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Abstract

Learning to predict missing links is important for many graph-based applications.1

Existing methods were designed to learn the observed association between two sets2

of variables: (1) the observed graph structure and (2) the existence of link between a3

pair of nodes. However, the causal relationship between these variables was ignored4

and we visit the possibility of learning it by simply asking a counterfactual question:5

“would the link exist or not if the observed graph structure became different?” To6

answer this question by causal inference, we consider the information of the node7

pair as context, global graph structural properties as treatment, and link existence8

as outcome. In this work, we propose a novel link prediction method that enhances9

graph learning by the counterfactual inference. It creates counterfactual links10

from the observed ones, and our method learns representations from both of them.11

Experiments on a number of benchmark datasets show that our proposed method12

achieves the state-of-the-art performance on link prediction.13

1 Introduction14

Link prediction seeks to predict the likelihood of edge existence between node pairs based on the15

observed graph. Given the omnipresence of graph-structured data, link prediction has copious applica-16

tions such as movie recommendation (Bennett et al., 2007), chemical interaction prediction (Stanfield17

et al., 2017), and knowledge graph completion (Kazemi and Poole, 2018). Graph machine learning18

methods have been widely applied to solve this problem. Their standard scheme is to first learn the19

representation vectors of nodes and then learn the association between the representations of a pair of20

nodes and the existence of the link between them. For example, graph neural networks (GNNs) use21

neighborhood aggregation to create the representation vectors: the representation vector of a node22

is computed by recursively aggregating and transforming representation vectors of its neighboring23

nodes (Kipf and Welling, 2016a; Hamilton et al., 2017; Wu et al., 2020). Then the vectors are fed24

into a binary classification model to learn the association. GNN methods have shown predominance25

in the task of link prediction (Kipf and Welling, 2016b; Zhang and Chen, 2018; Zhang et al., 2020a).26

Unfortunately, the causal relationship between graph structure and link existence was largely ignored27

in the previous work. Existing methods that learn from association only were not able to capture28

essential factors to accurately predict missing links in the test data. Take social network as an example.29

Suppose Alice and Adam live in the same neighborhood and they are close friends. The association30

between neighborhood belonging and friend closeness could be too strong to discover the essential31

factors of the friendship such as common interests or family relationship which could be the cause of32

being living in the same neighborhood. So, our idea is to ask a counterfactual question: “would Alice33

and Adam still be close friends if they were not living in the same neighborhood?” If a graph learning34

model could learn the causal relationship from data by asking the counterfactual questions, it would35

improve the performance of link prediction with the novel knowledge it captured. Generally, the36

questions can be described as “would the link exist or not if the graph structure became different?”37
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Figure 1: The proposed CFLP learns the causal relationship between the observed graph structure
(e.g., neighborhood similarity, considered as treatment variable) and link existence (considered as
outcome). In this example, the link predictor would be trained to estimate the individual treatment
effect (ITE) as 1− 1 = 0 so it looks for factors other than neighborhood to predict the factual link.

As known to many, counterfactual question is a key component of causal inference and have been38

well defined in the literature. A counterfactual question is usually framed with three factors: context39

(as a data point), manipulation (e.g., treatment, intervention, action, strategy), and outcome (van der40

Laan and Petersen, 2007; Johansson et al., 2016). (To simplify the language, we use “treatment” to41

refer to the manipulation in this paper, as readers might be familiar more with the word “treatment.”)42

Given certain data context, it asks what the outcome would have been if the treatment had not been43

the observed value. In the scenario of link prediction, we consider the information of a pair of nodes44

as context, graph structural properties as treatment, and link existence as outcome. Recall the social45

network example. The context is Alice and Adam, which includes their personal attributes and46

relationships with others on the network. The treatment is living in the same neighborhood, which can47

be given as one attribute or identified by community detection. And the outcome is their friendship.48

In this work, we present a counterfactual graph learning method for link prediction (CFLP) that49

trains graph learning models to answer the counterfactual questions. Figure 1 illustrates this two-step50

method. Suppose the treatment variable is defined as one type of global graph structure, e.g., the51

neighborhood assignment discovered by spectral clustering or community detection algorithms. We52

are wondering how likely the neighborhood distribution makes a difference on the link (non-)existence53

for each pair of nodes. So, given a pair of nodes (like Alice and Adam) and the treatment value on54

this pair (in the same neighborhood), we find a pair of nodes (like Helen and Bob) that satisfies two55

conditions: (1) it has a different treatment (in different neighborhoods) and (2) it is the most similar56

pair with the given pair of nodes. We call these matched pair of nodes as “counterfactual links.” Note57

that the outcome of the counterfactual link can be either 1 or 0, depending on whether there exists an58

edge between the matched pair of nodes. The counterfactual link provides unobserved outcome to the59

given pair of nodes (Alice and Adam) under a counterfactual condition (in different neighborhoods).60

After counterfactual links are created for all (positive and negative) training examples, CFLP trains61

a link predictor (which can be GNN-based) to learn the representation vectors of nodes to predict62

both the observed factual links and the counterfactual links. In this Alice-Adam example, the link63

predictor is trained to estimate the individual treatment effect (ITE) of neighborhood assignment as64

1− 1 = 0. So, the learner will try to discover the essential factors on the friendship between Alice65

and Adam. For some other examples, if the outcome of counterfactual link is different from that of66

the given pair of nodes, the learner will estimate the strong effect of the treatment variable. Therefore,67

CFLP enables graph learning models to predict missing links regarding causal relationship.68

Contributions. Our main contributions can be summarized as follows. (1) This is the first work that69

proposes to improve link prediction by causal inference, specifically, learning to answer counterfactual70

questions about link existence. (2) This work introduces CFLP that trains GNN-based link predictors71

to predict both factual and counterfactual links. It learns the causal relationship between global72

graph structure and link existence. (3) CFLP outperforms competitive baseline methods on several73

benchmark datasets. On OGB-DDI, our CFLP achieves the state-of-the-art performance. We analyze74

the impact of counterfactual links as well as the choice of treatment variable. This work sheds insights75

for improving graph machine learning with causal analysis, which has not been extensively studied76

yet, when the other direction (machine learning for causal inference) has been studied for a long time.77
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2 Preliminary78

Notations Let G = (V, E) be an undirected graph of N nodes, where V = {v1, v2, . . . , vN} is79

the set of nodes and E ⊆ V × V is the set of observed links. We denote the adjacency matrix as80

A ∈ {0, 1}N×N , where Ai,j = 1 indicates nodes vi and vj are connected and vice versa. We denote81

the node feature matrix as X ∈ RN×F , where F is the number of node features and xi (bolded)82

indicates the feature vector of node vi (the i-th row of X).83

Counterfactual Learning Let X be the set of contexts, Y be the set of outcome values, and T be84

the set of treatments. For a context x ∈ X and a treatment t ∈ T , we denote the outcome of x under85

the treatment t by Yt(x) ∈ Y . Ideally, we would need all possible outcomes of x under all kinds of86

treatments to study the causal relationships (Morgan and Winship, 2015). However, in reality, only87

one treatment was applied and thus only one outcome was observed for a given context x. When the88

variables are specified in data, people use Neyman–Rubin casual model (BCM) to develop statistical89

learning methods such as propensity score matching (PSM) for causal inference (Rubin, 1974, 2005).90

In this work, we look at link prediction on graphs. Here we define the variables of counterfactual91

learning in this scenario. Given a graph G, a context is a pair of nodes x = (vi, vj) in the graph;92

and thus, X = V × V . The outcome variable Y (x) is naturally binary, indicating whether a link93

exists between the node pair x; and thus, Y = {0, 1}. We study the causal effect of binary treatment94

variable t ∈ T = {0, 1}, where the value of Y1(x) − Y0(x) for a particular context x is of high95

interest and known as the individualized treatment effect (ITE) (van der Laan and Petersen, 2007;96

Weiss et al., 2015). The value of ITE indicates the causality relationship between the treatment and97

outcome on the context. And the expected ITE given the context distribution is called averaged98

treatment effect (ATE). i.e., ATE = Ex∼X ITE(x), for a particular treatment variable.99

However, as aforementioned, the fact that we can only observe one potential outcome under one100

particular treatment prevents the ITE from being known (Johansson et al., 2016). In the problem101

setting of link prediction, we refer the observed adjacency matrix as the factual outcomes A and the102

unobserved adjacency matrix when the treatment is different as the counterfactual outcomes ACF .103

We denote T ∈ {0, 1}N×N as the factual treatment matrix, where Ti,j indicates the treatment of the104

node pair (vi, vj). We denote TCF as the counterfactual treatment matrix where TCF
i,j = 1− Ti,j .105

We are interested in (1) estimating the counterfactual outcomes ACF via observed data, (2) learning106

with the counterfactual adjacency matrix ACF to enhance link prediction, and (3) learning the causal107

relationship between graph structural information (treatment) and link existence (outcome).108

3 The Proposed Method109

In this section, we introduce CFLP, a novel counterfactual graph learning method for link prediction.110

In Section 3.1, we define treatment variable and counterfactual outcomes/links on graph data and111

present how to compute them (Figure 1(a)). In Section 3.2, we introduce the graph learning model112

that learns from both the observed graph and the created counterfactual links (Figure 1(b)).113

3.1 Defining Treatment Variable and Counterfactual Links114

Treatment Previous work on graph machine learning (Velickovic et al., 2019; Park et al., 2020)115

showed that the graph’s global structural information could improve the quality of representation116

vectors of nodes learned by GNNs. This is because the message passing-based GNNs aggregate local117

information in the algorithm of representation vector generation and the global structural information118

is complementary with the aggregated information. Therefore, for a pair of nodes, one option of119

defining the treatment variable is its global structural role in the graph. Without the loss of generality,120

we use Louvain (Blondel et al., 2008), an unsupervised approach that has been widely used for121

community detection, as an example. Louvain discovers community structure of a graph and assigns122

each node to one community. Then we can define the binary treatment variable as whether these123

two nodes in the pair belong to the same community. Let c : V → N be any graph mining/clustering124

method that outputs the index of community/cluster/neighborhood that each node belongs to. The125

treatment matrix T is defined as126

Ti,j =

{
1 , if c(vi) = c(vj);

0 , otherwise.
(1)
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For the choice of c, we suggest methods that group nodes based on global graph structural information,127

including but not limited to Louvain (Blondel et al., 2008), K-core (Bader and Hogue, 2003), and128

spectral clustering (Ng et al., 2001).129

Counterfactual Links As mentioned in Section 2, for each node pair (context), the observed data130

contains only the factual treatment and outcome, meaning that the link existence for the given node131

pair with an opposite treatment is unknown. Therefore, we use the outcome from the nearest observed132

context as a substitute. This idea has been adopted by many methods (Johansson et al., 2016; Alaa and133

Van Der Schaar, 2019). That is, we want to find the nearest neighbor with the opposite treatment for134

each observed node pairs and use the nearest neighbor’s outcome as a counterfactual link. Formally,135

∀(vi, vj) ∈ V × V , we want to find its counterfactual link (va, vb) as below:136

(va, vb) = arg min
va,vb∈V

{d((vi, vj), (va, vb)) | Ta,b = 1− Ti,j}, (2)

where d(·, ·) is a metric of measuring the distance between a pair of node pairs (a pair of contexts).137

Considering that we want to find the nearest node pair based on not only the raw node features but138

also structural features, here we take the state-of-the-art unsupervised graph representation learning139

method MVGRL (Hassani and Khasahmadi, 2020) to learn the node embeddings X̃ ∈ RN×F̃ from140

the observed graph. We use X̃ to find the nearest neighbors of node pairs. Nevertheless, finding the141

nearest neighbors by computing the distance between all pairs of node pairs is extremely inefficient,142

which takes O(N4) comparisons (as there are totally O(N2) node pairs). Hence we approximate143

Eq. (2) by substituting the distance between node pairs by the distance between nodes. That is,144

∀(vi, vj) ∈ V × V , we want to find its counterfactual link (va, vb) as below:145

(va, vb) = arg min
va,vb∈V

{d(x̃i, x̃a) + d(x̃j , x̃b) | Ta,b = 1− Ti,j , d(x̃i, x̃a) + d(x̃j , x̃b) < 2γ}, (3)

where d(·, ·) is specified as the Euclidean distance on the embedding space of X̃, and γ is a hyperpa-146

rameter that defines the maximum distance that two nodes are considered as similar. Note that when147

no node pair satisfies the above equation, we do not assign any nearest neighbor for a given node pair148

to ensure all the neighbors are similar enough (as substitutes) in the feature space. Therefore, the149

counterfactual treatment matrix TCF and the counterfactual adjacency matrix ACF are defined as150

TCF
i,j , ACF

i,j =

{
1− Ti,j , Aa,b , if ∃ (va, vb) ∈ V × V satisfies Eq. (3);
Ti,j , Ai,j , otherwise.

(4)

It is worth noting that the node embeddings X̃ and the nearest neighbors are computed only once and151

do not change during the learning process. X̃ is only used for finding the nearest neighbors.152

Learning from Counterfactual Distributions Let PF be the factual distribution of the observed153

contexts and treatments, and PCF be the counterfactual distribution that is composed of the observed154

contexts and opposite treatments. We define the empirical factual distribution P̂F ∼ PF as P̂F =155

{(vi, vj , TF
i,j)}Ni,j=1, and define the empirical counterfactual distribution P̂CF ∼ PCF as P̂CF =156

{(vi, vj , TCF
i,j )}Ni,j=1. Unlike traditional link prediction methods that take only P̂F as input and use157

the observed outcomes A as the training target, the idea of counterfactual graph learning is to take158

advantage of the counterfactual distribution by having P̂CF as a complementary input and use the159

counterfactual outcomes ACF as the training target for the counterfactual data samples.160

3.2 The Counterfactual Graph Learning Model161

In this subsection, we present the design of our model as well as the training method. The input of162

the model in CFLP includes (1) the observed graph data A and raw feature matrix X, (2) the factual163

treatments TF and counterfactual treatments TCF , and (3) the counterfactual graph data ACF . The164

output contains link prediction logits in Â and ÂCF for the factual and counterfactual adjacency165

matrices A and ACF , respectively.166

Graph Learning Model The model consist of two trainable components: a graph encoder f and a167

link decoder g. The graph encoder generates representation vectors of nodes from graph data G. And168

the link decoder projects the representation vectors of node pairs into the link prediction logits. The169
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choice of the graph encoder f can be any end-to-end GNN model. Without the loss of generality, here170

we use the commonly used graph convolutional network (GCN) (Kipf and Welling, 2016a). Each171

layer of GCN is defined as172

H(l) = f (l)(A,H(l−1);W(l)) = σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W(l)), (5)

where l is the layer index, Ã = A + I is the adjacency matrix with added self-loops, D̃ is the173

diagonal degree matrix D̃ii =
∑

j Ãij , H(0) = X, W(l) is the learnable weight matrix at the l-th174

layer, and σ(·) denotes a nonlinear activation such as ReLU. We denote Z = f(A,X) ∈ RN×H175

as the output from the encoder’s last layer, i.e., the H-dimensional representation vectors of nodes.176

Following previous work (Zhang et al., 2020a), we compute the representation of a node pair as177

the Hadamard product of the vectors of the two nodes. That is, the representation for the node pair178

(vi, vj) is zi � zj ∈ RH , where � stands for the Hadamard product.179

For the link decoder that predicts whether a link exists between a pair of nodes, we opt for simplicity180

and adopt a simple decoder based on multi-layer perceptron (MLP), given the representations of node181

pairs and their treatments. That is, the decoder g is defined as182

Â = g(Z,T), where Âi,j = MLP([zi � zj , Ti,j ]), (6)

ÂCF = g(Z,TCF ), where ÂCF
i,j = MLP([zi � zj , T

CF
i,j ]), (7)

where [·, ·] stands for the concatenation of vectors.183

During the training process, data samples from the empirical factual distribution P̂F and the em-184

pirical counterfactual distribution P̂CF are fed into decoder g and optimized towards A and ACF ,185

respectively. That is, for the two distributions, the loss functions are as follows:186

LF =
1

N2

N∑
i=1

N∑
j=1

Ai,j · log Âi,j + (1−Ai,j) · log(1− Âi,j), (8)

LCF =
1

N2

N∑
i=1

N∑
j=1

ACF
i,j · log ÂCF

i,j + (1−ACF
i,j ) · log(1− ÂCF

i,j ). (9)

Balancing Counterfactual Learning In the training process, the above loss minimizations train the187

model on both the empirical factual distribution P̂F ∼ PF and empirical counterfactual distribution188

P̂CF ∼ PCF that are not necessarily equal – the training examples (node pairs) do not have to be189

aligned. However, at the stage of inference, the test data contains only observed (factual) samples.190

Such a gap between the training and test data distributions exposes the model in the risk of covariant191

shift, which is a common issue in counterfactual learning (Johansson et al., 2016; Assaad et al., 2021).192

To force the distributions of representations of factual distributions and counterfactual distributions to193

be similar, we use the discrepancy distance (Mansour et al., 2009; Johansson et al., 2016) as another194

objective to regularize the representation learning. That is, we use the following loss term to minimize195

the distance between the learned representations from P̂F and P̂CF :196

Ldisc = disc(P̂F
f , P̂

CF
f ), where disc(P,Q) = ||P −Q||F , (10)

where || · ||F denotes the Frobenius Norm, and P̂F
f and P̂CF

f denote the node pair representations197

learned by graph encoder f from factual distribution and counterfactual distribution, respectively.198

Training During the training of CFLP, we want the model to be optimized towards three targets:199

(1) accurate link prediction on the observed outcomes (Eq. (8)), (2) accurate estimation on the200

counterfactual outcomes (Eq. (9)), and (3) regularization on the representation spaces learned from201

P̂F and P̂CF (Eq. (10)). Therefore, the overall training loss of our proposed CFLP is202

L = LF + α · LCF + β · Ldisc, (11)

where α and β are hyperparameters to control the weights of counterfactual link prediction (outcome203

estimation) loss and discrepancy loss.204
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Table 1: Statistics of datasets used in the experiments.

Dataset CORA CITESEER PUBMED FACEBOOK OGB-DDI

# nodes 2,708 3,327 19,717 4,039 4,267
# links 5,278 4,552 44,324 88,234 1,334,889
# validation node pairs 1,054 910 8,864 17,646 235,371
# test node pairs 2,110 1,820 17,728 35,292 229,088

Algorithm 1: CFLP: Counterfactual graph learning
for link prediction
Input : f , g, A, X, n_epochs, n_epoch_ft

1 Compute T by Eq. (1) ;
2 Compute TCF ,ACF by Eqs. (3) and (4) ;
/* model training */

3 Initialize Θf in f and Θg in g ;
4 for epoch in range(n_epochs) do
5 Z = f(A,X) ;
6 Get Â and ÂCF via g with Eqs. (6) and (7) ;
7 Update Θf and Θg with L ; // (11)
8 end
/* decoder fine-tuning */

9 Freeze Θf and re-initialize Θg ;
10 Z = f(A,X) ;
11 for epoch in range(n_epochs_ft) do
12 Get Â via g with Eq. (6) ;
13 Update Θg with LF ; // Eq. (8)
14 end

/* model inferencing */
15 Z = f(A,X) ;
16 Get Â and ÂCF via g with Eqs. (6) and (7) ;

Output : Â for link prediction, ÂCF

Summary Algorithm 1 summarizes205

the whole process of CFLP. The first206

step is to compute the factual and coun-207

terfactual treatments T, TCF as well208

as the counterfactual outcomes ACF .209

Then, the second step trains the graph210

learning model on both the observed211

factual data and created counterfactual212

data with the integrated loss function213

(Eq. (11)). Note that the discrepancy214

loss (Eq. (10)) is computed on the rep-215

resentations of node pairs learned by216

the graph encoder f , so the decoder217

g is trained with data from both P̂F218

and P̂CF without balancing the con-219

straints. Therefore, after the model is220

sufficiently trained, we freeze the graph221

encoder f and fine-tune g with only the222

factual data. Finally, after the decoder223

is sufficiently fine-tuned, we output the224

link prediction logits for both the fac-225

tual and counterfactual adjacency ma-226

trices.227

Complexity The complexity of the228

first step (finding counterfactual links with nearest neighbors) is proportional to the number of229

node pairs. When γ is set as a small value to obtain indeed similar node pairs, this step (Eq. (3))230

uses constant time. Moreover, the computation in Eq. (3) can be parallelized. Therefore, the231

time complexity is O(N2/C) where C is the number of processes. For the complexity of the232

second step (training counterfactual learning model), the GNN encoder has time complexity of233

O(LH2N + LH|E|) (Wu et al., 2020), where L is the number of GNN layers and H is the size of234

node representations. Given that we sample the same number of non-existing links as that of observed235

links during training, the complexity of a three-layer MLP decoder is O(((H+ 1) ·dh +dh ·1)|E|) =236

O(dh(H + 2)|E|), where dh is the number of neurons in the hidden layer. Therefore, the second step237

has linear time complexity w.r.t. the sum of node and edge counts.238

Limitations First, as mentioned above, the computation of finding counterfactual links has a worst-239

case complexity of O(N2). Second, CFLP performs counterfactual prediction with only a single240

treatment; however, there are quite a few kinds of graph structural information that can be considered241

as treatments. Future work can leverage the rich structural information by bundled treatments (Zou242

et al., 2020) in counterfactual graph learning.243

4 Experiments244

4.1 Experimental Setup245

We conduct experiments on five benchmark datasets including citation networks (CORA, CITESEER,246

PUBMED (Yang et al., 2016)), social network (FACEBOOK (McAuley and Leskovec, 2012)), and247

drug-drug interaction network (OGB-DDI (Wishart et al., 2018)) from the Open Graph Benchmark248
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Table 2: Link prediction performances measured by Hits@20. Best performance and best baseline
performance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 49.96±2.51 47.78±1.72 39.19±1.02 24.24±3.02 23.26±2.09
MVGRL 19.53±2.64 14.07±0.79 14.19±0.85 14.43±0.33 10.02±1.01
VGAE 45.91±3.38 44.04±4.86 23.73±1.61 37.01±0.63 11.71±1.96
SEAL 51.35±2.26 40.90±3.68 28.45±3.81 40.89±5.70 30.56±3.86
LGLP 62.98±0.56 57.43±3.71 – 37.86±2.13 –
GCN 49.06±1.72 55.56±1.32 21.84±3.87 53.89±2.14 37.07±5.07
GSAGE 53.54±2.96 53.67±2.94 39.13±4.41 45.51±3.22 53.90±4.74
JKNet 48.21±3.86 55.60±2.17 25.64±4.11 52.25±1.48 60.56±8.69

Our proposed CFLP with different graph encoders
CFLP w/ GCN 60.34±2.33 59.45±2.30 34.12±2.72 53.95±2.29 52.51±1.09
CFLP w/ GSAGE 57.33±1.73 53.05±2.07 43.07±2.36 47.28±3.00 75.49±4.33
CFLP w/ JKNet 65.57±1.05 68.09±1.49 44.90±2.00 55.22±1.29 86.08±1.98

(OGB) (Hu et al., 2020). For the first four datasets, we randomly select 10%/20% of the links and249

the same numbers of disconnected node pairs as validation/test samples. The links in the validation250

and test sets are masked off from the training graph. For OGB-DDI, we used the OGB official251

train/validation/test splits. Statistics for the datasets are given in Table 1 and details are in Appendix.252

We use K-core (Bader and Hogue, 2003) clusters as the default treatment variable. We evaluate CFLP253

on three commonly used GNN encoders: GCN (Kipf and Welling, 2016a), GSAGE (Hamilton et al.,254

2017), and JKNet (Xu et al., 2018). We compare the link prediction performance of CFLP against255

Node2Vec (Grover and Leskovec, 2016), MVGRL (Hassani and Khasahmadi, 2020), VGAE (Kipf256

and Welling, 2016b), SEAL (Zhang and Chen, 2018), LGLP (Cai et al., 2021), and GNNs with MLP257

decoder. We report averaged test performance and their standard deviation over 20 runs with different258

random parameter initializations. Other than the most commonly used of Area Under ROC Curve259

(AUC), we report Hits@20 (one of the primary metrics on OGB leaderboard) as a more challenging260

metric, as it expects models to rank positive edges higher than nearly all negative edges.261

Besides performance comparison on link prediction, we will answer two questions to suggest a way262

of choosing a treatment variable for creating counterfactual links: (Q1) Does CFLP sufficiently learn263

the observed averaged treatment effect (ATE) derived from the counterfactual links? (Q2) What is the264

relationship between the estimated ATE learned in the method and the prediction performance? If the265

answer to Q1 is yes, then the answer to Q2 will indicate how to choose treatment based on observed266

ATE. To answer the Q1, we calculate the observed ATE (ÂTEobs) by comparing the observed links267

in A and created counterfactual links ACF that have opposite treatments. And we calculate the268

estimated ATE (ÂTEest) by comparing the predicted links in Â and predicted counterfactual links269

ÂCF . Formally, ÂTEobs and ÂTEest are defined as270

ÂTEobs =
1

N2

N∑
i=1

N∑
j=1

{T� (A−ACF ) + (1N×N −T)� (ACF −A)}i,j . (12)

ÂTEest =
1

N2

N∑
i=1

N∑
j=1

{T� (Â− ÂCF ) + (1N×N −T)� (ÂCF − Â)}i,j . (13)

The treatment variables we will investigate are usually graph clustering or community detection meth-271

ods, such as K-core (Bader and Hogue, 2003), stochastic block model (SBM) (Karrer and Newman,272

2011), spectral clustering (SpecC) (Ng et al., 2001), propagation clustering (PropC) (Raghavan et al.,273

2007), Louvain (Blondel et al., 2008), common neighbors (CommN), Katz index, and hierarchical274

clustering (Ward) (Ward Jr, 1963). We use JKNet (Xu et al., 2018) as the default graph encoder.275

Implementation details and supplementary experimental results (e.g., sensitivity on γ, ablation study276

on LCF and Ldisc) can be found in Appendix. Source code is available in supplementary material.277

4.2 Experimental Results278

Link Prediction Tables 2 and 3 show the link prediction performance of Hits@20 and AUC by279

all methods. LGLP on PUBMED and OGB-DDI are missing due to the out of memory error when280
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Table 3: Link prediction performances measured by AUC. Best performance and best baseline
performance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 84.49±0.49 80.00±0.68 80.32±0.29 86.49±4.32 90.83±0.02
MVGRL 75.07±3.63 61.20±0.55 80.78±1.28 79.83±0.30 81.45±0.99
VGAE 88.68±0.40 85.35±0.60 95.80±0.13 98.66±0.04 93.08±0.15
SEAL 92.55±0.50 85.82±0.44 96.36±0.28 99.60±0.02 97.85±0.17
LGLP 91.30±0.05 89.41±0.13 – 98.51±0.01 –
GCN 90.25±0.53 71.47±1.40 96.33±0.80 99.43±0.02 99.82±0.05
GSAGE 90.24±0.34 87.38±1.39 96.78±0.11 99.29±0.04 99.93±0.02
JKNet 89.05±0.67 88.58±1.78 96.58±0.23 99.43±0.02 99.94±0.01

Our proposed CFLP with different graph encoders
CFLP w/ GCN 92.55±0.50 89.65±0.20 96.99±0.08 99.38±0.01 99.44±0.05
CFLP w/ GSAGE 92.61±0.52 91.84±0.20 97.01±0.01 99.34±0.10 99.83±0.05
CFLP w/ JKNet 93.05±0.24 92.12±0.47 97.53±0.17 99.31±0.04 99.94±0.01

running the code package from the authors. We observe that our CFLP on different graph encoders281

achieve similar or better performances compared with baselines. The only exception is the AUC on282

FACEBOOK where most methods have close-to-perfect AUC. As AUC is a relatively easier metric283

comparing with Hits@20, most methods achieved good performance on AUC. We observe that CFLP284

with JKNet almost consistently achieves the best performance and outperforms baselines significantly285

on Hits@20. Specifically, compared with the best baseline, CFLP improves relatively by 16.4% and286

0.8% on Hits@20 and AUC, respectively. It is worth noting that CFLP with JKNet achieves the287

state-of-the-art performance on the official leaderboard1 of OGB-DDI.288

alpha

0.0 0.5 1.0 1.5 2.0

beta
0.0

0.5
1.0

1.5
2.0

AUC

0.89
0.90
0.91
0.92
0.93

0.91

0.92

0.93

Figure 2: AUC performance of CFLP on CORA
w.r.t different combanitions of α and β.

Figure 2 shows the AUC performance of CFLP on289

CORA with different combinations of α and β. We290

observe that the performance is the poorest when291

α = β = 0 and gradually improves and gets stable292

as α and β increase, showing that CFLP is robust293

to the hyperparameters α and β.294

ATE with Different Treatments Tables 4 and 5295

show the link prediction performance, ÂTEobs, and296

ÂTEest of CFLP (with JKNet) when using differ-297

ent treatments. The treatments in Tables 4 and 5 are298

sorted by the Hits@20 performance. Bigger ATE299

indicates stronger causal relationship between the300

treatment and outcome, and vice versa. We observe:301

(1) ÂTEest values are generally close to ÂTEobs,302

showing that CFLP was sufficiently trained to learn303

the causal relationship between graph structure information and link existence; (2) ÂTEobs and ÂTEest304

are both negatively correlated with the link prediction performance, showing that we can pick a305

proper treatment prior to training a model with CFLP. Using the treatment that has the weakest306

causal relationship with link existence is likely to train the model to capture more essential factors on307

the outcome, in a way similar to denoising the unrelated information from the representations.308

5 Related Work309

Link Prediction With its wide applications, link prediction has draw attention from many research310

communities including statistical machine learning and data mining. Stochastic generative methods311

based on stochastic block models (SBM) are developed to generate links (Mehta et al., 2019). In data312

mining, matrix factorization (Menon and Elkan, 2011), heuristic methods (Philip et al., 2010; Martínez313

et al., 2016), and graph embedding methods (Cui et al., 2018) have been applied to predict links in the314

graph. Heuristic methods compute the similarity score of nodes based on their neighborhoods. These315

1https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-ddi
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Table 4: Results of CFLP with different treat-
ments on CORA. (sorted by Hits@20)

Hits@20 ÂTEobs ÂTEest

K-core 65.6±1.1 0.002 0.013±0.003
SBM 64.2±1.1 0.006 0.023±0.015
CommN 62.3±1.6 0.007 0.053±0.021
PropC 61.7±1.4 0.037 0.059±0.065
Ward 61.2±2.3 0.001 0.033±0.012
SpecC 59.3±2.8 0.002 0.033±0.011
Louvain 57.6±1.8 0.025 0.138±0.091
Katz 56.6±3.4 0.740 0.802±0.041

Table 5: Results of CFLP with different treat-
ments on CITESEER. (sorted by Hits@20)

Hits@20 ÂTEobs ÂTEest

SBM 71.6 ±1.9 0.004 0.005 ±0.001
K-core 68.1±1.5 0.002 0.010±0.002
Ward 67.0±1.7 0.003 0.037±0.009
PropC 64.6±3.6 0.141 0.232±0.113
Louvain 63.3±2.5 0.126 0.151±0.078
SpecC 59.9±1.3 0.009 0.166±0.034
Katz 57.3±0.5 0.245 0.224±0.037
CommN 56.8±4.9 0.678 0.195±0.034

methods can be generally categorized into first-order, second-order, and high-order heuristics based316

on the maximum distance of the neighbors. Graph embedding methods learn latent node features via317

embedding lookup and use them for link prediction (Perozzi et al., 2014; Tang et al., 2015; Grover318

and Leskovec, 2016; Wang et al., 2016).319

In the past few years, GNNs have showed promising results on various graph-based tasks with their320

ability of learning from features and custom aggregations on structures, (Kipf and Welling, 2016a;321

Hamilton et al., 2017; Xu et al., 2018; Wu et al., 2020). With node pair representations and an attached322

MLP or inner-product decoder, GNNs can be used for link prediction (Zhang et al., 2020a). For323

example, VGAE used GCN to learn node representations and reconstruct the graph structure (Kipf324

and Welling, 2016b). SEAL extracted a local subgraph around each target node pair and then learned325

graph representation from local subgraph for link prediction (Zhang and Chen, 2018). Following326

the scheme of SEAL, Cai and Ji (2020) proposed to improve local subgraph representation learning327

by multi-scale graph representation learning. And LGLP inverted the local subgraphs to line graphs328

before learning representations (Cai et al., 2021). However, very limited work has studied to use329

causal inference for improving link prediction.330

Counterfactual Prediction As a mean of learning the causality between treatment and outcome,331

counterfactual prediction has been used for a variety of applicaitons such as recommender sys-332

tems (Wang et al., 2020; Xu et al., 2020), health care (Alaa and van der Schaar, 2017), vision-language333

tasks (Zhang et al., 2020b; Parvaneh et al., 2020), and decision making (Coston et al., 2020; Pitis et al.,334

2020; Kusner et al., 2017). To infer the causal relationships, previous work usually estimated the ITE335

via function fitting models (Gelman and Hill, 2006; Chipman et al., 2010; Wager and Athey, 2018;336

Assaad et al., 2021) which estimated the transductive ITE. Peysakhovich et al. (2019) and Zou et al.337

(2020) studied counterfactual prediction with multiple agents and bundled treatments, respectively.338

Pawlowski et al. (2020) proposed a deep structural causal model for tractable counterfactual inference.339

Causal Inference Causal inference methods usually re-weighted samples based on propensity340

score (Rosenbaum and Rubin, 1983; Austin, 2011; Kuang et al., 2017a,b) to remove confounding341

bias from binary treatments. Recently, several works studied about learning treatment invariant342

representation to predict the counterfactual outcomes (Hassanpour and Greiner, 2019b,a; Shalit et al.,343

2017; Yao et al., 2018; Bica et al., 2020; Hassanpour and Greiner, 2019a; Li and Fu, 2017). When part344

of unobserved outcomes may mislead the counterfactual prediction, Louizos et al. (2017) attempted345

to infer the outcomes from proxies, and Hartford et al. (2017) introduced instrumental variable. SITE346

preserved local similarity to balance the distributions of control and treated groups (Yao et al., 2018).347

Yoon et al. (2018) estimated ITE with generative adversarial networks (GANs). Assaad et al. (2021)348

discussed the trade-off between achieving balance and predictive power.349

6 Conclusion350

In this work, we presented a counterfactual graph learning method for link prediction (CFLP).351

We introduced the idea of counterfactual prediction to improve link prediction on graphs. CFLP352

accurately predicted the missing links by exploring the causal relationship between global graph353

structure and link existence. Extensive experiments demonstrated that CFLP achieved the state-of-354

the-art performance on benchmark datasets.355
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