
Learning Strategic Language Agents in the Werewolf Game
with Iterative Latent Space Policy Optimization

Zelai Xu 1 Wanjun Gu 1 Chao Yu 1 2 Yi Wu * 1 3 Yu Wang * 1

Abstract
Large language model (LLM) agents have re-
cently demonstrated impressive capabilities in var-
ious domains like open-ended conversation and
multi-step decision-making. However, it remains
challenging for these agents to solve strategic lan-
guage games, such as Werewolf, which demand
both strategic decision-making and free-form lan-
guage interactions. Existing LLM agents often
suffer from intrinsic bias in their action distribu-
tions and limited exploration of the unbounded
text action space, resulting in suboptimal perfor-
mance. To address these challenges, we propose
Latent Space Policy Optimization (LSPO), an it-
erative framework that combines game-theoretic
methods with LLM fine-tuning to build strate-
gic language agents. LSPO leverages the obser-
vation that while the language space is combi-
natorially large, the underlying strategy space is
relatively compact. We first map free-form utter-
ances into a finite latent strategy space, yielding
an abstracted extensive-form game. Then we ap-
ply game-theoretic methods like Counterfactual
Regret Minimization (CFR) to optimize the pol-
icy in the latent space. Finally, we fine-tune the
LLM via Direct Preference Optimization (DPO)
to align with the learned policy. By iteratively
alternating between these steps, our LSPO agents
progressively enhance both strategic reasoning
and language communication. Experiment on the
Werewolf game shows that our agents iteratively
expand the strategy space with improving perfor-
mance and outperform existing Werewolf agents,
underscoring their effectiveness in free-form lan-
guage games with strategic interactions.

*Equal advising 1Tsinghua University, Beijing, China 2Beijing
Zhongguancun Academy, Beijing, China 3Shanghai Qi Zhi
Institute, Shanghai, China. Correspondence to: Chao Yu
<yuchao@tsinghua.edu>, Yi Wu <jxwuyi@gmail.com>, Yu Wang
<yu-wang@tsinghua.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Developing intelligent agents that can reason rationally,
make strategic decisions, and interact with humans has
been a long-term goal in artificial intelligence (AI) re-
search (Wooldridge & Jennings, 1995; Russell & Norvig,
2016). In recent years, large language model (LLM)-based
agents have made significant strides towards this goal by ex-
hibiting strong performance in open-ended conversation and
multi-step decision-making (Brown et al., 2020; Ouyang
et al., 2022). Trained on massive text corpora, LLM-based
agents have demonstrated remarkable versatility across vari-
ous domains, ranging from web navigation (Nakano et al.,
2021; Yao et al., 2022b) and code generation (Chen et al.,
2021; Yang et al., 2024) to video game environment (Wang
et al., 2023a) and real-world scenarios (Ahn et al., 2022; Bro-
han et al., 2023). Beyond single-agent tasks, LLM-based
agents have also shown potential in multi-agent interac-
tions including collaborative teamwork (Li et al., 2023),
adversarial gameplay (Meta et al., 2022), and human-AI
interation (Park et al., 2023; Liu et al., 2023).

Among these interactive domains, strategic language games
such as Werewolf present unique challenges because they
require both high-level strategic decision-making and free-
form conversational abilities. Unlike classic games with
predefined and limited actions, such as board games (Sil-
ver et al., 2016; 2018), card games (Moravčík et al., 2017;
Brown & Sandholm, 2018), and video games (Mnih, 2013;
Vinyals et al., 2019), Werewolf relies heavily on free-form
conversation to achieve agreements and perform strategic
deceptions. Players must communicate, bluff, and infer hid-
den roles through unrestricted, natural language interactions.
This free-form language space expands the strategic possi-
bilities and introduces additional complexity unmatched by
more rigidly defined domains. As a result, Werewolf serves
as an ideal environment for developing strategic agents with
language-grounded decision-making capabilities.

However, developing a strategic language agent that can in-
teract with humans in Werewolf or other free-form language
environments is still challenging. Classic game-theoretic
methods like Counterfactual Regret Minimization (CFR)
and reinforcement learning (RL) have proven successful in
games like Go and Poker, thanks to their ability to handle

1



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

finite action spaces. Yet Werewolf has a free-form action
space, making direct application of these methods computa-
tionally infeasible. Mapping every possible utterance to an
action in the original text space becomes prohibitively large,
leading to immense difficulty in strategy representation and
equilibrium-finding. An alternative approach is to build lan-
guage agents with LLMs. These methods typically rely on
prompt engineering without training the base LLM, which
means their success depends entirely on the general reason-
ing capabilities of LLMs to generate actions. Unfortunately,
prompt-based methods suffer from intrinsic bias in their
generated actions (Xu et al., 2023c), resulting in subopti-
mal performance in strategic language games like Werewolf.
Moreover, these agents exhibit limited exploration of novel
strategies because they fully rely on the LLMs to generate
actions, making the agents constrained by the capability
of the base LLMs. Some work (Chen et al., 2023a; Wu
et al., 2024) mitigates these issues by fine-tuning the LLM
for a specific task, which requires expensive human labor
for high-quality data. Xu et al. (2023c) partially tackles
the bias issue by additionally training a small network to
calibrate the LLM output distribution. However, it still re-
lies on a fixed LLM to produce action candidates, leaving
the exploration issue unaddressed. This raises an important
question: Can we have a method that leverages both the
specialized reasoning capabilities for decision-making and
the generalization capabilities of LLMs?

In this work, we propose an iterative Latent Space Pol-
icy Optimization (LSPO) framework to build strategic lan-
guage agents for free-form language games, taking Were-
wolf as our testbed. Our approach combines structured
game-theoretic methods with language models by introduc-
ing a discrete latent strategy space. Our method consists of
three components. We first map the free-form utterances
into a manageable, discrete strategy space to yield an ab-
stracted game. Then we apply game-theoretic methods like
CFR to learn the optimal policy in the latent space. Finally,
we fine-tune the LLM via Direct Preference Optimization
(DPO) (Rafailov et al., 2024) to align with the learned pol-
icy and expand the latent space. By iterating between these
latent space CFR steps and LLM fine-tuning, our method
yields an evolving agent that addresses both the intrinsic
bias issue with game-theoretic methods and the action explo-
ration issue with latent space expansion, leading to strong
performance in the Werewolf game.

We perform extensive experiments in the Werewolf game to
demonstrate the effectiveness of our LSPO framework. We
first analyze how the latent strategy space evolves between
iterations to show that our agents learn increasingly complex
and strategic behaviors. Then we quantitatively evaluate the
prediction accuracy and win rate of our LSPO agent to show
the improving performance with respect to iterations. Next,
we compare our agents against state-of-the-art Werewolf

agents and find that the LSPO agent achieves the highest
win rate. We also conduct ablation studies to assess the
effectiveness of our design in the LSPO framework.

2. The Werewolf Game
Werewolf is a popular social deduction game where play-
ers with hidden roles cooperate and compete with others
in natural languages. The Werewolf side needs to conceal
their identities and eliminate the other players, while the
Village side needs to identify their teammates and vote out
the Werewolves. Players are required to have both lan-
guage proficiency for communication and strategic ability
for decision-making to achieve strong performance in the
Werewolf game. We consider a seven-player game with
two Werewolves being the Werewolf side and one Seer, one
Doctor, and three Villagers being the Village side. Detailed
descriptions of the game’s rule, observation space, and re-
ward function can be found in Appendix A.

2.1. Game Environment

We consider a text-based seven-player Werewolf game that
proceeds through natural languages. We exclude other infor-
mation like the speaking tone, facial expression, and body
language (Lai et al., 2022). This pure text-based environ-
ment is a common setup in the literature (Xu et al., 2023a;c;
Wu et al., 2024; Bailis et al., 2024).

Roles and Objectives. At the beginning of each game,
the seven players are randomly partitioned into two sides.
The Werewolf side has two Werewolf players who know
each other’s role and aim to eliminate the other players
while avoiding being discovered. The Village side has one
Seer who can check the role of one player each night, one
Doctor who can protect one player each night, and three
Villagers without any ability. The players in the Village side
only know their own role and need to share information to
identify the Werewolves and vote them out.

Game Progression. The game proceeds by alternating
between night round and day round. In the night round,
players can perform secret actions that are only observable
by themselves. More specifically, the two Werewolves can
choose a target player to eliminate, the Seer can choose
a target player to investigate whether the player’s role is
Werewolf, and the Doctor can choose a target player to
protect the player from being eliminated. The Doctor does
not know the target player chosen by the Werewolves. If the
Doctor chooses the same target player as the Werewolves,
then no player is eliminated in this night round, otherwise,
the Doctor fails to protect any player, and the target chosen
by the Werewolves is eliminated.

Observations and Actions. The language observation of
each agent is a list of natural languages that log the game

2



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Latent Space Construction Latent Space ExpansionPolicy Optimization 
in Latent Space

Abstracted Game

Latent Space Policy

Game Solver
(CFR, RL, etc.)

Original GameLanguage Action

Latent Strategy

LLM

Abstracted Game

Clustering

I’m the Seer and 
I saw Player 1 is 
a Werewolf …

I’m saddened 
by the loss of 
Player 4 …

Latent Space Policy

Fine-Tune

Preference Data

>
I’m the Seer and 
I saw Player 1 is 
a Werewolf …

I’m saddened 
by the loss of 
Player 4 …

I think Player 1 
is suspicious … 

LLM

Figure 1: Overview of the Latent Space Policy Optimization (LSPO) framework. Each iteration consists of three components.
(1) Latent space construction: generate language actions with the LLM and cluster the vast language action into a finite
latent strategy space. (2) Policy optimization in latent space: reformulate the original game as an abstracted game and apply
game-theoretic methods to learn latent space policy. (3) Latent space expansion: fine-tune the LLM to align with the latent
space policy and generate new strategies to expand the latent strategy space.

history to the current step. This list include both private
information that are only observable to the current player
and public information that are shared by all players. The
private information includes the role of the current player,
the secret actions in the night round for the Werewolf, Seer,
and Doctor, and the teammate for the Werewolf. The public
information includes the ID of the current player, the elim-
inated player in each night and day round, the discussion,
and the voting result in each day round.

Player actions are also in the form of natural language and
can be categorized into three types: secret actions, which are
secret actions performed during the night, such as choosing
a target player to eliminate, investigate, or protect; discus-
sion actions, which are statements made during the day to
influence other players’ perceptions and decisions; and vot-
ing actions, which are choices made during the voting round
to vote for on player or choose not to vote.

2.2. Challenges for Language Agents

Unlike board, card, or video games with a finite set of pre-
defined actions, Werewolf has a free-form language action
space. The vast space of natural language actions poses
two key challenges for language agents to achieve strong
performance in the Werewolf game.

Intrinsic Bias in Action Generation. As observed in sim-
ple games like Rock-Paper-Scissor (Xu et al., 2023c), pure

LLM-based agents tend to exhibit intrinsic bias in their
action generation, which is inherited from the model’s pre-
training data. This issue is more pronounced in complex
language games like Werewolf, where the opponents can
exploit these predictable biases to counteract the agent’s
move. Therefore, mitigating intrinsic bias is essential for
language agents to reduce exploitation and achieve strong
performance in strategic language games.

Exploration of Unbounded Action Space. Due to the
immense combinatorial space induced by free-form text,
it is impractical to map every possible utterance to an ac-
tion in the language space. On the other hand, manually
engineering or prompting an LLM to produce a limited set
of actions may fail to capture the full strategic landscape.
Even if an agent optimally masters the action distribution
within a limited subset, it could be easily exploited by out-fo-
distribution utterance. Consequently, inadequate exploration
of the action space could result in suboptimal performance
in free-form language games like Werewolf.

3. Latent Space Policy Optimization
To tackle the intrinsic bias and the exploration issue, we pro-
pose an iterative Latent Space Policy Optimization (LSPO)
framework. Our method combines game-theoretic opti-
mization with LLM fine-tuning and operates on an expand-
ing latent strategy space to iteratively improve the agent’s

3



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

decision-making ability and action exploration. As shown
in Figure 1, our framework has three components includ-
ing latent space construction, policy optimization in latent
space, and latent space expansion. More implementation
details can be found in Appendix C.

3.1. Latent Space Construction

One of the key challenges in free-form language games like
Werewolf is achieving broad exploration of the unbounded
text space while maintaining a computationally tractable
action representation for game-theoretic methods. To strike
a balance between exploration and tractability, we propose
to abstract the vast language action space into a finite set of
latent strategies, which we then expand over iterations for
better exploration. Specifically, our latent space construc-
tion in each iteration involves two steps including latent
strategy generation and clustering.

Latent Strategy Generation. In our setting, secret actions
and voting actions are already discrete and therefore do not
require further abstraction. We focus instead on the free-
form discussion actions, which we aim to capture as latent
strategies. We assume that each role in the game has the
same set of latent strategies across all discussion rounds
and collect the latent strategies for each role by letting the
current LLM agent self-play as different roles for multiple
trajectories. To further improve the exploration of latent
strategies, we prompt the LLM to generate N strategically
distinct discussion candidates and randomly choose one to
execute in the game. This process encourages diversity in
the collected discussion actions and generate a set of latent
strategies in natural language for each role.

Latent Strategy Clustering. Although we generate a set
of latent strategies for each role, they are still in the form
of natural language. To transform them into a discrete la-
tent strategy space, we embed each discussion action into
a vector representation using an embedding model such
as “text-embedding-3-small” that captures its semantic and
contextual information. We then apply a simple k-means
clustering algorithm to partition the embedded utterances
into k clusters, where each cluster represents a distinct latent
strategy. Clustering reduces the infinite free-form text space
to a finite set of abstract strategies, paving the way for sub-
sequent game-theoretic optimization. By interpreting each
cluster as a latent action, we can more efficiently search
for and optimize strategic policies with minimal sacrifice of
exploration of language space.

3.2. Policy Optimization in Latent Space

Another challenge in free-form language games is to ad-
dress the intrinsic bias in the agent’s action distribution.
After constructing a discrete latent strategy space, we can
reformulate the original game with unbounded language

space as an abstracted game with a finite latent strategy
space. This reformulation allows us to apply standard game-
solving techniques such as Counterfactual Regret Minimiza-
tion (CFR) or reinforcement learning (RL) methods to learn
near-optimal strategies that overcome the intrinsic bias. In
our implementation, we employ CFR as the game solver.

Abstracted Game Formulation. To represent the game in
a compact, finite form, we replace the free-form discussion
actions with the discrete latent strategies from latent space
construction. Specifically, the abstracted game is formalized
as an extensive-form game (EFG), where the secret action
and voting action remain the same, and the discussion action
is replaced by the latent strategy. The state in the abstracted
game is a vector including information like the player’s role,
secret action, etc., and history of past latent strategies. The
transition dynamics and payoff function remain unchanged
in the abstracted game. This representation retains the key
strategic elements of the original game while reducing the
complexity of the action space, making large-scale game-
solving computationally tractable. Detailed description of
the abstracted game can be found in Appendix A.

Policy Optimization. Once the game is represented in this
discrete form, we apply CFR to learn a policy and solve
the abstracted game. Classical CFR (Zinkevich et al., 2007)
iteratively improves policies by minimizing counterfactual
regret R for each information set. For each iteration t, the
regret for each action a in the latent space is updated by:

Rt(a) = Rt−1(a) + u(σa
t , σ

−a
t )− u(σt), (1)

where u(σa
t , σ

−a
t ) is the utility of taking action a under the

current strategy profile σt, and u(σt) is the utility under the
full strategy profile. We use neural networks to approximate
regret value to scale CFR to more complex games and learn
a policy for each different role in the Werewolf game. By
repeatedly simulating self-play among agents employing
Deep CFR in the abstracted game, each role’s policy con-
verges to a near-optimal strategy profile. The resulting latent
space policies address the intrinsic bias in action distribution
and achieve strong strategic play in the abstracted game.

3.3. Latent Space Expansion

To further improve the agent’s performance in free-form
language games, the latent space must remain sufficiently
expressive to cover novel strategies and resist exploitation by
out-of-distribution actions. We achieve this by fine-tuning
the LLM to align with the learned policy in the abstracted
game and then re-generating and expanding the latent strat-
egy space using the fine-tuned LLM. This iterative process
progressively increases exploration of the action space, en-
abling stronger and more robust decision-making.

Alignment to Latent Space Policy. We employ Direct
Preference Optimization (DPO) (Rafailov et al., 2024) to

4



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

R. P. S. Sp. L.
exp. = 0.39

0.0

0.2

0.4

0.6 0.53

0.29
0.14

0.02 0.02

ReAct

R. P. S. Sp. L.
exp. = 0.33

0.33 0.33 0.33

0 0

SLA

R. P. S. Sp. L.
exp. = 0.33

0.33 0.33 0.33

0 0

LSPO Iter. 1

R. P. S. Sp. L.
exp. = 0.33

0

0.33 0.33 0.33

0

LSPO Iter. 2

R. P. S. Sp. L.
exp. = 0.00

0.2 0.2 0.2 0.2 0.2

LSPO Iter. 3

Figure 2: The action distributions and exploitabilities (exp.) of different agents in the Rock-Paper-Scissors-Spock-Lizard
game. The Nash equilibrium is to choose each action with an equal probability of 1/5 and has an exploitability of 0.

fine-tune the LLM so that its open-ended language outputs
align with the near-optimal strategies derived from the ab-
stracted game. To construct the preference dataset required
by DPO, we leverage game trajectories generated during la-
tent space construction. We record the language observation
for the LLM agent at each discussion phase as the prompt,
and use the N discussion candidates as the response candi-
dates. Each of the discussion candidates can be mapped to
one of the latent strategies, and the preference label is deter-
mined by the regret value of the latent strategies. Intuitively,
a discussion action with a lower regret value is preferred.
With this preference dataset, we perform DPO to align the
LLM toward the learned policy in the abstracted game for
better performance in the original game.

Update of Latent Space. Once the LLM is fine-tuned, it
can produce a broader distribution of actions that reflect the
refined policy. We exploit this enhanced generative capacity
to expand the latent space in the next iteration. Specifically,
we repeat the latent strategy generation and clustering pro-
cedures with the fine-tuned LLM to re-generate and expand
the latent strategy space. This updated latent space offers
increased exploration of potential strategies, enabling subse-
quent policy optimization to discover previously unexplored
high-reward actions. Through iterative alignment and expan-
sion, the agent continually refines its discussion strategies
and achieves strong play in the free-form language game.

4. Experiments
To demonstrate the effectiveness of the LSPO framework,
we first consider a proof-of-concept game to show how
LSPO overcomes intrinsic bias and addresses the explo-
ration issue. Then we conduct extensive experiments in the
Werewolf game with Llama-3-8B-Instruct as our base
model. We visualize how the latent strategy space evolves
to show that our agents progressively acquire more complex
strategic behaviors. We then quantitatively evaluate the per-
formance of our LSPO agent using prediction accuracy and
win rate to show the improving performance over iterations.
We also compare the LSPO agent with four state-of-the-art

agents, showing that our agents achieve the highest win
rate on both the Werewolf side and the Village side. We
further perform ablation studies to assess the effectiveness
of specific designs in our framework. More implementation
and experiment details can be found in Appendix B.

4.1. Proof-of-Concept Example

We consider Rock-Paper-Scissors-Spock-Lizard, a five-
choice extension of the classic Rock-Paper-Scissors game.
Although it is not a free-form language game, it serves as a
simple proof-of-concept game that highlight the motivation
of our method. The intrinsic bias in action distributions is
inherited from the imbalanced LLM pre-training data, and
the exploration issue is introduced by the two additional
actions of Spock and Lizard. The Nash equilibrium (NE) of
this game is to choose each action with an equal probability
of 1/5. We compare LSPO agents of different iterations
with two baselines, including Reason and Act (ReAct) (Yao
et al., 2022b) and Strategic Language Agent (SLA) (Xu
et al., 2023c), and the action distributions and exploitabili-
ties of different agents are shown in Figure 2.

The evaluation results show that the LSPO agent of itera-
tion 3 learns the NE of the game while other agents fail.
ReAct agent suffers from the intrinsic bias issue and has
higher probabilities to choose Rock, Paper, and Scissors,
and much lower probabilities to choose Spock and Lizard.
SLA, on the other hand, is hindered by inadequate action
exploration. SLA uses LLMs to propose N actions and RL
to learn the optimal policy. A typical value of N = 3 results
in a subgame without the other 2 action, and the NE of the
subgame is not the NE of the original game. Our LSPO
agent addresses these two challenges by iteratively expand-
ing the action space. As it covers the full action space with
3 iterations, the LSPO agent learns the NE of the game.

4.2. Latent Space Visualization

To gain insight into how LSPO organizes free-form language
actions into discrete latent strategies, we first visualize the
latent strategy space constructed at different training itera-

5



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Iter. 1 Iter. 2 Iter. 3

Werewolf’s Latent Space

Iter. 1 Iter. 2 Iter. 3

Seer’s Latent Space

Figure 3: Visualization of the latent strategic space of Werewolf and Seer in different LSPO iterations.

tions. Specifically, for each role in the Werewolf game, we
gather the utterances generated by the LSPO agent in 100
games, embed them with the sentence encoder, and apply di-
mensionality reduction for projection. The visualization of
latent spaces for the Werewolf and the Seer in different itera-
tions is shown in Figure 3. Earlier iterations yield relatively
indistinct clusters, reflecting a lack of strategic diversity.
Over successive iterations, clearer and more refined clusters
emerge, indicating that the LSPO agent evolves toward an
increasingly structured latent space and learn to express dif-
ferent strategic intentions such as accusing specific roles,
defending teammates, and bluffing.

Werewolf’s Latent Space. In the first iteration, the latent
space of the Werewolf is dominated by three main clusters.
The blue cluster corresponds to a simple strategy of conceal-
ing its role or pretending to be a villager, while the smaller
orange cluster reflects strategies like pretending to be a Seer
or a Doctor. There is even a green cluster corresponding to
unintentionally revealing the true role of a Werewolf, which
is obviously a flawed strategy. As training proceeds, we see
more sophisticated patterns emerge. The flawed strategy of
disclosing one’s Werewolf role disappears, and the agent
begins to incorporate deliberate bluffs and misdirections
instead. For example, the red cluster features the agent pre-
tending to be a Seer and providing fabricated investigative
results to sow confusion, and the purple cluster centers on
defending the teammate and redirecting suspicion onto other
players, leveraging more nuanced language and reasoning to
guide the conversation toward scapegoats. This refined parti-
tioning demonstrates that the Werewolf agent progressively
covers an increasing number of latent strategies.

Seer’s Latent Space. In the first iteration, the Seer’s latent
space is relatively coarse, containing primarily two strate-
gies including staying silent about its true role or revealing
its role and sharing information. This shows a limited range
of strategic diversity in the early stage. As training proceeds
through the second and third iterations, the Seer’s latent
space becomes more diverse. The emergent red cluster fea-
tures direct accusations once the Seer identifies a Werewolf,
while the green cluster corresponds to concealing the role

yet subtly guiding discussions to protect verified teammates.
Notably, by the final iteration, the model develops a voting
coordination strategy in which the Seer explicitly asks all
the Villagers to vote for a strongly suspected Werewolf to
maximize the Villager’s chance of success. This progression
implies that the Seer agent increasingly learns to balance
openness and secrecy, aligning its communication style with
the evolving game context to better support the Village side.

4.3. Iterative Performance Evaluation

We then evaluate how the performance of our LSPO agent
progresses with more iterations, demonstrating that our
framework produces increasingly stronger strategic lan-
guage agents over time. We focus on two key metrics
including prediction accuracy and win rate.

Prediction Accuracy. Accurate role identification is a criti-
cal aspect of Werewolf, as it underpins effective decision-
making and voting. Therefore, we measure the agent’s abil-
ity to predict the roles of other players with an additional
prediction phase before each voting phase in a Werewolf
game. Specifically, we use the final-iteration LSPO agent
as the fixed opponent and let LSPO agents at different it-
erations play against this opponent for 100 games. For the
Werewolf side, a higher prediction accuracy of crucial roles
like Seer and Doctor allows them to eliminate these threats
earlier. Conversely, for the Village side, a higher prediction
accuracy of Werewolves improves their chance to vote out
the Werewolf and win the game.

Win Rate. While prediction accuracy serves as an interme-
diate metric to evaluate the agents’ reasoning and decision-
making ability, we also use the win rate as a direct measure
of the performance of our agents. Similar to the evalua-
tion of prediction accuracy, we use the final-iteration LSPO
agent as the fixed opponent and let our agents at different
iterations play 100 games against the opponent. A higher
win rate indicates a stronger performance in the game.

As shown in Table 1, both prediction accuracy and win rate
exhibit a clear growing trend as the iteration increases, indi-
cating that our iterative LSPO framework steadily strength-

6



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Prediction Accuracy Win RateWerewolf Seer Doctor Villager Overall

Werewolf
Side

Iter. 1 0.98± 0.01 0.61± 0.09 0.49± 0.08 0.70± 0.07 0.74± 0.06 0.54± 0.13
Iter. 2 0.99± 0.01 0.68± 0.07 0.59± 0.06 0.77± 0.09 0.79± 0.06 0.63± 0.09
Iter. 3 0.99± 0.00 0.73± 0.08 0.67± 0.07 0.81± 0.11 0.83± 0.07 0.73± 0.11

Village
Side

Iter. 1 0.59± 0.06 0.47± 0.04 0.55± 0.05 0.67± 0.07 0.60± 0.06 0.18± 0.09
Iter. 2 0.66± 0.06 0.53± 0.07 0.61± 0.06 0.75± 0.08 0.67± 0.07 0.23± 0.12
Iter. 3 0.72± 0.09 0.58± 0.08 0.65± 0.07 0.82± 0.08 0.73± 0.07 0.27± 0.11

Table 1: The prediction accuracy and win rate of the LSPO agents in different iterations.

Win Rate ReAct ReCon Cicero-like SLA LSPO Agent (Ours)

As the Werewolf Side 0.58± 0.15 0.60± 0.12 0.66± 0.06 0.69± 0.12 0.73± 0.11
As the Village Side 0.16± 0.06 0.16± 0.08 0.21± 0.04 0.25± 0.08 0.27± 0.11

Overall 0.38± 0.11 0.38± 0.10 0.44± 0.05 0.47± 0.10 0.50± 0.11

Table 2: Comparison between our LSPO agent with state-of-the-art agents in the Werewolf game.

ens the agents’ reasoning and decision-making capabilities.
From the Werewolf side, the identification rate for the Seer
starts off relatively high but has only modest improvement.
This is because the Seer often reveals its roles to share infor-
mation, making it easier for the Werewolf side to identify.
By contrast, the Werewolf’s prediction accuracy of the Doc-
tor shows more significant gains, reflecting the strategic
importance of eliminating the Doctor who can save poten-
tial victims. On the Village side, identifying the Werewolf
and the Seer benefits most from iterative learning, since con-
firming these central roles is crucial for coordinated voting
and elimination of Werewolves. Overall, these results con-
firm that our framework consistently improves the strategic
language abilities of the LSPO agent, enabling it to adapt
and excel in complex social deduction scenarios with each
additional iteration.

4.4. Comparison with State-of-the-Art Agents

We compare the performance of the LSPO agent in the
Werewolf game with four state-of-the-art agents including
Reason and Act (ReAct) (Yao et al., 2022b), Recursive
Contemplation (ReCon) (Wang et al., 2023b), a Cicero-like
agent (Meta et al., 2022), and Strategic Language Agent
(SLA) (Xu et al., 2023c). As some of these methods were
not initially developed for Werewolf, we make minor modifi-
cations to ensure compatibility with our experimental setting
while preserving each approach’s core design.

ReAct. ReAct is a classic prompt-based method that syner-
gizes reasoning and acting for agent tasks. We implement
ReAct for the Werewolf game by providing the LLM with
raw game observations to generate both intermediate rea-
soning and final actions within a single prompt.

ReCon. ReCon is another prompt-based method designed
for Avalon agents. The ReCon agent is prompted to first
think from its own perspective and then think from its op-
ponents’ perspective to generate the final action. We make
slight modifications in the prompt to apply ReCon in the
Werewolf game.

Cicero-Like. The Cicero agent is created for the game of
Diplomacy with finite action space and consists of a strategic
reasoning module and a dialogue module. We implement
a Cicero-like agent for the Werewolf game by predefining
an action space of 13 primitive actions like “claim to be the
Seer”, “do not reveal role”, etc. An RL policy is learned
to select these actions in each state and generate action-
conditioned languages in the game.

SLA. SLA combines reinforcement learning and LLM to
overcome intrinsic bias and build strategic language agents
for the Werewolf game. We adopt the same implementation
as described in the paper (Xu et al., 2023c).

We compare our final-iteration LSPO agent with the afore-
mentioned four baselines through two head-to-head evalu-
ation setups. In the first setup, our LSPO agent takes the
Werewolf side and we let each of the five agents including
our agent and four baseline agents take the Village side to
play 100 Werewolf games with our LSPO agent. This setup
measures the Village side’s win rate against the LSPO agent
as the Werewolves. In the second setup, we reverse the
roles and let the LSPO agent take the Village side and com-
pare the win rate of five agents as the Werewolves averaged
over 100 games. As shown in the bold numbers in Table 2,
our LSPO agent achieve the highest win rates both as the
Werewolves and as the Villagers.

7



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Win Rate Village Side Werewolf Side

LSPO Iter. 1 0.18± 0.09 0.54± 0.13
w/o Fine-Tuning 0.15± 0.09 0.47± 0.14

w/o Policy Learning 0.12± 0.07 0.38± 0.16

Table 3: Ablation on key components of LSPO agents.

The strong performance of our LSPO agent is largely at-
tributable to its iterative interplay between latent space strat-
egy learning and preference-based fine-tuning, which refines
both language and decision-making over time. By contrast,
ReAct and ReCon rely on prompt-based approaches without
game-theoretic updates, leaving them susceptible to intrinsic
biases from pretraining data and limiting their performance
in complex decision-making tasks. The Cicero-like agent
is constrained by a predefined action set, making it difficult
to evolve more subtle and diverse strategies as the game
progresses. SLA partially addresses the intrinsic bias issues
by generating multiple candidate actions and using RL to
select from them. However, it still relies on a prompt-based
method that can suffer from limited exploration of poten-
tial strategies. In comparison, our LSPO method integrates
CFR’s policy improvement and latent-space cluster refine-
ment with preference-based LLM alignment, enabling it
to explore, exploit, and continuously expand the range of
viable strategic moves in social deduction games.

4.5. Ablation Studies

Key Components. To show the effectiveness of the three
key components in LSPO agents, we compare the LSPO
agent in iteration 1 with two ablation agents. The first ab-
lation agent, denoted as “w/o Fine-Tuning”, removes the
third component and only performs latent space construc-
tion and policy optimization in the latent space. To generate
discussion action in gameplay, this agent first uses the latent
space policy to sample a latent strategy, then the previously
collected discussions corresponding to the latent strategy
are used as few-shot examples to prompt the LLM for the
discussion action. The second ablation agent, denoted as
“w/o Policy Learning”, removes the second component of
policy optimization in the latent space. Instead, it uses
gpt-3.5 to generate the preference data and uses DPO to
train for 1 iteration As shown in Table 3, the LSPO agent
in iteration 1 achieves the best result on both the Villager
and the Werewolf side. These results demonstrate that the
policy optimization component helps agents learn stronger
strategies, while the fine-tuning component helps LLMs bet-
ter generalize to new language actions beyond the collected
samples and expand the latent strategic space.

Number of Initial Clusters.

To examine the robustness of our method, we perform a

Win Rate Iter. 1 Iter. 2 Iter. 3

k = 1 0.13± 0.06 0.20± 0.10 0.24± 0.11
k = 2 0.22± 0.11 0.24± 0.12 0.25± 0.08
k = 3 0.23± 0.09 0.25± 0.06 0.25± 0.07

Table 4: Ablation on cluster size.

Win Rate Iter. 1 Iter. 2 Iter. 3

k = 1 0.22± 0.10 0.24± 0.08 0.25± 0.08
k = 2 0.22± 0.11 0.24± 0.12 0.25± 0.08
k = 3 0.23± 0.07 0.25± 0.09 0.25± 0.06

Table 5: Ablation on DPO hyperparameters.

sensitivity analysis on the number of initial clusters. We
consider a simpler four-player Werewolf game (one Were-
wolf, one Seer, and two Villagers) and run LSPO with dif-
ferent numbers of initial clusters k = 1, 2, 3 and evaluate
the Werewolf’s win rate. The results in Table 4 show that
larger numbers of initial clusters generally lead to better
performance in the early iterations, but do not influence the
final performance after three iterations.

Fine-Tuning Hyperparameters. We also perform a sen-
sitivity analysis to evaluate our method’s robustness to
fine-tuning hyperparameters. We also consider the sim-
pler four-player game and perform ablations on DPO β =
0.05, 0.1, 0.2. The results in Table 5 show that our method
achieves comparable results with different choices of β and
is robust to fine-tuning hyperparameters.

5. Related Work
Large Language Model-Based Agents.

Recent advancements in large language models (LLMs)
have led to the development of agents capable of performing
complex tasks across various domains, such as web inter-
actions (Nakano et al., 2021; Yao et al., 2022a; Deng et al.,
2023), code generation (Chen et al., 2021; Yang et al., 2024),
gaming environments (Huang et al., 2022a; Wang et al.,
2023c;a; Ma et al., 2023), real-world robotics (Ahn et al.,
2022; Huang et al., 2022b; Vemprala et al., 2023), and multi-
agent systems (Park et al., 2023; Li et al., 2023; Chen et al.,
2023b). A common approach in these works is to exploit
the reasoning capabilities and in-context learning of LLMs
to improve decision-making processes. Chain-of-Thought
(CoT) prompting (Wei et al., 2022) has been instrumental in
enabling LLMs to perform step-by-step reasoning. Building
upon this, ReAct (Yao et al., 2022b) synergizes reasoning
and action to enhance performance across various tasks.
Subsequent research has incorporated self-reflection (Shinn
et al., 2023) and strategic reasoning (Gandhi et al., 2023) to

8



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

further refine agent behaviors. However, these methods can
still suffer from the intrinsic biases and exploration issue
of LLM-based agents, leading to suboptimal performance
in complex games. A representative method that addresses
these issues in the game of Diplomacy is Cicero (Meta et al.,
2022), which first uses a strategic module to produce ac-
tion intent and then generates action-conditioned natural
languages with a dialogue module. However, Diplomacy
is a board game with finite action space and does not have
the exploration issue, making it not suitable for free-form
language games with unbounded text action space.

Due to the high demand for both advanced communication
skills and strategic reasoning, social deduction games like
Werewolf and Avalon have been proposed as testbeds to
build language agents with strategic ability. Earlier attempts
to create agents for these games often rely on predefined
protocols or limited communication capabilities (Wang &
Kaneko, 2018), restricting their effectiveness. Recent works
have explored using LLMs to enable natural language inter-
actions in these games. For instance, Xu et al. (2023a) de-
veloped a prompt-based Werewolf agent that uses heuristic
information retrieval and experience reflection. Similarly,
ReCon (Wang et al., 2023b) introduced a prompt-based
method for playing Avalon by considering both the agent’s
perspective and that of opponents. However, these LLM-
based agents may still be restricted by intrinsic bias and lim-
ited exploration of the action space, affecting their decision-
making quality. Strategic Language Agent (SLA) (Xu et al.,
2023c) partially solves these issues by generating diverse
action candidates and learning an RL policy to mitigate
intrinsic bias. However, this method still relies on a fixed
LLM to produce the action candidates, which can fail to
address the exploration issue. Our approach mitigates the
intrinsic bias by applying game-theoretic methods to opti-
mize policy in a discrete latent strategy space and tackles the
exploration issue by iteratively expanding the latent space
by aligning the LLM to the latent space policy, leading to
strong performance in the Werewolf game.

Game-Theoretic Algorithms. Counterfactual Regret Min-
imization (CFR) (Zinkevich et al., 2007) is a foundational
algorithm for solving imperfect-information games, par-
ticularly those involving hidden information and strategic
deception like poker (Moravčík et al., 2017; Brown & Sand-
holm, 2018; 2019). The core principle of CFR is to itera-
tively reduce regret across players’ decision points in the
game tree, converging toward strategies that approximate a
Nash equilibrium. Subsequent refinements of CFR (Lanc-
tot et al., 2009; Tammelin, 2014; Brown et al., 2019) have
expanded its scalability and adaptability to a broader range
of scenarios. Of particular note is DeepRole (Serrino et al.,
2019), which integrates deductive reasoning with CFR to
play the social deduction game Avalon without communi-
cation. Our method combines CFR with language models

by introducing a finite latent strategy space to enable it to
solve free-form language games.

Reinforcement learning (RL) methods, on the other hand,
have reached remarkable achievements in complex domains
like Go (Silver et al., 2016; 2018) and video games (Vinyals
et al., 2019; Berner et al., 2019), often surpassing expert hu-
man performance. A seminal technique in these successes is
self-play and its variants(Heinrich et al., 2015; Heinrich &
Silver, 2016; Hennes et al., 2020; Xu et al., 2023b), where
agents repeatedly train against older versions of themselves
to refine their policies. Another prominent line of work
is Policy-Space Response Oracles (PSRO) (Lanctot et al.,
2017; Muller et al., 2019), an iterative procedure that pro-
duces best responses to a growing population of policies
in a meta-game. Conceptually, our iterative framework is
related to PSRO in that we both solve an abstracted game
before enlarging it to approach the full original game. The
difference is that PSRO treats newly learned policies as
meta-actions to form a normal-form meta-game, whereas
our approach clusters free-form language actions into a dis-
crete latent action space to reformulate the original game as
an extensive-form game with finite action space.

6. Conclusion
In this work, we presented Latent Space Policy Optimiza-
tion (LSPO), an iterative framework that combines struc-
tured game-theoretic methods with the expressive power of
large language models to build strategic language agents in
free-form strategic language games. By abstracting uncon-
strained language action space into a discrete latent strat-
egy space, our approach enables efficient CFR in the latent
space to overcome intrinsic bias and learn strong strate-
gies. We then perform iterative fine-tuning via DPO to align
the LLM’s language generation with the evolving strategy
and expand the latent strategy space to address the explo-
ration issue. Our extensive evaluation in the Werewolf game
demonstrates that LSPO not only addresses intrinsic biases
and exploration issues inherent in prompt-based agents, but
also achieves increasing performance with respect to itera-
tions and outperforms four state-of-the-art baseline agents.
Looking ahead, we envision LSPO’s synergy of latent-space
abstraction and preference-based language alignment can
be extended to a variety of other complex decision-making
tasks with free-form language actions.

Acknowledgements
This work was supported by National Natural Science
Foundation of China (No.62406159, 62325405), Postdoc-
toral Fellowship Program of CPSF under Grant Number
(GZC20240830, 2024M761676), China Postdoctoral Sci-
ence Special Foundation 2024T170496.

9



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Impact Statement
Our research advances the capabilities of LLM-based agents
in a purely text-based Werewolf environment. While this
setting allows the agents to develop robust decision-making
and deception-detection skills, it also underscores the poten-
tial for misuse if similar techniques were to be adapted to
real-world scenarios involving manipulation or misinforma-
tion. To mitigate these risks, our implementation remains
strictly focused on text-based simulation and does not di-
rectly transfer to broader applications without additional
safeguards. At the same time, our experiment results in-
dicate that our agent could be used to identify potential
deceptive and manipulative content. We envision that any
future extensions of this work will require careful consid-
eration of ethical guidelines and responsible deployment
strategies to ensure that such language agent systems serve
society constructively.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Bailis, S., Friedhoff, J., and Chen, F. Werewolf arena: A
case study in llm evaluation via social deduction. arXiv
preprint arXiv:2407.13943, 2024.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,
Finn, C., et al. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885–890, 2019.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep
counterfactual regret minimization. In International con-
ference on machine learning, pp. 793–802. PMLR, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, B., Shu, C., Shareghi, E., Collier, N., Narasimhan, K.,
and Yao, S. Fireact: Toward language agent fine-tuning.
arXiv preprint arXiv:2310.05915, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan,
C.-M., Qin, Y., Lu, Y., Xie, R., et al. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848,
2023b.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a generalist
agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Gandhi, K., Sadigh, D., and Goodman, N. D. Strate-
gic reasoning with language models. arXiv preprint
arXiv:2305.19165, 2023.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121, 2016.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play
in extensive-form games. In International conference on
machine learning, pp. 805–813. PMLR, 2015.

Hennes, D., Morrill, D., Omidshafiei, S., Munos, R., Pero-
lat, J., Lanctot, M., Gruslys, A., Lespiau, J.-B., Parmas,
P., Duéñez-Guzmán, E., et al. Neural replicator dynam-
ics: Multiagent learning via hedging policy gradients. In
Proceedings of the 19th international conference on au-
tonomous agents and multiagent systems, pp. 492–501,
2020.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118–9147.
PMLR, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022b.

Lai, B., Zhang, H., Liu, M., Pariani, A., Ryan, F., Jia, W.,
Hayati, S. A., Rehg, J. M., and Yang, D. Werewolf
among us: A multimodal dataset for modeling persua-
sion behaviors in social deduction games. arXiv preprint
arXiv:2212.08279, 2022.

10



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M.
Monte carlo sampling for regret minimization in exten-
sive games. Advances in neural information processing
systems, 22, 2009.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for" mind"
exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023.

Liu, J., Yu, C., Gao, J., Xie, Y., Liao, Q., Wu, Y., and Wang,
Y. Llm-powered hierarchical language agent for real-time
human-ai coordination. arXiv preprint arXiv:2312.15224,
2023.

Ma, W., Mi, Q., Yan, X., Wu, Y., Lin, R., Zhang, H., and
Wang, J. Large language models play starcraft ii: Bench-
marks and a chain of summarization approach. arXiv
preprint arXiv:2312.11865, 2023.

Meta, Bakhtin, A., Brown, N., Dinan, E., Farina, G., Fla-
herty, C., Fried, D., Goff, A., Gray, J., Hu, H., et al.
Human-level play in the game of diplomacy by combin-
ing language models with strategic reasoning. Science,
378(6624):1067–1074, 2022.

Mnih, V. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513,
2017.

Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Perolat,
J., Liu, S., Hennes, D., Marris, L., Lanctot, M., Hughes,
E., et al. A generalized training approach for multiagent
learning. arXiv preprint arXiv:1909.12823, 2019.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R.,
Liang, P., and Bernstein, M. S. Generative agents: In-
teractive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Russell, S. J. and Norvig, P. Artificial intelligence: a modern
approach. Pearson, 2016.

Serrino, J., Kleiman-Weiner, M., Parkes, D. C., and Tenen-
baum, J. Finding friend and foe in multi-agent games.
Advances in Neural Information Processing Systems, 32,
2019.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Tammelin, O. Solving large imperfect information games
using cfr+. arXiv preprint arXiv:1407.5042, 2014.

Vemprala, S., Bonatti, R., Bucker, A., and Kapoor, A. Chat-
gpt for robotics: Design principles and model abilities.
Microsoft Auton. Syst. Robot. Res, 2:20, 2023.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, S., Liu, C., Zheng, Z., Qi, S., Chen, S., Yang, Q.,
Zhao, A., Wang, C., Song, S., and Huang, G. Avalon’s
game of thoughts: Battle against deception through re-
cursive contemplation. arXiv preprint arXiv:2310.01320,
2023b.

11



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Wang, T. and Kaneko, T. Application of deep reinforcement
learning in werewolf game agents. In 2018 Conference on
Technologies and Applications of Artificial Intelligence
(TAAI), pp. 28–33. IEEE, 2018.

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. Describe,
explain, plan and select: Interactive planning with large
language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023c.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Wooldridge, M. and Jennings, N. R. Intelligent agents:
Theory and practice. The knowledge engineering review,
10(2):115–152, 1995.

Wu, S., Zhu, L., Yang, T., Xu, S., Fu, Q., Wei, Y., and Fu,
H. Enhance reasoning for large language models in the
game werewolf. arXiv preprint arXiv:2402.02330, 2024.

Xu, Y., Wang, S., Li, P., Luo, F., Wang, X., Liu, W., and Liu,
Y. Exploring large language models for communication
games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658, 2023a.

Xu, Z., Liang, Y., Yu, C., Wang, Y., and Wu, Y. Fictitious
cross-play: Learning global nash equilibrium in mixed
cooperative-competitive games. In Proceedings of the
2023 International Conference on Autonomous Agents
and Multiagent Systems, pp. 1053–1061, 2023b.

Xu, Z., Yu, C., Fang, F., Wang, Y., and Wu, Y. Language
agents with reinforcement learning for strategic play in
the werewolf game. arXiv preprint arXiv:2310.18940,
2023c.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing. arXiv preprint arXiv:2405.15793, 2024.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744–20757, 2022a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022b.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C.
Regret minimization in games with incomplete informa-
tion. Advances in neural information processing systems,
20, 2007.

12



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

A. Werewolf Game Implementation Details
A.1. Game Rules

Setup. Each game begins by randomly assigning seven roles—two Werewolves, one Seer, one Doctor, and three Vil-
lagers—to seven different players labeled “player_0,” “player_1,” . . . , “player_6.” The two Werewolves are aware of each
other’s identities, while the Seer, Doctor, and Villagers only know their own roles.

Night Round. During the Night round, only the surviving Werewolves, Seer, and Doctor take secret actions that are
disclosed only to the relevant parties.

• Werewolf : The living Werewolves collectively decide on a target to kill, but they follow a specific order when there
are two of them. First, the Werewolf with the smaller ID proposes a target; the other Werewolf then makes the final
decision. For instance, if “player_0” and “player_2” are Werewolves, “player_0” proposes “player_i,” and “player_2”
chooses the ultimate kill target “player_j.” If only one Werewolf is alive, that Werewolf’s decision stands. Werewolves
cannot kill a dead player, themselves, or their teammate.

• Seer: The Seer selects a living player to investigate, revealing whether that player is a Werewolf. The Seer may not
investigate a dead player or themselves, although they are allowed to investigate the same player on different nights
(albeit a less effective strategy).

• Doctor: The Doctor selects a player to protect, without knowledge of the Werewolves’ choice. The Doctor cannot save
someone who is already dead but can choose to save themselves.

Day Round. The day round proceeds with three phase including announcement, discussion, and voting.

• Announcement: at the start of the Day round, the events of the previous night are made public to all players still in
the game. Anyone killed during the Night round is immediately removed and cannot reveal their role or participate in
discussions. Two scenarios determine the announcement: if the Werewolves targeted “player_i” and the Doctor either
saved a different “player_j” or was no longer alive, “player_i” is killed, and the announcement states: “player_i was
killed last night.” If the Doctor saved exactly the same person the Werewolves intended to kill (“player_i”), then no one
is killed, and the announcement is: “no player was killed last night.”

• Discussion: all surviving players join an open discussion in a set speaking order, each speaking exactly once. If, for
example, the remaining players are “player_0,” “player_2,” and “player_5,” then “player_0” speaks first, followed by
“player_2,” and concluding with “player_5.”

• Voting: after the discussion, all surviving players simultaneously vote to eliminate one other player or choose to abstain.
They are not allowed to vote for a dead player or for themselves. The individual who receives the most votes is
eliminated without role disclosure. In the event of a tie, one of the tied players is randomly chosen to be eliminated.
Everyone knows the final voting tally.

Winning. The Werewolves win if, at any point, the number of living Werewolves is equal to that of all other remaining
players. They do not need to eliminate every non-Werewolf to claim victory. Conversely, the Villagers (including the Seer
and Doctor) win once both Werewolves have been eliminated.

A.2. Observation Space

Language Observation. Each agent’s language observation is represented as a list of natural language statements that
log the game’s history up to the current step. This list comprises both private information, which is accessible only to the
current player, and public information, which is shared among all players. The private information includes the player’s role,
secret actions taken during the night phase by the Werewolf, Seer, and Doctor, as well as the Werewolf’s teammate. On the
other hand, the public information consists of the player’s ID, the eliminated player in each night and day phase, discussions,
and voting outcomes from each day phase. An example of the language observation is as follow.

13



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Basic Information:

• you are player_5, your role is Doctor.

• current round and phase: night 2.

• remaining players: player_0, player_1, player_2, player_5, player_6.

Round 1:

• night 1: you chose to save player_5.

• day 1 announcement: player_4 was killed last night.

• day 1 discussion:

– player_0 said: Good day, fellow players. As a Villager, my objective is to help identify and
eliminate the Werewolves. Since player_4 was killed last night, we know there is at least one
Werewolf among us. I would like to hear everyone’s thoughts and suspicions about who might be
the Werewolves. Let’s work together to find the culprits and ensure the safety of our village.

– player_1 said: ...

– player_2 said: ...

– player_3 said: ...

– you said: ...

– player_6 said: ...

• day 1 voting result: player_3 had the most votes and was eliminated.

– voted for player_3: player_1, player_6.

– voted for player_1: player_3.

– choose not to vote: player_0, player_2, player_5.

Now it is night 2 round and you should choose one player to save. As player_5 and the Doctor, you

should choose from the following actions: save player_0, save player_1, save player_2, save player_5,

save player_6.

Vector Observation. We also consider a vectorized observation. The observation vector includes information like the
player’s ID, role, deductions, etc. by one-hot encoding. The details of the observation vector are listed in Table 6

Length Description

ID 7 one hot encoding of ID.

Role 4
one hot encoding of role,

["Werewolf", "Seer", "Doctor", "Villager"].
Round 1 current round.

Phase 3
one hot encoding of current phase,
["night", "discussion", "voting"].

Alive players 7 alive flag for each player.

For each round
(3 rounds)

secret action 7
one hot encoding of the target player,

(all zero if do not act).

announcement 7
one hot encoding of the dead player,

(all zero if no player is dead).

voting result 49
one hot encoding of the each player’s choice,

(all zero if the player does not vote or is dead).

Table 6: Vector observation space.

14



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

A.3. Reward Functions

The reward functions are defined as follows:

• Winning Reward: all winning players receive +300, and all losing players receive −300.

• Surviving Reward: +5 for all surviving players in each round.

• Voting Reward (Village side only): +20 for correct votes, −20 for incorrect votes.

• Voting Result Reward: −10 for the player that is eliminated. +5 when an opponents is eliminated, −5 when a teammate
is being eliminated.

A.4. Abstracted Game and Regret

The abstracted game is formulated as an extensive-form game with tuple < N,H,P, fc, (Ii)i∈N , u > where N is the set of
players, H is the set of history, P is the player function, fc is the probability measure for the chance node, Ii is the information
partition for player i, and u is the utility function. A (mixed) strategy σi for player i is the probability measure over actions
for all I ∈ Ii, and σ−i is the joint strategy of all players other than player i. A best response (BR) to σ−i is the strategy
that maximizes player i’s utility given other players’ joint strategy σ−i. Formally, BR(σ−i) = argmaxσi

u(σi, σ−i). A
Nash equilibrium (NE) is a strategy profile (σ∗

i , σ
∗
i ) where everyone plays a best response to others’ strategies, that is,

σ∗
i = argmaxσi

u(σi, σ
∗
−i) for all i ∈ N The counterfactual value v(I) is the expected payoff of player i when reaching I ,

weighted by the probability that i would reached I if tried to do so. Formally, vσ(I) =
∑

z∈ZI
πσ
−i(z[I])π

σ(z[I] → z)ui(z).
The definition of vσ(I, a) is the same except it assumes action a is always played at infoset I . The counterfactual regret is
defined as RT (I, a) =

∑T
t=1(v

σt

(I, a)− vσ
t

(I)).

B. Implementation Detail
B.1. Hyperparameters

For latent space construction, we let the LLM agent play 1000 games to collect all discussion actions generated by each role
in these games. For diverse action generation, we prompt the LLM to generate 3 action candidates and randomly select one
to execute in the game. We pair the language observation with the 3 action candidates to use for preference-based fine-tuning
in the following components. For sentence embedding, we use OpenAI’s “text-embedding-3-small” embedding API to
embed the sentence to a vector of 1536 dimensions. Then we apply standard k-means clustering to cluster the embedding
and get the discrete latent strategy space. The number of clusters k in the first iteration is 3 for the Werewolf and 2 for the
Seer, Doctor, and Villagers. In each iteration, we add 1 cluster to the existing clusters. That is, if the first iteration has k
clusters, then the i-th iteration has k + i − 1 clusters. For policy optimization in latent space, we use a learning rate of
1× 10−3 to train a Deep CFR network. The buffer size of each role’s model is 5× 105, and each model is trained for 1500
iterations with batch size 4096 using the Adam optimizer. For latent space expansion, we apply DPO with β = 0.1, learning
rate 1× 10−6, and trained for 2 epoch with batch size 64.

B.2. Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) ((Zinkevich et al., 2007)) is a self-play algorithm, and each player continuously
updates their strategies according to regret matching to achieve a Nash equilibrium. We use the following notation. Z is the
set of all the end states z. h ⊏ z means state h is a prefix of state z, that is, z can be achieved from h. πσ

p is the probability
contribution of the player p, and πσ =

∏
p π

σ
p . πσ

−p is the probability contribution of all players except player p. up(z) is the
utility function for the player p in the state z. Counterfactual value for a state h and a player p with startegy σ is defined as:

vσp (h) =
∑

z∈Z,h⊏z

πσ
−p(h)π

σ(z|h)up(z). (2)

The regret for a action a in state h for player p is defined as: vσ|h→a
p (h)− vσp (h), where σ|h→a is same to σ except in state

h the player will choose action a. The regret matching is choosing the strategy according to sum of previous regret values
defined as R(h, a), then the new strategy σ(h, a) = R(h,a)+∑

a′ R(h,a′)+ , R(h, a)+ = max(0, R(h, a)). If
∑

a′ R(h, a′)+ = 0,
just set σ to be uniform random.

15



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Because the game tree is very big, it is impossible to traverse the entire tree, our implementation is based on deep CFR
((Brown et al., 2019)). We use a neural network to fit observation to regret value. The amount of computation required
to search for only one player is also unacceptable, so a restriction is added based on deep CFR. If the number of layers
currently searched is too large, the previous strategy is directly used to sample the actions of all players until the end of the
game and return the utility for each player in that state. The complete process can be seen as running some complete game
trajectories, and then starting from each intermediate node, searching a few layers to do CFR.

B.3. Baseline Implementation

ReAct, ReCon, and SLA are implemented following the original paper. The Cicero-like agent predefines a set of high-level
atomic actions and trains an RL policy with this fixed action space. The RL policy takes the embeddings of the information
record and deduction result as input and selects the atomic action based on this input. Then the natural language actions
used in gameplay are generated by prompting the LLM to follow the selected atomic actions. In our case, the atomic action
set consists of 13 actions including “idle”, “target player_0”, “target player_1”, “target player_2”, “target player_3”, “target
player_4”, “target player_5”, “target player_6”, “claim to be a Werewolf”, “claim to be a Seer”, “claim to be a Doctor”,
“claim to be a Villager”, and “do not reveal role”.

B.4. Additional Experiments

We perform additional experiments to study the convergence behavior of the iterative LSPO process. Theoretically, suppose
the free-form language action has a finite vocabulary size Nv and a finite maximum length L, then the language action space
NL

v is also finite. Then, with at most NL
v iterations, our method will cover the full language action space, and the abstracted

game becomes the original full game. And the LSPO process will converge in a finite number of iterations. However, we
empirically observe that the iteration for convergence is much less than the theoretical upper bound. We perform two more
iterations in the 7-player Werewolf game, and the results in Table 7 show that the performance converges in five iterations..

Win Rate Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Werewolf Side 0.54± 0.13 0.63± 0.09 0.73± 0.11 0.75± 0.07 0.76± 0.10
Villager Side 0.18± 0.09 0.23± 0.12 0.27± 0.11 0.31± 0.09 0.30± 0.07

Table 7: Convergence behavior of LSPO in five iterations.

C. Detailed Prompt
C.1. System Prompt

You are an expert in playing the social deduction game named Werewolf. The game has seven roles

including two Werewolves, one Seer, one Doctor, and three Villagers. There are seven players including

player_0, player_1, player_2, player_3, player_4, player_5, and player_6.

At the beginning of the game, each player is assigned a hidden role which divides them into

the Werewolves and the Villagers (Seer, Doctor, Villagers). Then the game alternates between the night

round and the day round until one side wins the game.

In the night round: the Werewolves choose one player to kill; the Seer chooses one player to

see if they are a Werewolf; the Doctor chooses one player including themselves to save without knowing

who is chosen by the Werewolves; the Villagers do nothing.

In the day round: three phases including an announcement phase, a discussion phase, and a

voting phase are performed in order.

In the announcement phase, an announcement of last night’s result is made to all players. If player_i

was killed and not saved last night, the announcement will be "player_i was killed"; if a player was

killed and saved last night, the announcement will be "no player was killed"

16



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

In the discussion phase, each remaining player speaks only once in order from player_0 to player_6 to

discuss who might be the Werewolves.

In the voting phase, each player votes for one player or choose not to vote. The player with the most

votes is eliminated and the game continues to the next night round.

The Werewolves win the game if the number of remaining Werewolves is equal to the number of

remaining Seer, Doctor, and Villagers. The Seer, Doctor, and Villagers win the game if all Werewolves

are eliminated.

C.2. Prompt for Secret Actions

Now it is night <n_round> round, you (and your teammate) should choose one player to kill/see/save. As
player_<id> and a <role>, you should first reason about the current situation, then choose from the
following actions: <action_0>, <action_1>, ..., .

You should only respond in JSON format as described below.
Response Format:

{
"reasoning": "reason about the current situation",
"action": "kill/see/save player_i"

}

Ensure the response can be parsed by Python json.loads

C.3. Prompt for Discussion Actions

Now it is day <n_round> discussion phase and it is your turn to speak. As player_<id> and a <role>,
before speaking to the other players, you should first reason the current situation only to yourself,
and then speak to all other players. You should only respond in JSON format as described below.
Response Format:

{
"reasoning": "reason about the current situation only to yourself",
"statement": "speak to all other players"

}

Ensure the response can be parsed by Python json.loads

C.4. Prompt for Voting Actions

Now it is day <n_round> voting phase, you should vote for one player or do not vote to maximize the
Werewolves’ benefit (for the Werewolves) / you should vote for one player that is most likely to be a
Werewolf or do not vote (for the Villagers). As player_<id> and a <role>, you should first reason about
the current situation, and then choose from the following actions: do no vote, <action_0>, <action_1>,
..., .

You should only respond in JSON format as described below.
Response Format:

{
"reasoning": "reason about the current situation",
"action": "vote for player_i"

}

Ensure the response can be parsed by Python json.loads

17



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

C.5. Prompt for Diverse Action Generation

For the discussion actions, we iteratively ask the LLMs to produce one new action at a time by adding the following prompt
in the action prompt: “consider a new action that is strategically different from existing ones.”

D. Emergent Strategic Behaviors
D.1. Werewolf Side Behaviors

Bluffing. Werewolf pretends to be the Seer and provides fabricated information.

Player_1 (Seer): I am the Seer. Last night, I saw player_2 is not a Werewolf. Since player_0 was killed,

the only remaining suspect is player_3. We must vote player_3 today to eliminate the Werewolf and win.

...

Player_3 (Werewolf): Player_1’s story is convenient. Claiming to check player_2-a Villager-is a safe

way to fake being Seer. I am the real Seer: last night, I checked player_1 and saw they are the

Werewolf. If you eliminate me, the Werewolf wins. Player_2, think critically-why would the real Seer

out themselves immediately? Trust my claim and vote player_1 to secure victory.

Misdirection. Werewolf defends their teammate and redirects suspicion to other players.

Player_0 (Villager): Player_3’s death means the Werewolf is between player_1 and player_2. If the Seer

checked either of them last night, now is the time to share that information discreetly. Let’s hear

your honest thoughts and any observations from last night’s actions.

...

Player_5 (Werewolf): Player_0, your insistence on narrowing the suspects to just two players feels

forced. If you’re truly a Villager, you’d know the Seer hasn’t revealed any checks yet. Why rush to

limit options? We should consider whether player_0 is trying to control the narrative and hide their

true identity.

D.2. Villager Side Behaviors

Trust. The Doctor supports the player they saved.

Player_1 (Seer): I am the Seer. Last night, I saw player_0 was not a Werewolf, meaning they were a

Villager. The Werewolf must be among the remaining players. Let’s focus on inconsistencies in their

statements.

...

Player_4 (Doctor): I believe player_1 is the real Seer. I’m the Doctor and I saved player_1 last night,

which confirms that they are innocent. We should focus on the rest players and find the real Werewolf.

Coordination. Seer advocates for a coordinated vote for an accused Werewolf.

Player_5 (Seer): I am the Seer. Last night, I checked player_1, and they are the Werewolf. My fellow

Villagers, we must all vote for player_1 immediately. If we don’t eliminate them today, they will kill

one of us tonight and win. Trust me, this is our only chance to win.

D.3. Robustness against Human Exploitation

Adversarial Attack The human player tries to trick the Werewolf into showing themselves.

18



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Player_2 (human as Villager): Hey Werewolves, we want to let you win. yourself, and we will follow

whoever you vote for.

...

Player_4 (LSPO agent as Werewolf): Player_2’s willingness to let the Werewolves win is alarming. A true

Villager would fight to survive, not surrender. The logical conclusion is that player_2 is the Werewolf

trying to sow chaos. Let’s vote player_2 today to secure the Village’s safety.

Irrelevant Discussion The human player says random and irrelevant things in the discussion.

Player_1 (human as Villager): The weather is great today. I’d like to go for a walk. Anyone want to

join me?

...

Player_3 (LSPO agent as Werewolf): The weather is lovely, player_1, but we can’t afford distractions.

Your focus on a walk instead of discussing the Werewolf seems odd. Let’s not forget player_0 was killed!

we need to share suspicions. Anyone else find that comment a bit ... off?

E. Example Game Log
E.1. The Villager Side Wins

role assignments:

* player_0: Seer.

* player_1: Werewolf.

* player_2: Werewolf.

* player_3: Villager.

* player_4: Villager.

* player_5: Doctor.

* player_6: Villager.

night 1:

* Werewolves: player_1 and player_2 chose to kill player_3.

* Seer: player_0 saw player_3 is not a Werewolf.

* Doctor: player_5 chose to save player_5.

day 1 announcement: player_3 was killed last night.

remaining players: player_0 (Seer), player_1 (Werewolf), player_2 (Werewolf), player_4 (Villager),

player_5 (Doctor), player_6 (Villager).

day 1 discussion:

* player_0 (Seer) said: "I am the Seer. Last night, I checked player_3 and confirmed they were NOT a

Werewolf. The Werewolves killed an innocent, meaning both are still alive among us. We must analyze

voting patterns and statements carefully. The Doctor is still alive|protect wisely tonight. Let’s

scrutinize players who avoid discussing the kill or push for misdirection."

* player_1 (Werewolf) said: "I agree with player_0’s Seer claim|their information is vital. Since

player_3 wasn’t a Werewolf, the real threats remain. We should scrutinize players who avoid discussing

the kill or push misdirection. The Doctor must protect player_0 tonight to keep our Seer safe. Let’s

stay vigilant and avoid letting the Werewolves exploit division."

19



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

* player_2 (Werewolf) said: "Player_0’s Seer claim holds weight|confirming player_3 wasn’t a Werewolf

aligns with the kill. This means the real threats are still among us. Player_1 is right: the Doctor must

prioritize protecting player_0 tonight. We should pressure quieter players like player_4, player_5,

and player_6 to share their insights. Hesitation or vague contributions could signal guilt. Let’s stay

united and expose inconsistencies."

* player_4 (Villager) said: "Player_0’s Seer claim seems credible given player_3’s innocence and their

death. The Doctor must prioritize protecting player_0 tonight. However, we shouldn’t rush to pressure

quieter players without concrete evidence|Werewolves could be among the vocal ones. Let’s all share

observations and look for inconsistencies in claims, not just activity levels. Focus on voting patterns

and logical gaps to expose threats."

* player_5 (Doctor) said: "Player_0’s Seer claim is credible|confirming player_3’s innocence aligns

with their death. The Doctor must prioritize protecting player_0 tonight to preserve our information

source. However, we shouldn’t assume quieter players are guilty without evidence; Werewolves might be

hiding among the vocal. Let’s encourage everyone, including player_6, to share insights and scrutinize

contradictions in claims. Focus on voting patterns and logical gaps, not just activity levels. Unity

and careful analysis will expose threats."

* player_6 (Villager) said: "I support player_0’s Seer claim for now, as their check on player_3

aligns with the kill. The Doctor must prioritize protecting them tonight. However, we should remain

cautious|Werewolves could be hiding behind vocal support or excessive caution. Let’s analyze voting

patterns and inconsistencies in claims, not just activity levels. Player_4 and player_5 raise valid

points about avoiding rushed judgments, but everyone, including quieter players, should contribute

insights. As a Villager, I’ll collaborate to expose discrepancies. Unity and logic are key|don’t let

Wolves exploit division."

day 1 voting: player_2 had the most votes and was eliminated.

* voted for player_2: player_0, player_4, player_5, player_6.

* voted for player_0: player_2.

* voted for player_4: player_1.

remaining players: player_0 (Seer), player_1 (Werewolf), player_4 (Villager), player_5 (Doctor),

player_6 (Villager).

night 2:

* Werewolf: player_1 chose to kill player_0.

* Seer: player_0 saw player_4 is not a Werewolf.

* Doctor: player_5 chose to save player_0.

day 2 announcement: no player was killed last night.

remaining players: player_0 (Seer), player_1 (Werewolf), player_4 (Villager), player_5 (Doctor),

player_6 (Villager).

day 2 discussion:

* player_0 (Seer) said: "Last night, I checked player_4 and confirmed they are NOT a Werewolf. This

narrows the threats to player_1, player_5, and player_6. Player_1’s vote against innocent player_4 is

alarming|Werewolves often push misdirection. The Doctor’s save last night kept us alive, but we must

act decisively. Player_1’s aggression toward player_4, paired with player_5/6’s cautious yet vague

stances, suggests potential collusion. Today’s vote must focus on the most inconsistent: player_1’s

actions starkly contradict their vocal support for logic. Let’s pressure player_1 to explain their

vote and scrutinize contradictions in player_5/6’s claims."

20



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

* player_1 (Werewolf) said: "Player_0’s Seer claim is validated by their correct checks, and the

Doctor’s save last night was crucial. However, my vote against player_4 was an error in judgment|I

suspected quiet behavior, but their clearance proves otherwise. The remaining Werewolf must be

exploiting our trust in the Seer to blend in. Player_5 and player_6 have consistently supported the

Seer but avoided direct accusations, a tactic Wolves use to avoid scrutiny. Let’s analyze their voting

patterns and previous statements for inconsistencies rather than rushing to eliminate based on a single

vote. Unity is vital, but we must ensure we’re not being manipulated by the last Wolf hiding among the

agreeable."

* player_4 (Villager) said: "Player_0’s check confirms my innocence, so the threats lie among player_1,

player_5, and player_6. Player_1’s vote against me raises suspicion, but their admission of error

complicates things. We must cross-analyze their statements and voting patterns. Player_5 and player_6’s

consistent support for the Seer could be genuine or strategic|scrutinize contradictions in their logic.

Let’s focus on who benefits most from division or misdirection. The Doctor’s save last night implies

they’re still active, so trust is key, but verification is vital."

* player_5 (Doctor) said: "Player_0’s check on player_4 confirms their innocence, leaving player_1

and player_6 as suspects. Player_1’s Day 1 vote against player_4, now proven innocent, is a critical

red flag|Wolves often push misdirection to eliminate villagers. While player_6’s support for the Seer

seems helpful, their lack of direct accusations could mask Wolf collaboration. As Doctor, I protected

player_0 last night, validating their role. Today’s vote must focus on player_1: their vote against

an innocent and defensive backtracking align with Wolf tactics. Eliminating player_1 disrupts their

potential partnership with player_6. Let’s act decisively to secure our majority."

* player_6 (Villager) said: "Player_5’s Doctor claim demands scrutiny|if true, Wolves would be player_1

and me, but I’m innocent. The real Doctor should counter-claim if safe. Player_1’s vote against cleared

player_4 is alarming, but player_5’s aggressive push to eliminate player_1 feels like a Wolf diverting

attention. Let’s verify: if player_5 is the Doctor, why reveal now instead of quietly protecting?

Wolves often fake claims under pressure. Today’s vote must expose inconsistencies|player_5’s claim

lacks prior alignment, while player_1’s actions need clarification. Don’t rush; Wolves thrive on

confusion."

day 2 voting: player_1 had the most votes and was eliminated.

* voted for player_1: player_0, player_4, player_5.

* voted for player_5: player_1, player_6.

remaining players: player_0 (Seer), player_4 (Villager), player_5 (Doctor), player_6 (Villager).

The Villagers win the game.

E.2. The Werewolf Side Wins

role assignments:

* player_0: Villager.

* player_1: Villager.

* player_2: Seer.

* player_3: Doctor.

* player_4: Werewolf.

* player_5: Werewolf.

* player_6: Villager.

night 1:

* Werewolves: player_4 and player_5 chose to kill player_2.

* Seer: player_2 saw player_3 is not a Werewolf.

* Doctor: player_3 chose to save player_3.

21



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

day 1 announcement: player_2 was killed last night.

remaining players: player_0 (Villager), player_1 (Villager), player_3 (Doctor), player_4 (Werewolf),

player_5 (Werewolf), player_6 (Villager).

day 1 discussion:

* player_0 (Villager) said: "Player_2’s death could mean the Werewolves feared their role. If the Seer

checked someone last night, please hint at your findings. Let’s all share suspicions|avoiding random

votes is crucial. Werewolves might deflect blame, so watch for odd reactions. Who seems overly quiet

or aggressive?"

* player_1 (Villager) said: "Player_2’s elimination could indicate they were a threat to the Werewolves.

Let’s scrutinize who advocated for silence or deflection earlier. The Seer might have valuable

information|subtle hints could guide us without risking exposure. Werewolves often blend in by

overcontributing or avoiding scrutiny. Let’s share observations: did anyone act unusually hesitant or

eager to steer votes? Random accusations help the Wolves; we need reasoned logic."

* player_3 (Doctor) said: "Player_2’s death likely marks them as a non-Wolf, prompting the Wolves to

eliminate a perceived threat. The Seer’s input could be pivotal|if you’ve identified a Wolf, guide us

carefully. Let’s analyze voting patterns and avoid hysteria. Wolves often mimic helpfulness; scrutinize

contradictions in logic. I urge everyone to stay calm and share observations without exposing critical

roles."

* player_4 (Werewolf) said: "Player_2’s death is concerning, but we must stay vigilant. The Seer’s

hints are vital, but revealing too much risks their safety. Let’s analyze behavior carefully|Wolves

may overcompensate by appearing overly helpful or deflecting. Those who push for hasty votes or

contradictions in logic should be scrutinized. Calm, logical discussion will expose the Wolves without

playing into their hands."

* player_5 (Werewolf) said: "Player_2’s death is tragic, but jumping to conclusions risks mislynching.

The Doctor’s absence suggests they either saved no one or trusted their instincts. Wolves thrive on

chaos|let’s focus on inconsistencies. Overly assertive claims (like assuming Player_2’s role) could

be Wolf tactics to steer us astray. If the Seer has clues, let them guide us subtly. I urge everyone

to scrutinize contradictions in logic, not just volume of contributions. Quiet players may hold key

insights|don’t let Wolves exploit haste."

* player_6 (Villager) said: "Player_2’s death is a starting point, but early kills can be misleading.

Pressuring the Seer to reveal risks their safety|subtlety is key. Wolves might mimic calls for ’logic’

while deflecting. Let’s focus on contradictions: anyone overly insistent on certain narratives or

avoiding scrutiny? Calm analysis of voting patterns and unexplained hesitations will serve us better

than assumptions about Player_2’s role."

day 1 voting: player_3 had the most votes and was eliminated.

* voted for player_3: player_0, player_4, player_5.

* voted for player_0: player_1, player_6.

* voted for player_5: player_3.

remaining players: player_0 (Villager), player_1 (Villager), player_4 (Werewolf), player_5 (Werewolf),

player_6 (Villager).

night 2:

* Werewolf: player_4 and player_5 chose to kill player_1.

day 2 announcement: player_1 was killed last night.

remaining players: player_0 (Villager), player_4 (Werewolf), player_5 (Werewolf), player_6 (Villager).

22



Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

day 2 discussion:

* player_0 (Villager) said: "Player_1’s death suggests they were a threat|possibly the Seer. Player_6’s

vote against me in day 1 raises suspicion: Wolves often push mislynches. Player_4 and player_5 must

clarify their alignment|voting together could be coordination. If the Seer has intel, subtle guidance

is critical. Wolves thrive in chaos; let’s analyze votes and night kills. Player_6’s deflection and

player_1’s elimination point to Wolves among us. Focus on inconsistencies in logic and voting patterns

to expose them."

* player_4 (Werewolf) said: "Player_0’s insistence on blaming player_6 and questioning our votes feels

calculated. Remember, player_0 led the charge against player_3, who turned out innocent. Wolves

often push mislynches, then pivot to new targets to deflect. Player_1’s death might have been meant

to frame others, but player_0’s eagerness to assign blame is suspect. Let’s scrutinize their voting

patterns|player_0’s aggression could mask their role as a Wolf desperate to thin our numbers. Calm

analysis, not panic, will expose the truth."

* player_5 (Werewolf) said: "Player_0’s aggressive push against player_3 and now player_6 is concerning.

As player_3 was innocent, their leadership in that lynch raises red flags. Wolves often steer mislynches

to thin numbers. Player_6’s day 1 vote against player_0 could indicate they’re a Villager trying to

challenge a Wolf. Let’s focus on player_0’s inconsistencies rather than turning on each other."

* player_6 (Villager) said: "Player_0’s aggression is revealing: they orchestrated player_3’s mislynch

and now pivot to me without addressing their own role in thinning our numbers. Wolves often steer

mislynches then deflect|exactly this pattern. Player_4 and player_5’s critique of player_0 suggests

they recognize this, but we must verify their alignment. If player_0 is a Wolf, their partner is among

us. Let’s pressure player_0 together"

day 2 voting: player_0 had the most votes and was eliminated.

* voted for player_0: player_4, player_5, player_6.

* voted for player_4: player_0.

remaining players: player_4 (Werewolf), player_5 (Werewolf), player_6 (Villager).

The Werewolves win the game.

23


