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Abstract

We have developed a semi-automated system to annotate communal roosts of
birds and bats in weather radar data. This system comprises detection, tracking,
confounder filtering, and human screening components. We have deployed this
system to gather information on swallows from 612,786 scans taken from 12
radar stations around the Great Lakes over 21 years. The 15,628 annotated roost
signatures have uncovered population trends and phenological shifts in swallows
and martins. These species are rapidly declining aerial insectivores, and the data
gathered has facilitated crucial sustainability analyses. While human screening
is still required with the deployed system, we estimate that the screening process
is approximately 7× faster than manual annotation. Furthermore, we found that
incorporating temporal signals enhances the deployed detector’s performance,
increasing the mean average precision (mAP) from 48.7% to 56.3%. Our ongoing
work aims to expand the analysis to bird and bat roosts at a continental scale.

1 Introduction

Weather radars around the globe continuously monitor the airspace and record activities of flying
animals [1], offering opportunities to collect data about their behaviors at an unprecedented scale and
resolution [2–6]. The NEXRAD radar network [7], for example, has archived more than 0.5 petabytes
of data spanning 25 years and 159 radar stations that cover nearly the entire US [8]. Communal
roosts of birds and bats can be studied with radar since they exhibit distinctive ring patterns when
departing from roosting locations [9] (Fig. 2). Bird roosts in the US [10] are dominated by Purple
Martins (Progne subis) or Tree Swallows (Tachycineta bicolor) [11–13], which are rapidly declining
aerial insectivores in North America [14–16], and thus taxon-specific results about their ecology are
of great interest. Bats offer significant pest suppression service to agricultural fields, but are at risk
due to anthropogenic activities [17]. Past studies have employed manual annotation to identify roosts
in radar [11, 18, 13, 12, 19]. Yet manual labeling at a large scale is costly and error-prone.

We develop a semi-automated system [20] for producing research-grade roost annotations from
NEXRAD data (Figure 1). We construct a dataset with roost annotations to support model training.
We develop open-sourced software for roost detection, tracking, and confounder filtering. Model
predictions are imported to a web-based interface for screening. We deploy the system on 21 years of
scans from 12 radar stations near the Great Lakes and report an estimated human annotation cost
saving of ∼ 7×. The annotated data reveal that peak roosting activity time has advanced by 2.26
days per decade in the region potentially due to climate change [21]. We find that persistent roosts
generally gather more birds, but most birds congregate in smaller roosts, and thus it is important
to protect habitats of roosts of various sizes [22]. We enhance the detector to be able to process
extra temporal scans by an adapter layer, which allows the model to recognize expanding movement
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Figure 1: The proposed semi-automated system. (a) The exodus of birds and bats from roosting
locations are visible as expanding rings in consecutive radar scans collected every 4 to 10 minutes.
(b-c) Our system detects roosts in each scan and assembles those from consecutive scans in a day into
tracks that represent roost signatures. (d) We develop a web-based interface to enable fast screening
of roost signatures. (e) The screened data provide insights about population and phenology of the
species.

Figure 2: Training data examples: radar scans from the KDOX station on 10/1/2011 that are minutes
apart. Swallow roosts exhibit ring-shaped patterns that expand over time.

dynamics of roosts and improves its performance from 48.7% to 56.3% mAP. We observe the system
is effective on bat roosts without customization, and are extending the analyses to birds and bats at
the continent scale.

2 Semi-Automated System for Roost Annotation in Weather Radar Data

Radar data preliminaries The NEXRAD radar network covers most of the U.S. territories and
has archived radar data products since the 1990s. Each radar station performs a volume scan every
4-10 minutes by rotating the radar antenna around the vertical axis at several elevation angles to
collect various products from cone-shaped slices of the surrounding airspace. At each elevation, each
collected product is represented as a 2D array in polar coordinates indexed by range and azimuth
(antenna direction in the horizontal plane). We render 600× 600 Cartesian grids centered at the radar
station from these 2D arrays by nearest neighbor interpolation [23] for 300 km×300 km regions.

Dataset We convert the roost dataset in [24] into the COCO object detection benchmark format,
where radar scan lists and bounding box annotations are stored in json files. [24] chose data from
12 radar stations, KAMX, KDOX, KHGX, KJAX, KLCH, KLIX, KMLB, KMOB, KOKX, KRTX,
KTBW, KTLH, and randomly sampled station-days to construct training, validation, and testing
splits. Each station-day will have multiple radar scans that are minutes apart and swallow annotations
for the scans. The annotations were initially manually labeled for ecological study [13]. After
removing scans with rendering errors, we obtain 53 266 training, 11 599 validation, and 23 587
testing scans, with 37 619, 5139, and 10 942 single-scan roost labels. We apply scaling factors from
[24] to normalize annotator style variation. Figure 2 illustrates the radar scans and annotations. The
test set is for in-distribution evaluation, comprising data from the same station-years as the training
data. In our deployment experiment described below, we verify the generalization of the trained
detector by deploying it on unseen radar stations.

Roost detection, tracking, and filtering We train a Faster R-CNN detector with a ResNet101-
FPN backbone and 45 anchors ranging from 16 × 16 to 512 × 512. The backbone is pretrained
on ImageNet classification and MS-COCO detection. The detector takes three radar products as
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input channels: reflectivity at 0.5◦ and 1.5◦, and radial velocity at 0.5◦. Scaling the channels to
1200 × 1200 increases performance, likely because it is closer to the pretraining resolution. The
deployed detector achieves 48.74 mean average precision (mAP) at IoU threshold 0.5 on our test
set. We employ a greedy heuristic to assemble detections from consecutive scans into tracks [25],
starting with high scoring detections and adding unmatched detections in neighboring scans with
high overlap. We apply the Kalman filter [26] to smooth bounding box centers and radii in each roost
track. We use dual-polarization radar products and external databases, when available, to remove
rain and wind farm false positives and further reduce human screening efforts [27, 28]. More system
details are reported in [20].

User interface and screening We build a web-based interface for visualization and human screen-
ing. Any track with ≥ 2 detections, ≥ 0.15 average detection score, and ≥ 1 detection with ≥ 0.5
score is labeled roost, considered “high confidence” roosts, and displayed with full opacity; other
tracks are labeled non-roost, considered “low confidence” roosts, and displayed with low opacity.
During screening, the labels can be updated. Clear roosts are labeled as roost; roosts contaminated
by weather, anomalous propagation, and unknown noise are labeled as weather-roost, ap-roost, and
unknown-noise-roost; duplicated tracks are labeled as duplicate; incomplete and drifting tracks are
bad-track. If more than half of a scan is filled with weather or noise, the scan is abandoned.

Deployment To verify the general effectiveness of the system, we deployed it to annotate swallow
roosts in scans from 12 radar stations in the Great Lakes region, including KAPX, KBUF, KCLE,
KDLH, KDTX, KGRB, KGRR, KIWX, KLOT, KMKX, KMQT, and KTYX. These stations do not
overlap with the training data stations. We downloaded scans from 30 minutes before to 90 minutes
after local sunrise between June 1 and October 31 of 2000 to 2020. In the 120-minute window, we set
41 reference times spaced 3 minutes apart; for each time, we selected the scan closest to the reference
time, if available, to be annotated. For predicted bounding boxes, we follow Chilson et al. [29] to
convert reflectivity measurements to estimated bird counts in each roost.

Roost detection with temporal information Since roosts appear as distinctive expanding rings in
consecutive radar scans when birds and bats depart from roosting locations, we further enhance the
detector by leveraging channels from multiple temporal scans as inputs to capture the dynamics and
potentially achieve better performance. We use a learnable adaptor [30] to map an arbitrary k-channel
input array x ∈ Rk×n×m to a 3-channel image to be processed by the ResNet101-FPN backbone.
More ablation study experiments are reported in [20].

3 Results and discussion

3.1 System deployment, improvement, and analysis

Great Lakes deployment statistics We successfully rendered 612 786 scans. Our algorithm
predicted 31 313 “high-confidence” tracks assembled from 140 036 single-scan detections, and
another 230 088 “low-confidence” tracks with 372 594 detections before screening. After screening,
we identified 13 860 clean roost tracks, 477 that were contaminated by weather, 100 contaminated
by anomalous propagation, and 1191 that contained unknown noise. These four categories together
produced 15 628 roost tracks of 64 620 detections that can be useful in ornithology research.

Savings in human labeling efforts The screening in our deployment amounts to 183.6 annotator
hours. We measured that annotating a station-day manually from scratch takes 2 minutes on average,
and estimate that complete manual annotation of the Great Lakes station-years (153 days of 246
station-years with successfully rendered scans) will take 1254.6 annotator hours, or 6.83× the
screening time with our system.

Temporal information reduces false positives A significant technical advance was to incorporate
temporal information from past scans to capture roost dynamics. When viewed in a single scan,
weather and noise can have ring-shaped appearances as roosts do. However, weather usually moves
in a straight trajectory, while roosts diverge from a point. We find that incorporating multiple scans
improves the detector performance from 48.7% to 56.3% mAP at 0.5 IoU. Figure 3a shows an
example where the model successfully discriminates roosts from weather.
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(a) Prediction visualization (b) Error analysis (c) mAP at various IoU thresholds
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Figure 3: Temporal model analyses. (a) An example where the model successfully predicts three
roosts and avoids weather confounders in a scan. (b) Among the false positives according to mAP at
intersection-over-union (IoU) threshold 0.5, 56.1% are completely wrong predictions, while 44.9%
are “near-misses”. They partially overlap with ground truth and will be considered true positives
according metrics with lower IoU thresholds. (c) Precision-recall curves at different IoU thresholds —
higher reflects a stricter requirement. The mAP improves by 10.1% with IoU threshold 0.4 instead of
0.5, suggesting that a large number of detections are “near misses” that successfully find roosts but
have bounding boxes with low overlaps compared to ground truth bounding boxes.

False positives are often near-misses Following the object detection literature in computer vision,
we evaluate our detection models with the threshold of IoU> 0.5. Predicted bounding boxes with less
than 0.5 IoU compared to any ground truth bounding box are considered false positives. However,
we find that for the temporal model, 43.9% of these false positives actually partially overlap with
some ground truth bounding boxes (Figure 3b). By reducing the IoU threshold from 0.5 to 0.4 in
evaluation, we observe that the mean average precision (mAP) goes up significantly from 56.3% to
66.4% (Figure 3c). These indicate that the system has many “near-misses”, which may be tolerable
or adjusted during screening. A future version of the UI can allow users to adjust bounding box
positions and sizes, although our current version mainly supports changing labels.

Deployment on bat roosts We deploy our temporal model on bat roosts around the KEWX radar
station in Texas and observe that the system performs well at detecting and tracking bats without any
customization. Figure 4(a) provides an example. The middle-left large radar return is at the Bracken
Cave, the home to the world’s largest bat colony [31]. Our ongoing work is further examining the
system on bat roosts and aims to facilitate large-scale analyses of their behaviors.

3.2 Sustainability analysis

Phenological shift We aim to understand the interannual variations and long-term trend of swallows’
roosting phenology at the Great Lakes. Passage dates were used as phenological estimators. n%
passage date is the date when n% of the cumulative seasonal total of swallows are roosting in a
region in a year. We use 10%, 25%, 50%, 75%, 90%, and mean dates. With several phenological
estimators (different choices of n), we observe the trend of advancing passage dates over years at
the Great Lakes (Figure 4b). In particular, the timing for peak and late roosting activity has become
significantly earlier by 2-4 days per decade. Early roosting phases (10% and 25% dates). however,
are not significantly advancing. This suggests that climate change may be impacting aerial insectivore
phenology unevenly across different periods of their roosting stage, potentially leading to a shortened
pre-migratory roosting season. This analysis provides the first quantification of the phenological trend
in aerial insectivore roosting behavior and serves as a stepping stone for discovering mechanisms
behind their phenological changes, which remain a priority for aerial insectivore conservation. We
present more discussion in [21].

Roost persistence and size We set out to investigate how persistent the roosts were from 2000
to 2020 at the Great Lakes, and whether there is evidence that persistence is correlated with roost
size. We have found that more persistent roost clusters gather more birds (Figure 5a), but that most
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(a) System predicted bats on
6/30/2012 at KEWX around sunset.
The system is trained on swallow
annotations but can generalize to
bat roosts.

(b) Each dot indicates the passage date of roosts in the Great Lakes
region in a year. Fitted lines are derived from linear regression for
each phenological estimator. Solid lines represent significant (p <
0.05) regression, and dotted lines non-significant. The passage dates
advance across years, indicating phenological shifts.

Figure 4: Texas bat deployment results and Great Lakes swallow phenological analysis.

(a) Each dot is a roost signature found by mean
shift clustering. There is a positive correlation be-
tween the peak roost size averaged over years and
the percentage of years that the roost is detected
among the years where radar data are available for
the station (persistence). Colors indicate the num-
ber of years when a roost is recorded by radar data.

(b) Percentage of the entire Great Lakes swallow
population that shows up in roosts of various sizes
binned by 10,000 individuals. The population of
each roost is computed per day and averaged over
each month. We observe that a majority of swallow
population gathers in roosts of less than 20,000
individuals.

Figure 5: Persistence and size analyses for swallow roosts around the Great Lakes.

bird individuals congregate in roosts of smaller sizes (Figure 5b). This suggests that protecting large
predictable roosts alone may not be sufficient to safeguard most individuals of swallows and martins
during their roosting stage and revert the recent rapid declines observed in these species. We present
more details in [22].

4 Conclusion

We present a semi-automated system to annotate bird and bat roosts in weather radar data. In our
deployment experiment on 21 years of radar data at 12 radar stations around the Great Lakes, the
system reduces human labeling costs by 6.83× and the collected swallow annotations enable critical
sustainability analyses about their population trends and phenological shifts. We find that the detector
can be significantly improved by incorporating temporal information, since roosts exhibit expanding
dynamics. The work represents a collaboration between computer scientists and ecologists to develop
tools to rapidly enable radar data analysis at scale.
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