R

∂hrs
+ 1

2σ2 ∂2R

∂h2
rs

)
dt + σ

∂R

∂hrs
dW (t). (10)

As we can invert hrs(R) such that R(hrs) = ln( hrs
β )

β and since the inverse is twice differentiable, we can insert
it into equation 10 and obtain

dR =
(

µ

βhrs
− 1

2
σ2

βh2
rs

)
dt + σ

βhrs
dW (t)

=
(

µ

β2 exp(βR) − 1
2

σ2

β3 exp(2βR)

)
dt (11)

+ σ

β2 exp(βR) dW (t).
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This equation provides valuable insights into the role of β. Specifically, it highlights that the volatility term
(the coefficient of dW (t)) is always positive, regardless of the sign of β. However, the drift term (the coefficient
of dt) depends on the sign of β. For β < 0, the drift term is positive, while for β > 0, it starts negative when
β is small and then turns positive as β increases.

From an ergodicity perspective, the risk-averse variant with β < 0 is suitable when equation 11 exhibits a
positive drift, while the risk-seeking variant with β > 0 is more appropriate when equation 11 has a negative
drift. This aligns with intuitive reasoning: when the drift is negative, there is limited gain from caution, and
one might choose to go all in and hope for luck. This is also the case when the drift is too small to outweigh
the volatility.

The differential dynamics in equation 11 have a closed-form solution. We start the derivations by simplify-
ing equation 11. We introduce k(R) := σ

β2 exp(βR) and cv := σ
µ , which results in

dR =
(

1
cv

k(R) + 1
2k(R)k′(R)

)
dt + k(R) dW (t).

From this, we can see that the resulting stochastic differentiable equation belongs to the class of reducible
SDEs and has a known, general solution (Kloeden & Platen, 1992, pp. 123–124):

Rt = ℓ−1
(

1
cv

t + Wt + l(0)
)

,

where ℓ(r) :=
∫ r ds

k(s) =
∫ r β2

σ exp(βs)ds. Now, we need to find an expression for ℓ(R):

ℓ(R) =
∫ R β2

σ
exp(βs) ds = β

σ
exp(βR).

This expression is invertible,

ℓ−1(R) = 1
β

ln
∣∣∣∣σ

β

∣∣∣∣ + 1
β

ln|R|.

Thus, we finally obtain equation 6:

Rt = ℓ−1
(

1
cv

t + Wt + l(0)
)

= ℓ−1
(

µ

σ
t + Wt + β

σ

)
= 1

β
ln

∣∣∣∣σ

β

∣∣∣∣ + 1
β

ln
∣∣∣∣µ

σ
t + Wt + β

σ

∣∣∣∣.
A.3 Hyperparameter optimization

Besides the experiments presented in the main body, we also compared our learned transformation in a hyper-
parameter optimization task with the BOIL (Bayesian optimization for iterative learning) algorithm (Nguyen
et al., 2020). Before presenting the results, we briefly introduce BOIL.

A.3.1 Bayesian optimization for iterative learning

Boil aims to train a machine learning algorithm given a d-dimensional hyperparameter x ∈ X ⊂ Rd for T
iterations. This process produces training evaluations R(· | x, T ) with T ∈ [Tmin, Tmax]. These evaluations
could generally be returns of an episode in RL or training accuracies in deep learning. Here, we focus
on episode returns in reinforcement learning. Given the raw training curve R(· | x, T ), BOIL assumes an
underlying, smoothed black-box function f and then aims to find x∗ = arg maxx∈X f(x, Tmax). This black-box
function is modeled as a Gaussian process (GP), and the next set of hyperparameters is selected using a
variation (Wang & de Freitas, 2014) of the expected improvement (Jones et al., 1998) algorithm.

Existing Bayesian optimization approaches for hyperparameter optimization typically define the objective
function as an average loss over the final learning episodes. This ignores how stable the performance is and
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might be misleading due to the noise and fluctuations of observed episode returns, especially during early
stages of training. Therefore, in BOIL, the authors propose compressing the whole learning curve into a
numeric score via a preference function. In particular, they use the Sigmoid function (specifically, the Logistic
function) to compute this “utility score” as

y = ŷ(R, m0, g0) = R(· |, x, T ) · ℓ(· | m0, g0)

=
t∑

u=1

R(u | x, T )
1 + exp(−g0(u − m0)) , (12)

where · is a dot product, and the Logistic function ℓ(· | m0, g0) is parameterized by a growth parameter
g0 defining the slope and the middle point of the curve m0. The choice of the Sigmoid function is mainly
motivated by intuitive arguments. Since early weights are small, less credit is given to fluctuations at the
initial stages, making it less likely for the surrogate function to be biased toward randomly well-performing
settings. As weights monotonically increase, hyperparameters with improving performance are preferred. As
weights saturate, stable, high-performing configurations are preferred over short “performance spikes” which
often characterize unstable training. The score assigns higher values to the same performance if it is being
maintained over more episodes.

The intuition provided by Nguyen et al. (2020) is that the optimal parameters m0, g0 will lead to a better fit
of the GP, resulting in better prediction and optimization performance. The authors then parameterize the
GP log marginal likelihood in terms of m0 and g0 and optimize both parameters using multi-start gradient
descent.

A.3.2 Comparison

We tried to apply BOIL to the coin toss game, i.e., we tried to optimize hyperparameters for an RL algorithm
on the coin toss game using BOIL. Unfortunately, we there ran into numerical problems caused by the large
values the return can have in some runs. Therefore, we compare BOIL to our learned transformation on the
same benchmarks as we used in section 7 as they were also used by Nguyen et al. (2020). However, instead of
learning policies, we optimize hyperparameters of deep RL algorithms that try to learn those policies. This is
slightly different from the setting we designed our transformation for, and in that sense, it also challenges
its generality. The used deep RL algorithms are the double deep Q-networks (DDQN) (Van Hasselt et al.,
2016) algorithm for the cart-pole and the advantage actor-critic (A2C) algorithm (Mnih et al., 2016) for the
reacher. In both cases, we tune the learning rate(s) and the discount factor. We adopt the code from Nguyen
et al. (2020), only adding the ergodicity transformation but without changing any parameter settings.

We show the mean and standard deviation of the average return over five training runs in figure 5. The
general, non-parametric transformation proposed in this paper achieves comparable performance as the tuned
Sigmoid from Nguyen et al. (2020) on the cart-pole system and can outperform it on the reacher. This shows
that while BOIL relies on intuitive arguments to develop a parametric transformation, we can achieve at
least an en-par performance with a non-parametric transformation motivated from basic principles. Further,
Nguyen et al. (2020) showed significant benefits of BOIL over existing hyperparameter optimization methods
based on Bayesian optimization. Thus, coming up with reward transformations, in general, can significantly
enhance learning. While the transformation in BOIL is designed for a specific setting, our transformation has
a more universal character and is applicable in more diverse settings.

A.4 Hyperparameter choices

The hyperparameter choices for the experiments in section 7 are provided in table 1.
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Figure 5: Comparison of BOIL and our transformation for hyperparameter optimization of deep RL algorithms.
Our non-parametric transformation performs at least en par with state-of-the-art hyperparameter optimization
algorithms.

Table 1: Hyperparameters for the experiments in section 7.
Cart-pole Reacher

Discount rate 0.99 0.99
Training episodes 1000 500
Test episodes 100 100
Training episode length 100 200
Test episode length 200 200
Epochs 10 10
Nodes in the actor neural network 16 64
Learning rate 0.0007 0.001
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