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Abstract

Graph Neural Networks (GNNs) have revolutionized the field of graph learning
by learning expressive graph representations from massive graph data. As a
common pattern to train powerful GNNs, the "pre-training, adaptation" scheme
first pre-trains GNNs over unlabeled graph data and subsequently adapts them
to specific downstream tasks. In the adaptation phase, graph prompting is an
effective strategy that modifies input graph data with learnable prompts while
keeping pre-trained GNN models frozen. Typically, existing graph prompting
studies mainly focus on feature-oriented methods that apply graph prompts to
node features or hidden representations. However, these studies often achieve
suboptimal performance, as they consistently overlook the potential of topology-
oriented prompting, which adapts pre-trained GNNs by modifying the graph
topology. In this study, we conduct a pioneering investigation of graph prompting
in terms of graph topology. We propose the first Graph Topology-Oriented
Prompting (GraphTOP) framework to effectively adapt pre-trained GNN models for
downstream tasks. More specifically, we reformulate topology-oriented prompting
as an edge rewiring problem within multi-hop local subgraphs and relax it into
the continuous probability space through reparameterization while ensuring tight
relaxation and preserving graph sparsity. Extensive experiments on five graph
datasets under four pre-training strategies demonstrate that our proposed GraphTOP
outshines six baselines on multiple node classification datasets. Our code is
available at https://github.com/xbfu/GraphTOP.

1 Introduction

Graphs are ubiquitous in a wide range of real-world scenarios, such as social networks [43, 61],
knowledge graphs [41], traffic networks [32], and healthcare [3, 7]. To gain deep insights from
tremendous graph data, numerous graph learning models have been developed in recent years.
Among these efforts, Graph Neural Networks (GNNs) [1, 11, 23, 33, 38, 42, 46] are a prevalent
tool for modeling graph data and have shown great prowess in different graph-related downstream
tasks, including node classification [28, 56], link prediction [16, 62], and graph classification [25, 63].
Traditionally, GNN models are trained in a supervised manner. However, the supervised manner
relies heavily on sufficient labeled graph data, which may be infeasible in the real world. Furthermore,
the trained GNN models cannot be well generalized to other downstream tasks, even on the same
graph data. These two critical issues hinder further deployments of GNN models in practice.
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To address the above issues, the "pre-training, adaptation" scheme has been widely adopted by
a cornucopia of studies [5, 15, 27, 35, 36, 52, 57, 8]. Typically, they first train GNN models on
pre-training tasks in an unsupervised manner, followed by adapting the pre-trained GNN models
to specific downstream tasks. For instance, a GNN model can be pre-trained via link prediction
and later adapted for node classification as the downstream task. During the adaptation phase, the
goal is to bridge the objective gap between pre-training and downstream tasks. Inspired by recent
prompt tuning approaches in natural language processing [21, 58] and computer vision [18, 48],
graph prompting [9] has become an effective adaptation strategy to adapt pre-trained GNN models
for downstream tasks by modifying the input graph data with trainable prompt vectors while keeping
the pre-trained GNN models frozen. Generally, the existing graph prompting methods are feature-
oriented — they design and learn graph prompts mainly by applying them to node features [5, 36] or
hidden representations [27, 51, 52].

While the feature-oriented design is intuitive in graph prompting methods, they mostly overlook
graph topology — another essential component in graphs that fundamentally distinguishes graph data
from image data and text data — when designing graph prompts. Notably, graph representations are
not only dependent on feature information but also determined by graph topology. Numerous efforts
have demonstrated the significant impact of graph structures on graph-related tasks, particularly node
classification [6, 20, 26, 37, 55]. Unfortunately, the potential of topology-oriented prompting for
pre-trained GNN models remains unexplored in existing studies. Therefore, it is natural to pose the
question: How should we design a topology-oriented prompting framework to effectively adapt a
pre-trained GNN model for downstream tasks?

To answer this question, we conduct the pioneering investigation of graph prompting in terms of
graph topology. We propose GraphTOP — the first Graph Topology-Oriented Prompting framework
to adapt pre-trained GNN models for downstream tasks, particularly for node classification. In
GraphTOP, we formulate topology-oriented prompting as an edge rewiring problem and relax it
into the continuous probability space via reparameterization. To ensure computational feasibility in
practice, we propose subgraph-constrained topology-oriented prompting by restricting edge rewiring
between each target node and other nodes within its multi-hop subgraphs. In the end, we design
the optimization objective of GraphTOP to ensure tight relaxation and maintain graph sparsity. Our
theoretical analysis indicates that topology-oriented prompting can effectively enhance the pre-trained
GNN models for node classification. We conduct comprehensive experiments over five datasets under
four pre-training strategies to evaluate the performance of our proposed method. The experimental
results validate the superiority of GraphTOP against six baselines.

We summarize the main contributions as follows:

• Problem formulation. We formulate and conduct an initial investigation of graph prompting
from the perspective of graph topology.

• Algorithmic design. We propose GraphTOP, the first topology-oriented prompting frame-
work to adapt pre-trained GNN models by modifying graph topology of the input graph.

• Theoretical analysis. We provide theoretical analysis to support that our design of topology-
oriented prompting in GraphTOP can effectively enhance pre-trained GNN models for node
classification.

• Experimental evaluation. We conduct comprehensive experiments on five public datasets
under four pre-training strategies. Experimental results validate the effectiveness of our
proposed GraphTOP against six baselines for node classification.

2 Related works

2.1 Graph pre-training

Graph pre-training aims to train powerful GNN models over unlabeled graph data in a self-supervised
fashion [44]. Generally, graph pre-training methods can be roughly categorized into two types:
contrast-based methods and generation-based methods. Contrast-based methods [34, 39, 45, 49, 54]
are developed based on the concept of mutual information (MI) maximization, where the estimated
MI between different views of similar objects is maximized. For example, DGI [39] maximizes MI
between the local and global instance views. SimGRACE [45] constructs contrastive views from
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the perturbed version of GNN models. Generation-based methods [12, 13, 14, 19, 27, 33, 35] focus
on reconstructing specific information from graph data, such as graph structure and node features.
For instance, GraphMAE [12] pre-trains GNN models by reconstructing masked node features.
Meanwhile, previous graph prompting studies [27, 35] also adopt link prediction as the pre-training
strategy.

2.2 Graph prompting

Graph prompting adapts pre-trained GNN models to close the objective gap between pre-training
and downstream tasks. The intuition is to modify the input graph with learnable prompt vectors for
downstream tasks without tuning the pre-trained GNN models. For example, GPPT [35] pre-trains a
GNN model via link prediction and adapts it for node classification as the downstream task. It bridges
the objective gap between link prediction and node classification by converting node classification
to link prediction. GraphPrompt [27] and its variant GraphPrompt+ [50] design prompt vectors as
feature weights and apply them to node (hidden) representations. GPF-plus [5] mainly focuses on
graph classification as the downstream task and learns to manipulate the input graph by adding extra
learnable prompt vectors to node features. All-in-one [36] unifies various downstream tasks as graph-
level tasks and similarly designs prompt vectors to modify node features. MultiGPrompt [52] instead
inserts prompt vectors into node representations at each hidden layer. ProNoG [51] investigates
prompt design for non-homophilic graphs and learns prompt vectors as feature weights based on
subgraph representations. While the above graph prompting methods have demonstrated remarkable
performance in adapting pre-trained GNN models, they are largely feature-oriented and consistently
overlook the potential of topology-oriented prompting design.

3 Preliminaries

3.1 Graph neural networks

An attributed graph can be denoted as G = (V, E) where V = {v1, v2, · · · , vn} is the set of n nodes
and E ⊂ V × V is the edge set. It can also be represented as G = (A,X). Here, A ∈ {0, 1}n×n

denotes the adjacency matrix where aij = 1 iff (vi, vj) ∈ E . X ∈ Rn×dx denotes the feature matrix
where the i-th row xi ∈ Rdx is the dx-dimensional feature vector of node vi ∈ V . N (vi) denotes
the set of node vi’s neighboring nodes. GNN models leverage node features and graph structure to
learn a dh-dimensional representation vector hi ∈ Rdh for each target node vi ∈ V . Generally, GNN
models follow the message-passing mechanism, in which the representation of node vi is iteratively
updated by aggregating the representations from its neighboring nodes. More concretely, a GNN
model f updates the representation of node vi ∈ V at layer l by

m
(l)
i = AGGREGATE

(l)
({

h
(l−1)
j : vj ∈ N (vi)

})
, h

(l)
i = COMBINE

(l)
(
h

(l−1)
i ,m

(l)
i

)
, (1)

where h
(l)
i ∈ Rdl denotes the dl-dimensional representation of node vi at layer l, and we initialize

h
(0)
i = xi. AGGREGATE(l) (·) represents the aggregation operation extracting the neighboring infor-

mation of node vi, and COMBINE(l) (·) represents the combination operation integrating the previous
representation of node vi and its neighboring information at layer l. The ultimate representation hi

of node vi after the final layer of the GNN model can be used for diverse downstream tasks. In this
study, we focus on node-level downstream tasks, particularly on node classification, i.e., predicting
the class label yi of each target node vi.

3.2 Graph prompting

In this study, we mainly center on graph prompting for node-level downstream tasks, e.g., node
classification. Given a GNN model pre-trained by a pre-training task, graph prompting aims to
adapt the pre-trained GNN model for node classification by learning a graph transformation with
trainable prompts to modify the input graph without tuning the pre-trained GNN model. Let fθ∗

denote the pre-trained GNN model with parameters θ∗. Given the input graph G with a labeled node
list VL ⊂ V , the graph transformation tϕ transforms it to a prompted graph G̃ = tϕ(G) where ϕ
contains learnable prompt parameters. By tuning the prompt parameters in ϕ, the pre-trained GNN
model fθ∗ can generate suitable node representations for node classification through a trainable
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classifier g parameterized by ω. Mathematically, we can train ϕ and ω by optimizing the empirical
loss minimization problem of graph prompting defined as

min
ϕ,ω

LP (ϕ, ω) =
1

|VL|
∑

vi∈VL

ℓ
(
gω

([
fθ∗

(
G̃
)]

i

)
, yi

)
, (2)

where ℓ(·, ·) denotes the cross-entropy loss for node classification. The main goal of graph prompting
is to figure out the optimal graph transformation tϕ for downstream tasks.

4 Methodology

In this section, we present GraphTOP — a graph topology-oriented prompting framework that adapts
pre-trained GNN models for node classification by learning to modify graph topology while keeping
the pre-trained GNN models frozen. We begin by formulating topology-oriented prompting as
an edge rewiring problem. Then, we relax this problem into the continuous probability space via
reparameterization and optimize the probabilities through a shared trainable projector. To reduce
complexity, we restrict the edge rewiring problem to multi-hop local subgraphs. Finally, we present
the complete optimization objective in GraphTOP, designed to ensure tight relaxation and preserve
graph sparsity.

4.1 Topology-oriented prompting

Graph prompting learns to transform the input graph G = (A,X) to a prompted one G̃. Ideally,
the prompted graph G̃ can generate informative node representations through the pre-trained GNN
model fθ∗ and is more suitable for downstream tasks, such as node classification. Unlike previous
feature-oriented graph prompting studies [5, 36] that aim to transform the input graph with learnable
prompt vectors applied to node features (i.e., X), topology-oriented prompting designs learnable
prompts to manipulate graph topology (i.e., A). As a result, we will obtain the prompted graph
G̃ = (S,X) with the prompted graph topology S ∈ {0, 1}n×n.

To achieve this, we formulate topology-oriented prompting as an edge rewiring problem. Specifically,
given each pair of nodes vi ∈ V and vj ∈ V (vi ̸= vj), the goal is to obtain a learnable binary edge
selector sij ∈ S that determines whether an edge exists between them. In other words, edge (vi, vj)
belongs to the prompted edge set iff sij = 1. Mathematically, we can reformulate the problem of
graph prompting in Equation (2) as

min
S,ω

LP (S, ω) = 1

|VL|
∑

vi∈VL

ℓ
(
gω

(
[fθ∗ (S,X)]i

)
, yi

)
, s.t. S ∈ {0, 1}n×n . (3)

4.2 Prompt reparameterization

Solving the problem in Equation (3) is challenging since the loss function is discrete with respect
to binary edge selectors in S, making it intractable and difficult to apply in practice. In this study,
we propose to address this issue through edge rewiring reparameterization. When we treat the edge
selectors in S as binary random variables and reparameterize the problem in Equation (3) with respect
to their distributions, it can be relaxed into an expected loss minimization problem over the classifier
weight and probability spaces, which is continuous. More concretely, we treat each edge selector
sij ∈ S as a Bernoulli random variable following the Bernoulli distribution with probability pij .
During the forward pass, each edge selector sij is sampled from the Bernoulli distribution with
probability pij to be 1 and 1 − pij to be 0. Let P represent the probability matrix. The problem
of topology-oriented prompting in Equation (3) can be relaxed into the expected loss minimization
problem as

min
P,ω

ES∼Bern(P) [LP (S, ω)] , s.t. P ∈ [0, 1]n×n. (4)

Therefore, we reformulate the edge rewiring problem as a continuous problem in Equation (4).

However, solving the above problem via gradient descent remains challenging. The difficulty lies in
computing the gradient of the expected loss with respect to the probability matrix P, as Bernoulli
sampling is non-differentiable. To make the probability matrix trainable, we propose to reparameterize
the Bernoulli sampling in graph prompting via Gumbel-Softmax reparameterization [17, 30, 59, 60].
Before introducing this, we first present the following theorem.
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Theorem 1. Given two random variables G1 and G2 that follow the Gumbel distribution
Gumbel(0, 1), for any probability pij ∈ P, we have

Pr

(
G1 −G2 + log

(
pij

1− pij

)
≥ 0

)
= pij . (5)

The proof of Theorem 1 is provided in Appendix A. Recall that the probability that each edge selector
sij is equal to 1 is also pij . Therefore, we can rewrite the expected loss function in Equation (4) as

EG1,G2

[
LP

(
1

(
G1 − G2 + log

(
P

1n×n − P

)
≥ 0

)
, ω

)]
, (6)

where 1(·) is the indicator function, and 1n×n is an n-by-n all-ones matrix. G1 ∈ Rn×n and
G2 ∈ Rn×n are two random matrices where each entry follows the Gumbel distribution Gumbel(0, 1).

Nevertheless, the rewritten expected loss is discrete due to the indicator function. A common solution
to this issue is to approximate the expected loss by replacing the indicator function with a sigmoid
function. Specifically, the expected loss can be approximated as

EG1,G2

LP

σ

G1 − G2 + log
(

P
1n×n−P

)
τ

 , ω

 , (7)

where σ(·) is the element-wise sigmoid function, and τ is the temperature annealing parameter that
decreases linearly, facilitating the transition from probabilistic approximations to near-deterministic
outputs during training.

The final task is the computation of P. Instead of learning each individual probability in P as free
parameters — which is usually hard to train, we propose to obtain the probabilities through a learnable
projector shared by nodes. As the GNN model has been well pre-trained, we consider using the
informative node representations from the pre-trained GNN model as the input of the projector. Given
the representation matrix H ∈ Rn×dh where the i-th row hi is the representation vector of node vi,
we obtain P through a learnable projector m based on H, i.e., P = m(H). Specifically, given two
nodes vi and vj with their representations hi and hj , the projector computes the probability pij by

pij = σ (W2 (ReLU (W1 (hi + hj)))) , (8)

where W1 and W2 are trainable weights in the projector m. Note that the projector will generate
pij = pji, which is consistent with undirected graphs. The integration strategy of hi and hj in
m can be altered (e.g., concatenation) to handle directed graphs. Therefore, the final problem of
topology-oriented prompting can be formulated as

min
ϕ,ω

LP (ϕ, ω) =
1

|VL|
∑

vi∈VL

ℓ
(
gω

(
[fθ∗ (S,X)]i

)
, yi

)
, where S = σ

g1 − g2 + log
(

mϕ(H)

1n×n−mϕ(H)

)
τ

 .

(9)
Here, ϕ = {W1,W2} represents the prompt parameters that we aim to learn. g1 ∈ Rn×n and
g2 ∈ Rn×n are two matrices where each entry is sampled from Gumbel(0, 1) per iteration. Since the
representation matrix H is generated by the pre-trained GNN model and fixed during training, we can
compute it before the adaptation phase to avoid additional computational costs.

4.3 Subgraph-constrained topology-oriented prompting

Although the above formulation is feasible to solve, it still poses challenges in scalability. Since
we need to learn an edge selector for each node pair, the number of learnable edge selectors grows
overwhelmingly large as the number of nodes in the input graph increases. In GraphTOP, we
propose subgraph-constrained topology-oriented prompting to reduce the complexity. In most GNN
architectures, the representation of a target node through a pre-trained GNN model primarily depends
on its local subgraph [23, 51]. Motivated by this, we consider restricting learning edge selectors
for edge rewiring to a multi-hop local subgraph of each target node. More concretely, we first
extract the ρ-hop subgraph G(vi) = (A(vi),X(vi)) for each target node vi. Here, X(vi) includes
the feature vectors of node vi and other nodes within ρ steps of node vi, and A(vi) indicates the
connection between these nodes extracted from the original adjacency matrix A. ρ is a pre-defined
hyperparameter. Typically, we set ρ = 2 to balance efficiency and effectiveness. Then, the task is
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to perform edge rewiring to obtain the prompted subgraph G̃(vi) = (S(vi),X(vi)) based on G(vi).
Nonetheless, the computation is still expensive if we consider edge connections between each pair of
nodes in G(vi). Theoretically, the computational cost is approximately O(D2ρ), where D represents
the average node degree.

To further reduce the computational cost of edge rewiring, we propose to rewire edges only between
the target node and other nodes in G(vi). In this way, we only need to consider how the target node
connects to other nodes while keeping other edges in the original subgraph G(vi) intact. As a result,
the computational cost will significantly decrease, reducing to O(Dρ). More specifically, For each
pair of nodes vj and vk in the subgraph G(vi), we can compute sjk ∈ S(vi) by

sjk =

 σ

g1 − g2 + log
(

pjk
1−pjk

)
τ

 , if vi ∈ {vj , vk} ,

ajk, otherwise,

 (10)

where g1 and g2 are two values sampled from Gumbel(0, 1). Therefore, the objective function in
Equation (9) can be reformulated as

LP (ϕ, ω) =
1

|VL|
∑

vi∈VL

ℓ
(
gω

(
[fθ∗ (S(vi),X(vi))]i

)
, yi

)
. (11)

4.4 Prompt optimization

While the problem of topology-oriented prompting becomes solvable through the relaxation in
Section 4.2, simply solving the problem in Equation (11) cannot guarantee the tightness of the
relaxation. Typically, it is unlikely to obtain every probability pij converging to 0 or 1 after training.
As a result, Bernoulli sampling may cause significant fluctuations in graph topology during inference,
resulting in unstable classification performance. Therefore, the goal here is to encourage deterministic
probabilities (i.e., either 0 or 1) during training. To achieve this, we introduce an extra entropy-based
regularization term LE(ϕ) in the objective function. The intuition of this regularization term is to
penalize high-entropy probabilities via entropy minimization [10]. Mathematically, the regularization
term LE(ϕ) can be written as

LE(ϕ) =
1

|VL|
∑

vi∈VL

 1

|Nρ(vi)|
∑

vj∈Nρ(vi)

e (pij)

 , where e (pij) = pij log pij + (1− pij) log(1− pij).

(12)
Here, Nρ(vi) represents the set of nodes within node vi’s ρ-hop subgraph except node vi. By
minimizing LE , each probability pij will be likely to converge to 0 or 1 after training, leading to a
deterministic graph topology for inference. As a result, the relaxation in Equation (4) becomes tight.

Meanwhile, the prompted graph may become overly dense, resulting in an almost fully connected
graph topology. Such prompted graphs are often impractical for most applications and incur high
computational costs [2, 20, 26]. Therefore, it is important to control how sparse the prompted graph
is. To achieve this, we introduce another regularization term LS(ϕ) to constrain the size of connected
edges in the prompted graph. More specifically, the regularization term LS(ϕ) can be formulated as

LS(ϕ) =
1

|VL|
∑

vi∈VL

∣∣∣∣∣
∑

vj∈Nρ(vi)
pij

|Nρ(vi)|
− γ

∣∣∣∣∣ , (13)

where γ is a hyperparameter to control the size of connected edges for each node. Finally, we can
write the overall objective function as

min
ϕ,ω
LP (ϕ, ω) + λ1LE(ϕ) + λ2LS(ϕ), (14)

where λ1 and λ2 are two hyperparameters to balance different loss terms.

5 Analysis of GraphTOP

In this section, we present a comprehensive analysis of our proposed framework. The overall
algorithm of GraphTOP can be found in Appendix B.
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5.1 Complexity analysis

Without loss of generality, we take a K-layer GCN model as an example for complexity analysis.
When we set ρ = 2, the representation of each target node is computed based on its 2-hop local
subgraph. When the average node degree is D, the expected number of nodes within its 2-hop local
subgraph is O(D2). Accordingly, the expected number of edges within its 2-hop local subgraph
is O(D3). We assume each layer l of the GCN model has the same hidden size as the feature
matrix, i.e., dx = dh = dl for simplicity. In this case, the time complexity of the GCN model is
O(KD2d2l +KD3dl). The extra cost in GraphTOP comes from the computation of the probabilities
when generating the prompted graph. The time complexity for computing the probabilities is
O(D2d2l +D2dl). Therefore, we can conclude that computing the probabilities in GraphTOP does
not introduce significant additional computational costs compared with GNN models.

5.2 Theoretical analysis

In this subsection, we provide a theoretical analysis of how topology-oriented prompting in our
GraphTOP benefits pre-trained GNN models for node classification. Following previous graph
learning studies [29, 40], our analysis is similarly based on the contextual stochastic block model
(CSBM) [4]. Given a random graph G generated by the CSBM with two node classes c1 and c2, node
vi has the feature vector xi following a Gaussian distribution xi ∼ N(µ1, I) if it is from class c1;
otherwise, xi ∼ N(µ2, I). Here, we assume µ1 ̸= µ2. The edges in G are generated following an
intra-class probability p > 0 and an inter-class probability q > 0. In other words, each pair of nodes
will be linked through an edge with probability p if they are from the same class; otherwise, the
probability is q. We denote a random graph generated by the CSBM as G ∼ CSBM(µ1,µ2, p, q).

We aim to analyze how our edge rewiring design in topology-oriented prompting improves linear
separability under pre-trained GNN models. Here, we consider 2-layer linear GCN models [23]
for simplicity. We are particularly interested in the expected Euclidean distance between node
representations of the two classes after 2-layer GCN operations. Let Dist′ and Dist denote the
expected Euclidean distances with or without our edge rewiring design, respectively. In GraphTOP,
we have the following theorem.

Theorem 2. Given a pre-trained 2-layer linear GCN model fθ∗ and a random graph G ∼
CSBM(µ1,µ2, p, q), when p ̸= q, there always exists edge rewiring in the prompted graph by Graph-
TOP that satisfies

Dist′ =
p+ q

|p− q|
Dist > Dist. (15)

The proof of Theorem 2 can be found in Appendix C. Theorem 2 indicates that the expected distance
between the two class centroids can be enlarged effectively when GraphTOP alters how every target
node connects to the other nodes within its multi-hop local subgraph. Under this circumstance, the
representations of nodes from the two classes are more likely to be correctly classified. Therefore,
we conclude that our edge rewiring design in GraphTOP can theoretically enhance the classification
performance of pre-trained GNN models.

6 Experiments

6.1 Experimental setup

Datasets We adopt five real-world graph datasets from various domains to evaluate the performance
of our framework. These datasets include Cora [47], PubMed [47], Amazon [31], Minesweeper [31],
and Flickr [53]. Detailed information about these datasets can be found in Appendix E.1.

Pre-training strategies To evaluate the compatibility of our framework with different pre-training
strategies, we conduct experiments under four representative pre-training strategies. More specifically,
we adopt GraphCL [49] and SimGRACE [45] for contrast-based methods. As for generation-based
methods, we follow two previous studies — GPPT [35] and GraphPrompt [27] to pre-train GNN
models via link prediction. We term them LP-GPPT and LP-GraphPrompt, respectively. More
information about these pre-training strategies can be found in Appendix E.2.
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Table 1: Accuracy on 5-shot node classification over five datasets. The best-performing method is
bolded, and the runner-up is underlined.

Pre-training Graph prompting
strategies methods

Cora PubMed Amazon Minesweeper Flickr

GraphCL

Linear Probe 55.69±5.74 67.30±6.26 23.19±7.21 67.59±6.30 29.31±8.91

GPPT 61.50±4.49 65.75±3.99 24.27±3.74 65.44±8.97 24.64±3.15

ALL-in-one 52.33±4.55 65.78±8.65 22.82±6.09 63.82±8.63 21.57±4.64

GraphPrompt 62.12±3.28 67.01±4.56 21.71±2.93 61.19±3.50 21.92±3.72

GraphPrompt+ 58.91±3.12 66.26±5.75 23.83±2.30 61.64±6.36 24.43±4.62

ProNoG 60.01±7.03 68.17±4.82 23.26±2.42 65.48±3.40 26.17±5.18

GraphTOP 63.44±4.21 68.28±4.15 27.43±7.02 68.25±7.14 30.93±9.07

SimGRACE

Linear Probe 40.68±2.29 54.59±6.02 24.58±4.18 60.58±6.42 26.78±5.29

GPPT 44.83±4.67 52.25±5.91 24.27±3.74 59.62±4.80 22.11±3.56

ALL-in-one 41.11±4.92 51.45±4.73 22.66±3.55 58.11±3.82 21.50±4.49

GraphPrompt 47.02±3.87 55.74±5.80 21.24±2.78 58.72±4.37 19.72±4.54

GraphPrompt+ 51.26±4.90 55.93±6.98 25.07±1.71 60.76±6.75 20.79±5.65

ProNoG 42.44±2.97 55.11±5.98 22.53±2.65 63.03±2.74 25.44±4.45

GraphTOP 50.57±2.91 56.64±5.42 25.67±3.34 61.25±5.08 27.70±5.69

LP-GPPT

Linear Probe 24.40±2.83 42.26±5.09 25.50±4.11 63.22±8.16 23.76±4.30

GPPT 32.08±7.66 44.85±4.73 28.90±3.50 63.44±8.28 22.25±4.41

ALL-in-one 26.67±6.24 41.11±4.92 24.49±3.51 59.97±4.67 18.09±4.30

GraphPrompt 30.14±2.01 44.72±6.68 21.88±3.56 61.73±6.35 19.72±1.76

GraphPrompt+ 33.42±2.91 45.17±6.91 24.34±1.72 61.15±3.37 21.02±4.22

ProNoG 33.71±4.12 46.07±3.62 21.39±1.69 66.11±4.20 24.08±4.10

GraphTOP 33.97±2.43 46.52±6.18 32.41±7.18 66.67±3.83 25.95±3.17

LP-GraphPrompt

Linear Probe 50.15±5.88 66.26±5.69 25.00±6.78 65.90±7.36 23.75±3.26

GPPT 52.13±7.15 63.16±8.25 25.38±5.78 62.53±8.91 24.16±3.88

ALL-in-one 49.42±2.70 64.73±6.46 21.37±3.65 58.17±4.63 22.10±2.92

GraphPrompt 52.35±4.82 68.16±8.23 22.76±2.81 58.01±3.26 21.15±1.46

GraphPrompt+ 52.19±5.22 62.19±6.70 24.44±1.81 61.78±3.92 21.48±4.09

ProNoG 52.49±5.43 67.68±5.02 23.79±2.04 59.88±8.50 24.74±1.10

GraphTOP 53.44±4.72 68.14±5.47 27.07±5.84 67.09±8.45 25.03±3.84

Baselines We include five state-of-the-art graph prompting methods as the baselines of our ex-
periments, including GPPT [35], All-in-one [36], GraphPrompt [27], GraphPrompt+ [50], and
ProNoG [51]. Additionally, we also report the performance of tuning linear probes as the classifier
based on node representations from pre-trained GNN models without any graph prompting methods
(termed Linear Probe). More information on these baselines can be found in Appendix E.3.

Implementation details We use a 2-layer GCN [23] as the GNN model for each graph prompting
method. The hidden size is 128. All the experimental results are based on the 5-shot setting. Each
method is trained using the Adam optimizer [22] with a learning rate of 0.005. The number of epochs
is set to 500 for graph prompting. We set γ = 0.5 in our experiments. We conduct a grid search for
λ1 and λ2. The reported performance is the average result of five runs with different random seeds.

6.2 Effectiveness evaluation

We first evaluate the overall performance of our method and other baselines. Table 1 reports the
average accuracies on 5-shot node classification over five datasets under four pre-training strategies.
According to the results in the table, we first observe that Linear Probe can achieve competitive
performance in some cases, although it only trains a classifier during the adaptation phase. For
example, it outperforms several baselines on Flickr across four pre-training strategies. Additionally,
we observe that ProNoG is a strong baseline compared to other graph prompting methods. It achieves
the runner-up position in some cases, such as on four datasets under LP-GPPT. Finally, it is noteworthy
that GraphTOP achieves the best performance in most cases compared to other baselines. More
specifically, GraphTOP outperforms other baselines in 17 out of 20 experiments. It consistently
achieves the best performance on Amazon and Flickr across all four pre-training strategies. These
observations validate the effectiveness of GraphTOP in modifying graph topology to adapt pre-trained
GNN models for node classification.
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6.3 Analysis of GraphTOP

Analysis of LE The loss term LE ensures tight relaxation of GraphTOP by encouraging each
probability to converge to 0 or 1. To evaluate the effectiveness of LE , we conduct experiments on the
probability distribution by GraphTOP and its variant without LE . Figure 1 illustrates the distribution
curves of pij by GraphTOP with and without LE . Based on the distribution curves, we observe
that the probabilities are not centered around 0 or 1 without LE . Instead, we may obtain many
probabilities around 0.5. In this case, tight relaxation cannot be guaranteed in our reparameterization.
However, when we keep LE in the objective function, the probabilities are more likely to be close to
0 or 1, which validates the motivation of our design in GraphTOP.

Analysis of LS In the objective function of GraphTOP, LS is designed to control the number of
neighboring nodes for each target node by restricting the sparsity of a target node to the threshold γ
(we set γ = 0.5 in our experiments). Typically, the edge densities should be forced to γ by the loss
term LS . To validate the effectiveness of LS , we conduct experiments evaluating the edge densities
of target nodes when removing LS . Figure 2 illustrates the average edge densities of target nodes by
GraphTOP with and without LS . From these bar figures, we observe that the average edge densities
are consistently very high when we remove LS from the objective function. It means that each target
node connects to almost all other nodes within its local subgraph, leading to an overly dense graph
topology. When we retain LS in the objective function, we observe that the average densities by
GraphTOP decrease significantly toward 0.5, thereby ensuring the sparsity of the prompted graph.
Therefore, we can conclude that the loss term LS can effectively avoid overly dense prompted graphs.

Efficiency analysis In Section 4.3, we restrict edge rewiring within the ρ-hop local subgraph of
each target node. To further reduce the complexity, we propose to rewire edges only between each
target node and other nodes within its multi-hop subgraph. To evaluate the efficiency improvement by
our design in GraphTOP, we conduct experiments on the running time of GraphTOP and its variant
with edge rewiring between each pair of nodes within a multi-hop subgraph (i.e., GraphTOPall_nodes).

Table 2: Running time (seconds) of Graph-
TOP and its variant over three datasets when
ρ = 2 and ρ = 3 (OOM: out of GPU memory).

Dataset ρ GraphTOP GraphTOPall_nodes

Cora 2 36.52 101.70

3 53.08 OOM

Amazon 2 218.61 651.22

3 252.21 OOM

Minesweeper 2 77.51 113.37

3 78.65 199.48

Table 2 shows the running time of the two methods
when ρ = 2 and ρ = 3. From the results in the ta-
ble, we can observe that GraphTOPall_nodes requires
much more time compared with GraphTOP. For in-
stance, GraphTOPall_nodes needs 651.22 seconds to
finish each experiment when ρ = 2, which is about
2.97× longer than GraphTOP. Furthermore, when
we set ρ = 3, GraphTOPall_nodes will be out of GPU
memory on our server. In contrast, the running time
of GraphTOP does not increase significantly. We
can observe similar patterns on other datasets. These
observations strongly support our design in Graph-
TOP by rewiring edges only between each target node with other nodes within its local subgraph.

More experimental results Due to the page limit, more experimental results, including the influ-
ence of λ1 and λ2, analysis of GPU memory usage, and performance with different numbers of shots,
are provided in Appendix F.

9



7 Conclusion

In this study, we conduct a pioneering investigation into graph prompting from the perspective of
graph topology. We propose GraphTOP — the first graph topology-oriented prompting framework
that adapts pre-trained GNN models by modifying graph topology for downstream tasks, particularly
node classification. Extensive experiments over five graph datasets validate the effectiveness of
GraphTOP against six baselines under four pre-training strategies.
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dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please check Section E.4. We also evaluated time of execution and memory
needed in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please check Section H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data and related techniques are explicitly cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLM usage
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A Proof of Theorem 1

Theorem 1. Given two random variables G1 and G2 that follow the Gumbel distribution
Gumbel(0, 1), for any probability pij ∈ P, we have

Pr

(
G1 −G2 + log

(
pij

1− pij

)
≥ 0

)
= pij . (16)

Proof. According to the definition of the Gumbel distribution, the probability density function of
Gumbel(µ, 1) is

f(x;µ) = e−(x−µ)−e−(x−µ)

. (17)

The cumulative distribution function of Gumbel(µ, 1) is

F (x;µ) = e−e−(x−µ)

. (18)

Obviously, we have

Pr

(
G1 −G2 + log

(
pij

1− pij

)
≥ 0

)
= Pr ((log (pij) +G1)− (log (1− pij) +G2) ≥ 0) .

(19)
Let x1 = log

(
pij

)
+G1, x2 = log

(
1− pij

)
+G2. We know

x1 ∼ Gumbel(log
(
pij

)
, 1), x2 ∼ Gumbel(log

(
1− pij

)
, 1) (20)

Then, we have

Pr ((log (pij) +G1)− (log (1− pij) +G2) ≥ 0)

= Pr(x1 − x2 ≥ 0)

=

∫ +∞

−∞

∫ x1

−∞
f(x2; log

(
1− pij

)
)f(x1; log

(
pij

)
)dx2dx1

=

∫ +∞

−∞
F (x1; log(1− pij))f(x1; log(pij))dx1

=

∫ +∞

−∞
e−e−(x1−log(1−pij)) · e−(x1−log(pij))−e−(x1−log(pij))

dx1

=

∫ +∞

−∞
e−e−(x1−log(1−pij))−(x1−log(pij))−e−(x1−log(pij))

dx1

=

∫ +∞

−∞
e−(x1−log(pij))−e−x1 ·(elog(1−pij)+elog(pij))dx1

=

∫ +∞

−∞
e−(x1−log(pij))−e−x1

dx1

= pij

∫ +∞

−∞
e−x1−e−x1

dx1

= pij

∫ +∞

−∞
f(x1; 0)dx1

= pij

(21)

Therefore, we can conclude

Pr

(
G1 −G2 + log

(
pij

1− pij

)
≥ 0

)
= pij . (22)
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Algorithm 1 GraphTOP
1: Input: Pre-trained GNN model fθ∗ , initial gω and tϕ, input graph G, training node list VL,

hyperparameters λ1 and λ2, learning rate η, training epochs E
2: Extract ρ-hop local subgraph G(vi) for each node vi ∈ VL
3: for e = 1 to E do
4: Anneal temperature by τ = max (0.97× (1− e/E) + 0.03, 0.1)
5: for each vi and its local subgraph G(vi) do
6: S(vi) = A(vi)
7: for each node vj ∈ Nρ(vi) do
8: Compute pij = σ (W2 (ReLU (W1 (hi + hj))))
9: Sample g1 and g2 from Gumbel(0, 1)

10: sij = σ

g1 − g2 + log
(

pij

1−pij

)
τ


11: Compute e (pij) = pij log pij + (1− pij) log(1− pij)
12: end for
13: end for
14: Compute LP (ϕ, ω) =

1
|VL|

∑
vi∈VL

ℓ (gω ([fθ∗ (S(vi),X(vi))]i) , yi)

15: Compute LE(ϕ) =
1

|VL|
∑

vi∈VL

(
1

|Nρ(vi)|
∑

vj∈Nρ(vi)
e (pij)

)
16: Compute LS(ϕ) =

1
|VL|

∑
vi∈VL

∣∣∣∣∑vj∈Nρ(vi)
pij

|Nρ(vi)| − γ

∣∣∣∣
17: Update ω ← ω − η∇LP (ϕ, ω)
18: Update ϕ← ϕ− η∇ (LP (ϕ, ω) + λ1LE(ϕ) + λ2LS(ϕ))
19: end for

B Overall Algorithm

The overall algorithm of GraphTOP is provided in Algorithm 1.

C Proof of Theorem 2

Theorem 2. Given a pre-trained 2-layer linear GCN model fθ∗ and a random graph G ∼
CSBM(µ1,µ2, p, q), when p ̸= q, there always exists edge rewiring in the prompted graph by Graph-
TOP that satisfies

Dist′ =
p+ q

|p− q|
Dist. (23)

Proof. According to the CSBM, we suppose that the labels of a target node vi’s neighbors will be
independently sampled from a neighborhood distribution Dc1 = [ p

p+q ,
q

p+q ] if node vi is from class
c1 or Dc2 = [ q

p+q ,
p

p+q ] if node vi is from class c2 [29].

Without GraphTOP, the expected feature obtained from the first layer of the GCN operation will be

Ec1 [h
(1)] =

p

p+ q
· µ1 +

q

p+ q
· µ2 (24)

for nodes from class c1 and

Ec2 [h
(1)] =

q

p+ q
· µ1 +

p

p+ q
· µ2 (25)

for nodes from class c2. Here, we ignore the linear transformation in the weight matrices of the
pre-trained GNN model, as it can be absorbed by the linear classifier.

Similarly, the expected feature obtained from the second layer of the GCN operation will be

Ec1 [h
(2)] =

p

p+ q
· Ec1 [h

(1)] +
q

p+ q
· Ec2 [h

(1)] (26)
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for nodes from class c1 and

Ec2 [h
(2)] =

q

p+ q
· Ec1 [h

(1)] +
p

p+ q
· Ec2 [h

(1)] (27)

for nodes from class c2. When p ̸= q, the nodes from the two classes are distinguishable from each
other, i.e., Ec1 [h

(2)] ̸= Ec2 [h
(2)].

To evaluate the linear separability of linear classifiers, we calculate the expected distance Dist
between the two classes c1 and c2 by

Dist =
∥∥∥Ec1 [h

(2)]− Ec2 [h
(2)]

∥∥∥
=

∥∥∥∥p− q

p+ q
· Ec1 [h

(1)] +
q − p

p+ q
· Ec2 [h

(1)]

∥∥∥∥
=
|p− q|
p+ q

·
∥∥∥Ec1 [h

(1)]− Ec2 [h
(1)]

∥∥∥
=
|p− q|
p+ q

·
∥∥∥∥p− q

p+ q
· µ1 +

q − p

p+ q
· µ2

∥∥∥∥
=

(p− q)2

(p+ q)2
· ∥µ1 − µ2∥ .

(28)

Next, we consider the expected distance when rewiring edges with GraphTOP. Since GraphTOP only
alters how every target node connects to the nodes within its 2-hop local subgraph, Ec1 [h

(1)] and
Ec2 [h

(1)] are still the expected features for nodes from class c1 and c2, respectively. Let p′ and q′

denote intra-class and inter-class probabilities of edges between a target node and other nodes after
rewiring edges with GraphTOP, respectively. Then, the new expected feature from the second layer
of the GCN operation will be

E′
c1 [h

(2)] =
p′

p′ + q′
· Ec1 [h

(1)] +
q′

p′ + q′
· Ec2 [h

(1)] (29)

for nodes from class c1 and

E′
c2 [h

(2)] =
q′

p′ + q′
· Ec1 [h

(1)] +
p′

p′ + q′
· Ec2 [h

(1)] (30)

for nodes from class c2. In this case, the new expected distance after rewiring edges with GraphTOP
will be

Dist′ =
∥∥∥E′

c1 [h
(2)]− E′

c2 [h
(2)]

∥∥∥
=

∥∥∥∥p′ − q′

p′ + q′
· Ec1 [h

(1)] +
q′ − p′

p′ + q′
· Ec2 [h

(1)]

∥∥∥∥
=
|p′ − q′|
p′ + q′

·
∥∥∥Ec1 [h

(1)]− Ec2 [h
(1)]

∥∥∥
=
|p′ − q′|
p′ + q′

·
∥∥∥p− q

p+ q
· µ1 +

q − p

p+ q
· µ2

∥∥∥
=
|p′ − q′|
p′ + q′

· |p− q|
p+ q

· ∥µ1 − µ2∥

(31)

Then we have

Dist′ =
|p′ − q′|
p′ + q′

· p+ q

|p− q|
Dist. (32)

With the loss term LE , each probability pij is forced to be 0 or 1. To ensure that the nodes from the
two classes c1 and c2 both have the probability of p′ to connect intra-class nodes, we may compute
pij in Equation (8) to be 1 as long as vi are vj are from the same class; otherwise, pij = 0. In this
case, we will have p′ = 1 and q′ = 0 for each target node in the prompted graph. Hence, we can get

Dist′ =
p+ q

|p− q|
Dist. (33)
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Table 3: Basic information and statistics of graph datasets adopted in our experiments.

Dataset #(Nodes) #(Edges) #(Features) Average degree Homophily ratio #(Classes)
Cora 2,708 10,556 1,433 3.90 0.810 7
PubMed 19,717 88,648 500 4.49 0.802 3
Amazon 24,492 93,050 300 3.80 0.380 5
Minesweeper 10,000 39,402 7 3.94 0.683 2
Flickr 89,250 899,756 500 10.08 0.319 7

D Extension to graph-level tasks

For graph-level tasks, such as graph classification, we can similarly model edge rewiring as Bernoulli
random variables. Since graphs in graph-level tasks are typically not very large (usually less than 10K
nodes per graph), we do not need to restrict topology-oriented prompting to a multi-hop subgraph but
instead apply it to the whole graph. In this case, GraphTOP is simplified for graph-level tasks. We
keep empirical evaluation of GraphTOPP on graph-level tasks as our future work.

E More details about experimental setup

E.1 Datasets

We use five real-world graph datasets to evaluate the performance of GraphTOP. The statistics of
these datasets can be found in Table 3.

E.2 Pre-training strategies

We adopt four representative methods for pre-training GNN models in our experiments. These
methods are also adopted by the previous graph prompting studies [27, 35, 36]. The details of these
pre-training strategies are listed here.

• GraphCL [49] generates two perturbed views of a graph using node dropping and edge
perturbation. A GNN model encodes both views into representations, which are then
mapped to a latent space using a nonlinear projection head. The contrastive loss is applied
to maximize agreement between the two views, optimizing both the GNN model and the
projection head.

• SimGRACE [45] constructs a perturbed version of the GNN model by adding Gaussian
noise to its parameters. Given an input graph, the perturbed and the original GNN models
generate representations that form a positive pair for contrastive learning.

• LP-GPPT [35] randomly masks a subset of edges in the input graph. The model learns
to predict whether a given pair of nodes is connected. Negative samples are generated by
selecting node pairs that are not linked in the original graph.

• LP-GraphPrompt [27] samples a connected neighbor as one positive node and an unlinked
node as one negative node for each target node. The training objective is to maximize
the similarity between connected node pairs while minimizing the similarity between
unconnected pairs.

We would like to emphasize that designing effective pre-training strategies for training powerful
GNNs remains an ongoing challenge in graph learning. Many graph prompting methods [35, 27, 50]
adopt link prediction as their pre-training strategies, while one recent study [51] discusses when to
use link prediction or contrastive learning for pre-training. Although choosing a better pre-training
strategy can yield more powerful GNN models, it is outside the scope of this study: we aim to
obtain the best performance on downstream tasks given a pre-trained GNN model, regardless of its
pre-training strategy.

E.3 Baselines

We use six SOTA baselines in our experiments. We provide the details of these baselines as follows.
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Figure 3: The average accuracies of GraphTOP with different values of λ1 and λ2.

• Linear Probe only trains a linear classifier during the adaptation phase without any graph
prompting design.

• GPPT [35] pre-trains a GNN model via edge masking and link prediction, coupled with a
task-specific prompt module that reparameterizes downstream node classification into edge
likelihood estimation.

• All-in-one [36] reformulates node/edge tasks as graph tasks via multi-hop subgraphs, using
learnable prompt graphs with token vectors, tunable token structures, and feature-similarity-
weighted insertion patterns. It aligns downstream tasks with graph-level pre-training via
episodic meta-learning over multi-task episodes.

• GraphPrompt [27] bridges the gap between pre-training and downstream tasks through
subgraph similarity calculations as a unified template, with a learnable prompt updated
during the adaptation phase to incorporate task-specific knowledge for tasks like node and
graph classification.

• GraphPrompt+ [50] extends GraphPrompt by introducing prompt vectors within each layer
of the pre-trained GNN model, effectively capturing hierarchical information beyond the
readout layer to enhance adaptation.

• ProNoG [51]: ProNoG is a graph prompting framework for non-homophilic graphs. It
employs a conditional network to generate node-specific prompts based on its multi-hop
subgraph.

E.4 Hardware information

We run our experiments using a server equipped with 512 GB of memory, 128 AMD EPYC 7543
32-core CPUs, and 6 NVIDIA RTX A6000 GPUs, each of which has 48 GB of memory.

F More experimental results

F.1 Influence of λ1 and λ2

The two hyperparameters λ1 and λ2 balance different loss terms in the objective function of GraphTOP.
To explore their influence on model utility, we conduct grid search for λ1 and λ2. Other robust
optimization strategies, such as Bayesian Optimization and Hyperband [24], can also be used for
hyperparameter selection. Figure 3 reports the accuracy results of GraphTOP with different values of
λ1 and λ2 over PubMed under GraphCL and Amazon under LP-GPPT. According to the results, we
observe that the performance of GraphTOP varies with different values of both λ1 and λ2. GraphTOP
can obtain the best performance when we set λ1 = 2 and λ = 5 or 10. Additionally, we also notice
that the accuracies are not high but quite stable when λ2 = 0. We conjecture that the probabilities are
mostly driven toward values close to 1 by the loss term LE , leading to the same densely connected
prompted graphs. When λ2 > 0, however, the edge densities by GraphTOP are reduced. In this case,
detrimental edges will be removed to enhance adaptation for pre-trained GNN models.
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Table 4: GPU memory usage (GB) of GraphTOP and its variant when ρ = 2 and ρ = 3 (OOM: out
of GPU memory).

Dataset ρ GraphTOP GraphTOPall_nodes

Cora 2 0.44 6.41
3 0.69 OOM

PubMed 2 0.24 13.41
3 2.33 OOM

Amazon 2 0.49 6.54
3 0.58 OOM

Minesweeper 2 0.32 0.84
3 0.36 2.79

Table 5: Accuracy with different numbers of shots. The best-performing method is bolded, and the
runner-up is underlined.

3-shot
Pre-training Graph Prompting Cora MinesweeperStrategies Methods

GraphCL

Linear Probe 51.76±2.82 63.93±6.42

GPPT 49.84±3.51 58.77±6.21

ALL-in-one 47.69±4.35 52.40±5.58

GraphPrompt 52.76±4.94 55.35±8.01

GraphPrompt+ 50.30±4.16 50.37±6.99

ProNoG 52.94±3.86 59.18±7.93

GraphTOP 56.70±5.70 64.70±9.43

10-shot
Pre-training Graph Prompting Amazon MinesweeperStrategies Methods

SimGRACE

Linear Probe 25.36±3.89 61.60±3.93

GPPT 22.87±6.08 58.90±4.70

ALL-in-one 18.36±5.49 57.64±5.74

GraphPrompt 22.66±2.00 58.65±5.34

GraphPrompt+ 24.06±2.47 61.61±5.64

ProNoG 22.88±1.96 62.01±4.59

GraphTOP 26.78±4.48 63.20±8.27

20-shot
Pre-training Graph Prompting PubMed AmazonStrategies Methods

LP-GraphPrompt

Linear Probe 73.38±2.23 28.50±5.70

GPPT 75.92±3.07 27.54±5.38

ALL-in-one 72.29±5.42 29.36±4.91

GraphPrompt 76.40±1.81 25.00±1.34

GraphPrompt+ 70.77±2.30 26.41±2.10

ProNoG 75.55±1.69 26.12±1.99

GraphTOP 77.40±5.06 32.40±4.60

F.2 Results of memory usage

Apart from time efficiency, we are also interested in GPU memory usage by GraphTOP and
GraphTOPall_nodes. Table 4 shows GPU memory usage by GraphTOP and GraphTOPall_nodes on
four datasets. From the table, we notice that GraphTOPall_nodes requires more GPU memory resources
compared with GraphTOP. The situation is even more pronounced than what we observed in Table 2.
Considering this, our design for rewiring edges only between each target node and other nodes within
its multi-hop local subgraph is very essential in GraphTOP.
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F.3 Performance with different numbers of shots

We also conduct experiments with different numbers of shots. Table 5 shows the performance of
GraphTOP and other baselines.

G Limitations

The theoretical analysis uses the CSBM [4] model to generate random graphs and analyze the linear
separability of linear GCN models. Although it follows previous studies in graph learning, the
nonlinear separability is also an important issue to explore.

H Broader impacts

This study will benefit many real-world applications related to graph prompting, such as anomaly
detection and bad actor prediction.
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