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ABSTRACT

Large language models (LLMs) are typically trained by reinforcement learning (RL) with
verifiable rewards (RLVR) and supervised fine-tuning (SFT) on reasoning traces to im-
prove their reasoning abilities. However, how these methods shape reasoning capabilities
remains largely elusive. Going beyond an accuracy-based investigation of how these two
components sculpt the reasoning process, this paper introduces a novel analysis frame-
work that quantifies reasoning paths and captures their qualitative changes under each
training process (with models of 1.5B, 7B, and 14B parameters on mathematical and code
domains). Specifically, we investigate the reasoning process at two levels of granularity:
the trajectory-level, which examines complete reasoning outputs, and the step-level, which
analyzes reasoning graphs whose nodes correspond to individual reasoning steps. Notably,
clustering of unique reasoning trajectories shows complementary effects: RL compresses
incorrect trajectories, whereas SFT expands correct ones. Step-level analysis reveals that
RL steepens (about 2.5 times), while SFT flattens (reduced to about one-third), the decay
rates of node visitation frequency, degree, and betweenness centrality distributions in the
reasoning graph. This indicates that RL concentrates reasoning functionality into a small
subset of steps, while SFT homogenizes it across many steps. Furthermore, by evaluating
the reasoning graph topologies from multiple perspectives, we delineate the shared and
distinct characteristics of RL and SFT. Our work presents a novel reasoning path perspec-
tive that explains why the current best practice of two-stage training, with SFT followed by
RL, is successful, and offers practical implications for data construction and more efficient
learning approaches.

1 INTRODUCTION

Following the advent of OpenAl-ol (Jaech et al.|[2024) and the open-sourcing of DeepSeek-R1 (Guo et al.|
2025), post-training for enhancing reasoning abilities to solve complicated logical tasks, including math-
ematical problems, has seen a surge of interest. Two primary learning methods are adopted for reasoning
post-training: Supervised Fine-Tuning (SF Tﬂ where the policy is trained to imitate teacher policies by max-
imizing log-likelihood using supervision signals from human annotations or strong teacher models (Ye et al.,
2025 Muennighoff et al., 2025} |Guha et al.,[2025)); and Reinforcement Learning (RL), which maximizes ex-
pected rewards to optimize the probability of producing correct solutions in verifiable tasks (Jaech et al.|
2024; Guo et al.,[2025).

It has been suggested that RL with verifiable rewards (RLVR) in LLMs simply incentivizes pre-existing
capabilities of the base model (Base model) (Liu et al. 2025c; Zhao et al., |2025a; |Shah et al.| 2025}

'In this paper, we denote SFT as supervised fine-tuning on reasoning traces generated by reasoning LLMs such as
DeepSeek-R1 (Guo et al.,[2025) and Gemini-thinking (Comanici et al.| [2025).
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Gandhi et al| 2025) since it performs Chain-of-Thought (Wei et al.| 2022) in vast vocabulary spaces
within the constraints of the Base model’s prior. Recently, [Yue et al| (2025) investigated the Pass@k
metric (Chen et al., 2021} [Song et al. 2025b; [Dang et al., [2025; [Wen et al., [2025; [Wu et al., 2025),
which measures the probability that at least one correct solution is found when sampling k independent
solutions from the model (i.e., Best-of-k). They showed that, as k increases, Base model’s Pass@k
eventually surpasses that of the RL model trained with RLVR. This observation suggests that Base mod-
els already possess the capability to solve problems that RL models can solve. However, these stud-
ies primarily evaluate answer accuracy without investigating the underlying reasoning process. Addi-
tionally, current state-of-the-art models for mathematics and coding, such as ProRL (Liu et al., 2025a)
and AceReason (Chen et al. 2025d; [Liu et al| [2025d), apply RL starting from DeepSeek-R1 (Guo
et al., [2025) distillation model checkpoints, essentially conducting two-stage training with SFT fol-
lowed by RL (SFT+RL models). DeepSeek-R1 (Guo et al., [2025) also features cold-start integration.
Yet, various SFT+RL training approaches are currently devel-

oped through trial-and-error without grasping the distinct roles [ Trajectory-level | ‘g o
of RL (reinforcement) and SFT (imitation). An important ques- —

tion to ask is then, "how do RL and SFT shape the reasoning - O<§ } Unique

» Trajectories E
process bey()nd accuracy measurements?

In this paper, we systematically dive into reasoning process at
two granularities (Figure [I): (1) trajectory-level, where entire

thinking generations are regarded as single trajectory, and (2) O/'O v ﬁj

step-level, where each node (vertex) in the latent space graph
(hereafter referred to as the reasoning graph) represents a logical

X

expression (i.e., a sentence), such as a problem setup, a calcula- slellig=4a 2L

tion, or a verification. Step-level
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For trajectory-level analysis, we sample multiple outputs from
Base, RL, SFT, and SFT+RL model then identify unique tra-
jectories by applying clustering to group similar ones. We find
that RL decreases the number of unique incorrect trajectories,
whether starting from Base or SFT models, whereas SFT in-

Frequency, Degree, Centrality

creases the number of unique correct trajectories, suggesting that “~__EXPAND
RL compresses incorrect trajectories while SFT expands correct R~ B
ones. We also note that SFT alone preserves incorrect trajec- T Raaﬁf

tories. These results justify the two-stage approach of creating
correct trajectories with SFT followed by suppressing incorrect
paths with RL. Additionally, RL consistently reduces correct tra-
jectories, which provides an explanation for why Base model’s
Pass@F; converges with that of the RL model at large k.

Figure 1: Overview of our analysis.
(Top) RL compresses incorrect trajecto-
ries, and SFT expands correct trajecto-
ries. (Bottom) RL concentrates function-
At the step-level, we construct reasoning graphs by segment- ality (e.g., hubs) in a small number of
ing model outputs into sentences, generating their embeddings, steps, and SFT distributes functionality
and clustering these representations to define nodes in sentence ~more uniformly across many steps.
space. We observe that rank plots for node visitation frequency,

degree, and betweenness centrality in reasoning graphs follow exponential laws. Remarkably, analysis of
their decay rates reveals that RL elevates the decay rate, whereas SFT degrades it, suggesting that RL not
only compresses the graph but also consolidates functionality (e.g., hubs) into fewer nodes (steps).

We further investigated the reasoning graph structure through global and local topological metrics. We
identified both shared and distinct patterns in how RL and SFT modify reasoning graph topologies. Both

2Throughout, Base model refers to the model immediately after pretraining, RL model to the Base model after RLVR,
SFT model to the Base model after SFT (distillation), and SFT+RL model to the SFT model further trained with RL.



Under review as a conference paper at ICLR 2026

RL and SFT convert local acyclic reasoning graph structures to cyclic ones, resulting in similar subgraph
proportions. However, RL transforms the community-structured reasoning graphs of Base models into hub-
centralized graphs, while SFT, using traces from a strong teacher, weakens community boundaries to form
globally connected graphs.

Our contributions are summarized as follows:

* Trajectory-level analysis confirms that RL compresses incorrect trajectories while SFT expands correct
ones, highlighting why the two-stage approach (SFT then RL) is effective.

* Step-level analysis uncovers that RL also consolidates reasoning graph functionality into fewer steps,
whereas SFT expands it across diverse steps. Moreover, through topological metrics, we demonstrate
that, while both RL and SFT generate local cyclic structures, they produce distinct global topologies.

* At both frajectory and step-level analysis, we provided empirical support that RL squeezes and SFT ex-
pands the reasoning process. Our findings interpret why existing post-training recipes work and suggest
directions for developing new training methods and for data curation.

2 RELATED WORK

RL for LLM. Research on RLVR has explored how it introduces novel reasoning abilities to LLMs.
Yue et al.| (2025); [Song et al.| (2025b); Dang et al. (2025); Wen et al.| (2025) argues that RLVR merely
elicits existing base capabilities rather than developing new ones, as evidenced by Pass@k metrics. [Wu
et al.[(2025)) demonstrates theoretically that RLVR cannot exceed the support of Base model. Furthermore,
advanced reasoning abilities, such as backtracking and verification (Gandhi et al.,[2024}2025)), are amplified
only when Base models already possess them (Liu et al.|[2025¢;|Zhao et al.|[2025a; [Shah et al.| 2025)). While
RLVR underperforms with Llama (Grattafiori et al., 2024) compared to Qwen (Qwen et al., [2025} |Yang
et al.l |2025)), mid-training on mathematical domains is crucial (Wang et al.l|[2025d). Additionally, research
explores self-improvement (Huang et al.|[2023; |Pang et al., 2024} Huang et al.| [2025) using iterative internal
rewards (Shao et al.; 2025} |Zhou et al.| [2025} Zhao et al.,|2025b; |[Prabhudesai et al.,2025;|Cheng et al., 2025;
Chandak et al}[2025) such as confidence measures rather than verifiable rewards. It is argued that unbiased
policy gradients can substantially sharpen distributions even with random rewards (Oertell et al., [2025).

RL vs SFT. The two dominant paradigms for post-training reasoning LLMs are SFT and RL. Previous
works analyzed from the perspective of transfer ability (Han et al., 2025} |Li et al., 2025} |Chu et al.| [2025)
and demonstrate that SFT tends to memorize, whereas RL generalizes (Chu et al., [2025)), with RL exhibiting
superior retention due to negative samples (Lai et al. 2025 and its inherent on-policy nature (Shenfeld
et al.| 2025). (Chen et al.|(2025a) observed SFT pseudo-reasoning interferes with RL training in VLMs, and
Setlur et al.|(2025a) showed the superiority of verifier-based RL under anti-concentration and heterogeneous
conditions. Furthermore, several integrated approaches improve performance by combining SFT and RL
(Ma et al., 2025} |Chen et al., [2025b} [Liu et al.| 2025b; Yoshihara et al., [2025; |Chen et al., [2025c]).

Analysis of Reasoning Behaviors. |[Bogdan et al.| (2025) analyzed reasoning steps in mathematical do-
mains and (Qin et al.| (2025) examines plan-execute-verify paradigms. [Liang et al.| (2025); |Cheng et al.
(20235) investigates thinking tokens, with particular attention to overthinking phenomena (Sui et al., [2025)
and aha moments (Guo et al.l [2025) such as ”Wait” tokens (Wang et al.| [2025a; Ding et al., 2025). Fur-
thermore, studies explore steering vectors (Venhoff et al.l |2025)), and examine the exploration in reasoning
LLMs (Lu et al., [2025} |Shojaee et al., [2025). Others focus on the locality structure in the vocabulary space
(Prystawskai et al., 2023} |[Kim et al., 2025} [Minegishi et al.,[2025)).

Our work extends beyond outcome-based Pass @ k metrics to examine how RL and SFT fundamentally shape
the reasoning processes of LLMs, offering a novel perspective on the formation of reasoning behavior.
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Table 1: Comparison of Model Variants. We evaluate Base, RL, SFT, and SFT + RL models across three
sizes, 1.5B, 7B, and 14B. See Appendix @for detailed model specifications.

Base Model RL Model SFT Model SFT + RL Model

1.5B Qwen2.5-Math-1.5B  Qwen2.5-Math-1.5B- DeepSeek-R1-Distill- Nemotron-Research-

Oat-Zero Qwen-1.5B Reasoning-Qwen-
1.5B

7B Qwen2.5-Math-7B Qwen2.5-Math-7B- DeepSeek-R1-Distill-  AceReason-
Oat-Zero Qwen-7B Nemotron-7B

14B  Qwen2.5-14B Qwen-2.5-14B- DeepSeek-R1-Distill-  AceReason-
SimpleRL-Zoo Qwen-14B Nemotron-14B

3 TRAJECTORY-LEVEL ANALYSIS

We now investigate how RL and SFT fundamentally reshape reasoning trajectories (paths) by analyzing their
distinct effects on unique paths. See Appendix [C.1|for our problem formulation.

3.1 CHARACTERIZING UNIQUE REASONING TRAJECTORIES

We comprehensively study Base, SFT, RL, and SFT+RL models in Table E] on AIME24, AIME25, and
AMC23. (See Figure [T3]| for accuracy comparisons). We also studied the 7B models in Table [T] on Hu-
manEval (Chen et al. [2021). For each problem and model, we generate M = 256 samples using a
temperature of 0.6, top_p of 0.95, and a response_length of 16000. Meticulous attention must
be paid to implementation details regarding prompt templates and response length. Please refer to Ap-
pendix for details. We report Pass@Fk results in Figure These samples comprise both M correct
trajectories and M _ incorrect trajectories. To estimate the number of unique trajectories, we compute pair-
wise similarities between the sampled outputs and apply hierarchical clustering based on thresholds. The
similarity between two reasoning trajectories ¢ and 7/ is measured using the chrF (Popovi¢, 2015):

CHRP - CHRR
B2.CHRP + CHRR’

chrFgs = (1+ 8%)

where  CHRP(7?, 77) = Ingrams(7®) N ngrams(77)|/|ngrams(7*)|, CHRR(x?, 79) =
[ngrams(7*) N ngrams(77)|/|ngrams(7?)|. Compared to BLEU (Papineni et al, [2002), which is
based on word-level n-grams, chrF uses character-level n-grams and better captures semantic similarity
under morphological variation (e.g., “add” vs. “adding”). See Appendix [E] for representative examples of
trajectories.

Given the verifiable reward, we split a set of M trajectories into the correct set and the incorrect set. For
each subset, we construct a similarity matrix S, € RM+*M+ and §_ € RM-*M-where each entry
si; = (chrFg(m?, w7) 4 chrFg(n?, %)) /2. The corresponding distances are then defined as d; ; = 1—s; ;,
yielding D and D_. Since chrF is not an embedding-based metric in Euclidean space, we employ UPGMA
(Unweighted Pair Group Method with Arithmetic Mean) (Sokal et al.l [1958) for hierarchical clustering
rather than Ward’s Method (Ward, [1963) or Centroid Linkage. We use a similarity threshold of 60 to cut
the dendrograms and report the resulting number of clusters for the correct and incorrect sets. Figure 2]
plots the number of correct clusters on the horizontal axis and incorrect clusters on the vertical axis. The
overall similarity distribution is shown in Appendix|C.6 and results obtained with BLEU and under different
thresholds are provided in Appendix [C.3]

3.2 RL SQUEEZES AND SFT EXPANDS UNIQUE REASONING TRAJECTORIES
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Figure 2: Effect of RL and SFT on the Number of Unique Trajectories. The x-axis represents the
number of correct clusters and the y-axis represents the number of incorrect clusters for trajectories before
and after training of 1.5B models in Table [} See Appendix [C.3] for complete results and for additional

results Appendix [C.4]

As shown in Figure 2] applying RL from either Base model or SFT .,
model dramatically reduces the number of incorrect trajectories. This
indicates that RL enhances Pass@1 through probability mass redis-
tribution. This aligns with theoretical predictions of empirical sup-
port shrinkage 2025) and diversity collapse (Dang et al, =
2025)). Crucially, we also observe a reduced number of correct trajec- ny
tories, explaining why Base models outperform RL models in Pass@k e =

at large k 2023). In contrast, applying SFT to the Base "¢ = = =  « =
model increases the number of correct trajectories, showing that SFT  Figure 3: Effect of RL and SFT
teaches new solution strategies absent in the Base model. Yet, SFT on the Number of Unique Tra-
preserves incorrect trajectories with non-negligible probability mass, jectories. The x-axis represents

HumanEval

(23.6,54.4) @ Quen2.5-Math-78 (Base)
) Quen: E

potentially improving Pass @k but not guaranteeing Pass@1 gains. Fi-
nally, the two-stage SFT+RL procedure demonstrates complementary
mechanisms: SFT expands correct trajectories while subsequent RL
compresses incorrect trajectories. This combination, which acquires
new solution paths through SFT and removes incorrect paths through

the number of correct clusters and
the y-axis represents the number
of incorrect clusters for trajecto-
ries before and after training of 7B
models in Table[T]

RL, maximizes Pass@1 performance. These findings substantiate the

state-of-the-art training of SFT followed by RL (Liu et all,[2025a}; [Chen et al/,[2025d; [Liu et al.} 2025d)) from
a reasoning trajectory perspective. We obtained consistent results across other models, including the Llama
family (Grattafiori et al [2024), as detailed in Appendix [C.4] Consistent results were also obtained on the
code domain using HumanEval as shown in Figure 3] See Appendix [C.8]for details.

4 STEP-LEVEL ANALYSIS

In step-level analysis, we examine how SFT and RL affect reasoning at a more detailed granularity than
trajectory-level analysis. We investigate the reasoning graphs from two perspectives: profiling the global
structure (Section[#.2) and capturing the local structure (Section[@.3).

4.1 CONSTRUCTING REASONING GRAPH

Consider an evaluation dataset D = {x,}N_; with N problems. Given any input z € D, we sample M
independent responses. Let each model response !, (for response sample m € [M]) be segmented into
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233 Unique Nodes / 4926 Total Nodes
891 Unique Edges / 4730 Total Edges

48 Unique Nodes / 3911 Total Nodes
122 Unique Edges / 3655 Total Edges

425 Unique Nodes / 28407 Total Nodes
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7B (SFT+RL)

Figure 4: Reasoning Graph Example. Directed reasoning graph for AIME24 Problem #1 built from 256
responses across the 7B models in Table [T} Nodes are arranged sequentially on a circle, consistent across
examples. Edge thickness encodes transition frequency, and edge color encodes edge distance. For more
examples, please refer to Figure [22]and Figure 23]

l l l

sentences: T, = (T, 1,7y 25+« -

r! . ), where | € {Base, SFT,RL, SFT+RL} indexes the model variant

i m, T

imt is mapped into a d-dimensional
vector space via a sentence embedding function, yielding sﬁn’t € R%. For each problem x € D, we define
the set of sentence embeddings S(z) = {s!, , | | € {Base,RL,SFT,SFT+RL}, m € [M], t € [T}, ]},
and collect them across all problems as S = { (z,s) | = € D,s € S(z)}. We perform unsupervised

clustering of S using K-means. This yields a partition of S into K clusters with representative centroids
C={cy,...,cx}, cx€RY

We denote each cluster by a node vy, so that the node setis V = {v1, ..., vx }. We define the node set of 7/,
asVl ={veV | 3t:s, , — v}, Bach embedding s, , is assigned to a unique node v;. The distance
between two nodes v; and v; is defined as the Euclidean distance between their centroids: d(v;, v;) = ||¢; —
¢;|2. For each response trajectory nil, we derive a corresponding sequence of node transitions. Consecutive
occurrences of the same cluster assignment are merged into a single node to avoid self-loops. This induces a
directed edge set £, = {(v; — vj) | v;,v; are consecutive and distinct cluster assignments in some 7., }.
Each edge (v; — v;) is associated with d(v;,v;) and the frequency of this transition. Thus, each model
LLM [ generates a response 7', that can be represented as a path in the directed graph G! = (V! &),
where nodes correspond to clustered semantic units and edge weights reflect their inter-cluster distances.

In our implementation, we employ BGE-large-en-v1.5 as the sentence embedding, where
d = 1024, set M = 256 and K = 2000. We conduct experiments for models in Table |I| on AIME24,
AIME25, and AMC23 and for the 7B models in Table[I]on HumanEval. For more details on the implemen-
tation, see Appendix [D.I] We conduct ablations of the reasoning graph construction for the 7B models in
Tablem varying (i) the number of clusters from our default K = 2000 to K = 1000, 3000, (ii) the distance
metric from Euclidean (L2) distance to cosine distance, and (iii) the sentence encoder from BGE-large-en-
v1.5 to GTE-base-en-v1.5 (Zhang et al] 2024) with d = 768. Details are provided in Appendix[D.4] While
our approach builds on[Wang et al.| (2024)); [Minegishi et al.| (2025), who averaged token representations ex-
tracted from each Transformer block within chunks, and performed clustering on hidden states for a single
model, we instead embed sentences into a shared embedding space and cluster their vector representations
jointly across four models. Whereas using each model’s internal representations would result in graphs that
live in different representation spaces, constructing graphs in this shared sentence embedding space enables
direct comparison of the graph properties induced by different models.

and T!!, denotes the number of sentences in response 7', . Each sentence r
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Figure 5: Visitation Frequency Rank Plot. Results from the 1.5B model in Table |1|on AIME24 Problem
#1, shown with four combinations of linear/log scales on the x- and y-axes. The x-axis represents the node
rank, and the y-axis represents the Visitation Frequency at each rank. The rank plot approximately follows
an exponential law, showing near-linear behavior on a log-linear scale. See Figure@for more examples.
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Figure 6: Exponential Decay Rate for Visitation Frequency, Degree, and Betweenness Centrality. Box
plots show the estimated exponential decay rate 3 for the top row, computed across all problems in AIME24,
AIME25, and AMC23 for the 1.5B models in Table[T} and for the bottom row, computed across all problems
in HumanEval for the 7B models in Tablem See Figure@for complete results.

4.2 GLOBAL REASONING GRAPH STRUCTURE

The graph visualizations are presented in Figure [l We observe that RL strengthens some edges while
pruning others, whereas SFT creates new connections (see Appendix for node disparities). For each

model and each problem z, we consider a weakly connected reasoning graph: G = Uﬁf:l Gl =V, &Y.

Estimating Exponential Decay Rate. We investigate how RL and SFT modulate the structure and func-
tion 2003)) of complex reasoning graphs by examining the distributional properties of node visi-
tation frequency (visitation frequency), node degree (degree), and betweenness centrality 1977)

within the graphs. For each G', visitation frequency is given by % where n(u) is the number of
ueV

node visit and degree is given by |[{u € V! | (v = u) € &' V (u — v) € E'}|. Betweenness centrality

ast(v)

is defined as W D stvpt o Where oy is the number of shortest paths (determined by edge

count) from node s to node ¢ and o4 (v) is the number of those shortest paths that pass through node v
(v # s,t). Betweenness centrality measures the importance of the reasoning step in mediating the shortest
connections in the graph.
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For each graph G!, we present the rank plots of visitation frequency in Figure We observe that the
rank plots of visitation frequency, degree, and betweenness centrality approximately exhibit exponential
decay (see Figure 24] for additional rank plots), and hence follow an exponential law. This corresponds to
approximately linear decay in log-linear rank plots. As can be seen in Figure [5b} the plots (models) exhibit
markedly different decay rates (i.e., slopes). We therefore investigate the magnitude of this exponential
decay. Suppose that the associated value

X(R) x e M,

where R denotes the rank of a node and A governs the rate of decay. We estimate exponential decay rate
8= log% by linear regression, which is given by log;, X (R) = a — SR + €g, where « is an intercept and
e denotes deviations. Figure [5b|shows an example (additional examples in Figure [23).

RL Squeezes and SFT Expands Graph Functionalities. We estimated the exponential decay rate 3 for
the reasoning graphs G' across all problems = in AIME24, AIME25, and AMC23. The results are presented
as box plots in Figure 6] (full results in Figure 26).

The transition from Base through RL reveals a pronounced structural reorganization, characterized by a
marked increase in $. This reflects that high-rank nodes exhibit elevated visitation frequency, degree, and
betweenness centrality while low-rank nodes exhibit reduced values of these measures. This suggests that
RL consolidates key graph functions (frequency, degree, and centrality) into fewer nodes. In stark contrast,
SFT reveals an inverse pattern with reduced 5. High-rank nodes display decreased visitation frequency,
degree, and betweenness centrality, whereas low-rank nodes show increased levels of these measures. This
divergent behavior indicates that RL aggregates functional steps (e.g., hub, central nodes) in the reasoning
graph into a small number of steps (nodes), whereas SFT, conversely, diversifies them across many steps.
We also obtained results on HumanEval that align with these results on mathematical domains, as shown
in Figure [f] See Figure for details. In our construction of reasoning graphs, nodes are defined by
clustering sentences, which tends to produce graphs with high edge density. To address this, we apply graph
sparsification by retaining, for each node, the top-10 or top-20 edges with the smallest Euclidean norm and
then estimate the exponential decay rate 3, as detailed in Appendix|D.5} We obtain consistent results where
RL decreases and increases SFT increases (3, as shown in Figure

Profiling Global Structure. Next, we profile the global struc- Low-Assortativity Graph  High-Modularity Graph
ture of reasoning graphs G through eight topology metrics. We

present the edge density, clustering coefficient normalized by the

random graph (Watts & Strogatzl [1998), assortativity (Newman,

2002), modularity (Girvan & Newman| 2002), Freeman centraliza-

tion (Freeman, [1978)), average path length normalized by the ran-

dom graph (Watts & Strogatz, |[1998)), global efficiency (Latora &

Marchiori,|2001), and algebraic connectivity (Fiedler,[1973) of each  Figure 7: Illustration of the Low-
model’s reasoning graph in Figure 8] For detailed descriptions of ~Assortativity Graph (Left) and
each metric, see Appendix[D.3] As shown in Figure[] the reasoning High-Modularity Graph (Right).
graph of Base model exhibits notably high modularity (Figure [7),

low global efficiency, and low algebraic connectivity. This indicates that the nodes are organized into dis-
tinct communities (clusters) with weak inter-community connections. Consequently, the reduced robustness
and poor reachability efficiency limit the model’s ability to fully explore the reasoning graph. However, after
RL from Base model, we observe high edge density, low clustering coefficient, low assortativity (Figure[7),
and high Freeman centralization. This characterizes a graph dominated by a small number of high-degree
hubs densely connected to peripheral nodes. This can be interpreted as the Base model’s reasoning graph
being squeezed into a structure that enables efficient traversal through a small set of hub nodes. We also
obtained results on HumanEval that align with these results on mathematical domains, as shown in Fig-
ure[38] Finally, SFT and SFT+RL models exhibit low modularity, high global efficiency, and high algebraic
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Figure 8: Comparison of eight graph metrics across Base, RL, SFT, and SFT+RL models. Values are
averaged across different model sizes in Table |I| and three datasets, AIME24, AIME25, and AMC23. For
details on the eight metrics, see Appendix@ See Figure@for results by model size.

connectivity. This reveals a reasoning graph characterized by high robustness and superior reachability effi-
ciency, without distinct community structures. We observe that global efficiency and algebraic connectivity
are positively correlated with Pass@ 1/Pass @k, whereas modularity is negatively correlated. This suggests
that these metrics relate to the model’s ability to effectively explore the solution space and reach the correct
answer in a single attempt. Details are provided in Appendix [D:3] Furthermore, graph sparsification in
Appendix [D.3]exhibited the same trend in the changes of the graph metric under RL and SFT, as shown in

Figure 34}

4.3 LOCAL REASONING GRAPH STRUCTURE

Capturing Local Structure with Graphlets. We now
turn our attention to local structural differences in
reasoning graphs, we employ graphlet analysis 63 Ga e G6 a7 a8
et al [2004; [Przulj et al} [2004), which examines

small, connected, nonisomorphic induced subgraphs Figure 9: 4-node Graphlets (G3-G8).

(see Appendix [D.3| for more details.). We count the 4-node graphlet subgraphs shown in Fig-
ure [0 in each model’s graph. Figure [I0] shows that with RL as well as SFT, we observe a de-
crease in the proportion of acyclic subgraphs, such as G3 and G4, while cyclic structures like
G7 and G8 increase. This indicates that RL introduces local cyclic structures, reflecting back-
tracking and verification (Gandhi et all, 2025), into the reasoning graph. Moreover, compared to
Base model, the RL, SFT, and SFT+RL models all exhibit similar 4-node graphlet proportions.

However, as shown in Figure [I3] there are signifi-
cant performance gaps between the RL model and the
SFT/SFT+RL models. This suggests that local structure —
alone cannot fully explain reasoning performance and -8.4% DR SFT

. . . 170 mmm SFT+RL
global structure, as discussed in Section 4.2} seems to s
play a crucial role. P - 3.9%+15%
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In this work, we explored how RL and SFT influence

mathematical reasoning through a novel reasoning path Figure 10: Proportion of Graphlets. Bar

perspective, examining both trajectory and step-level graph shows results averaged across all models

granularities across multiple model sizes and datasets. in Table[I] and datasets, AIME24, AIME25, and

From Section [3] the practical success of RL from SFT AMC23. Arrows indicate the change in graphlet

can be explained by expanding correct trajectories and  proportion after RL. See Appendix [D.3] for re-
sults by model and dataset.
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then compressing incorrect ones, which implies improve-

ments in both Pass@Fk and Pass@1. Of particular note is

that SFT preserves incorrect trajectories, indicating that SFT alone does not guarantee Pass @1 performance.
This finding precisely accounts for the experimental observation of pseudo reasoning paths induced by SFT
in (Chen et al, 2025a). Additionally, Section [4.2] reveals that this path-squeezing effect by RL concentrates
functionalities (e.g., hubs) into fewer nodes (steps). In contrast, SFT homogenizes these functionalities
across diverse steps.

Contrastive Mechanism of RL and SFT. Recently,[Wang et al.|(2025c;b) observed at the token level that
high entropy thinking (forking) tokens drive reasoning, and RL increases their entropy while decreasing the
entropy of non-thinking tokens. Similarly, we observed that RL amplifies the difference between steps with
high frequency, degree, and centrality, and other steps. Therefore, applying RL only to functional steps (e.g.,
hub or central steps) could further improve LLM reasoning performance and enable more efficient learning.
The empirical finding that SFT memorizes and RL generalizes may also be related to RL’s
aggregation and SFT’s distribution of reasoning functionalities. In addition, several studies have investigated
RL with exploration bonuses (Cheng et al.,[2025} [Setlur et all,2025b} Zheng et al} 2025} [Chen et al., 2025¢};
Song et all,[2025a)). It would be valuable to analyze whether these approaches merely prevent collapse due
to excessive squeezing of the reasoning graph, or whether they truly expand it in a manner analogous to SFT.

Reasoning Graph Structure. We observed that RL weakens community structure and promotes efficient
transitions in reasoning graphs. This structural shift by RL mirrors the promotion of inter-cluster transi-
tions in the community structure (Prystawski et al., 2023} [Wang et all 2024} [Kim et al), [20253)) induced
by pre-training on a large language corpus. In SFT data curation for reasoning, Muennighoff et al.| (2025)
heuristically count “wait” tokens, (Gandhi et al.,2025)) prime cognitive behaviors, and|Ye et al.|(2025) assess
step-by-step clarity in the reasoning traces. Our finding that both RL and SFT increase local cyclic structures
(Section [£.3)) indicates that step-level reasoning behavior is applicable to dataset curation for efficient rea-
soning. Leveraging the insight that graph structures facilitating traversal without high modularity are critical
for reasoning ability, one promising direction is to incorporate graph metrics (e.g., hub and central nodes) as
process rewards in RL.

Our experiments mainly focused on verifiable and competitive mathematical and code domains to evaluate
strong reasoning LL.Ms and Because the DeepSeek-R1-Distill family is performed SFT with multiple re-
sponses per problem [2025), we additionally perform SFT on s1k-1.1 dataset (Muennighoff et al|
using a single response per problem. For the 1.5B models in Table[T} we find that our results are hold
across both settings, at both the trajectory level (Appendix[C.7) and the step level (Appendix[D.6). However,
we focused on principled algorithmic differences between RL and SFT without controlling for differences in
the training datasets. Investigating their effects on reasoning paths under distribution shift presents intriguing

directions, with [Han et al.[(2025);|L1 et al.[(2025); |Chu et al.|(2025); [Shenfeld et al.| (2025]) pursuing similar

investigations on generalization and forgetting.
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A LLM USAGE

We used LLMs for writing, such as grammar correction and rephrasing, coding, and debugging. All gener-
ated contents are reviewed and validated by the authors.

B SAMPLE GENERATION

B.1 MODELS

We conducted evaluation using the models specified in Table 2] Qwen2.5-7B-SimpleRL-Zoo and Qwen-
2.5-14B-SimpleRL-Zoo are trained from Qwen2.5-7B and Qwen2.5-14B, respectively, using GRPO
without format rewards. Qwen2.5-Math-1.5B-Oat-Zero and Qwen2.5-Math-7B-Oat-Zero are
RL-trained from Qwen2.5-Math-1.5B and Qwen2.5-Math-7B, respectively, using Dr.GRPO
2025c), an improved version of GRPO. Dr.GRPO enhances token efficiency by removing the dividing
term and regularization term from GRPO. DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-
7B, and DeepSeek-R1-Distill-Qwen-14B are fine-tuned from Qwen2.5-Math-1.5B, Qwen2.5-Math-7B,
and Qwen2.5-14B, respectively, using SFT with DeepSeek-R1’s distillation data. Nemotron-Research-
Reasoning-Qwen-1.5B undergoes prolonged RL training for 2500 steps from DeepSeek-R1-Distill-Qwen-
1.5B. AceReason-Nemotron-7B and AceReason-Nemotron-14B are trained from DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Qwen-14B, respectively, using large-scale RL on mathematics and cod-
ing tasks. AceReason-Nemotron-1.1-7B is trained through large-scale curriculated SFT from Qwen2.5-
Math-7B, followed by large-scale RL on mathematics and coding tasks. The SFT checkpoint is not publicly
available. Llama-3.1-8B-SimpleRL-Zoo is derived from Llama-3.1-8B via RL, and DeepSeek-R1-Distill-
Llama-8B is derived via SFT.
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Table 2: Comparison of Model Variants. Summary of experimental models used in this study.

Base Model

RL Model

SFT Model

SFT + RL Model

Qwen2.5-Math-1.5B
(Yang et al., |2024)

Qwen2.5-Math-7B
(Yang et al., [2024))

Qwen2.5-Math-1.5B-
Oat-Zero (Liu et al.
2025¢)
Qwen2.5-Math-7B-
Oat-Zero (Liu et all
2025c))

DeepSeek-R1-Distill-
Qwen-1.5B (Guo et al.}
2025))
DeepSeek-R1-Distill-
Qwen-7B (Guo et al.,
2025))

Nemotron-Research-
Reasoning-Qwen-1.5B
(Liu et al., |20254al)
AceReason-Nemotron-
7B (Chen et al., [2025d)

Qwen2.5-14B  (Qwen| Qwen-2.5-14B- DeepSeek-R1-Distill- AceReason-Nemotron-
et al., [2025) SimpleRL-Zoo (Zeng Qwen-14B (Guo et al., 14B (Chen et al,
et al., 2025) 2025)) 2025d)
Qwen2.5-Math-7B AceReason-Nemotron-
(Yang et al., [2024)) 1.1-7B  (Liu et al.,
2025d)
Qwen2.5-7B (Qwenl Qwen2.5-7B-
et al.,[2025) SimpleRL-Zoo (Zeng
et al., 2025)
Llama-3.1-8B Llama-3.1-8B- DeepSeek-R1-Distill-
(Grattafiori et al, SimpleRL-Zoo (Zeng Llama-8B (Guo et al.
2024) et al., 2025) 2025))
B.2 INFERENCE
Prompts. In the context of LLM reasoning inference, accuracy demonstrates high sensitivity to prompt

template design, necessitating careful attention to template selection and construction. The prompt tem-
plates employed in our methodology are showd in Figure [[T We applied the Qwen Template to the
following models: Qwen2.5-Math-1.5B, Qwen2.5-Math-1.5B-Oat-Zero, Qwen2.5-7B, Qwen2.5-Math-7B,
Qwen2.5-7B-SimpleRL-Zoo, Qwen2.5-Math-7B-Oat-Zero, Qwen2.5-14B, and Qwen-2.5-14B-SimpleRL-
Zoo. Although base models have not been fine-tuned with special tokens and are expected to achieve peak
performance without templates (Liu et al.,2025c), we employed the Qwen Template to ensure explicit gen-
eration of stop tokens and maintain experimental consistency with the conditions in Zeng et al. (2025);
Yue et al.|(2025). The was utilized for DeepSeek-R1-Distill-Qwen-1.5B, Nemotron-Research-
Reasoning-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, AceReason-Nemotron-7B, AceReason-Nemotron-
1.1-7B, DeepSeek-R1-Distill-Qwen-14B, AceReason-Nemotron-14B, and DeepSeek-R1-Diatill-Llama-8B.
Please replace *__" and ’|” in fig. [1 1| with U+2581 and U+FF5C, respectively. Following Zeng et al.| (2025);
Yue et al.| (2025), we used Llama Template for Llama-3.1-8B and Llama-3.1-8B-SimpleRL-Zoo. For
AceReason-Nemotron-1.1-7B, we employed the Nemotron-Qwen Template (Liu et al.l 2025d). Of particu-
lar note, for the models Qwen2.5-Math-1.5B, Qwen2.5-Math-1.5B-Oat-Zero, DeepSeek-R1-Distill-Qwen-
1.5B, and Nemotron-Research-Reasoning-Qwen-1.5B, we identified potential concerns regarding Chinese-
English language mixing in the generated outputs. To mitigate this issue, we appended the instruction
”Always respond in English only.” to the end of each user prompt.

Parameters. For both trajectory-level and step-level experiments, we employed sampling with
temperature=0.6 and top_p=0.95. Additionally, we set the response length parameter to
16000 tokens. While the source code implementation in Yue et al| (2025) utilized vLLM with
max_model_len=4096, this configuration constrains the response length. Consequently, it leads
to performance degradation for models that generate extended outputs, such as the DeepSeek-
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Qwen Template

<|im_start|>system

You are a helpful assistant.<|im_end|>
<|im_start|>user

{input}

Please reason step by step, and put your final answer within
— \boxed{}.<|im_end|>
<|im_start|>assistant

Nemotron-Qwen Template

<|im_start|>system

You are a helpful and harmless assistant. You should think
— step-by-step.<|im_end|>

<|im_start|>user

{input}

Please place your final answer inside \boxed{}.<|im_end|>
<|im_start|>assistant

<think>

R1 Template

<|begin__of_ sentence|><|User|>{input}
Please reason step by step, and put your final answer within
< \boxed{}.<|Assistant |><think>

Llama Template

Question:
{input}
Answer:
Let's think step by step.
\ J
Figure 11: Prompt Templates
R1-Distill and AceReason-Nemotron families. To address this limitation, we increased the

max_model_len parameter to 16000 tokens. However, for models with architectural constraints of
max_positional_embeddings=4096—specifically Qwen2.5-Math-1.5B, Qwen2.5-Math-1.5B-Oat-
Zero, Qwen2.5-Math-7B, and Qwen2.5-Math-7B-Oat-Zero—we maintained max_model_len=4096. Ac-
curacy degradation due to max_model_len is presented in Figure[I2]

Pass@k. We conducted evaluations on AIME24, AIME25, and AMC23 using the same implementation

as (2025). For each problem z; contained in the evaluation dataset D = {z;}!_,, we sampled
n responses and computed the Pass@Fk metric for the correct samples _c¢;, which is given by: pass@k :=

Eginp [1— ("3%)/(%)]- The results for n = 256 are shown in Figure

19



Under review as a conference paper at ICLR 2026

AIME24 AIME25

100 Quen2.5.78 100 DeepSeek-RLDistill-Quen-78
~*= (max model_len=16000) (max_model len=16000)

¢

Pass@k

64 128 256 12 4 8 16 32 64 128 25 12 4 8 16 32 64 128 256

Figure 12: Effect of max model_len on Pass@Fk. Misspecification of max_model_len causes substan-
tial accuracy degradation in the DeepSeek-R 1-Distill-based models, which performs lengthy reasoning.
AIME24 AIME25 AMC23

100 —o= Quen2.5-Math-1.58 (Base) 100 100
Quen2.5-Math-1.58-Oat-Zero (RL) =
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20 =8~ Qwen2.5-Math-7B (Base) 20 20
Quen2.5-Math-75-0at Zero (RL)
DecpSeek AL Distil-Qwen-78 (SFT)
2 ReeReason Nematron 78 (SFT+RL)
0 0 0
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80 / 80 80 .
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DeepSeck RL.Distil-quen 148 (SFT)
2 ReeResson Nemotron 148 (SFT4RL)

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Figure 13: Pass@k performance curves for Base, SFT, RL, and SFT + RL models. Models are in the
TableEl and datasets are AIME24, AIME25, and AMC23.

Response Length. The mean response length for each model across datasets is presented in Figure [T4]
Following SFT via distillation from DeepSeek-R1, a notable increase in response length is observed.

20



940
9
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

AIME24

mmm Correct
W Incorrect

avg_tokens
o
S
3
3
3

A 7 A58
o ot o
58 JJW an
ovﬁ“i MS‘“A ot - o)
2 oo :
aw® pee® <@
e
<o

=== Correct
m== Incorrect

7B
Response Length (tokens)

mmm Correct
== Incorrect

12500
5000 I
2500
0 —- --
1Aﬁ
e«\"‘

avg_tokens
=
< o
E =1
S 8
8 8

AIME25

20000
mmm Correct
s Incorrect
15000
£,10000
- I lI
0 SN ——
5% et 5®
> = aue™ o oY
que” EW@J o @
22" < o
que® oe?® qese®
ere"
20000

=== Correct

17500 s Incorrect

15000

» 12500
10000
7500
5000 I
2500
o IEEEEN

avg_toke

% ox© 8 18
5_“‘,0\ g oa(.‘l- . we® o™
2 W 1® et e
qu® PRl Pead on”
o2 see
aQwe
20000
= Correct
17500 == Incorrect
15000
» 12500
£,10000
% 7500
5000
2500
o il --
208 g 108
et 2 v o e
0 A“,s o
que® ¥

AMC23

20000
mmm Correct
= Incorrect

15000

avg_tokens
=
S
3
3
3

5000

0—_—_.

(0 5®
T P e e
g 58 \-Q -Q
a wer® ‘“t“.\' " ot W9’
g3 &
< g
awe® o,e‘ﬁ" ot
exno
20000
= Correct
17500 mm Incorrect
15000
4 12500
g
£,10000
g
* 7500
5000
2500 l
o B ——
© 18 A
o o 50 e o e
k "
aw®’ et £
awe® e <
20000
17500 = Correct

= Incorrect

15000
12500
7500
5000
2500 . I
o el —-

8%
\‘ ot
Qe ot
e
4

avg_tokens
o
S
S
S
3

5
02 RV
awe' xAﬁjN“v o 40“
ek

Figure 14: Comparison of Response Length Across Models and Datasets. Models are in the Table|l{and
datasets are AIME24, AIME25, and AMC23.

21



Under review as a conference paper at ICLR 2026

C TRAJECTORY LEVEL ANALYSIS

C.1 PROBLEM FORMULATIONS

We consider the LLM parameterized by 6, which defines a probability distribution on discrete reasoning
trajectories (paths). Let X denote the input space of natural language problems, and ) denote the output
vocabulary space. Given an input z € X, a path m = (y1,...,yr) is generated with probability mo(7 | ) =
07 pe(y: | ©,y<¢), where > ren(z) = 1. Each path is assigned a binary reward r(z, ) € {0,1}, with
the set of correct paths denoted by IT (x) and incorrect paths by II_ (x) = II(z) \ IL; (x). The probability
of sampling a correct path, corresponding to Pass@1, is p1(z;0) = >, <y, () To(m | ). To achieve the
ultimate goal of improving Pass1, SFT and RL are utilized in training reasoning LLMs. SFT optimizes the
model to maximize the likelihood of demonstrated trajectories 7*:

ACSFT(‘Q) = _]E(CE,TF*)ND [10g Yyl (71'* | .I’)] .
While RL aims to maximize the expected reward under the model distribution:
J(g) = ]EzND ET{'Nﬂ'g("J/’) [7"(([,’, ﬂ_)] .
Put differently,

JO) =Eoup| Y mo(r|2)] = Evnn [p4(a:6)],
mElly (2)
which corresponds exactly to maximizing the probability of sampling a correct path (i.e., improving
Pass@]).

In our trajectory-level analysis, we experimentally investigate how SFT and RL affect the LLM’s paths by
counting the number of unique paths. Let D = {z,,}}_, be an evaluation dataset consisting of N problems.
For each input « € D, we generate M independent samples from the trajectory distribution 7y (- | x).

The set of trajectories observed in these samples is Iy (z) = {7 € H(z) : 3j < m =) = 7}, where
7M. 7™ ~ 7p(- | ). This set includes both correct trajectories (7 € II(z)) and incorrect ones
(m € TI_(x)). Since Iy (z) is obtained by random sampling, not all trajectories in II(x) necessarily appear,
but those with a higher probability mass are more likely to occur multiple times within the M/ samples. We
set M = 256 in the experiments.

Pass@F (Chen et al., 2021} [Yue et al., [2025) is the probability that at least one correct solution is found
when sampling & independent solutions from the model (i.e., Best-of-k), which is given by Pass@k(x; 0) =
1—(1—p4(z;0))*. Yue et al[(2025) found that as k increases, the base model catches up to the RL model in
Pass@F, indicating that the reasoning paths of the RL model are contained within the base model’s sampling
distribution. We evaluate the models listed in Table m comparing the base model, SFT model, RL model,
and SFT + RL model performance. Given their high capabilities, we conduct experiments on challenging
mathematical datasets, AIME24, AIME25, and AMC23.

C.2 IMPLEMENTATION DETAILS

The chrF parameter was set to 8 = 2, and for UPGMA clustering, the similarity threshold was set to 60,
meaning the distance similarity was calculated at 0.4.

C.3 EXPERIMENTAL RESULTS

The changes in correct and incorrect paths for the models specified in Table [1| across AIME24, AIME25,
and AMC23 are presented in Figure The results demonstrate that RL reduces the number of incorrect
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paths, while SFT increases the number of correct paths. For the 14B model on AIME25 and AMC23, the
AceReason-Nemotron-14B (SFT + RL) model shows minimal changes in path count compared to the SFT
model. However, Figure[I3]shows that AceReason-Nemotron-14B does not show performance improvement
over the pre-RL DeepSeek-R1-Distill-Qwen-14B on the AIME25 and AMC23 domains, suggesting that the

training may not have been successful at this domain.
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Figure 15: Effect of RL and SFT on the Number of Unique Trajectories. The x-axis represents the
number of correct clusters and the y-axis represents the number of incorrect clusters for trajectories before

and after training of 1.5B, 7B, and 14B models in Table|I|

Additionally, in Appendix [E] we present examples where RL compresses unique incorrect trajectories, and
examples where SFT preserves incorrect trajectories, resulting in different error patterns.

C.4 MORE EXPERIMENTAL RESULTS

In addition to the models in Table [, we conducted experiments on Qwen-2.5-7B-SimpleRL-Zoo,
AceReason-Nemotron-1.1-7B, Llama-3.1-8B, Llama-3.1-8B-SimpleRL-Zoo, and DeepSeek-R1-Distill-
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Llama-8B (Model details appear in Table [2). The Pass@Fk results for each model are presented in Fig-
ure while the trajectory-level changes in the number of correct and incorrect paths are detailed in Fig-
ure When Qwen2.5-7B undergoes RL training, incorrect paths are substantially compressed. Moreover,
AceReason-Nemotron-1.1-7B, after SFT and RL training, expands correct paths while squeezing incorrect
paths on AIME24 and AIME25. Conversely, for AMC23, AceReason-Nemotron-1.1-7B exhibits squeezing
of both correct and incorrect paths compared to the base model. This phenomenon occurs because, in the
AMC23 domain, as shown in Figure Qwen2.5-Math-7B achieves Pass@Fk performance comparable to
AceReason-Nemotron-1.1-7B as k increases, leading to saturation. Finally, we confirm that Llama-3.1-8B
also demonstrates squeezing of incorrect paths and expansion of correct paths following RL training.
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Figure 16: Pass@Fk performance curves for additional models. Models are from Table 2| that are not
included in Table |I| and datasets are AIME24, AIME25, and AMC23.
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C.5 DIFFERENT SIMILARITY METRIC AND THRESHOLD.

Using BLEU as the similarity matrix, we performed identical experiments at the trajectory-level. The results
were consistent with those obtained using chrF and 60 as a threshold for hierarchical clustering. Furthermore,
experiments with varying similarity thresholds also yielded identical results, as shown in Figure[T8]

=)
o

n
£ 100 (122,97.3) SFT 1 g
2 2.0 (3.3,48.3)
E RL S
O s0 o
E RL -lg 40
E 60 (86.7,70.7) £ SFT
8 93° RL
£ c
5 S 20
- -
o [}
2 2
€ g 10 RL
S S &
2 . 2 o @ 2,21
0 20 40 60 80 100 00 25 50 75 100 125 150 175 20.0
Number of Correct Clusters Number ofCorrect Clusters
(a) BLEU Threshold = 50 (b) chrF Threshold = 50

Figure 18: Number of Correct and Incorrect Clusters (Paths). (a) Different similarity metric: BLEU and
(b) Different Threshold of 7B models in Table |I| on AIME24.

C.6  SIMILARITY DISTRIBUTION
Figure[I9]illustrates the distributional characteristics of the upper triangular matrix elements (diagonal com-
ponents excluded) derived from the similarity matrices in chrF-based clustering for unique path construction

across models in Table[I] The results demonstrate that RL yields a notable increase in similarity measure-
ments.
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Figure 19: Trajectory Similarity Distribution. Frequency distribution of the upper triangular matrix ob-
tained by extracting the diagonal elements from each model’s similarity matrix across different models in
Table El and three datasets, AIME24, AIME25, and AMC23.
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C.7 REPRESENTATIVES OF SFT

In this study, we treat the models distilled from DeepSeek-R1(Guo et al| as SFT models (Table ).
However, since these models generate multiple responses per problem during distillation, we conduct
trajectory-level analysis for the case where SFT distillation uses a single response per problem. We per-
formed SFT on the Qwen2.5-Math-1.5B in Table[TJusing the s1k-1.1 dataset from [Muennighoff et al] (2025).
We used the Adam optimizer with a 10~ learning rate, applying a cosine decay schedule and a weight decay
of 1074, and trained the model for 5 epochs with a maximum sequence length (block size) of 20000.

We generated M=256 responses for AIME24, AIME2S5, and AMC23, computed pairwise similarities with
chrF, clustered them using UPGMA with 60 as a threshold, and calculated the number of unique trajectories.
The results are shown in Figure[20} This figure shows that RL reduces the number of unique trajectories in
incorrect outputs, while SFT increases the number of unique trajectories in correct outputs. This confirms
that RL continues to compress incorrect trajectories, while SFT expands correct trajectories.

AIME24 AIME25 AMC23
200 (6.9,188.9) (8.3,191.0) @ Qwen2.5-Math-1.5B (Base)
* * Qwen2.5-Math-1.5B-Oat-Zero (RL)
175 Y Quen2.5-Math-1.58 s1k-1.1 (SFT)
150 SFT SFT (27.6#‘}3.7)
125
100 @(4.4,97.1) FT

@(4.4,88.2)

JRL j RL
.(15.1.52.3)

RL

in Incorrect Outputs

Number of Unique Trajectories

0 5 10 15 20 25 30 350 5 10 15 20 25 30 350 5 10 15 20 25 30 35
Number of Unique Trajectories in Correct Outputs

Figure 20: Effect of RL and SFT on the Number of Unique Trajectories. The x-axis represents the
number of correct clusters and the y-axis represents the number of incorrect clusters for trajectories before
and after training of 1.5B models.
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C.8 CODE DOMAIN

To validate our findings beyond the mathematical domain, we extend our experiments to code genera-
tion using HumanEval (Chen et al] 2021). For each problem, we generate M = 128 samples with
7B models in Table [T, compute pairwise similarities using chrF, cluster them via UPGMA with a
threshold of 70, and calculate the number of unique reasoning trajectories. We set sampling parame-
ters to temperature=0.6, top_p=0.95 and max_tokens=16000. We use Qwen Template for
Qwen2.5-Math-7B and Qwen2.5-Math-Oat-Zero, and R 1 Template for DeepSeek-R1-Distill-Qwen-7B and
AceReason-Nemotron-7B. U+2581 and U+FF5C are replaced with >*"> and ’—’ in the following prompt.

Qwen Template

<|im_start|>system

You are a helpful assistant.<|im_end|>

<|im_start|>user

{input}

Please reason step by step, and complete the above Python
— function.<|im_end|>

<|im_start|>assistant

R1 Template

<|begin__of_ sentence|><|User|>{input}
Please reason step by step, and complete the above Python
<« function.<|Assistant |><think>

60 HumanEval
(23.6 54 4)

72}
9 50
St
S
Q v
= 240
‘g‘ = Qwen2.5-Math-7B (Base)
0 O Qwen2.5-Math-7B-Oat-Zero (RL)
2, 530 DeepSeek-R1-Distill-Qwen-7B (SFT)
= g AceReason-Nemotron-7B (SFT+RL)
=} S 20
g Q
© 5
8=
5 10 (26635) *(48984)
Z

0

0 10 20 30 40 50

Number of Unique Trajectories in Correct Outputs

Figure 21: Effect of RL and SFT on the Number of Unique Trajectories. The x-axis represents the
number of correct clusters and the y-axis represents the number of incorrect clusters for trajectories before
and after training of 7B models in Table 1 on HumanEval.

These findings hold in the code domain as well, where we observe consistent trends: RL reduces the number
of unique trajectories in incorrect outputs, while SFT increases the number of unique trajectories in correct
outputs. In the code domain, RL compresses incorrect trajectories, while SFT expands correct trajectories.
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D STEP-LEVEL ANALYSIS

D.1 REASONING GRAPH CONSTRUCTION

Graph Construction. Following Bogdan et al.| (2025), we extract the trajectory up to the </think>
token, then split it into sentences, using delimiters ., 2, ! (only when followed by a space) or \n\n,
\r\n\r\n. If a chunk exceeds 300 tokens, forcibly split it, and if a chunk is under 10 tokens, merge it
with the previous chunk. We used RAPIDS cuML’s GPU-accelerated KMeans with scalable k-means++
initialization, running 10 restarts (n-init = 10) and capping each run at 300 iterations (max_-iter =
300), with 2000 clusters (n_.clusters=2000). The example for a node is in Table[3] and that for a graph
is in Figure[22] and Figure 23]

Node Examples

Hmm, maybe this is getting too convoluted.
#3 in 14B (Uncertainity Management) Wait, perhaps this approach is also getting too messy.
(DeepSeek-R1-Distill-Qwen-14B)
Wait, perhaps it’s getting too tangled.
Wow, this is getting messy. (AceReason-Nemotron-14B)
. . Therefore, y = =12550 = (—65./14) = : 112?%' (DeepSeek-
#64 in 7B (Causal Aggregation) R1-Distill-Qwen-7B)

Then, substitute = = 4.5 into equation 1: 84 x J 4+ 1114y =

0 = 84x45+11V/14y =0 = 84 x4.5 = 378. (Qwen2.5-
Math-7B-Oat-Zero)

So plug z = 305t y:mli\/lﬁtintoﬁ—i-f—’{)x—l—Ey:O.

(AceReason-Nemotron-7B)

Now, we have equations of tangents at B and C: (AceReason-
#1384 in 7B (Interim Summary) Nemotron-7B)

So, if we let the tangents from A to the points of tangency on

AB and AC be a and b respectively, then a+b = 5+10—9 = 6.

(Qwen2.5-Math-7B)

So, to recap, tangent at B: 28z — 13\/ﬁy — 140 = 0.

(DeepSeek-R1-Distill-Qwen-7B)

Table 3: Representative Node Examples. We converted all mathematical expressions to TgX.

Qwen2.5-Math-7B Qwen2.5-Math-7B-Oat- DeepSeek-R1-Distill-  AceReason-Nemotron-
(Base) Zero (RL) Qwen-7B (SFT) 7B (SFT+RL)

Figure 22: Visialization of Reasoning Graphs. Results of 7B models in Table|l{on AIME24 Problem #1
Node encodes the node occurrence count, and edge length has no meaning. Graphs are visualized using
Kamada-Kawai layout in NetworkX.
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1455 ples. Edge thickness encodes transition frequency, and edge color encodes edge distance.
1456

(e) 14B AIME25 Problem #1
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D.2 REASONING GRAPH ANALYSIS

Estimation of the Exponential Decay Rate. We illustrate in Figure [24]the rank plots obtained for Visita-
tion Frequency, Degree, and Betweenness Centrality. We show in Figure[23]an illustrative example of linear
regression analysis performed on the log-linear plot to estimate the exponential decay rate .

Complete Results for 5. The box plots of estimated exponential decay rates [ for visitation frequency,
degree, and betweenness centrality across Base, RL, SFT, and SFT+RL models on AIME24, AIME25, and
AMC?23 datasets from Table[T|are shown in Figure[26] The results demonstrate that RL training substantially
increases all metrics relative to the Base model, while SFT reduces them.

Edge Distance Distribution. The differences in edge distance (Lo norm of the centroid of sentence vectors
for each node) across Base, RL, SFT, and SFT+RL models are shown in Figure However, No clear
differences in edge distance distribution were observed.

Inter-model Similarity in Node Visitation Frequency. To investigate how RL and SFT modify the rea-
soning graph, Figure|28|presents scatter plots of node visitation frequencies between pairs of models. Points
closer to the line y = x indicate that the two models utilize nodes with similar visitation frequencies.

We employ the symmetric Mean Absolute Percentage Error (SMAPE) as a quantitative measure:

n

1 _
sMAPE — 120 3 Ny =]
no = (|yel+|ae)/2

where n represents the total number of nodes, x; denotes the visitation frequency of node ¢t (t = 1,...,n)
for the model on the x-axis, and y, represents the visitation frequency of node ¢ for the model on the y-axis.

This reveals distinct behavioral patterns: Base vs. RL and SFT vs. SFT+RL exhibit relatively low sMAPE
values, indicating that RL does not substantially alter the set of visited nodes compared to the pre-RL models.
In contrast, Base vs. SFT demonstrates a considerably higher SsMAPE, suggesting that SFT significantly
modifies the node visitation patterns relative to the base model.
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Figure 28: Visitation Frequency Scatter Plot Between Two Models. Each plot represents a node, with
coordinates indicating the visitation frequency in the integrated graph across all AIME24 problems for two
models in Table[T] The closer the plots are to the line y = z, the more similar ther visitation frequency of
that node between two models.

37



Under review as a conference paper at ICLR 2026

D.3 STRUCTURAL GRAPH PROPERTIES

Graphlet Analysis. We utilize graphlets (Milo et al.,[2004; [Przulj et al.,[2004)) to analyze the local structure
of graphs. Graphlets have been extensively applied across diverse domains, including protein interaction
networks (Przulj et al.l 2006; [Przulj, 2007), social network (Janssen et al.,[2012), and world trade networks
(Sarajli¢ et al.} 2016). Since counting 5-node graphlets is computationally hard and 3-node graphlets consist
of only two types, which is insufficient to describe graph structures, we focus on 4-node graphlets and count
the subgraphs shown in Fi gureElin the reasoning graph integrated across all problems G' for each dataset. We
then calculate the proportions of 4-node graphlets and compare them across models. As shown in Figure[29]
across all models and datasets, RL consistently decreases linear graphlets G3 and G4 while increasing cyclic
G7 and G8. GS5 also shows a slight increase. SFT that imitates DeepSeek-R1’s reasoning traces exhibits
similar increases in G7 and G8, suggesting that the teacher model’s reasoning graph possesses comparable
structural tendencies. Notably, all models except base models show highly similar graphlet proportions.
However, their accuracies diverge significantly (see Figure [I3). This indicates that despite similar local
reasoning graph structures between RL-trained models from Base and SFT or SFT+RL models, substantial
performance gaps persist in reasoning capabilities.
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Figure 29: Poroportion of 4-node Graphlets. Graphlet proportions for models in Table |1| on AIME24,
AIME25, and AMC23.

Global Structures of Reasoning Graph. We calculated edge density, clustering coefficient (Watts & Stro-|

1998)), assortativity (Newman| [2002), modularity (Girvan & Newman| [2002), Freeman centralization

[1978), average path length (Watts & Strogatz, 1998), global efficiency (Latora & Marchiori,
2001), and algebraic connectivity (Fiedler, [1973) for each model and each problem to examine differences

in complex network structure 2003), and averaged these metrics within the dataset. We utilized
NetworkX library. The results are shown in Figure[31]

Here, we consider an undirected graph G = (V, £)
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Edge density is given by
2/€]
p(G) =
VI(VI-1)
Edge density is ratio of the number of observed edges to the maximum possible number of edges in the
graph.
The local clustering coefficient (Watts & Strogatz, |1998)) is given by
t .
Ci = : )
©) ki(ki —1)

where t; denotes the number of triangles and k; is degree involving node i. The global clustering coefficient

is given by
C;.
MV Z

i€V

Clustering coefficient is the proportion of observed connections among the neighbors of a node relative to the
number of possible connections over random the graph. To compare graphs of different sizes, we normalize
C(G) by the average length C(G,,nq) of a random graph.

Assortativity (Newman, [2002) is given by

kik;
Zi,jev (Ai7.j - 2|5|> klk]

kik;
dijev (kﬂsi,j 2|5) kik;

where A; ; = 1if there is an edge between ¢ and j, k; = y A; j is the degree of node i. Assortativity is the
Pearson correlation coefficient between the degrees of nodes at the ends of edges. A highly assortative net-
work is one where high-degree nodes connect with other high-degree nodes, and low-degree nodes connect
with other low-degree nodes. In contrast, a disassortative network has a hub structure, where high-degree
nodes are connected to low-degree nodes.

R(G) =

For a partition {¢; }, modularity (Girvan & Newman, 2002) is given by

2|5| Z( W 2|5|>‘5(C“Ci>’

where A; ; = 1if there is an edge between i and j, k; = >_; A; ; is the degree of node 4, and §(c;, ¢;) = 1
if ¢ and j belong to the same community. Modularity measures the strength of division of a network into
communities, relative to a random graph.

Freeman centralization (Freemanl [1978) is given by
5 ey (e — d(0))
G
where we use the denominator (|V|—1)(]V|—2) to normalize to ranges between 0 and 1. (|V|—1)(|V|-2)

corresponds to the value achieved by a star graph. Freeman centralization quantifies the extent to which the
network’s connectivity is organized around a central node.

Cp(G) =

Average path length (Watts & Strogatz, |I998) is given by
L(G) = d(i, ),
[VI(VI-1) \VI 2.

z]EV i£]
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where d(i, j) denotes the length of the shortest path between nodes 4 and j. Average path length is the mean
of the shortest path lengths between all pairs of nodes in the network. To compare graphs of different sizes,
we normalize L(G) by the average length L(G,,q4) of a random graph.

Global efficiency (Latora & Marchiori, [2001) is given by

1 1
PO =iy 2= aag)

6,JEV,i#]

where d(i,j) denotes the length of the shortest path between nodes ¢ and j and we use (V — 1)(V — 2)
for normalization. Global efficiency is the mean of the inverse shortest path length across all node pairs,
indicating communication efficiency.

Algebraic connectivity is given by the second smallest eigenvalue of the graph Laplacian, which reflects
the robustness of network connectivity. Low algebraic connectivity indicates that the graph can be easily
disconnected into separate components by removing only a few edges or vertices.

The small-world index (Watts & Strogatz, (1998)) can be obtained as o(G) = %((gnm:)). Minegishi et al.
rand
(2025) analyzed the small-world index of reasoning graphs.

Relationship with Pass@k. Comparing the results in Figure [30] and Figure [31] we observe that Pass@1
/ Pass@F is positively correlated with Global Efficiency and Algebraic Connectivity, while negatively cor-
related with Modularity. A higher Pass@1 / Pass@Fk ratio indicates that the improvement from Best-of-k
sampling over single inference is marginal, suggesting that the model can effectively explore the solution
space and reach the correct answer in a single attempt. This reasoning capability is associated with graph
structures that exhibit low modularity and facilitate traversal across the entire graph, enabling efficient navi-
gation between distant nodes.

1.5B 7B 1.5B

o7 o7 07
06 06 06
05 05 05
0.4 04 04
0.3 0.3 0.3
0.2 0.2 0.2
0.0 00 X
RL SFT

Base RL SFT SFT+RL Base

Pass@1 / Pass@k

SFT+RL Base RL SFT SFT+RL

Figure 30: Pass@1 / Pass@Fk performence by model. The average Pass@1 / Pass@Fk across AIME24,
AIME25, and AMC23 for each model in TablelIl
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Figure 31: Graph Structural Metrics of Reasoning Graphs. Each model size in Table [I| shows mean
values (averaged across AIME24, AIME25, AMC23) for eight core graph structural metrics: edge density,
clustering coefficient, assortativity, modularity, Freeman centralization, average path length, global effi-
ciency, and algebraic connectivity.
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D.4 ABLATION OF REASONING GRAPH
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Figure 32: Exponential Decay Rate for Visitation Frequency, Degree, Betweenness Centrality. Box
plots show the estimated exponential decay rate 3 across all problems in AIME24 for the 7B models in
Tablem K=1000 and K=3000 denote the number of clusters in K -means clustering, cosine’ indicates the
use of cosine distance in K-means, and ‘embedding’ refers to the use of GTE-base-en-v1.5 for sentence
embeddings.

We conduct an ablation study to assess the impact of different reasoning graph construction methods on our
results. In the main results, we construct reasoning graphs by first segmenting generated reasoning traces
into individual sentences, obtaining sentence embeddings using BGE-large-en-v1.5 [2024), and
clustering them via K-means with X' = 2000 and L2 norm to define graph nodes. We systematically vary
the number of clusters K, the distance metric, and the sentence embedding model to analyze how these
design choices affect the exponential decay rates underlying the "RL squeezes, SFT expands” phenomenon.
We estimate the exponential decay rate 3 for the 7B models on AIME24 (Table [I) under three alternative
configurations: (i) varying the cluster count to X = 1000 and K = 3000, (ii) replacing the distance
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metric with cosine distance, computed via L2 normalization of sentence embeddings, and (iii) substituting
the embedding model with GTE-base-en-v1.5 (Zhang et al} [2024)), which produces d = 768 dimensional
representations.

Figure[32]shows that across all ablations, RL consistently increases the mean exponential decay rate 3, while
SFT decreases it. This pattern remains consistent with the main results presented in Figure@

D.5 SPARSIFYING REASONING GRAPHS

As described in Sectionf-T] we defined nodes by clustering sentence embeddings and analyzed the properties
of reasoning graphs. Figure [3T]shows that the edge density is approximately 0.1 for the RL model and 0.05
for others, indicating these are not sparse graphs. Nevertheless, we examine the behavior of these metrics as
graph sparsity increases. We construct reasoning graphs for the 7B models in Table [I] following Section .1]
and apply distance-based sparsification in the sentence embedding space. We sort the edges connected to
each node by L2 norm and retain only the top-10 or top-20 closest edges. Nodes with a degree under 10 or
20 retain all their edges.

RL SFT SFT+RL Base RL SFT SFT+RL Base RL SFT SFT+RL Base RL SFT SFT+RL

(a) Degree Top-10 (b) Degree Top-20 (c) Centrality Top-10 (d) Centrality Top-20

Figure 33: Exponential Decay Rates of Degree and Betweenness Centrality (Centrality) on Sparsified
Reasoning Graphs. The box plots aggregate the estimated decay rate 3 for the 7B models in Table [T}
after sparsifying the graphs using the top-10 and top-20 distance—based sparcification. Results are combined
across AIME24, AIME25, and AMC23.

Figure [33] presents box plots of the exponential decay rates 3, estimated across AIME24, AIME2S5, and
AMC?23 for the 7B models in Table[I] Figure[33]shows that when sparsifying based on sentence embedding
distance (top-10 and top-20), RL increases the exponential decay rate 8 while SFT decreases it. These
results are consistent with the non-sparsified results in Figure [} An important caveat is that our graph
construction method (Section[d.T)) ensures the reasoning graph is weakly connected by designating problem
2 as the initial node. However, sparsification may disconnect the graph and create unreachable nodes whose
betweenness centrality becomes zero.

D.6 REPRESENTATIVES OF SFT

Following Appendix we conduct step-level analysis for RL and SFT when performing SFT with one
response per problem on s1k-1.1 dataset(MuennighofT et al.| [2025))

After constructing the reasoning graphs following Section ff.1] and Appendix [D.I] with M = 256 and
K = 1000, we estimated the exponential decay rates of Visitation Frequency, Degree, and Betweenness
Centrality for Qwen2.5-Math-1.5B (Base), Qwen2.5-Math-1.5B-Oat-Zero (RL), and Qwen2.5-Math-1.5B-
slk-1.1 (SFT) on AIME24, AIME25, and AMC23. Consistent with Figure[f] RL exhibits higher decay rates,
whereas SFT exhibits lower decay rates.

We then computed the topological metrics of the reasoning graphs and present them in Figure[36] The results
exhibit trends consistent with Figure[g]

43



Under review as a conference paper at ICLR 2026

2021
2022 Edge Density Nor i Clustering C ici 00 Assortativity Modularity
10 0.4
0.075
2023 01
0.050
B 0.2
2024 0.025 -0z
0.000 o 0.0
2025 Base RL SFT  SFT+RL Base RL SFT  SFT+RL Base RL SFT  SFT+RL Base RL SFT  SFT4RL
2026 Freeman Centralization Normalized Average Path Length Global Efficiency Algebraic Connectivity
1.0 0.75
0.4
2027 o3
02 s . 0.50
2028 01 0.25
0.0 0.0 0.0 0.00
2029 Base RL SFT  SFT+RL Base RL SFT  SFT4RL Base RL SFT  SFT+RL Base RL SFT  SFT4RL
2030 Edge Density 1o Nor i Clustering C ici 00 Assortativity Modularity
- 0.4
2031 0.075
-0.1
2032 0.050 B 0.2
0.025 —02
2033 0.000 0 0.0
Base RL SFT  SFT4RL Base RL SFT  SFT+RL Base RL SFT  SFT+RL Base RL SFT  SFT4RL
2034 Freeman Centralization Normalized Average Path Length Global Efficiency Algebraic Connectivity
2035 o o 04 05
0.50
2036 02 0.5 0.2
0.25
2037 0.0 0.0 0.0 0.00
2038 Base RL SFT  SFT+RL Base RL SFT  SFT+RL Base RL SFT  SFT+RL Base RL SFT  SFT4RL

2039 Figure 34: Comparison of Eight Graph Metrics for the Sparcified Graphs with the Top-10 (Up) and
2040 Top-20 (Bottom) Distance-based Sparcification Method across Base, RL, SFT, and SFT+RL Models
2041 (7B). Values are averaged across three datasets, AIME24, AIME25, and AMC23.

2042
2043
2044
2045 m—— ——
2046 °”

2047 o 010

2048 "

2049
2050

2051 Base RL SFT Base

Visitation Frequency Degree Betweenness Centrality

—— mean

00s [_—~0.04] 01
e
RL SFT Base RL SFT

2052 Figure 35: Exponential Decay Rate for Visitation Frequency, Degree, Betweenness Centrality. Box plots
2053 show the estimated exponential decay rate /3 across all problems in AIME24, AIME25, and AMC23 for the
2054 1.5B models in Appendix[D.q

2055
2056 Edge Density Normalized Clustering Coefficient Assortativity Modularity
0.10 7.5 0.0 0.3
2057 vo o1 02
0.05
2058 2.5 -0.2 0.1
0.00 0.0 0.0
2059 Base RL SFT Base RL SFT Base RL SFT Base
2060 Freeman Centrality Normalized Average Path Length Global Efficiency Algebraic Connectivity
2061 0.4 1.0 0 0.75
0.50
0.2 0.5
2062 02 o025
2063 0.0 0.0 0.0 0.00
Base RL SFT Base RL SFT Base RL SFT Base
2064

2065  Figure 36: Comparison of Eight Graph Metrics across Base, RL, and SFT models (1.5B). Values are
2066 averaged across three datasets, AIME24, AIME25, and AMC23.
2067

44



2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

Under review as a conference paper at ICLR 2026

D.7 CODE DOMAIN
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Figure 37: Exponential Decay Rate for Visitation Frequency, Degree, Betweenness Centrality
Box plots show the estimated exponential decay rate 3 across all problems in HumanEval on the 7B models
in Table[1
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Figure 38: Comparison of Eight Graph Metrics across Base, RL, and SFT models (7B) on HumanEval.

In addition to Appendix [C.8] to assess the generalizability of our findings across domains, we conduct ex-
periments on code generation using HumanEval (Chen et al] 2021)). For each problem instance, we generate
M = 128 samples with the 7B models in Table [I} We set sampling parameters to temperature=0. 6,
top-p=0.95 and max_tokens=16000. We use Qwen Template for Qwen2.5-Math-7B and Qwen2.5-
Math-Oat-Zero, and R1 Template for DeepSeek-R1-Distill-Qwen-7B and AceReason-Nemotron-7B. Then,
we construct reasoning graphs following the same methodology described in Section[4.1}

Figure 7] shows box plots of the exponential decay rates of the rank plots of the reasoning graphs for each
HumanEval problem. We observe that, for visitation frequency, degree, and betweenness centrality, the
exponential decay rate [ increases with RL, whereas /3 decreases with SFT.

Furthermore, we compute eight topology metrics of the reasoning graph for each sample and report their
averages over all samples in Figure[38]In this domain, we obtained results consistent with those in Figure[§]
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E EXAMPLES OF TRAJECTORY-LEVEL ANALYSIS

An example where incorrect trajectories from Qwen2.5-Math-7B-Oat-Zero (RL) are similar to each other,
while those from DeepSeek-R1-Distill-Qwen-7B (SFT) are dissimilar.

To solve this problem, we need to use some geometric properties and algebra. Here’s the step-by-step
solution:

1. **Identify the Power of a Point:** The power of point A with respect to the circle w can be used
to find the length AP. The power of point A is given by AB? = AP - AD.

2. **Find the Length AD:** Since D is the intersection of the tangents to w at B and C, D is
the symmedian point of triangle ABC. The length AD can be found using the formula for the

symmedian point:
2bc a?
AD = —— -|bc |1 — ——
b? + c? \/C( (b+c)2)

where a = BC =9,b= AC = 10,and c = AB = 5.
3. **Calculate AD:**

° 5 2
AD — 2-10-5 105 9 81 / 144
102 + 52 (10 +5)2 225 225
4 50-144 4 7200 4 16
4 _ Lvm=tan - 182

225 5 V 225
4. **Find AP:** Using the power of point A:

AB% = AP- AD —> 5% = AP. 16;[ 25 = AP M

25-5 125  125V/2
16v2 16v2 32

To rationalize the denominator, we multiply the numerator and the denominator by v/2:

— AP =

125v2  125-2 250 125
AP = =L =
32 32.42.42 64 32

So, AP = =2

5. **Find m and n:** Here, m = 125 and n = 32, and they are relatively prime. Therefore,
m+n =125+ 32 = 157.

The final answer is .

To solve this problem, we need to use some geometric properties and algebra. Here’s the step-by-step
solution:
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1. **Identify the Power of a Point**: The power of point A with respect to the circle w can be used
to find the length AP. The power of point A is given by AB? = AP - AD.

2. **Find the Length AD**: Since D is the intersection of the tangents to w at B and C, D is the
symmedian point of A ABC with respect to A. The length AD can be found using the formula for

the symmedian length:
2bc a?
AD = —— -4|bc |1 — ——
b2+ 2 \/C( (b+c)2>

where a = BC' =9,b= AC = 10,and c = AB = 5.
3. **Calculate AD**:

2.10-5 92 100
AD=2""—"""../10-5(1—- ——— )| =—- 50 ,/
102 + 52 \/ ( (10+5)2> 125 225 225

4 50-144 4 7200 4 16\f
T 5 225 5 V 225 Y _74\[

4. **Find AP**: Using the power of point A:

AB2:AP-AD:>52:AP.165\[ 25 = AP M

25-5 125 1252
16V/2  16v2 32

5. **Rationalize the Denominator**: To express AP in the form ”*, we rationalize the denominator:

— AP =

P 1252  125-2 250 125
32 32.42-42 64 32

So, AP = % The integers m and n are 125 and 32, respectively, and they are relatively prime.
Therefore, m +n = 125 + 32 = 157.
The final answer is .

Okay, so I'm trying to solve this geometry problem. Let me read it again:

We have triangle ABC' inscribed in a circle w. The tangents to w at B and C intersect at point D.
Then, AD intersects w again at P. We’re given AB = 5, BC = 9, and AC' = 10. We need to find
AP in the form 7 where m and n are coprime, and then compute m + n.

Alright, let’s break this down step by step. First, let me visualize the problem. We have triangle
ABC with sides AB = 5, BC' = 9, and AC = 10. It’s inscribed in a circle w, which means it’s a
cyclic quadrilateral if we consider the circle. The tangents at B and C meet at D, so D is the ex-pole
or something? Hmm, not sure. Maybe I need to recall some properties.

Since D is the intersection of the tangents at B and C, D must lie on the polar of the line BC' with
respect to circle w. Wait, maybe I should think in terms of power of a point.

Yes, the power of point D with respect to w should be equal to DB? = DC? since DB and DC are
both tangent lengths from D to w. So, DB = DC'. That might be useful later.
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Now, AD intersects w again at P. So, AD is a secant of the circle, starting at A and going through
P. We need to find the length AP.

Given that, perhaps I can use the Power of a Point theorem. The Power of Point A with respect
to circle w is AB x AC because A is on the circle, so its power is zero. Hmm, that doesn’t seem
immediately helpful.

Wait, actually, A is on the circle, so any line through A intersecting the circle again will have power
zero. So, the power of A is zero, which means AP x AD = 0. But that’s trivial because AD passes
through A, so AP x AD is just AP x (AP + PD), but since A is on the circle, AP is the length
from A to P, and PD is from P to D. Hmm, maybe I need a different approach.

Alternatively, maybe I can use harmonic division or projective geometry concepts, but I’'m not sure.
Maybe coordinate geometry? That might be messy, but perhaps manageable.

Alternatively, maybe using inversion? Since we have tangents and circles, inversion could be useful.
But that might be a bit advanced for me right now.

Wait, let’s think about triangle ABC. We know all three sides: 5, 9, 10. Maybe we can compute
some angles or the circumradius.

Yes, that might be a good starting point. Let me compute the circumradius R of triangle ABC.
Using the formula:

R =

Where a, b, ¢ are the sides, and A is the area of the triangle.

First, let’s compute the area A using Heron’s formula.

The semi-perimeter s = 5“'927“'10 = 2—24 = 112

Then, A = \/s(s — a)(s — b)(s — ¢) = \/12(12 = 5)(12 — 9)(12 — 10) = /12 X 7 x 3 x 2.
Calculating that: 12 x 7 = 84, 84 x 3 = 252, 252 x 2 = 504. So, A = /504.

Simplify /504. Let’s factor 504: 504 + 2 = 252, +2 again = 126, +2 = 63, +3 =21, +3 =7. So, 504
=23 x 32 x 7. Therefore, v/504 = 215 x 3 x v/7 = 2 x v/2 x 3 x /T = 61/14. Wait, let me check
that.

Wait, /504 = /16 x 31.5. Hmm, maybe I did that wrong. Wait, 504 + 36 = 14, so v/504 =

V36 x 14 = 6+/14. Yes, that’s correct.

So, A = 6+/14.
Now, compute R = Z—ZK. Let’s assigna = BC =9,b= AC =10,¢c = AB = 5.
So. R — 9x10x5 _ _150
i 4x6y/14 ~ 244/14°
... [continued]

Okay, so I’ve got this geometry problem here about triangle ABC inscribed in a circle w. The tangents
at B and C meet at point D, and then AD intersects w again at P. The sides AB, BC, and AC are given
as 5, 9, and 10 respectively. I need to find the length of AP, express it as a reduced fraction m/n, and
then find m + n. Hmm, okay, let me try to figure this out step by step.

First, I should probably sketch the problem to visualize it better. So, triangle ABC with sides AB=5,
BC=9, AC=10. That seems like a scalene triangle. The circle w is the circumcircle of ABC, which
means all three vertices lie on w. The tangents at B and C intersect at D. So, D is the ex-pole of BC
with respect to w? Or maybe it’s just the ex-pole. Hmm, tangents from a common external point to
a circle are equal in length, so DB = DC. That might be useful later.
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Then, the line AD intersects w again at P. So, AD is a secant line from A through D, intersecting the
circle again at P. So, AP is the segment from A to P, which is part of AD. So, I need to find the length
of AP.

Given the sides of the triangle, maybe I can use some properties of circles, power of a point, similar
triangles, or something like that. Let me think.

Given that D is the intersection of the tangents at B and C, D is the ex-pole opposite A, right? Or
maybe it’s the ex-pole? Wait, actually, the point where two tangents meet is called the ex-pole if it’s
outside the circle, which it is because tangents are drawn from outside the circle.

So, point D is outside the circle w, and DB and DC are tangent to w. So, by the power of point D
with respect to w, we have DB2 = DC? = DA * DP. That might come in handy.

Power of a point says that for a point D outside a circle, the square of the tangent length is equal to
the product of the lengths of the secant segments. So, in this case, DB2 = DA * DP.

So, if I can find DB, then I can relate it to DA and DP. But I don’t know DB yet. Maybe I can
compute it somehow.

Alternatively, maybe I can use coordinate geometry. Assign coordinates to the points and compute
everything. But that might get complicated. Let me see if I can find a more synthetic approach.
Wait, perhaps using triangle similarity or some theorem related to harmonic division or something.
Let me recall that in triangle ABC, with D being the ex-pole, AD is called the symmedian. So, AD
is the symmedian of triangle ABC. That might be a useful property.

Symmedian reflects the median over the angle bisector. So, if I can find the median from A, then
reflect it over the angle bisector to get the symmedian.

But I don’t know if that’s directly helpful here. Maybe using power of a point is still a better approach.
So, let’s try to find DB. Since DB is the tangent from D to w, and D is the intersection of tangents at
B and C. So, D is the ex-pole, and DB = DC.

... [continued]
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