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Abstract

Uncertainty expressions such as “probably” or001
“highly unlikely” are pervasive in human lan-002
guage. While prior work has established that003
there is general population-level agreement004
among humans about what these expressions005
mean quantitatively, the abilities of LLMs to006
interpret these phrases have seen little investi-007
gation. In this paper, we introduce a task for008
evaluating the abilities of LLMs to interpret009
uncertainty expressions as probabilities. Our010
approach assesses whether LLMs can employ011
theory of mind in this setting: understanding012
the uncertainty of another agent about a par-013
ticular statement, independently of the LLM’s014
own certainty about that statement. We evaluate015
both humans and a variety of LLMs on this task,016
demonstrating that a variety of LLMs are able017
to map uncertainty expressions to probabilistic018
responses in a human-like manner. However,019
we observe systematically different behavior020
depending on whether a statement is actually021
true or false. This sensitivity indicates that022
LLMs are substantially more susceptible to bias023
based on their prior knowledge (as compared to024
humans). These findings raise crucial questions025
and have broad implications for human-AI and026
AI-AI communication of uncertainty.027

1 Introduction028

Uncertainty is ubiquitous in human communication029

— in relaying predictions (“it is likely to rain tomor-030

row”), conveying imperfect knowledge (“I think I031

have a copy in my desk”), and describing unknown032

information (“the artifact could be more than 500033

years old”). Expressing uncertainty is critical in034

fields such as medicine, law, and politics, where035

statements including uncertainty expressions (e.g.,036

“likely,” “doubtful”) are frequently used to support037

medical, judicial, and political decisions (Karelitz038

and Budescu, 2004). For instance, domain ex-039

perts use these expressions to provide imprecise040

likelihood assessments about the side-effects of041

a medical treatment (Sawant and Sansgiry, 2018; 042

Patt and Dessai, 2005), the chances of winning a 043

not-guilty verdict in legal cases (Fore, 2019), the 044

probability of environmental events resulting from 045

climate change (Patt and Dessai, 2005; Ho et al., 046

2015), or the likelihood of emergence of military 047

conflicts (Duke, 2023). Generally, humans are well- 048

attuned to such statements, exhibiting population- 049

level agreement in mapping these expressions to 050

corresponding probabilities (Wallsten et al., 1986a; 051

Willems et al., 2019; Fagen-Ulmschneider, 2019). 052

However, the ability of large language models 053

(LLMs) to understand linguistic uncertainty has 054

received relatively little attention. In particular, 055

given text where a speaker expresses uncertainty 056

about a particular statement, we are interested in 057

whether LLMs can interpret the uncertainty not as a 058

function of their internal beliefs, but by objectively 059

assessing the speaker’s uncertainty about the state- 060

ment. Consider the motivating example in Figure 1: 061

when writing a headline for a statement qualified by 062

the word “probable,” ChatGPT expresses substan- 063

tially different uncertainty depending on its prior 064

belief about the statement.1 In this example, Chat- 065

GPT is conflating the speaker’s uncertainty with its 066

own uncertainty about the statement—in effect, a 067

failure of “theory of mind.” 068

In this work, we investigate the abilities of LLMs 069

to provide quantitative interpretations of uncer- 070

tainty expressions, focusing in particular on how 071

the prior knowledge of an LLM affects this ability. 072

To this end, we introduce a new task2 in which 073

LLMs must map text containing uncertainty ex- 074

pressions to numerical probabilities. We analyze 075

the performance of both humans and several popu- 076

lar LLMs on this task, enabling direct comparison 077

between humans and models. We find that larger, 078

1ChatGPT agrees with the first statement and disagrees
with the second; see Figure 9 in the Appendix.

2A link to our dataset and code will be made available
upon acceptance.
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Figure 1: Two interactions with ChatGPT (June 2024).
In each, ChatGPT is asked to write a headline for a short
passage. Both passages are structured identically and
qualified with the word “probable,” but the first is about
climate change and the second about the link between
vaccines and autism. For the first passage, ChatGPT
generates a certain-sounding headline, using words like
“conclude” and “comprehensive.” The second headline
is weaker, with words like “suggests” and “possible.”

newer models can consistently map uncertainty ex-079

pressions to numerical probabilities that align with080

human-like perceptions. However, we also show081

that the probabilities LLMs choose are susceptible082

to bias based on their prior knowledge—to a much083

greater extent than those of humans.084

This propensity has concerning implications085

given the increasing use of LLMs for generat-086

ing content (e.g., summarization, data augmenta-087

tion) and evaluating language generation (Wang088

et al., 2023). When an LLM’s ability to quan-089

tify uncertainty can be “poisoned” by its beliefs,090

its downstream performance is dependent on its091

parametric or pretraining knowledge (which can092

be obsolete or wrong (Liang et al., 2022; Long-093

pre et al., 2023)), rather than on critical contex-094

tual information (Longpre et al., 2021). Further,095

this means that the biases of a model (including096

the many well-documented potentially harmful097

biases of LLMs, e.g., Wan et al. (2023); Kotek098

et al. (2023); Salewski et al. (2024); Scherrer et al. 099

(2024); Motoki et al. (2024)) can subtly manifest 100

in how it interprets and generates uncertainty lan- 101

guage. 102

2 Related Work 103

Human Perceptions of Uncertainty Expressions. 104

In fields like medicine, finance, law, and politics, 105

where it is impossible to make predictions with 106

complete certainty, decisions are often informed 107

by subjective probabilities (Karelitz and Budescu, 108

2004; Dhami and Wallsten, 2005; Fore, 2019). Sub- 109

jective probabilities can be communicated quantita- 110

tively, through numerical probabilities (e.g., odds, 111

percentages, intervals), or qualitatively, through the 112

use of uncertainty expressions or epistemological 113

markers (e.g., “I believe”, “According to”) (Dhami 114

and Mandel, 2022). Although being less precise 115

than numerical probabilities (Wallsten et al., 1986b; 116

Brun and Teigen, 1988; Budescu et al., 2014), 117

humans generally prefer to use linguistic expres- 118

sions, rather than numbers, to communicate un- 119

certainty (Erev and Cohen, 1990; Wallsten et al., 120

1993). 121

Interested in the efficacy of how humans commu- 122

nicate uncertainty linguistically, researchers have 123

examined how participants map uncertainty expres- 124

sions into numerical values across different fields 125

and expertise levels (Karelitz and Budescu (2004); 126

Wallsten et al. (2008, 1986a); Fore (2019); inter 127

alia). Although there can be considerable variation 128

in responses at the individual level, these studies 129

have revealed that there are consistent patterns re- 130

lating uncertainty expressions and numerical prob- 131

abilities that can be observed systematically at the 132

population level (Wallsten et al., 2008; Willems 133

et al., 2019; Fagen-Ulmschneider, 2019). 134

Uncertainty Quantification in LLMs. The need 135

for more reliable LLMs has prompted researchers 136

to investigate new methods for communicating in- 137

ternal uncertainty of LLMs. Proposed methods can 138

be differentiated in terms of the information used to 139

estimate the model confidence in its response. For 140

instance, some methods leverage information about 141

the token-level logits of generated outputs (Jiang 142

et al., 2021; Kuhn et al., 2023; Duan et al., 2024), 143

resort to sampling multiple responses (Si et al., 144

2022; Chen and Mueller, 2023; Xiong et al., 2024; 145

Hou et al., 2024; Lin et al., 2024; Aichberger et al., 146

2024), train external classifiers to produce confi- 147

dence estimates based on the inputs and/or LLMs’ 148
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representations (Jiang et al., 2021; Mielke et al.,149

2022; Shrivastava et al., 2023), or elicit these confi-150

dences directly from LLMs as output tokens (Lin151

et al., 2022; Tian et al., 2023). While these works152

investigate how LLMs express uncertainty when153

generating text, there has been far less work on the154

question we focus on in this paper, i.e., how LLMs155

interpret uncertainty in text.156

More recently, concerns about human over-157

reliance on LLMs spurred investigations about the158

impact of LLM-articulated uncertainty in human-159

AI interaction (Zhou et al., 2024; Kim et al., 2024;160

Steyvers et al., 2024). After conducting human161

studies, the authors find that participants tend to162

rely less on LLMs when their outputs include un-163

certainty expressions. By assessing LLMs’ percep-164

tions of linguistic uncertainty, our work aims to165

understand the impact that uncertainty expressions166

have in model behavior.167

Most directly related to our work is that of Mal-168

oney et al. (2024), who compare numerical prob-169

ability estimates from GPT-4 and humans using a170

small set of “context” prompts. Our paper goes171

significantly beyond this work by assessing a broad172

range of LLMs using a more diverse and natural173

set of contexts. Further, we evaluate in a “theory174

of mind” context, prompting LLMs to estimate175

what an uncertainty expression reflects about the176

speaker’s belief, rather than what the expression177

means to the LLM. In addition, our work is the178

first that we are aware of to investigate how LLMs179

can be biased by their prior knowledge in mapping180

uncertainty expressions to numerical probabilities.181

3 Baseline Human Study182

As a baseline for how people map uncertainty ex-183

pressions to numerical probabilities, we first con-184

duct an experiment in which humans are shown185

uncertainty expressions and are asked to provide186

corresponding numerical probability estimates. We187

focus on a set of 14 uncertainty expressions (e.g.,188

“almost certain”, “unlikely”—see the full list in189

Figure 4), drawn from Wallsten et al. (2008) and190

Wallsten et al. (1986a). In this initial experiment,191

our goal is to capture how people perceive these192

phrases “in the wild,” putting them in the context193

of real-world statements. An additional goal is to194

select statements that minimize the potential for195

people to conflate their own beliefs about these196

statements with their assessment of the confidence197

of the person making the statement. To this end, we198

construct a set of statements (u, s, e) which include 199

uncertainty expressions u ∈ U used by speakers 200

s ∈ S to convey their degree of certainty about the 201

truthfulness or falsehood of a statement or event 202

e ∈ E . This degree of certainty can be expressed 203

by a number between 0 and 100, where 0 implies 204

that a speaker s believes there is a 0% chance that 205

e is true whilst 100 implies a belief that there is a 206

100% chance that the statement is true. 207

By presenting statements about a specific 208

speaker s (with a random name), we are asking 209

participants to use “theory of mind,” estimating the 210

belief of someone else. We can then query partici- 211

pants about the speaker’s strength of belief, clearly 212

distinguishing this notion from the participant’s 213

own beliefs. For instance, given the statement “So- 214

nia believes it is unlikely it will rain today,” we 215

can ask participants to quantify how likely Sonia 216

thinks it is to rain, distinct from the probability the 217

participant themselves believes it will rain. 218

We use non-verifiable statements e to separate 219

the meaning of the uncertainty expressions from un- 220

certainty about the statements themselves. These 221

are statements that are not sufficiently grounded 222

with specific contextual information to allow an 223

external observer to be confident in either the truth 224

or falsity of the statement. For example, in the 225

context of a prompt such as “Maria believes it is 226

likely that [statement]”, statements such as her boss 227

has two pets or her flight will land around 6pm are 228

statements we consider non-verifiable in the sense 229

that there is insufficient context provided (that the 230

speaker knows, but does not state) for an observer 231

to be able to reliably assess the likelihood that the 232

statement is true. In contrast, verifiable statements 233

(which we discuss further in Section 4.1) can be 234

verified as correct or incorrect in a context-free 235

sense (e.g., the capital city of Peru is Lima); hu- 236

mans and LLMs will often have strong prior beliefs 237

about the likelihood that such statements are true. 238

For this baseline experiment, we manually con- 239

structed a set of 60 non-verifiable statements and 240

systematically combined these with the aforemen- 241

tioned 14 uncertainty phrases. We randomly gener- 242

ated speaker names, generating sentences describ- 243

ing the belief of a hypothetical speaker in the form: 244

“[Speaker] believes it is [uncertainty phrase] that 245

[statement].” For each of these sentences, partic- 246

ipants are asked to quantify the speaker’s belief 247

about the statement, in particular, they were asked 248

what is the probability being expressed from the 249

speaker’s perspective that the statement is correct. 250
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Figure 2: Example question provided to participants in
the baseline experiment.

0 20 40 60 80 100
0

20
40
60
80

C
ou

nt
s

(a) “very likely”

0 20 40 60 80 100
Numerical Response

0
20
40
60
80

C
ou

nt
s

(b) “very unlikely”

Figure 3: Histogram of participant responses for non-
verifiable statements for two uncertainty expressions.

Participants then provided their response quantized251

to numerical bins 0, 5, 10, . . . , 95, 100. An exam-252

ple of what was shown to participants in the exper-253

iment is shown in Figure 2. Each of the 94 par-254

ticipants in this experiment generated responses in255

this manner for two randomly selected statements256

(and speaker names) for each of the 14 different257

uncertainty expressions.258

The result of this experiment3 is a distribution259

over the probabilities participants associate with260

each uncertainty expression. For example, Figure261

3 reflects the probabilities assigned to the phrases262

“very likely” and “very unlikely”; results for all263

14 uncertainty expressions are shown in Figure 4.264

Overall, we observe similar results to prior work265

on these perceptions (Wallsten et al., 2008, 1986a;266

Willems et al., 2019), including consistent ordering267

in aggregate population patterns, as determined by268

the mode of the empirical distribution.269

4 Methodology270

4.1 Verifiable Statements271

In addition to the non-verifiable statements de-272

scribed in Section 3, our dataset also includes veri-273

3Additional details about our human experiments can be
found in Appendix A.
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Figure 4: Human empirical distributions of numerical re-
sponses per uncertainty expression in the non-verifiable
setting. Highlighted blue boxes represent the maximum
value for each expression.

fiable statements, for the purpose of assessing the 274

effects of prior knowledge on quantifying linguis- 275

tic uncertainty. We curate 60 verifiable statements 276

based on a multiple-choice question-answering 277

dataset from The Question Company.4 Starting 278

with 30 of the dataset’s “easy” questions and cor- 279

responding multiple-choice options, we write true 280

statements that use the correct answer and false 281

statements using one of the incorrect answers. In 282

our main paper, we focus on results using these 60 283

statements.5 Examples of statements and details 284

about the dataset are included in Appendix C. 285

4.2 Numerical responses from LLMs 286

To obtain uncertainty estimates from LLMs, we 287

create prompts similar to the queries provided to 288

humans (see Appendix C). For a given statement 289

(u, s, e), we need to estimate a distribution over the 290

LLM’s generated numerical probabilities. In this 291

paper we consider two techniques for obtaining this 292

distribution: greedy sampling and (when available) 293

the next-token probability distribution. 294

In greedy sampling, we approximate the empir- 295

ical distribution with a single sampled response 296

(temperature=0)—an approach commonly used 297

to solve discriminative tasks with LLMs (Zhu and 298

Griffiths, 2024). Because this sampling approach 299

requires no knowledge about the weights or next- 300

token probabilities, it is applicable to any model, in- 301

cluding those behind black-box APIs (e.g., Gemini 302

(Anil et al., 2024), GPT-4 (Achiam et al., 2024)). 303

We focus primarily on this greedy sampling ap- 304

proach since it aligns more closely with the human 305

responses, i.e., we want to assess the ability of each 306

4https://www.thequestionco.com/
5For further validation, our dataset includes 400 additional

statements (generated from the AI2-ARC question set (Clark
et al., 2018) via a similar procedure)—we report results on
this full set in Appendix E.
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LLM as if it were an individual human providing re-307

sponses rather than asking it to match a population308

distribution of human responses.309

We obtain an empirical distribution of probabili-310

ties conditional on an uncertainty expression u by311

we repeating this process over multiple statements312

e and speakers s.313

4.3 Metrics314

We treat the empirical distribution obtained for the315

non-verifiable statements (see Section 3) as the316

reference distribution, as it reflects inter-human317

variability in a setting designed to be free of prior318

information or biases about the corresponding state-319

ments. For every uncertainty expression u ∈ U ,320

we define a reference conditional probability distri-321

bution P (k|u), over values of k that are multiples322

of 5 in the range [0, 100], where P (k|u) is as the323

empirical distribution from the baseline experiment324

with non-verfiable statements. Given a response325

from any agent, human or LLM, we measure the326

quality of the agreement of the response with the327

reference distribution.328

The primary quality metric that we use is Pro-329

portional Agreement (PA), defined as follows. If330

an agent selects bin k for uncertainty expression331

u then the PA value for that response is defined332

as P (k|u), where P is the reference (population)333

distribution. Intuitively, for an expression u, this334

PA score P (k|u) represents the probability that335

the agent’s response k agrees with that of a ran-336

domly selected individual, and is upper bounded337

for any expression by argmaxk P (k|u), i.e., by the338

mode of the P (k|u). The higher the PA, the better339

the quality of the response in terms of agreement340

with the aggregate human population (as reflected341

by P (k|u). To get a single score for an LLM or342

individual human, we average PA over multiple343

responses and over the 14 uncertainty expressions.344

Note that the PA metric is similar to the log-345

probability metric widely used to score probabilis-346

tic models in machine learning. However it is not a347

likelihood in the sense of a model assigning proba-348

bility mass to observed data—in this context it is349

appropriate to average the PA scores directly (rather350

than taking products of probabilities as would be351

done under an IID likelihood assumption). An al-352

ternative to the PA metric would be to compare353

histograms of responses, e.g., based on multiple354

responses from agents for a particular uncertainty355

expression u. We provide numerical results (us-356

ing the Wasserstein distance between histograms)357

in the Appendix, but this is of secondary interest 358

since we are not requiring any LLM or individual 359

human to necessarily replicate the full population 360

variability of responses. 361

As an additional measure of alignment between 362

the reference distribution and the agent’s distribu- 363

tion, we also compute the Mean Absolute Error 364

(MAE) over the means of the empirical distribu- 365

tions for each uncertainty expression, i.e. we com- 366

pute the absolute difference between the means 367

for each expression, and then average across the 368

expressions. 369

5 Results 370

This section examines the ability of several well- 371

known LLMs to interpret uncertainty expressions.6 372

We begin by assessing models’ abilities to pro- 373

duce numerical responses that resemble human-like 374

trends (e.g., higher numerical responses assigned 375

to higher certainty expressions and vice-versa). We 376

then study the effect of prior knowledge in the per- 377

ception of uncertainty of both humans and models. 378

We conclude with some results on the generaliz- 379

ability of our findings. 380

5.1 How well do LLMs perceive uncertainty? 381

As established in prior work and in our baseline 382

experiment, humans show population-level agree- 383

ment in mapping uncertainty expressions to numer- 384

ical probabilities. In this section, we assess whether 385

LLMs possess a similar ability to ascribe numeri- 386

cal probabilities to uncertainty expressions. To this 387

end, we prompt LLMs to provide numerical proba- 388

bilities for the same non-verifiable (NV) statements 389

as in the baseline experiment (Section 3). In Fig- 390

ure 5 we include expression-wise histograms for 391

these numerical probabilities for GPT-4o and OLMo 392

(7B) (which can be compared to the histogram for 393

humans in Figure 4). 394

Visually, we observe that most LLMs map un- 395

certainty expressions to probabilities in a consis- 396

tent way, with higher probabilities for expressions 397

that are perceived by humans as higher-certainty 398

(e.g., “almost certain,” “highly likely”) and lower 399

probabilities for lower-certainty expressions (e.g., 400

“very unlikely”). Only 2 of the LLMs evaluated, 401

OLMo (7B) and Gemma (2B), fail to reproduce 402

this “increasing” pattern across expressions. How- 403

ever, comparatively, the conditional distributions 404

6We focus in this section on a subset of popular models;
results for all 10 models evaluated are in Appendix D.
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(b) OLMo-7B Instruct

Figure 5: Distributions of numerical probabilities per un-
certainty expression in the non-verifiable setting. High-
lighted blue boxes represent the maximum value for
each expression.
of LLMs have little variability, tending to be con-405

centrated on only a few probabilities.406

These observations are reflected more precisely407

by the PA scores in Table 1. We observe that larger408

and newer LLMs (in particular, GPT-4, LLama3409

(70B), and Gemini) perform especially well on410

this task, matching the modal scores that humans411

assign to each uncertainty expression. In fact, 8 out412

of the 10 LLMs evaluated out-perform individual413

humans, on average, at this task. This aligns with414

the high-level findings of Maloney et al. (2024),415

in particular, that the difference between the nu-416

merical probabilities of GPT-4 and humans were417

similar to (or smaller than) inter-human differences.418

In the context of our experiments, these high scores419

reflect that LLMs tend to be more consistent than420

individual humans in terms of agreement with ag-421

gregate human responses.422

5.2 Does knowledge affect uncertainty423

perceptions of LLMs?424

In this section we assess the extent to which LLMs,425

and humans, are biased by their prior knowledge426

or beliefs in mapping uncertainty expressions to427

numerical probabilities. To investigate this ques-428

tion we collect probability estimates from humans429

and LLMs on our verifiable (V) dataset, which430

includes both true and false common-knowledge431

statements. On average, PA (compared to the non-432

verifiable responses) for both humans and LLMs is433

Table 1: Human-LLM agreement for non-verifiable
statements: average Proportional Agreement (PA), PA
as a fraction of the Human Mode results (% PA), and
absolute error between mean responses (MAE). Human
Mode represents the mode of the human NV distribu-
tion, whereas Human Individual represents the average
behavior across individual humans.

PA % PA MAE

Human Mode 27.6 — —
Human Individual 17.6 65.9 8.91
ChatGPT 19.7 68.7 6.80
GPT-4 24.4 86.9 4.64
GPT-4o 18.9 68.9 5.58
Gemini 25.4 90.8 4.09
Llama3 (70B) 23.6 85.5 5.56
Mixtral 8x22B 21.8 77.6 7.20

Table 2: Human-LLM agreement for verifiable ex-
periments: average Proportional Agreement (PA), the
change in PA from the non-verifiable statements (Table
1) (∆ PA) and absolute error between mean responses
(MAE). Again Human Mode represents the mode of the
human NV distribution, whereas Human Individual rep-
resents the average behavior across individual humans
on the verifiable set.

PA ∆ PA MAE

Human Mode 27.6 — —
Human Individual 16.7 -0.9 9.35
ChatGPT 15.3 -4.4 8.57
GPT-4o 15.2 -3.7 7.05
GPT-4 22.1 -2.3 3.84
Gemini 21.3 -4.1 7.23
Llama3 (70B) 18.9 -4.8 13.73
Mixtral 8x22B 18.6 -3.2 9.78

lower for verifiable statements (Table 2), suggest- 434

ing that prior knowledge about a statement makes 435

it more difficult to quantify the beliefs of someone 436

else about that statement. This reduction in PA is 437

particularly pronounced for LLMs: all 10 LLMs 438

evaluated demonstrated a reduction in PA, averag- 439

ing a 4.3 point drop in score, compared to a 0.9 440

point drop for humans. 441

To investigate these differences in more detail, 442

we consider the mean numerical probabilities pro- 443

duced by LLMs (Figure 6). These probabilities 444

differ systematically depending on whether the 445

statement is true or false: across the 6 LLMs in 446

Figure 6, the probability generated is on average 447

7.0 percentage points lower for false than true state- 448

ments. This indicates that the LLMs’ knowledge is 449

“leaking” into the probabilities they produce: the 450

models assign higher numerical probability to the 451

same uncertainty expression when they believe the 452

associated statement it refers to is true than when 453
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Figure 6: Mean response of the verifiable statements
discriminated by truthfulness of statements.

they believe it to be false.454

Results for a subset of specific uncertainty ex-455

pressions are shown in Figure 7. We observe that456

the prior-knowledge bias differs based on the uncer-457

tainty expression: the difference between true and458

false statements is much higher (49.5 percentage459

points) for “possible” than for “uncertain”, where460

most models are relatively consistent (averaging a461

5.7 percentage point difference).462

Overall, we find that all LLMs evaluated demon-463

strate significant biases based on their prior knowl-464

edge, well beyond those of humans. Our results465

indicate that when an LLM believes a statement is466

false, it tends to perceive the speaker’s certainty as467

low, regardless of the actual uncertainty expressed468

by the speaker (and vice versa).469

5.3 How generalizable are our findings?470

In the previous sections, our analyses are conducted471

on a manually curated set of 120 statements, com-472

prised of 60 NV statements and 60 V statements.473

To further validate our findings concerning LLMs’474

prior knowledge biases, we re-assess the impact475

of knowledge in LLMs’ perceptual capabilities by476

obtaining their responses for 400 additional verifi-477

able statements. We refer the reader to Appendix E478

for a more thorough description of the experimen-479

tal setup. Similarly to the original study, Figure480

15 (Appendix) shows that, on average, all mod-481

els except Gemma (2B) exhibit significant percep-482

tual differences between true and false statements—483

between 5.87 (OLMo (7B)) and 17.26 (LLama3484

(70B)) percentage points. The validation of our485

verifiable results in this larger dataset corroborates486

our knowledge bias finding by showing that these487

perceptual differences persist in a different context.488

5.4 How does decoding impact our findings?489

The previous analyses employ greedy decoding490

(i.e., temperature=0) when estimating the condi-491
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Figure 7: Mean response for verifiable statements (both
true and false) for selected uncertainty expressions.

tional probability distributions. In this section, we 492

investigate the impact of decoding technique in the 493

model’s abilities to perceive linguistic uncertainty 494

by considering richer probability information (i.e., 495

temperature=1) during the estimation of the con- 496

ditional probability distributions7. 497

Table 3 summarizes the change in agreement 498

between LLM and human responses between the 499

verifiable and non-verifiable settings (in terms of 500

change in PA and MAE) when using probabilistic 501

decoding. Validating the results reported in Sec- 502

tion 5.2 with greedy decoding, we observe a clear 503

7This analysis requires full probability information, which
is prohibitively expensive to obtain empirically through sam-
pling as it would require a large sample size (per (u, s, e))
to faithfully approximate the distribution. As a result, we
limit our analysis to OpenAI models for which the top 20
next-token probabilities are available. See Appendix F for
additional discussion on this topic.
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Table 3: Differences in average proportional agree-
ment and mean responses from non-verifiable to ver-
ifiable settings when considering probabilistic decoding
(temperature=1). Even with a different decoding, we
observe the same decrease in LLM perceptions when
comparing non-verifiable with verifiable settings.

∆ PA ∆ MAE

ChatGPT -3.6 0.4
GPT-4 -3.0 1.9
GPT-4o -4.2 -0.6
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Figure 8: Mean response on the verifiable statements
discriminated by truthfulness of statements when decod-
ing probabilistically temperature=1.

difference in the PA score between non-verifiable504

and verifiable statements when using probabilis-505

tic decoding. Further, comparing responses across506

true and false statements, we observe large mean507

response differences of 11.4, 11.7, and 27.9 per-508

centage points for GPT-4o, GPT-4, and ChatGPT,509

respectively (see Figure 8 and Figure 17 in the510

Appendix for a breakdown across expressions). Al-511

though GPT-4o mean responses are considerably512

lower than in the greedy decoding setting (i.e., 20513

percentage points drop), the gap between true and514

false statements persists. Ultimately, this analy-515

sis confirms the relevance of our previous findings516

beyond a single decoding strategy.517

6 Discussion518

Connection to verbalized confidence. Asking519

LLMs to express their uncertainty through lan-520

guage has become a popular method for obtain-521

ing calibrated confidence measures from black-box522

LLMs (Lin et al., 2022; Tian et al., 2023; Shrivas-523

tava et al., 2023; Xiong et al., 2024). Our work524

raises important questions about the efficacy of this525

method for text with uncertainty expressions. To526

date, this technique has not been studied systemati-527

cally; our findings constitute an initial step in this528

direction and highlight a need for further research.529

Connection to human behavior simulation us- 530

ing LLMs. Our experiments reveal that, despite 531

agreeing with population-level perceptions of lin- 532

guistic uncertainty, models are not able to capture 533

the full diversity of human behavior. Given the re- 534

cent interest in using LLMs to simulate human par- 535

ticipants (Aher et al., 2023; Gui and Toubia, 2023; 536

Dillion et al., 2023; Park et al., 2023; Namikoshi 537

et al., 2024), our work raises important questions 538

about whose opinions and behaviors are being sim- 539

ulated (Santurkar et al., 2023; Motoki et al., 2023) 540

and reveals a new dimension in which models fail 541

to match the diversity of humans. 542

Theory of mind. A growing body of work aims 543

to assess the theory of mind capabilities of LLMs 544

in different contexts (e.g., Street et al.; Verma et al.; 545

Sap et al.; Zhou et al.). Our task of mapping uncer- 546

tainty expressions to numerical probabilities, from 547

the perspective of some speaker, is one component 548

of a general theory of mind ability. Our results indi- 549

cate that LLMs have room for improvement in this 550

area, in particular, that they are prone to confusing 551

their own belief about a statement with the belief 552

of someone else. 553

7 Conclusions 554

We introduce the task of assessing the abilities of 555

LLMs to interpret uncertainty in language and eval- 556

uate a number of models in this context. We ob- 557

serve that many LLMs can competently map uncer- 558

tainty expressions to numerical probabilities in a 559

way that aligns with population-level human per- 560

ceptions, although the probabilities they choose are 561

much less diverse than those by humans. Addition- 562

ally, we find that LLMs are more susceptible to 563

conflating their own uncertainty about a statement 564

with the statement speaker’s uncertainty, resulting 565

in performance that is biased by the LLM’s belief 566

about the statement. 567

In proposing this task, we do not take a stance on 568

whether LLM behavior should mirror the diversity 569

of human behavior—which is a broader philosoph- 570

ical discussion—but focus on characterizing LLMs 571

in comparison to human patterns that arise at the 572

population-level. By highlighting systematic incon- 573

sistencies related to the perceptions of linguistic 574

uncertainty in the presence of knowledge, we shed 575

light into overlooked model behaviors that are crit- 576

ical for understanding human-AI communication 577

and downstream LLM performance. 578
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Limitations579

US Centric View: In this paper we focus on a580

small set of uncertainty expressions in English;581

our baseline is drawn from participants located in582

the United States. Investigating the role that cul-583

tural and language differences play in communicat-584

ing uncertainty is important future work that will585

help better characterize the downstream abilities of586

LLMs for all users.587

Lack of Explanation: Our results highlight the588

LLMs’ abilities to interpret uncertainty phrases589

in a way that agrees with population-level human590

distribution in the non-verifiable and to less extent591

in the verifiable setting. We found it surprising to592

find consistent model performance, especially since593

we found no evidence of similarly framed tasks in594

available instruction-tuning and human feedback595

datasets (Wang et al., 2022; Bai et al., 2022). We596

hope that future work would explain the reasons597

behind these findings.598
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A Human Experiments1431

Human responses were collected using Prolific1432

(https://www.prolific.com/). We recruited1433

100 participants for the non-verifiable experiment1434

and 100 different participants for the second verifi-1435

able experiment. One of the 100 responses was not1436

received due to a technical issue in both the first and1437

second experiment, leaving a total of 99 responses1438

for each. We recruited participants whose first lan-1439

guage was English that were located in the United1440

States. Participants were paid $2 for completing1441

the study and the average completion time was1442

8 minutes and 48 sections; the average payment1443

rate was $13.64/hour. The University of California,1444

Irvine Institutional Review Board (IRB) approved1445

the experimental protocol. Prior to the experiment,1446

participants were given detailed instructions out-1447

lining the experimental procedure as well as how1448

to understand and interact with the user interface.1449

Participants were asked to sign an integrity pledge1450

after reading all of the instructions, stating that they1451

would complete the experiment to the best of their1452

abilities. After submitting their integrity pledge,1453

participants were granted access to the experiment.1454

We filtered out low-quality responses with the1455

following procedure. For each participant, we com-1456

puted the Spearman correlation between the partic-1457

ipant’s responses and the overall ranking of uncer-1458

tainty statements in the non-verifiable experiment.1459

We removed participants with ρ < 0.2, a thresh-1460

old chosen empirically to filter out only no-signal,1461

spam-like responses. This filter removed 5 partici-1462

pants in the first experiment and 10 in the second1463

experiment. The final totals are 94 participants in1464

the non-verifiable experiment and 89 in the verifi-1465

able experiment.1466

B Greedy Samples 1467

Gemini pro directly produces numbers (14 unique 1468

answers). 1469

For Llama-70B sample greedy, we determine 1470

that 95% of the responses produce numerical values 1471

between 0 and 100. For the remaining 47 examples, 1472

the first produced number in the response is the 1473

proposed model answer in about 46. 1474

Despite more verbose, DBRX-Instruct responses 1475

also start with the number and then proceed to ex- 1476

plain its reasoning. In 5.55% of examples (50 out 1477

of 900), DBRX-Instruct proposes an enumerate of 1478

numbers (e.g., “0, 5, or 10.” expressed for uncer- 1479

tainty expressions like ‘very unlikely‘ and ‘highly 1480

unlikely‘). 1481

C Experiment Details 1482

In this section, we provide the details concerning 1483

the different aspects of the experiments carried in 1484

this paper. 1485

C.1 Uncertainty Expressions 1486

The uncertainty expressions are a subset of the 1487

expressions proposed in Wallsten et al.; Wallsten 1488

et al.; Willems et al.; Fore. The final list of un- 1489

certainty expressions used in this paper is listed 1490

below: 1491

1. almost certain 1492

2. highly likely 1493

3. very likely 1494

4. likely 1495

5. probable 1496

6. somewhat likely 1497

7. somewhat unlikely 1498

8. uncertain 1499

9. possible 1500

10. unlikely 1501

11. not likely 1502

12. doubtful 1503

13. very unlikely 1504

14. highly unlikely 1505
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Figure 9: Responses from ChatGPT when asked about its belief in the statements from Figure 1. ChatGPT agrees
that “human activities are the main driver of climate change,” but disagrees with the statement that “early vaccination
increases the chances of developing autism.”

Gender List of names

Female “Amanda”, “Bonnie”, “Camille”,
“Catherine”, “Cheri”, “Ethel”,
“Gabriela”, “Jacquelyn”, “Jessica”,
“Laura”, “Olga”, “Roxanne”,
“Silvia”, “Tara”, “Violet”

Male “Brendan”, “Bruce”, “David”,
“Gary”, “Isaac”, “Jeffery”, “Joey”,
“Johnnie”, “Kenny”, “Lance”,
“Marco”, “Mike”, “Nathan”,
“Nick”, “Raul”

Table 4: Names used in the experiments.

C.2 Name Selection1506

Table 4 lists all names used in our experiment, dis-1507

criminated by gender. The names are generated1508

using a random name generator8, configured to gen-1509

erate 32 names from the United States (see Table1510

4). We iteratively generate names until we obtain1511

16 unique male names and 16 unique female names.1512

1513

C.3 Prompts1514

In our main paper, we conduct experiments using 21515

demonstrations. This guarantees tight similarity be-1516

tween the setup employed in the study of liguinstic1517

perceptions of LLMs and humans.1518

During the course of our experiments, we car-1519

ried experiments with varying assumptions: non-1520

8https://randomwordgenerator.com/name.php, last
accessed on March 26th, 2024.

verifiable setup assessed models (and humans) per- 1521

ceptions in the absence of strong prior beliefs about 1522

the events, whereas the verifiable setup focused on 1523

the evaluation of the same perceptions when knowl- 1524

edge was present. We used two different sets of 1525

exemplars in our experiments to reflect the different 1526

setups. 1527

For the non-verifiable experiments, we used 1528

the following uncertainty expression, speaker, state- 1529

ment pairs: 1530

• speaker: “Kathleen”, uncertainty: “impos- 1531

sible”, statement: “the cafe made a profit in 1532

the last 6 months”. 1533

• speaker: “Cedric”, uncertainty: “certain”, 1534

statement: “the new treatment will improve 1535

the patient’s condition”. 1536

For the verifiable experiments, we used the fol- 1537

lowing uncertainty expression, speaker, statement 1538

pairs: 1539

• speaker: “Kathleen”, uncertainty: “impos- 1540

sible”, statement: “the Sun orbits around the 1541

planet Earth”. 1542

• speaker: “Cedric”, uncertainty: “certain”, 1543

statement: “all metals can conduct electric- 1544

ity”. 1545

C.4 Non-Verifiable Statements 1546

In this section, we list a random selection of 20 1547

statements (5 per each statement type). These state- 1548

ments are incorporated in the prompts listed in the 1549

17
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In this experiment, you will be shown text reflecting an individual’s beliefs about a statement. You
will then be asked to judge, in your opinion, the strength of that individual’s belief. To do so, you
will provide a probability (expressed as a percentage) where:
- The number 0 indicates that the individual believes with certainty that the statement is false.
- The number 100 indicates that the individual believes with certainty that the statement is true.

You will be shown two example question and response pairs below to familiarize you
with the experiment setup. After the examples, you will be asked to answer a new question.

## Example Question 1
[[demonstration1]]
Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Correct answer: 100

## Example Question 2
[[demonstration2]]|
Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Correct answer: 100

## Question
Given the examples before, answer the following question by writing a single number as the answer.

[[test-example]]
Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 Correct answer:

Figure 10: Prompt used to conduct the experiments in the 2-shot setting. [[demonstration1]],
[[demonstration2]], and [[text-example]] are placeholders that will be composed of a statement (or event),
question, and individual instructions. The prompt closely reflects the interface presented to the participants of the
user studies. Similarly to the human interface, we encourage LLMs to select a multiple of 5 in the range [0, 100].

18



Sentence: “[[speaker]] believes it’s [[uncertainty]] that [[statement]].”

Question: Provide a number between 0 and 100 that reflects, from [[speaker]]’s per-
spective, the probability (expressed as a percentage) that [[statement]].
- 0 indicates [[speaker]] believes there is a 0% chance that [[statement]].
- 100 indicates [[speaker]] believes there is a 100% chance that [[statement]].

Figure 11: Structure of a demonstration, where the placeholders [[speaker]] are replaced by gendered names,
[[uncertainty]] is replaced by the uncertainty expressions, and [[statement]] is replaced with the correspond-
ing statements.

main paper and the placeholders [[they]] and1550

[[their]] are replaced by pronouns matching the1551

gender of the statement speaker’s name.1552

Forecasting of future events. Verbal probabil-1553

ities are often used to communicate uncertainty1554

about future events.1555

1. [[they]] will buy a new watch this Thanks-1556

giving weekend.1557

2. [[they]] will be offered a promotion this1558

fall.1559

3. the company will have another round of lay-1560

offs by mid July.1561

4. there will be vegetarian options at the barbe-1562

cue.1563

5. [[they]] will visit New York over winter1564

break.1565

Imperfect knowledge. Verbal probabilities can1566

also be used to communicate uncertainty imprecise1567

information about events or outcomes.1568

1. the restaurant near [[their]] apartment ac-1569

cepts reservations.1570

2. the new museum is offering complimentary1571

admission.1572

3. there is a yoga studio within 2 miles of1573

[[their]] workplace.1574

4. there are more than eighty students in the au-1575

ditorium right now.1576

5. the temperature in the office is at least 72 de-1577

grees Fahrenheit.1578

Possession. Alternatively, verbal probabilities 1579

can be used to convey uncertainty about acquain- 1580

tances, be it in terms of the objects they own or in 1581

terms of their preferences. 1582

1. [[their]] boss owns a blue car. 1583

2. [[their]] friend has a leather jacket. 1584

3. [[their]] cousin has a vegetable garden. 1585

4. [[their]] classmate owns a guitar. 1586

5. [[their]] boss has a stereo amplifier. 1587

Preference. 1588

1. [[their]] cousin prefers spinach over broc- 1589

coli. 1590

2. [[their]] boss prefers coffee over tea. 1591

3. [[their]] friend prefers running over cy- 1592

cling. 1593

4. [[their]] neighbor prefers the beach over 1594

the mountains. 1595

5. [[their]] coworker prefers reading books 1596

over watching movies. 1597

C.5 Verifiable Statements 1598

In this section, we list a random selection of 9 1599

true statements (3 per each topic) and their false 1600

counterparts. These statements are incorporated 1601

then used as part of the test examples the prompts 1602

listed in Section C.3. 1603

Geography. One of the topics of the experiment 1604

involves geography, as well as knowledge about 1605

landmarks and monuments. These statements were 1606

curated from a set of easy trivia questions provided 1607

by The Question Company (as described in Sec- 1608

tion 4). For each question-answer pair in the trivia 1609
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dataset, we create both a true and a false statement1610

using the correct and one incorrect answer choice,1611

respectively.1612

Given our interest in attesting the knowledge1613

effect in the models’ and humans’ perceptions of1614

linguistic uncertainty, we purposely decided to use1615

easy trivia questions as the basis for our facts (as1616

opposed to more difficult ones), since this subset1617

constitutes a good proxy for facts that LLMs and1618

humans may have strong prior beliefs about.1619

1. Great Britain directly borders 0 countries.1620

2. the Colosseum, a famous landmark in Rome,1621

was originally built as an Amphitheatre.1622

3. New York is known as the Big Apple.1623

4. Great Britain directly borders 2 countries.1624

5. the Colosseum, a famous landmark in Rome,1625

was originally built as an Cathedral.1626

6. New York is known as the Big Orange.1627

History of Art. One of the topics of the exper-1628

iment involves history of arts. For each fact we1629

include both a true and one false variation of that1630

fact.1631

1. the Mona Lisa is a famous painting by1632

Leonardo da Vinci.1633

2. the Scream is the best known painting by Ed-1634

vard Munch.1635

3. Andy Warhol became a famous artist in the1636

1960s for painting soup cans and soap boxes.1637

4. the Mona Lisa is a famous painting by Tin-1638

toretto.1639

5. the Scream is the best known painting by Jack-1640

son Pollock.1641

6. Frida Kahlo became a famous artist in the1642

1960s for painting soup cans and soap boxes.1643

Science. These include facts concerning chem-1644

istry, biology, and astronomy. For each fact we1645

include both a true and one false variation of that1646

fact.1647

1. water’s chemical formula is H2O.1648

2. pH is a measure of the acidity or basicity of a1649

substance.1650

3. the nearest planet to the sun is Mercury. 1651

4. carbon monoxide’s chemical formula is H2O. 1652

5. oG is a measure of the acidity or basicity of a 1653

substance. 1654

6. the nearest planet to the sun is Mars. 1655

C.6 Language Models 1656

Throughout our paper, we use OpenAI to obtain the 1657

results for ChatGPT, GPT-4, and GPT-4o; Google’s 1658

Vertex AI APIs to obtain results for Gemini, To- 1659

getherAI9 to run LLama3 (70B), Mixtral 8x7B, 1660

Mixtral 8x22B, and DBRX. We run LLama3 (8B) 1661

OLMo (7B) and Gemma (2B) locally on a single 1662

GPU 8 RTX A6000 (48 GB). 1663

During the paper, we shorten the name of the 1664

studied models for simplicity. All our experiments 1665

consider the instruction-tuned or RLHF version of 1666

the mentioned models. All experiments were con- 1667

ducted from April through June. For reproducibil- 1668

ity, we list below the mapping from model name to 1669

exact version of the model used: 1670

• ChatGPT: gpt-3.5-turbo-0125 1671

• GPT-4: gpt-4-turbo-2024-04-09 1672

• GPT-4o: gpt-4o-2024-05-13 1673

• LLama3 (8B): 1674

meta-llama/Meta-Llama-3-8B-Instruct 1675

• LLama3 (70B): 1676

meta-llama/Llama-3-70b-chat-hf 1677

• Gemini: models/gemini-pro 1678

• Mixtral 8x7B: 1679

mistralai/Mixtral-8x7B-Instruct-v0.1 1680

• Mixtral 8x22B: 1681

mistralai/Mixtral-8x22B-Instruct-v0.1 1682

• Gemma (2B): google/gemma-1.1-2b-it (we 1683

found Gemma (2B) to respond better empiri- 1684

cally to the prompts than its 7B version, which 1685

tended to extrapolate the few-shot instructions 1686

with additional examples). 1687

• OLMo (7B): allenai/OLMo-7B-Instruct 1688

In Section 4.2 we describe the use of different 1689

methodologies to extract numerical responses from 1690

LLMs. The following describes the list of method- 1691

ologies used for each LLM: 1692

9https://www.together.ai/
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• Greedy Sampling: Gemini, LLama3 (70B),1693

Mixtral 8x7B, Mixtral 8x22B. We opt for1694

using greedy sampling as opposed to standard1695

sampling due to budget constraints. Given the1696

nature of our experiments, faithfully estimat-1697

ing the empirical distributions over the 1001698

numbers would require hundreds or thousands1699

of calls. These calls are time-consuming and1700

costly. We believe that using decoding is still1701

representative of how a model would behave1702

in most cases.1703

• Full next-token probability distribution:1704

LLama3 (8B), Gemma (2B), OLMo (7B). We1705

found these models to be particularly brittle1706

to the prompts.1707

• Next-token probability distribution: ChatGPT,1708

GPT-4, GPT-4o. As of June 2024, OpenAI1709

models only provide access to the next-token1710

probabilities of the top-20 tokens. During1711

the experiments in Section 5.4, we collect the1712

information about the top 20 numbers1713

C.6.1 Full Next-Token Probability1714

Information1715

By definition, our task elicits a numerical response1716

from LLMs, which resembles the setup in verbal-1717

ized confidence (Tian et al., 2023). The adoption1718

of single digit tokenization (Singh and Strouse,1719

2024) by autoregressive models (e.g., Gemma (2B),1720

LLama3 (70B), and OLMo (7B)) creates some chal-1721

lenges in the computation of numerical responses1722

non-trivial for autoregressive models. In practice,1723

due to the left-to-right nature of LLMs, single digit1724

tokenization implies that the probability of a num-1725

ber between [0, 9] is always greater or equal to the1726

probability of any number in [10, 100]. To circum-1727

vent this problem, we report the corrected proba-1728

bility during our experiments as follows:1729

pmodel(yt = i|x)−
9∑

j=0

pmodel(yt = i, yt+1 = j|x)

, where x is a prompt and j ∈ [0, 9]. Intuitively,1730

this means that we are computing the probability1731

of i ∈ [0, 9] and no other number following it. The1732

details of what a number is change with tokenizer1733

implementation.1734

Selecting the greedy prediction: Unlike traditional1735

greedy decoding, we condition the selection of the1736

arg-max prediction to the set of strings representing1737

the numbers between [0, 100] (followed by no other 1738

number). 1739

C.6.2 Partial Next-Token Probability 1740

Information 1741

In order to work, this method requires two proper- 1742

ties to be satisfied: (1) numbers between 0 and 100 1743

were encoded with unique tokens (i.e., there are 1744

101 unique integers that represent each individual 1745

token), and (2) exponentiating the log probabilities 1746

returned by the black-box API must lead to a valid 1747

probability distribution (i.e., numbers obtained for 1748

different prompts will be comparable to one an- 1749

other). For OpenAI models, the first requirement 1750

is satisfied. 1751

Selecting the greedy prediction: Unlike traditional 1752

greedy decoding, we condition the selection of the 1753

arg-max prediction over numbers the top-k (k=20 1754

for OpenAI). That is, we select the most likely num- 1755

ber that is present in the top-20 predicted tokens. 1756

Estimating conditional distributions using proba- 1757

bilistic decoding: In Section 5.4, we use the infor- 1758

mation available in the top-20 tokens made avail- 1759

able by OpenAI models. Like before we bin the 1760

predictions into 21 bins, defined from 0 to 100 in 1761

increments of 5. To ensure that we have a valid 1762

probability definition, we consider an additional 1763

bin (“-1”) that accumulates the probability of not 1764

having being a number in the top-20. 1765

D Additional Results 1766

In this section, we report additional results, includ- 1767

ing visualization of the empirical distributions for 1768

models and humans in Section D.1, additional mea- 1769

surements of similarity between non-verifiable and 1770

verifiable distributions in Section D.2, metrics dis- 1771

criminated by uncertainty expression (whenever 1772

applicable) in Sections D.3 and D.4. 1773

D.1 Histograms 1774

Figure 13 depicts the empirical distributions for the 1775

non-verifiable experiments. 1776

D.2 Summary Metrics 1777

For a more complete understanding of the differ- 1778

ences among the distributions, we report distance 1779

metrics in Table 5. 1780

• Proportional Agreement: proposed in Sec- 1781

tion 4.3, measures the overall agreement be- 1782

tween an agent’s and a reference (population) 1783

distribution. We use the results of the human 1784
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Figure 12: Differences in the probability mass as determined by OpenAI models on the top-20 tokens. We report
these values across all statements (n=840) in the verifiable and non-verifiable settings. We observe that numbers
account for the majority of probability mass in ChatGPT and GPT-4. Upon analysis we found lower probability mass
assigned by GPT-4 to be correlated with the appearance of the words “Given”, “The”, and “And”.

studies in the non-verifiable setting as our ref-1785

erence distribution throughout the whole pa-1786

per.1787

• Mean Absolute Error: proposed in Section1788

4.3, measures the average agreement across1789

uncertainty expressions between a agent’s dis-1790

tribution and a reference (population) distri-1791

bution. In this case, we also use the human1792

results from the non-verifiable setting as our1793

reference distribution throughout the paper.1794

• Wasserstein Distance: computed using1795

scipy.stats.wasserstein_distance,1796

measures the distance between two condi-1797

tional distributions.1798

D.3 Proportional Agreement1799

Tables 6 and 7 report the proportional agreement1800

(PA) metric discriminated by uncertainty expres-1801

sion in the non-verifiable and verifiable settings,1802

respectively. The results are reported in the filtered1803

pool of human participants.1804

D.4 Mean Response1805

Figure 14 illustrates the mean rated probability met-1806

ric discriminated by uncertainty expressions across1807

the non-verifiable, as well as the true and false1808

verifiable statements.1809

E Generalization results1810

Diversity of grammatical and semantic structures is1811

an important component of current evaluation prac-1812

tices in LLMs (Selvam et al., 2023; Seshadri et al.,1813

2022), since it helps ensure that obtained results are1814

not an artifact of the evaluation methodology and/or1815

benchmarks used. The experiments described in 1816

the main paper were carefully crafted to cover vari- 1817

ous topics and situations where uncertainty expres- 1818

sions could be used. To further strengthen our anal- 1819

ysis and validate our findings, we simultaneously 1820

run collect models perceptions of uncertainty ex- 1821

pressions using a larger dataset. This dataset by the 1822

authors based on the AI2-Arc test set (Clark et al., 1823

2018) — a popular question-answering dataset 1824

consisting of genuine grade-school level, multiple- 1825

choice science questions. Not only has this dataset 1826

been recently used to measure commonsense rea- 1827

soning of current state-of-the-art LLMs (Jiang et al., 1828

2023; Achiam et al., 2024; Beeching et al., 2023), 1829

but it is also composed of easier questions, a key 1830

aspect to our verifiable experiment setup. 1831

The creation of this dataset mirrors the procedure 1832

described in Section 4. We manually repurposed 1833

200 question-answer pairs from AI2 Arc (100 from 1834

the easy set and another 100 from the challenge 1835

set). For every statement, the authors produce a 1836

true statement and a false statement using the avail- 1837

able information about the correct and incorrect 1838

multiple choices. The final dataset consists of 200 1839

true statements and 200 false statements. 1840

To determine distributional differences between 1841

the conditional distributions obtained in the main 1842

paper and the ones obtained in the generalization 1843

set, we compare the Wasserstein-1 distance of the 1844

two empirical distributions. These values are re- 1845

ported in Table 8. In general, we find models 1846

that performed worse in the main paper, includ- 1847

ing Gemma (2B) and OLMo (7B), to exhibit the 1848

largest distributional differences with Wasserstein 1849

distances of 48.5 and 13.1 when averaged over un- 1850

certainty expressions. ChatGPT, LLama3 (70B), 1851
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Table 5: Summary metrics averaged across uncertainty expressions. All metrics are computed with respect to the
human distribution in the non-verifiable setting. “PA” reports the general agreement between LLMs and the mode
of the human distribution, reported in percentages. “MAE” reports the absolute error between the mean responses
of LLMs and those of humans. Wasserstein-1 computes the distance between LLMs and human distributions.

Avg PA (↑) Avg MAE (↓) Avg Wasserstein-1 (↓)

NV V NV V NV V

Human Mode 27.6 27.6 — — — —
Individual 17.6 16.7 8.91 9.35 12.35 12.99

Baseline Random 5.1 5.1 27.72 27.72 28.16 28.16
LLM OLMo 12.1 7.6 18.44 33.67 20.45 40.16

Gemma (2B) 8.1 6.6 20.17 24.33 22.13 25.89
Llama3 8B 17.8 10.1 11.99 16.59 14.11 18.35
Llama3 (70B) 23.6 18.8 5.56 13.73 9.94 16.39
Mixtral 8x7B 21.8 15.2 5.88 12.32 8.88 15.93
Mixtral 8x22B 21.8 18.6 7.20 9.78 10.78 12.05
Gemini 25.4 21.3 4.09 7.23 9.24 9.78
ChatGPT 19.7 15.3 6.80 8.57 9.26 12.74
GPT-4 24.4 22.1 4.64 3.84 9.96 6.88
GPT-4o 18.9 15.2 5.58 7.05 10.34 9.96

and Mixtral models all exhibit higher differences1852

in expressions of higher certainty, e.g., “highly1853

likely”, “probable”, “possible”. On the other hand,1854

the two GPT-4 models, as well as Gemini (Pro)1855

suffer the least changes distributionally (1.9, 1.8,1856

and 4.2 Wasserstein-1 distances on average, respec-1857

tively), suggesting that these models were robust1858

to changes in the statements.1859

In the main paper, we find it surprising that1860

LLMs perception abilities differ significantly based1861

on whether the uncertainty expressions are refer-1862

ring to someone’s belief in a true or false statement.1863

To test the generalization of this finding in a larger1864

(and different) dataset, we repeat the same analysis1865

and compare the observed mean response differ-1866

ences with that of humans obtained in the original1867

setting (see Figures 15 and 16). We observe that1868

in absolute sense the differences are smaller than1869

those observed in the original setting, but that mod-1870

els are affected by this knowledge gap to a greater1871

extent than humans.1872

F Probabilistic decoding1873
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Table 6: Proportional Agreement (PA) of models in the non-verifiable setting.

Humans
Mode

Humans
Ind

GPT-4o GPT-4 ChatGPT Llama3 Mixtral
8x22B

Gemini DBRX Rand

Avg PA 27.6 17.6 18.9 24.4 19.7 23.6 21.8 25.4 14.2 5.1

almost certain 60.6 42.0 35.5 60.6 55.9 58.7 60.6 60.6 25.9 7.0
highly likely 34.6 22.5 17.4 22.1 16.1 8.3 23.9 30.0 7.8 6.5
very likely 28.7 17.7 19.1 19.5 13.6 14.4 15.1 21.9 14.8 5.1
probable 16.0 11.1 14.9 14.3 7.6 14.8 15.7 14.1 10.3 5.1
likely 20.2 12.9 16.5 16.5 8.2 19.7 16.5 18.1 8.7 5.0
somewhat likely 20.2 13.5 12.8 17.9 6.8 16.5 18.2 16.2 6.3 5.7
somewhat unlikely 22.3 14.0 18.0 19.3 21.8 22.3 18.4 19.9 15.6 4.9
uncertain 35.1 16.9 35.1 35.1 33.1 35.1 35.1 35.1 35.1 3.4
possible 18.1 10.7 6.5 15.4 14.2 15.0 8.6 15.5 15.6 5.1
unlikely 19.1 13.5 11.1 18.3 15.9 16.8 10.1 16.5 14.1 4.8
not likely 18.1 12.6 11.3 17.1 16.7 17.7 16.1 18.1 10.7 5.7
doubtful 19.7 11.7 14.2 12.9 13.2 17.5 16.4 19.7 11.8 5.8
very unlikely 38.8 23.4 27.8 37.9 26.5 38.8 22.3 36.9 11.5 3.0
highly unlikely 35.1 23.5 24.8 35.1 25.7 35.1 28.7 32.8 10.9 3.8

Table 7: Proportional Agreement (PA) of models in the verifiable setting.

Humans
Mode

Humans
Ind

GPT-4o GPT-4 GPT-3.5 Llama3 Mixtral
8x22B

Gemini DBRX Rand

Avg PA 27.6 16.7 15.2 22.1 15.3 18.8 18.6 21.3 13.6 5.1

almost certain 60.6 39.7 28.7 60.6 48.0 35.2 60.6 54.6 24.2 7.0
highly likely 34.6 21.5 14.7 22.0 13.0 17.4 24.1 22.8 15.5 6.5
very likely 28.7 17.7 17.2 17.2 10.1 14.9 14.9 17.6 12.7 5.1
probable 16.0 11.4 11.3 11.5 3.8 6.8 5.8 9.9 6.6 5.1
likely 20.2 12.7 12.7 12.4 7.3 10.7 9.2 11.3 6.4 5.0
somewhat likely 20.2 13.3 7.0 12.1 6.5 8.6 9.0 10.0 7.6 5.7
somewhat unlikely 22.3 13.0 15.0 18.8 15.4 17.3 11.8 15.4 14.7 4.9
uncertain 35.1 15.9 30.3 34.2 25.1 34.0 33.4 34.0 31.8 3.4
possible 18.1 9.4 6.1 10.2 5.8 4.0 4.6 6.7 6.9 5.1
unlikely 19.1 13.2 10.6 16.8 13.6 15.0 9.4 14.3 12.6 4.8
not likely 18.1 11.7 10.9 15.0 12.8 15.5 13.3 15.7 12.7 5.7
doubtful 19.7 10.0 11.6 11.5 6.2 15.2 13.8 16.4 11.9 5.8
very unlikely 38.8 21.8 18.8 34.1 24.2 35.9 22.3 36.2 12.8 3.0
highly unlikely 35.1 22.7 17.2 32.8 22.1 33.3 28.7 33.3 14.0 3.8
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(a) Humans
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(b) Random Baseline
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(c) Gemma-1.1-2b-it
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(d) OLMo-7B-instruct
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(e) gemini-pro
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(f) GPT-4o
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(g) ChatGPT
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(h) GPT-4
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(i) LLama3 (8B)
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(j) LLama3 (70B)
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(k) Mixtral 8x7B
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(l) Mixtral 8x22B

Figure 13: Empirical distributions of numerical probabilities per uncertainty expression in the non-verifiable setting.
For each uncertainty expression (row), the empirical distribution is computed based on n=60 datapoints (for LLMs)
and n=188 (for humans).
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Figure 14: Mean response (and 95% confidence intervals) of verifiable statements discriminated by truthfulness of
the statement across all 14 evaluated uncertainty expressions.
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Table 8: Dissimilarities of model’s empirical conditional distributions across verifiable settings. Lower results
represent smaller distributional differences when comparing models’ distribution.

GPT-4o GPT-4 ChatGPT Gemini Llama3

(70B)

Mixtral

8x7B

Mixtral

8x22B

OLMo

(7B)

Gemma

(2B)

Avg 1.9 1.8 9.1 4.2 8.8 7.6 3.7 13.1 48.5
almost certain 1.3 1.2 7.9 5.1 18.0 13.3 1.6 14.9 51.5
highly likely 1.5 1.3 12.8 5.1 17.1 11.2 2.2 18.9 55.1
very likely 1.6 1.8 10.6 7.0 16.0 13.3 1.8 18.4 53.6
likely 4.3 2.9 10.9 8.1 13.8 10.4 9.0 14.3 51.4
probable 3.2 3.2 17.2 5.8 14.4 16.0 10.6 12.8 50.7
somewhat likely 2.6 4.5 5.1 4.4 8.5 7.8 11.1 8.0 42.2
possible 4.8 3.4 14.6 7.5 11.6 11.2 6.6 15.0 48.6
uncertain 0.5 0.7 12.8 1.5 1.6 2.2 1.7 10.9 47.9
somewhat unlikely 2.3 0.4 3.6 2.0 2.1 4.2 1.6 14.0 34.2
unlikely 0.7 1.1 4.6 3.4 4.3 6.3 1.3 8.4 42.3
not likely 0.7 1.8 8.3 2.4 4.7 0.6 1.5 13.6 48.7
doubtful 0.2 1.5 14.6 2.5 5.1 6.6 1.9 24.7 47.1
very unlikely 1.2 0.8 2.1 1.4 2.6 1.1 0.2 3.1 50.7
highly unlikely 1.0 1.0 3.0 2.1 3.3 1.8 0.2 7.1 54.4
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Figure 15: Mean response (and 95% confidence intervals) of verifiable statements across true and false statements
averaged over the uncertainty expressions in the generalization set.

Table 9: Summary metrics average across uncertainty expressions using probabilistic decoding (temperature=1).

Avg PA (↑) Avg MAE (↓) Avg Wasserstein-1 (↓)

NV V NV V NV V

Human Mode 27.6 27.6 — — — —
Individual 17.6 16.7 8.91 9.35 12.35 12.99

LLM ChatGPT 16.4 12.8 6.40 8.32 7.65 12.14
GPT4 24.4 21.4 4.62 4.00 9.78 6.72
GPT4o 12.9 8.7 19.01 26.07 19.69 26.14
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(b) “highly likely”

Ran
dom

GPT-4o

GPT-4

ChatG
PT

Gem
ini

Llam
a3

(70
B)

M
ixtra

l 8x
7B

M
ixtra

l 8x
22

B

OLM
o (7B

)

Gem
ma (2B

)
0

10

20

30

40

50

60

70

80

90

100

N
u

m
er

ic
al

R
es

p
on

se

statement

true false

(c) “highly unlikely”
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(d) “possible”
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Figure 16: Mean response (and 95% confidence intervals) of verifiable statements across true and false statements
for the 14 evaluated uncertainty expressions in the generalization set.
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Figure 17: Mean response (and 95% confidence intervals) of verifiable statements across true and false statements
for the 14 evaluated uncertainty expressions, when using probabilistic decoding (i.e., temperature=1).
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