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Abstract

Electronic health records (EHRs) are a pivotal data source that enables numerous applications
in computational medicine, e.g., disease progression prediction, clinical trial design, and health
economics and outcomes research. Despite wide usability, their sensitive nature raises privacy
and confidentiality concerns, which limit potential use cases. To tackle these challenges, we
explore the use of generative models to synthesize artificial, yet realistic EHRs. While diffusion-
based methods have recently demonstrated state-of-the-art performance in generating other
data modalities and overcome the training instability and mode collapse issues that plague
previous GAN-based approaches, their applications in EHR generation remain underexplored.
The discrete nature of tabular medical code data in EHRs poses challenges for high-quality
data generation, especially for continuous diffusion models. To this end, we introduce a
practical tabular EHR generation method, EHR-D3PM, which enables both unconditional and
conditional generation using the discrete diffusion model. Our experiments demonstrate that
EHR-D3PM significantly outperforms existing generative baselines on comprehensive fidelity
and utility metrics while maintaining less attribute and membership vulnerability risks.
Furthermore, we show EHR-D3PM is effective as a data augmentation method and enhances
performance on downstream tasks when combined with real data.

1 Introduction

Electronic health records (EHRs) are a rich and comprehensive data source, enabling numerous applications
in computational medicine including the development of models for disease progression prediction and clinical
event medical models (Li et al., 2020; Rajkomar et al., 2018), clinical trial design (Bartlett et al., 2019) and
health economics and outcome research (Padula et al., 2022). In particular, many existing disease prediction
models primarily utilize tabular formats, often transforming longitudinal EHR data into binary or categorical
forms, rather than employing time-series forecasting methods (Lee et al., 2022; Huang et al., 2021; Rao et al.,
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2023; Debal & Sitote, 2022). However, the sensitive nature of EHRs, which includes confidential medical
data, poses challenges for their broad use due to privacy concerns and patient confidentiality requirements
(Hodge Jr et al., 1999). In addition to these concerns, data scarcity also restricts their potential use in
applications for rare medical conditions. To address these challenges, we consider using generative models to
synthesize artificial, but realistic EHRs, which has recently emerged as a crucial research area for advancing
applications of machine learning to healthcare and other industries with privacy and data scarcity challenges.

The primary goal of synthetic EHR generation is to generate data that is (i) indistinguishable from real data
to an expert, but (ii) not attributable to any actual patients. Recent advancements in deep generative models,
including Variational Autoencoders (VAE) (Vincent et al., 2008) and Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014), have demonstrated significant promise in generating realistic synthetic EHR data
(Biswal et al., 2021; Choi et al., 2017). In particular, GAN-based EHR generation has emerged as the
most predominant and popular approach (Choi et al., 2017; Zhang et al., 2020; Torfi & Fox, 2020), and
achieved state-of-the-art performance in terms of quality and privacy preservation. However, the unstable
training process of GAN-based methods can lead to mode collapse, raising concerns about their widespread
application.

Recently, diffusion-based generative models, initially introduced by Sohl-Dickstein et al. (2015), have demon-
strated impressive capabilities in generating high-quality samples in various domains, including images (Ho
et al., 2020; Song & Ermon, 2020), audio (Chen et al., 2021; Kong et al., 2021), and text (Hoogeboom et al.,
2021b; Austin et al., 2021; Chen et al., 2023). A diffusion model consists of a forward process, which gradually
transforms training data into pure noise, and a reverse sampling process that reconstructs data from noise
using a learned network. Compared to GANs, their training is more stable as it only involves maximizing the
log-likelihood of a single neural network.

Due to the superior performance of diffusion models, recent methods have explored their application in
generating categorical EHR data (Yuan et al., 2023; Ceritli et al., 2023). While these approaches demonstrate
promising performance, their improvement over previous GAN-based methods is varied. Particularly, they
struggle to generate EHR records with rare medical conditions at rates consistent with the occurrence of
such conditions in real-world data. Furthermore, existing approaches offer limited support for conditional
generation, which is crucial for many downstream tasks such as disease classification.

In this paper, we propose a practical EHR generation method that utilizes discrete diffusion (Sohl-Dickstein
et al., 2015; Hoogeboom et al., 2021b; Austin et al., 2021; Chen et al., 2023), a type of diffusion process
tailored for discrete data sampling, as well as a flexible conditional sampling method that does not require
additional model training. Our contributions are summarized as follows:

• We introduce a Discrete Denoising Diffusion model specifically tailored for generation of tabular medical
codes in EHRs, dubbed EHR-D3PM. Our method incorporates an architecture that effectively captures
feature correlations, enhancing the generation process and achieving state-of-the-art performance. Notably,
EHR-D3PM excels in generating instances of rare conditions, an aspect where existing methods often face
challenges.

• We further extend EHR-D3PM to conditional generation, specifically tailored for generating EHR samples
related to particular medical conditions. Given the unique requirements of this task and the discrete
nature of EHR data, we have custom-designed the energy function and applied energy-guided Langevin
dynamics at the latent layer of the predictor network to achieve this goal.

• We investigate the effectiveness of EHR-D3PM as a data augmentation method in downstream tasks. We
show that synthetic EHR data generated by EHR-D3PM yields comparable performance to that of real data
in terms of AUPRC and AUROC when used to train predictive models and when combined with the real
data, EHR-D3PM can enhance the performance of predictive models.

Notation. We use the symbol q to denote the real distribution in a diffusion process, while pθ represents the
distribution parameterized by the NN during sampling. With its success probability inside the parentheses, the
Bernoulli distribution is denoted by Bernoulli(·). We further use Cat(p) to denote a categorical distribution
over a one-hot row vector with probabilities given by the row vector p.
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2 Related Work

EHR Synthesis. Various methods have been developed for generating synthetic EHR data. Buczak et al.
(2010) proposed an early data-driven approach for creating synthetic EHRs, but their approach offers limited
flexibility and has privacy concerns. Recently, GANs have become prominent in EHR generation, including
medGAN Choi et al. (2017), medBGAN (Baowaly et al., 2018), EHRWGAN (Zhang et al., 2019), and
CorGAN Torfi & Fox (2020). GAN-based methods offer significant improvement in the quality of synthetic
EHRs, but often face issues related to training instability and mode collapse (Thanh-Tung et al., 2018),
restricting their wide use and the diversity of generated data. To address this, other methods, including
variational auto-encoders (Biswal et al., 2021) and language models (Wang & Sun, 2022), have been explored.
Very recently, MedDiff (He et al., 2023b) considered using diffusion models and proposed sampling techniques
for high-quality EHR generation. Ceritli et al. (2023); Yuan et al. (2023) further extended the diffusion
model to mixed-type EHRs. In this paper, we focus on developing a guided discrete diffusion model tailored
specifically for generating tabular medical codes in Electronic Health Records (EHRs), which has wide-ranging
applications in healthcare (Debal & Sitote, 2022; Lee et al., 2022). Our model aims to improve the generation
of ICD codes for rare conditions, which has been a challenge for previous methods.

Discrete Diffusion Models. Discrete diffusion models was pioneered by Sohl-Dickstein et al. (2015), which
explored diffusion processes in binary variables. The approach was further developed by Hoogeboom et al.
(2021b), who incorporated categorical random variables using transition matrices with uniform probabilities.
Song et al. (2021) introduced a similar extension in their supplementary content, though they did not
experiment with this model type. Subsequently, Austin et al. (2021) introduced a generalized framework
named Discrete Denoising Diffusion Probabilistic Models (D3PMs) for categorical random variables, effectively
combining discrete diffusion models with Masked Language Models (MLMs). Recent advancements in this
field include the introduction of editing-based operations (Jolicoeur-Martineau et al., 2021; Reid et al., 2022),
auto-regressive diffusion models (Hoogeboom et al., 2021a; Ye et al., 2023), a continuous-time structure
(Campbell et al., 2022), strides in generation acceleration (Chen et al., 2023), and the application of neural
network analogs for learning purposes (Sun et al., 2023). Discrete diffusion and flow models (Lou et al., 2024;
Campbell et al., 2024; Gat et al., 2024) are recently proposed for image, text and protein data (non-tabular).
Diffusion models (Kim et al., 2023; Lee et al., 2023; Kotelnikov et al., 2023; Zhang et al., 2024) are recently
developed for tabular data generation but not specifically designed for sparse and high dimensional EHR
generation. Diffusion and flow-based gradient-boosted trees (Jolicoeur-Martineau et al., 2024) are proposed
for tabular data generation but turn out to be extremely slow in high dimension or on large datasets (Cresswell
& Kim, 2024). In this paper, we are based on D3PMs with multinomial distribution for EHR generation.

3 Background

In this section, we provide background on diffusion models.

Diffusion Model. Given x0 drawn from a target data distribution following qdata(·), the forward process
is a Markov process that maps the clean data x0 to a noisy sample from a prior distribution qnoise(·). The
process x0 → xT is composed of the conditional distributions q(xt|xt−1, x0) where

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1, x0). (1)

By Bayes rule, (1) induces a reverse process xT → x0 that can convert samples from the prior qnoise into
samples from the target distribution qdata,

q(xt−1|xt, x0) = q(xt|xt−1, x0)q(xt−1|x0)
q(xt|x0) . (2)

After training a diffusion model, the reverse process can be used for synthetic data generation by sampling from
the noise distribution qnoise and repeatedly applying a learnt predictor (neural network) pθ(·|xt) parameterized

3



Published in Transactions on Machine Learning Research (05/2025)

by θ:

pθ(xT ) = qnoise(xT ), pθ(xt−1|xt) =
∫

x̂0

q(xt−1|xt, x̂0)pθ(x̂0|xt)dx̂0. (3)

Training Objective. The neural network pθ(·|xt) in (3) that predicts x̂0 is trained by maximizing the
evidence lower bound (ELBO) (Sohl-Dickstein et al., 2015),

log pθ(x0) ≥ Eq(x1:T |x0)

[
log p(x0:T )

q(x1:T |x0)

]
= Eq(x1|x0)[log pθ(x0|x1)]−

T∑
t=2

Eq(xt|x0)[KL(q(xt−1|xt, x0)∥pθ(xt−1|xt))]

− Eq(xT |x0)KL(q(xT |x0)∥pθ(xT )),

Here KL denotes Kullback-Liebler divergence and the last term Eq(xT |x0)KL(q(xT |x0)∥qnoise(xT )) equals or
approximately equals zero if the diffusion process q is properly designed.

Different choices of diffusion process (1) and (2) will result in different sampling methods (3). There are two
popular approaches to constructing a diffusion generative model, depending on the nature of the process.

Gaussian Diffusion Process. The Gaussian diffusion process assumes a Gaussian noise distribution qnoise.
In particular, the prior is chosen to be qnoise = N (0, I), and the forward process is characterized by

q(xt|xt−1, x0) = N (xt;
√

1− βtxt−1, βtI),

where βt is the variance schedule determined by a pre-specified corruption schedule. The Gaussian diffusion
process has achieved great success in continuous-valued applications like image generation (Ho et al., 2020;
Song et al., 2021). Recently, it has been applied to tabular EHR data generation (He et al., 2023b; Yuan
et al., 2023).

Discrete Diffusion Process. Discrete Denoising Diffusion Probabilistic Models (D3PMs) is designed to
generate categorical data from a vocabulary {1, . . . , K}, represented as a one-hot vector x ∈ {0, 1}K . The
noise follows a categorical distribution qnoise. The Multinomial distribution (Hoogeboom et al., 2021b) is
among the most effective noise distributions. In particular, qnoise is chosen to be a uniform distribution over
the one-hot basis of the vocabulary {e1, . . . , eK}, and the forward process is characterized by

q(xt|xt−1, x0) = Cat
(
xt; βtxt−1 + (1− βt)qnoise

)
,

where Cat is the categorical distribution and βt is the variance schedule determined by a pre-specified
corruption schedule. Due to its discrete nature, D3PM is widely used to generate categorical data like text
(Hoogeboom et al., 2021b; Austin et al., 2021) and categorical tabular data Kotelnikov et al. (2023); Ceritli
et al. (2023). This paper uses a D3PM with a multinomial noise distribution to generate tabular medical
codes in EHRs.

4 Method

In this section, we formalize the problem of tabular EHR data generation and provide the technical details of
our method.

4.1 Problem Formulation

We consider medical coding data in EHRs, such as diagnose codes (ICD), procedure codes (CPT) and
medication codes (GEN), which are standardized medical codes (Slee, 1978). In a wide application of medical
domains, it is common to convert continuous variables into discrete ones to enhance the performance of
prediction models (Rasmy et al., 2021; Hill et al., 2023). For example, Hill et al. (2023) converts continuous lab
codes to discrete tokens based on deciles of each LOINC code; prediction models built on learnt representation
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of tokenized discrete data significantly outperform ML models which are directly trained on the mixed-type
tabular data. Therefore, our paper focus on the generation of discrete medical codes, e.g., ICD, CPT, GEN
and LOINC codes.

For a given set Ω of medical codes of interest, we encode the set as N := |Ω| categories {1, 2, . . . , N}. A
sample patient EHR x is then encoded as a sequence of N tokens x = [x(1), . . . , x(N)], where each token
x(i) ∈ {0, 1}2 is a one-hot function. x(i) represents the occurrence of the i-th medical code in the patient EHR.
Although the total number of medical codes is large, the number of medical codes each code is correlated
with should be relatively small. Therefore, the joint distribution on Ω can be approximately factorized and
the intrinsic dimension of the data is low. We assume a sufficiently large set of patient EHRs is available to
train a transformer-based diffusion model to generate synthetic EHRs sequences x′.

4.2 Unconditional Generation

In Section 3, we introduced multinomial diffusion with a single token, x ∈ RK . In the context of categorical
EHRs, we aim to generate a sequence of N tokens with K = 2, denoted by x = [x(1), . . . , x(N)]. Therefore,
we need to extend the terminology from Section 3. We define the sequence of tokens at the t-th time step
as xt = [x(1)

t , . . . , x(N)
t ], where x(i)

t represents the i-th token at diffusion step t. Multinomial noise qnoise is
added to each token in the sequence independently during the diffusion process,

q(xt|xt−1, x0) =
N∏

i=1
Cat

(
x(i)

t ; βtx(i−1)
t−1 + (1− βt)qnoise

)
.

The reverse sampling procedure uses the predictor pθ(·|xt) with the following neural network architecture
with z0,t = xt = [x(1)

t , . . . , x(N)
t ],

z′
l,t = zl−1,t + Epos + Etime, zl,t = LinMSA(LN(z′

l−1,t)) + z′
l−1,t,

zL,t = MLP(LN(zL−1,t)), Output = Softmax(zL,t), (4)

where Epos, Etime ∈ R2×D represents the position embedding and time embedding respectively, the variable l
indexes the layers belonging to the set {1, . . . , L}. LinMSA refers to the efficient multi-head self-attention
block proposed by Wang et al. (2020), which has linear complexity with respect to the input dimension. LN is
an abbreviation for layer normalization. For each dimension of x̂0, we apply a multilayer perceptron layer to
obtain the logit, abbreviated as ParallelMLP. The softmax function transforms the last-layer latent variable
zi

L into the conditional probability pθ(·|xt), serving as the final softmax layer. The details of our denoise
model are provided in Figure 4 in Appendix A.2.

4.3 Conditional Generation with Classifier Guidance

The goal of conditional generation is to generate pθ(x|c) close to qdata(x|c), where c denotes a context, such
as the presence of a single or group of medical codes in a patient’s Electronic Health Record (EHR). Since c is
not available during the training process, we cannot train the generator pθ(x|c) directly. However, we assume
access to a classifier p(c|x) that approximates the conditional distribution qdata(c|x). Given an unconditional
EHR generator pθ(x) and classifier p(c|x), we can propose a training-free conditional generator as follows:

pθ(x|c) ∝ pθ(x) · p(c|x). (5)

Since qdata(x|c) ∝ qdata(x) · qdata(c|x), we can expect pθ(x|c) in (5) is close to qdata(x|c) provided the
unconditional generator pθ(x) is close to qdata(x) and the classifier p(c|x) is close to qdata(c|x).

To sample from equation (5), the most popular approach is applying Langevin sampling on the unnormalized
joint density while injecting Gaussian noise (Ho & Salimans, 2021). However, there is a challenge in
multinomial diffusion as the state x lies in a discrete space. In particular, the multinomial diffusion procedure
is as follows:

pθ(xt−1|xt, c) =
∑
x̂0

q(xt−1|x̂0, xt)pθ(x̂0|xt, c),
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where x̂0 is the latent variable that predicts x0. It is not possible to directly apply Langevin dynamics in the
space of x̂0. However, the last-layer latent variable zL,t in Equation (4) (before the softmax layer) lies in a
continuous space. We have the following:

pθ(x̂0 | xt, c) =
∫

pθ(x̂0 | zL,t) pθ(zL,t | xt, c) dzL,t.

Therefore, we can utilize the plug-and-play method, initially employed in text generation (Dathathri et al.,
2019) and recently applied to protein design (Gruver et al., 2023), with the latent space zL. In particular, we
introduce a modified latent variable y(k) for zL,t, which is initialized as y(0) ← zL,t. This modification allows
us to iteratively update the latent variable using Langevin dynamics, guiding it towards a desired target
while maintaining the learned structure of the diffusion model. The iterative update is applied as follows:

y(k+1) ← y(k) − η∇y(k) [DKL(y(k))− Vθ(y(k))] +
√

2ητϵ,

where the energy function Vθ(y(k)) = log(p(c|y(k))) = log
( ∑

x̂0
pθ(x̂0|y(k))p(c|x̂0)

)
and DKL(y(k)) =

λKL(pθ(x̂0|y(k))||pθ(x̂0|y(0))) is the Kullback–Leibler (KL) divergence for regularization of the guided Markov
transition. The gradient of the energy term ∇y(k)Vθ drives the hidden state y(k) towards high probability of
p(c|y(k)), ensuring that the generated samples align with the desired target. The gradient of the regularization
term ∇y(k)DKL ensures that the guided transition distribution still maximizes the likelihood of the diffusion
model, preserving the learned structure and preventing excessive deviation from the original model. For a
more detailed discussion, see Appendix C.

5 Experiments

In this section, we apply our method to three EHR datasets, including the widely used public MIMIC-III
dataset and two larger private datasets from a large health institute1. We compare our method with
state-of-the-art EHR generative models in terms of fidelity, utility and privacy.

5.1 Experiment Setup

Datasets. Public Datasets MIMIC-III (Johnson et al., 2016) includes deidentified patient EHRs from
hospital stays. For each patient’s EHR, we extract the diagnosis and procedure ICD-9 codes and truncate the
codes to the first three digits. This dataset includes a patient population of size 46,520. Private Datasets
We consider two industrial EHR datasets. D1 includes a patient population of size 1,670,347 and has sparse
binary features. D2 includes a population of size 1,859,536 and has relatively denser binary features from a
different corpus. D2 contains diagnose codes (ICD), procedure codes (CPT) and medication codes (GEN).

Diseases of Interest. We consider the utility of the synthetic data in six chronic diseases: type-II diabetes,
chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), asthma, hypertension heart
and osteoarthritis.

5.2 Baselines

Med-WGAN, EMR-WGAN and EHRMGAN A number of GAN models (Choi et al., 2017; Baowaly
et al., 2018; Torfi & Fox, 2020) have been proposed for realistic EHR generation. Med-WGAN and EMR-
WGAN have best performance among GAN-based methods. EHRMGAN is one of most recent GAN-based
method whose repository is public and incorporates the training of conditional generation. Therefore, we
compare our guided generation with the conditional generation of EHRMGAN.

TabDDPM and TabSyn We compare our model with two recent diffusion models, TabDDPM (Kotelnikov
et al., 2023) and TabSyn (Zhang et al., 2024) for tabular data. When training TabSyn in first 100 dimensions
of our datasets, TabSyn works well. But when training TabSyn in first 200 dimensions or all dimensions of

1To comply with the double-blind submission policy, we withhold the name of the institution providing the datasets; should
the paper be accepted, we will provide these details.
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our datasets, the performance of TabSyn degenerates significantly. One reason could be that the feature in
EHRs are extremely sparse, which is challenging for learning in the first component of TabSyn. Therefore we
leave the comparison with TabSyn on Appendix B.1.

EHRDiff Yuan et al. (2023) is the only diffusion model directly designed for synthesizing tabular EHR with
an open-source codebase. As the code of other diffusion models (Yuan et al., 2023; Ceritli et al., 2023; He
et al., 2023a) for tabular EHRs are not available, we select EHRDiff as a baseline. EHRDiff uses Gaussian
distributions in DDPM and apply simple MLP networks in the denoising model.

ForestDiff The improved version (Cresswell & Kim, 2024) of ForestDiff (Jolicoeur-Martineau et al., 2024) is
trained for comparison, which is still extremely slow in high dimension or large dataset as only CPUs can be
used for training and sampling. Therefore, we only provide its comparison on MIMIC dataset on Appendix B.

5.3 Evaluation Metrics

Dimension-wise Prevalence We compute dimension-wise prevalence by taking the mean of the data in
each dimension. Dimension-wise prevalence captures the marginal feature distribution of the data. We
compute the Spearman correlation between prevalence in the synthetic data and prevalence in the real data.

Correlation Matrix Distance (CMD) measures the difference between the covariance matrix of the
synthetic data and the covariance matrix of real data. We first compute the empirical covariance matrices of
the synthetic data and real data respectively and take the difference between these two matrices. Then we
calculate the Frobenius norm of the difference matrix as distributional distance.

Maximum Mean Discrepancy (MMD) is one of most common metrics to measure the difference between
two distributions in distributional space. We compute the MMD for a set of synthetic data and a set of real
test data. We employ a mixture of kernel-based methods (Li et al., 2017) to estimate MMD to improve its
robustness. The detailed formula is given in Eq. (6) on Appendix A.4.

Medical Concept Abundance Distance (MCAD) measures the synthetic EHR distribution on record
level. It quantifies the discrepancy between the empirical distribution (histogram) of the unique positive code
number on synthetic data and the empirical distribution of the unique positive code number on real data.

Downstream Prediction (AUPRC and AUROC) To evaluate the utility of the generated data, we
evaluate the accuracy of classifiers trained to predict the diseases of interest mentioned above using synthetic
data. We train the classifiers to predict the ICD code that corresponds to the disease of interest using all
other available ICD codes as features. We train the classification model using synthetic data and evaluate its
performance on real test data. We adopt the state-of-the-art robust classification model for tabular data
given in (Ke et al., 2017). The most reliable classification model is one trained on real data; we use this as a
benchmark to represent an upper bound for classification accuracy.

Precision and Recall To evaluate the quality and coverage of synthetic samples by conditional sampling
methods, precision and recall metrics induced from Kynkäänniemi et al. (2019) is computed, where we use
elementwise L1 distance to measure the distance between two samples.

Privacy Metrics Attribute inference risk (AIR) and membership inference risk (MIR) are used to evaluate
the vulnerability risks. AIR measures the risk from the adversary ability to infer sensitive attributes of a
targeted record when a subset of features are exposed to the attacker. AIR is calculated as the weighted
sum of F1 scores of the inferences of other sensitive attributes. The number of exposed attributes for all
experiments is defaulted as 256. MIR evaluates the risk that an attacker can infer the real samples used for
training the generative model given generated EHR data or the model parameters. For each EHR in this set
of real training and evaluation data, we calculate the minimum L2 distance with respect to the synthetic
EHR data. The real EHR whose distance is smaller than a preset threshold is predicted as the training EHR.
The predicted F1 score is computed to evaluate membership vulnerability risk. The threshold is set as 3 for
all experiments. We use codebase of Yan et al. (2022) to compute both AIR and MIR scores.
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Figure 1: Comparison of prevalence on synthetic data and real data D2 with ICD, CPT and GEN codes,
where the total dimension is 2683. The second row represents the prevalence of the first row in the low
data regime. The prevalence is computed on 200K samples. The dashed diagonal lines represent the perfect
matching of code prevalence between synthetic data and real EHR data. Pearson correlations are very high
for all methods and thus not used as a metric to compare different methods.
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Figure 2: Density comparison of per-record feature number on synthetic data and real data D2 with ICD,
CPT and GEN codes. The number of features per record is the sum of ICD codes present in each sample.
The number of bins is 175, and the range of feature number values is (0, 175).

5.4 Experiment Results

Fidelity We first evaluate the accuracy of marginal distributions on synthetic data in Figure 1 for dataset
D2, Figure 5 for MIMIC and Figure 7 for D1 on Appendix B.1. We compare prevalence in synthetic data
with prevalence in real data for each dimension. In Figure 1, Figure 5, and Figure 7, we can see that the
prevalence for our method EHR-D3PM aligns best with the real data. EHR-D3PM consistently has the
highest Spearman correlation. We further observe that EMR-WGAN and EHRDiff fail to provide an unbiased
estimation of the distribution in the low prevalence regime, which corresponds to rare conditions. This failure
is mild when the dataset has dense features, as shown in Figure 1 of D2, but is obvious when the dataset has
sparse features, as shown in Figure 7 of D1.
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Next we visualize the histogram of feature number per record, which is calculated by summing the medical
codes in each sample, on dataset D2 in Figure 2, MIMIC-III dataset in Figure 6, and dataset D1 in Figure 8
on Appendix B.1. We compare feature numbers for synthetic data with that of real data. As we see in
Figure 6, Figure 8 and Figure 2, EMR-WGAN and EHRDiff demonstrate poor performance in estimating
the mode or the tail of the density. When the datasets are large, our method tends to provide a perfect
estimation of the feature number for the real data.

Finally we compare our method with baselines in fidelity metrics, CMD, MMD and MCAD in Table 1. The
results in CMD metric show that our EHR-D3PM significantly outperforms all baselines, particularly with the
larger datasets D1 and D2. This indicates our method can learn much better pairwise correlations between
different feature dimensions. Table 1 also shows that the distribution of synthetic data learned by our method
has the least discrepancy with real data distribution on all three datasets.

Table 1: Fidelity metrics (CMD, MMD and MCAD) on MIMIC and real dataset D2. These metrics on real
dataset D1 are provided on Appendix due to space limit.

Metrics CMD(↓) MMD(↓) MCAD(↓)
Datasets MIMIC D2 MIMIC D2 MIMIC D2

Med-WGAN 27.540±0.628 28.942±0.196 0.078±0.0089 0.086±0.013 0.1896±0.0024 0.1944±0.0017
EMR-WGAN 26.658±0.639 21.438±0.146 0.053±0.0054 0.024±0.004 0.1546±0.0017 0.1572±0.0015
TabDDPM 25.236±0.684 16.728±0.126 0.010±0.0016 0.042±0.008 0.1306±0.0018 0.1587±0.0018
EHRDiff 25.447±0.485 18.941±0.092 0.009±0.0013 0.046±0.005 0.1439±0.0015 0.1764±0.0016
EHR-D3PM 21.128±0.393 10.255±0.037 0.003±0.0004 0.019±0.002 0.1013±0.0010 0.1081±0.0009

Table 2: Synthetic data utility. Disease prediction from ICD codes on real data D2. AUROC is reported. We
use synthetic data of 160K to train the classifier and 200K real test data to evaluate different methods. 80%
of test data are bootstrapped 50 times to compute 95% confidence interval.

T2D Asthma COPD CKD HTN-Heart Osteoarthritis

Real data 0.955±0.001 0.853±0.002 0.951±0.002 0.944±0.002 0.926±0.003 0.893±0.002
Med-WGAN 0.924±0.001 0.819±0.002 0.853±0.003 0.835±0.004 0.500±0.001 0.820±0.003
EMR-WGAN 0.918±0.001 0.747±0.002 0.888±0.003 0.907±0.003 0.844±0.005 0.753±0.003
TabPPDM 0.945±0.003 0.846±0.003 0.931±0.004 0.915±0.009 0.837±0.008 0.868±0.005
EHRDiff 0.950±0.001 0.843±0.002 0.936±0.002 0.916±0.004 0.822±0.006 0.875±0.002
EHR-D3PM 0.952±0.001 0.853±0.002 0.947±0.002 0.944±0.002 0.911±0.004 0.889±0.002

Utility We now apply our method to disease classification downstream tasks. Since MIMIC-III contains
a much smaller patient population than the private datasets, which may not provide a valid test data
benchmark for disease classification, we focus on the private datasets D1 and D2. In Table 5, we observe
that the prevalence of most diseases is low in datasets D1 and D2. The training and test data set sizes are
160K and 200K. From Table 2 and Table 9 on Appendix B.1, the absolute average increase in AUPRC and
AUROC over baselines (EHRDiff and TabDDPM) is 3.22% and 3.12% respectively for dataset D2. From
Table 7 and Table 8 on Appendix B.1, the absolute average increase in AUPRC and AUROC over baselines
(EHRDiff and TabDDPM) is 3.90% and 2.57% respectively for dataset D1. The improvement in downstream
prediction for our model benefits from the best correlation between different features our model has learned.

Privacy In Table 3, we evaluate privacy metrics AIR and MIR. It shows that our model has relatively low
risks on both AIR and MIR. This indicates our method has mild vulnerability to privacy risk compared
to existing baselines. Generally, there is a trade-off between privacy and fidelity for generative models. In
particular, when a generative model fails to learn any information of the data distribution, AIR and MIR
scores are expected to be the lowest. Therefore, incorporating differential privacy to further reduce the
privacy risk in discrete diffusion models is an interesting direction, which is largely unexplored.
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Table 3: Privacy metrics (AIR and MIR) on MIMIC, dataset D1 and dataset D2.

Attribute Inference Risk(↓) Membership Inference Risk(↓)
MIMIC D1 D2 MIMIC D1 D2

Med-WGAN 0.019±0.0015 0.071±0.0056 0.080±0.0056 0.440±0.0034 0.339±0.0018 0.398±0.0019
EMR-WGAN 0.058±0.0027 0.116±0.0084 0.132±0.0089 0.456±0.0035 0.358±0.0017 0.415±0.0020
TabDDPM 0.021±0.0013 0.085±0.0091 0.093±0.0062 0.462±0.0037 0.351±0.0018 0.415±0.0020
EHRDiff 0.022±0.0016 0.077±0.0042 0.089±0.0054 0.445±0.0034 0.353±0.0015 0.421±0.0019
EHR-D3PM 0.020±0.0014 0.068±0.0046 0.078±0.0048 0.432±0.0034 0.344±0.0016 0.406±0.0018
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Figure 3: Synthetic data augmentation for disease classifications from ICD codes based on dataset D2. The
size of the real source data for training the LGBM classifier is 5000, as indicated by the dashed purple line.
We augment the source training data with synthetic data to train the LGBM classifier. "Uncond Samples"
stands for the synthetic data generated by our unconditional sampler. Guided samples are synthetic data
generated by our proposed guided sampler for each disease. To minimize noise from evaluation, we adopt
200K real test data to evaluate all experiments and report test AUROC for comparison. 80% of the test data
are bootstrapped 50 times to compute 95% CI, which is visualized by the shaded region around each line.

5.5 Guided Generation

In this section, we apply our guided sampling method to generate conditional samples for different disease
conditions. For each condition, we apply our guided sampler and generate a set of synthetic data. We evaluate
the precision and recall of generated samples based on Kynkäänniemi et al. (2019) in Table 4. As we can see,
our guided sampler has consistently higher recall in diabetes, COPD, Asthma and Osteoarthritis. Compared
with our unconditional method, samples of the conditional baseline EHRMGAN have slightly better recall
score but much worse precision score.

Table 4: Precision (↑) and Recall (↑) for samples of different diseases on D2. "Uncond" denotes samples
generated by our unconditional method. "Guided" stands for samples generated by our guided sampler.

Diabetes Asthma COPD Osteoarthritis
Precision Recall Precision Recall Precision Recall Precision Recall

Uncond 0.785±.013 0.724±.014 0.657±.011 0.416±.007 0.708±.009 0.406±.007 0.436±.010 0.212±.011
EHRMGAN 0.636±.015 0.778±.016 0.516±.014 0.474±.012 0.592±.009 0.483±.010 0.335±.012 0.239±.013
Guided 0.752±.011 0.863±.013 0.574±.010 0.591±.008 0.653±.009 0.617±.006 0.404±.009 0.316±.009

In the following, we utilize synthetic samples to augment training data in downstream disease classifiers. The
size of the real source data for training classifiers is 5000. We augment the original training data with data
from three different groups: real data, synthetic data generated by our unconditional sampling method and
our guided sampling method. We report AUROC in Figure 3 and AUPRC in Figure 9 on Appendix B.2 to
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evaluate accuracy. We can see that classifiers trained with synthetic data augmentation always improve the
vanilla baseline (classifier trained with the original source data). We also observe that the data augmentation
by guided sampling consistently outperform the data augmentation by our unconditional sampling and the
conditional baseline EHRMGAN. It is interesting to observe that the data augmentation by guided sampling
has consistently higher AUROC than real data augmentation. We observe this to be because the synthetic
samples generated by guided sampling contain richer information in cases of diseases of low prevalence.

6 Conclusion and Future Work

In this paper, we introduced a practical generative model for synthesizing realistic EHRs EHR-D3PM. Leveraging
the latest advancements in discrete diffusion models, EHR-D3PM overcomes the challenges of GAN-based
approaches and effectively generates high-quality tabular medical data. Compared with other diffusion-
based approaches, EHR-D3PM enables high-quality conditional generation. Our experiment demonstrates that
EHR-D3PM not only achieves state-of-the-art performance in terms of fidelity, utility, and privacy metrics but also
significantly improves downstream task performance through data augmentation. Incorporating longitudinal
feature into our model is an interesting research direction. Further investigations of the vulnerability of
diffusion-based generative models in EHR generation, particularly to attribute and membership inference
attacks (Shokri et al., 2017), is a promising future direction as well as providing formal privacy guarantees,
e.g., by incorporating differential privacy, which is largely unexplored in diffusion-based models for discrete
data.

Broader Impacts

The primary goal of this work was to develop a state-of-the-art generative model for medical code data in
EHRs. The synthetic data generated by this model may be used to train, and augment the training of various
downstream models for computational medicine. We believe this work may enable future applications of
machine learning to healthcare which lead to positive impacts for patients, e.g., through early prediction
of disease progression or matching patients to appropriate clinical trials that advance medicine. While the
use of generative models and synthetic data can enhance patient privacy, they do not eliminate the risks of
membership inference and other attacks, as we mention and demonstrate in the paper. Our experiments
demonstrate that the proposed model achieves state-of-the-art performance in terms of reducing these risks,
but proper controls must still be used whenever working with patient data. Furthermore, any downstream
models trained using synthetic data must go through the same rigorous review and testing process to prevent
disparate impact as models trained on real data.

Limitations

Our proposed EHR-D3PM model focuses on generating synthetic tabular EHRs and achieves state-of-the-art
performance, which has a significant impact on various tasks. However, there are certain limitations to our
work that should be acknowledged.

Firstly, our model does not currently incorporate longitudinal features, which could potentially enhance the
utility of the generated data. Incorporating temporal dependencies and modeling the evolution of patient
records over time is an important direction for future research. This extension would enable the generation of
more realistic and comprehensive EHR data, capturing the dynamic nature of patient health over extended
periods.

Secondly, the vulnerability of diffusion-based generative models in EHR generation to more advanced privacy
attacks is a largely unexplored area that requires further research. While our model demonstrates strong
privacy preservation properties, it is crucial to investigate its resilience against sophisticated adversarial
attacks specifically designed to target EHR data. Thorough analysis and development of robust defense
mechanisms are necessary to ensure the long-term security and privacy of the generated synthetic EHRs.

By acknowledging these limitations, we aim to provide a transparent assessment of our work’s scope and
potential areas for future exploration.
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A Experiment Details.

In the following Table 5, we present a concise summary of various diseases along with their corresponding
International Classification of Diseases, Ninth Revision (ICD 9) codes. This table includes common conditions
such as Type II Diabetes (T2D), Chronic Kidney Disease (CKD), Chronic Obstructive Pulmonary Disease
(COPD), Asthma, Hypertension and Osteoarthritis. Each disease is associated with specific ICD 9 codes that
are used for clinical classification and diagnosis purposes. In this paper, we are interested in the diseases
listed in Table 5.

Table 5: List of Diseases and Corresponding ICD 9 Codes.

Disease ICD 9 Code MIMIC D1 D2

Diabetes 250.* 0.214 0.261 0.068
Chronic Kidney Disease (CKD) 585.1–9 0.106 0.119 0.015
Chronic Obstructive Pulmonary Disease (COPD) 496 0.069 0.136 0.017
Asthma 493.20–22 0.051 0.085 0.079
Hypertension (HTN-Heart) 402.* 0.001 0.028 0.006
Osteoarthritis 715.96 0.0197 0.061 0.034

A.1 Dataset Details

MIMIC Dataset The MIMIC III dataset includes a patient population of 46,520. There are 651,047
positive codes within 64,314 hospital admission records (HADM IDs). We have implemented an 80/20 split
for training and testing purposes. Specifically, this allocates 12,862 records for testing and the remaining
51,451 for training. The histograms in Figure 6 indicate the density distribution of feature number per record.
The dimension is N = 1042.

Dataset D1 The first dataset, denoted by D1, includes a patient population of size 1,670,347. We split the
whole dataset into 100K for validation, 2000K for testing and the rest 1,370, 347 for training. The number of
codes per patient is relatively small, as indicated by the histogram of feature number per record in Figure 8.
We only consider medical codes with prevalence in corpus larger than 1.6e-5. The dimension is N = 993.

Dataset D2 The second dataset, denoted by D2, includes a patient population of size 1,859,536. We split
the whole dataset into 100K for validation, 2000K for testing and the rest 1,559,536 for training. The number
of codes per patient is relatively large, as indicated by the histogram of feature number per record in Figure 2.
Although, dataset D2 has relatively denser feature, the prevalence of six chronic diseases we are interested in
is pretty low. D2 contains diagnose codes (ICD), procedure codes (CPT) and medication codes (GEN). The
number of ICD codes, CPT codes and GEN codes are 993, 690 and 1000 respectively. The total dimension is
2683.

A.2 Model Architecture Detail

The denoise model in this paper has a uniform architecture, illustrated in Figure 4. The architecture
we propose is tailored for tabular EHRs as it is non-sequential data. While the architecture proposed in
multinomial diffusion Hoogeboom et al. (2021b) is designed for sequential data, where neighboring dimensions
have semantic correlation. The tabular EHR datasets in our paper don’t have such property. Therefore, we
propose a novel transformer-based model for tabular EHRs. One bottleneck of transformer models is that the
computational complexity of the attention module is quadratic to the dimension of input data. We adopt an
efficient block based on Wang et al. (2020), whose attention operation has linear complexity with respect to
the dimension of input data.
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(a) Denoise Model (b) Transformer Block

Figure 4: Architecture of our denoise model. (b) provides the detail of transformer block which has linear
complexity with respect to the dimension of input. Axial positional embedding is employed to encode the
positional information. We employ sinusoidal positional embedding to time t to the time embedding and
then use a two-layer MLPs to map the time embedding into hidden state. In the first layer of the two-layer
MLP, we use Softplus activation function. We apply L times of such two-layer MLP to get the hidden state
of time embedding to yield the input of each transformer block, as indicated in (a). Positional embedding is
added to the embedding of discrete inputs. The input has dimension N and B means the batch size. For
notation simplicity, we use all dimension of tabular data has K categories. We use one-hot representation
and therefore, the output of the denoise model has shape (B, N, K). The shape of intermediate layers is
provided in (a). In (b), "Proj" denotes the projection operation proposed in Linformer Wang et al. (2020),
which induces the linear complexity of the attention module with respect to the input dimension N . The
projection dimension is set as the default value 128 for all experiments in this paper.

A.3 Hyper-parameters

Hyper-parameters on MIMIC dataset Since the MIMIC III dataset is relatively small, we use a relative
small model to train our EHR-D3PM to avoid overfitting to the training data. The hidden dimension 256.
The number of multi-attention heads is 8. The number of transformer layers is 5. The number of diffusion
steps is 500.

In the optimization phase, we adopt adamW optimizer, and the weight decay in adamW is 1.e-5. The learning
rate is 1e-4 and batch size is 256. The beta for expentialLR in learning rate schedule is 0.99. The number
of training epochs is 100. It takes less than three hours to finish training this model on A6000 with 48G
memory.
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Hyper-parameters on datasets D1 and D2 The denoise model for datasets D1 and D2 are the same.
As datasets D1 and D2 are large, we use a relatively large model. The number of multi-attention heads is 8.
The hidden dimension is 512. The number of transformer layers L is 8. The number of diffusion steps is 500.

The optimization parameters for both datasets D1 and D2 are also the same. In the optimization phrase, we
adopt adamW optimizer. The learning rate is 1.0e-4 and batch size is 512. The weight decay in adamW is
1.0e-5. The beta for expentialLR in learning rate schdule is 0.99. The number of training epochs is 40. It
takes one and half day to train one model on A100 with 80G memory.

Hyper-parameters of baseline EHRDiff To have a fair comparison with diffusion baseline EHRDiff, we
use the same hyper parameters as our proposed diffusion model on all three datasets. The number of diffusion
steps in EHRDiff is also 500 and the number of layers in EHRDiff is also 5. The other hyper parameters use
the default values in the github implementation of EHRDiff.

Hyper-parameters of baselines TabSyn and TabDDPM To have a fair comparison with baselines
TabSyn and TabDDPM, the number of diffusion steps in TabSyn and TabDDPM are also 500 and the
number of layers in denoising models of TabSyn and TabDDPM is also 5. For other hyper parameters, we
use the default parameters provided on the official implementation of TabSyn and TabDDPM. When training
TabSyn on our datasets, we found that TabSyn works quite well in the first 100 dimensions of our datasets.
But training TabSyn in the first 200 dimensions of our datasets, we found the performance significantly
degenerates. The dimensions of seven datasets used in the paper of TabSyn are all less than 50.

A.4 Evaluation Metrics

MMD The empirical MMD between two distributions P and Q is approximated by

MMD(P, Q) = 1
m

m∑
γ=1

ˆMMDkγ
(P, Q), (6)

where kγ is a kernel function; m is number of kernels; ˆMMDkγ
(P, Q) is estimated by samples {xi}n

i=1 ∼ P
and {x′

i}n
i=1 ∼ Q as follows,

ˆMMDkγ
(P, Q) = 1

n(n− 1)

[ ∑
i ̸=j

kγ(xi, xj) +
∑
i ̸=j

kγ(x′
i, x′

j)
]
− 1

n2

∑
i,j

kγ(xi, x′
j).

In our evaluation, we use Gaussian RBF kernel kγ ,

kγ(x, x′) = exp
(
− ∥x− x′∥2

2h2
γ

)
with bandwidth hγ = Avg ∗ 2(γ−m/2), where Avg is the average of pairwise L2 distance between all samples.
We choose m = 5 and thus γ ∈ {1, 2, 3, 4, 5}.

A.5 Hyper-parameters of Classifier Models on Downstream Tasks

For the downstream tasks, we used a light gradient boosting decision tree model (LGBM) (Ke et al., 2017)
as it had uniformly robust prediction performance on all downstream tasks. In all experiments, we set
the hyper-parameters of LGBM as follows: n_estimators = 1000, learning_rate = 0.05 max_depth = 10,
reg_alpha = 0.5, reg_lambda = 0.5, scale_pos_weight = 1, min_data_in_bin = 128. We also experiment
with various sets of hyper parameters which will induce the same conclusion we have in this paper.

B Additional Experiments

Due to space limit, we leave a bunch of experiment results on appendix.
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Figure 5: Comparison of prevalence in synthetic data and real data (MIMIC). The second row represents the
prevalence of the first row in the low data regime. The prevalence is computed on 10K samples as the MIMIC
dataset is relatively small. The dashed diagonal lines represent the perfect matching of code prevalence
between synthetic data and real EHR data. Pearson correlations are very high for all methods and thus not
used as a metric to compare different methods.
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Figure 6: Density comparison of per-record feature number on synthetic and real data for the MIMIC dataset.
The number of features per record is the sum of ICD codes present in each sample. The number of bins is 40,
and the range of feature number values is (0, 40).

Table 6: Fidelity metrics (CMD, MMD and MCAD) on dataset MIMIC.

Metrics CMD(↓) MMD(↓) MCAD(↓)

Med-WGAN 27.540±0.628 0.078±0.0089 0.1896±0.0024
EMR-WGAN 26.658±0.639 0.053±0.0054 0.1546±0.0017
TabDDPM 25.236±0.684 0.010±0.0016 0.1306±0.0018
EHRDiff 25.447±0.485 0.009±0.0013 0.1439±0.0015
ForestDiff 24.173±0.506 0.008±0.0015 0.1375±0.0016
EHR-D3PM 21.128±0.393 0.003±0.0004 0.1013±0.0010
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B.1 Additional experiments on unconditional generation

Fidelity Figure 5 and Figure 7 provide additional comparison of marginal distribution matching on dataset
MIMIC and dataset D1. We have found that TabSyn works well in low dimension but has poor performance
on our high dimensional datasets with sparse features. From the Spearman correlation in low prevalence
regime, we can still see that our method significantly outperform baselines. Based on results in Figure 5, we
observe that ForestDiff fails to provide an unbiased estimation of the distribution in the low prevalence regime
(<= 0.05), which corresponds to rare conditions. From Figure 5, Figure 7 and Figure 1, we consistently
observe the performance of EHRDiff significantly degenerates in the low prevalence regime. One reason we
articulate is that the foundation of EHRDiff is designed for continuous distribution and cannot be readily
applied to the generation of discrete data particularly on data of low prevalence regime. From Figure 6
and Figure 8, we can see that the histogram of feature number per record on synthetic data by our method
provides the best matching to that of real data.
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Figure 7: Comparison of prevalence in synthetic data and real data D1. The second row represents the
prevalence of the first row in the low data regime. The prevalence is computed on 200K samples. The dashed
diagonal lines represent the perfect matching of code prevalence between synthetic data and real EHR data.
Spearman correlations between synthetic data and real data are reported.
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Figure 8: Density comparison of per-record feature number between synthetic data and real data D1. The
number of features per record is computed summing the ICD codes present in each sample. The number of
bins is 65 and the range of feature number values is (0, 65).
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Utility We also apply our methods to downstream prediction tasks on dataset D1, where the prevalence
of six chronic diseases is much lower. From Table 7 and Table 8, we can see that the accuracy of our
prediction is still close to the prediction of classifier models trained on real data, which is the target classifier
baseline. While other baselines have a much larger performance gap when compared with the ideal classifier.
Particularly on rare diseases such as hypertension heart, the classifier trained on synthetic data by our model
has 8% absolute improvement in AUPRC and AUROC over the strongest baseline on both D1 and D2. From
the confidence intervals provided in Table 7, 8, 2 and 9, we confirm that such improvement over the baselines
on both dataset D1 and dataset D2 are statistically significant.

B.2 Additional experiments on guided generation

We provide additional experiment results on guided generation. We augment the real data with synthetic
data generated by our sampling method and train a downstream classifier. We measure the performance of
all classifiers on real test data. From Figure 9 and Figure 3, we see that the classifier trained on augmented
training data with synthetic data, either by our unconditional sampling method or by our guided sampling
method, consistently outperforms the classifier trained with original source data (vanilla baseline) and the
conditional baseline EHRMGAN. In all cases, the relative increase of AUPRC over vanilla baseline is more
than 3%; in the classification of COPD, the relative improvement over the vanilla baseline is more than
30%. This clearly indicates that our method can be applied to augment the training data of downstream
classification tasks when the real dataset is scarce. More importantly, the data augmentation by guided
sampler consistently outperforms the data augmentation with unconditional sampler. We observe this to be
because the synthetic samples generated by guided sampling contain richer information in diseases of low
prevalence. A most balanced training data with positive label will enhance the performance of classifiers and
reduce the risk of over fitting to negative class.
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Figure 9: Synthetic data augmentation for disease classification from ICD codes based on dataset D2. The
size of real source data for training LGBM classifier is 5000, as indicated in dashed line. We augment the
original source training data with synthetic data to train LGBM classifier. "Uncond Samples" stands for the
synthetic data generated by our unconditional sampler. Guided samples are synthetic data generated by our
proposed guided sampler for each disease. To minimize noise from evaluation, we adopt 200K real test data
to evaluate all experiments and report test AUROC for comparison. 80% of the test data are bootstrapped
50 times to compute 95% confidence intervals (CI), which is added as shaded region.

C Additional Details of EHR-D3PM

If x is a continuous variable, the most common way to sample from the posterior pθ(x|c) ∝ pθ(x) · p(c|x) is
using the following Langevin dynamics,

x(k+1) ← x(k) + ητ1∇ log p(c|x) + η∇ log pθ(x) +√ητ2ϵ, (7)

where ϵ ∼ N (0, I). (7) has been applied in image (Dhariwal & Nichol, 2021) and recently be applied to EHR
generation with Gaussian diffusion (He et al., 2023b). In practice, τ2 is always chosen to be zero in practice,
and we will generally use V (x) := log(p(c|x)) to replace the likelihood that we want to maximize in (7).
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Table 7: Synthetic data utility. Disease prediction from ICD codes on real data D1. AUPRC is reported. We
use synthetic data of 160K to train the classifier and 200K real test data to evaluate different methods. 80%
of test data are bootstrapped for 50 times to compute for 95% confidence interval.

T2D Asthma COPD CKD HTN-Heart Osteoarthritis

Real Data 0.702±0.002 0.288±0.004 0.675±0.002 0.806±0.002 0.253±0.003 0.296±0.003
Med-WGAN 0.628±0.002 0.149±0.002 0.578±0.002 0.722±0.002 0.114±0.001 0.192±0.003
EMR-WGAN 0.656±0.002 0.193±0.002 0.603±0.002 0.753±0.002 0.151±0.003 0.219±0.003
TabPPDM 0.669±0.003 0.238±0.005 0.625±0.004 0.778±0.003 0.176±0.006 0.238±0.005
EHRDiff 0.670±0.002 0.232±0.003 0.642±0.002 0.782±0.002 0.150±0.002 0.245±0.003
EHR-D3PM 0.693±0.002 0.263±0.003 0.655±0.002 0.796±0.002 0.229±0.003 0.278±0.003

Table 8: Synthetic data utility. Disease prediction from ICD codes on real dataset D1. AUROC is reported.
We use synthetic data of 160K to train the classifier and 200K real test data to evaluate different methods.
80% of test data are bootstrapped for 50 times to compute 95% confidence interval.

T2D Asthma COPD CKD HTN-Heart Osteoarthritis

Real data 0.808±0.001 0.759±0.002 0.867±0.001 0.913±0.001 0.832±0.001 0.789±0.001
Med-WGAN 0.757±0.001 0.595±0.002 0.806±0.001 0.873±0.001 0.625±0.002 0.661±0.002
EMR-WGAN 0.770±0.001 0.642±0.002 0.815±0.001 0.885±0.001 0.686±0.002 0.689±0.002
TabPPDM 0.787±0.002 0.728±0.004 0.851±0.003 0.898±0.002 0.746±0.004 0.747±0.005
EHRDiff 0.789±0.001 0.722±0.002 0.856±0.001 0.902±0.001 0.714±0.002 0.759±0.002
EHR-D3PM 0.801±0.001 0.748±0.002 0.860±0.001 0.908±0.001 0.821±0.002 0.782±0.002

Table 9: Synthetic data utility. Disease prediction from ICD codes on real data D2. AUPRC is reported. We
use synthetic data of 160K to train the classifier and 200K real test data to evaluate different methods. 80%
of test data are bootstrapped 50 times to compute 95% confidence interval.

T2D Asthma COPD CKD HTN-Heart Osteoarthritis

Real data 0.834±0.002 0.581±0.005 0.622±0.009 0.733±0.006 0.278±0.011 0.373±0.005
Med-WGAN 0.725±0.003 0.496±0.005 0.203±0.007 0.166±0.005 0.008±0.001 0.223±0.004
EMR-WGAN 0.734±0.003 0.431±0.004 0.402±0.007 0.628±0.009 0.134±0.008 0.210±0.004
TabPPDM 0.795±0.004 0.558±0.006 0.544±0.008 0.692±0.010 0.156±0.012 0.327±0.008
EHRDiff 0.807±0.003 0.549±0.004 0.548±0.007 0.690±0.008 0.141±0.009 0.319±0.005
EHR-D3PM 0.821±0.002 0.572±0.004 0.607±0.007 0.714±0.007 0.226±0.008 0.348±0.006

Table 10: Fidelity metrics (CMD, MMD and MCAD) on dataset D1.

Metrics CMD(↓) MMD(↓) MCAD(↓)

Med-WGAN 18.107±0.125 0.075±0.011 0.1871±0.0016
EMR-WGAN 11.869±0.108 0.018±0.003 0.1625±0.0013
TabDDPM 11.204±0.164 0.021±0.005 0.1542±0.0019
EHRDiff 23.208±0.083 0.023±0.003 0.1687±0.0014
EHR-D3PM 7.692±0.026 0.012±0.001 0.0873±0.0007

For discrete data, (7) is intractable since we can’t get the gradient backpropagation via ∇ log pθ(x). In
addition, (7) can’t guarantee that x(k+1) lies in the category {1, . . . , K} after update. Therefore, we need to
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do Langevin updates on the latent space zL,t

y(k+1) ← y(k) − η∇y(k) [DKL(y(k))− Vθ(y(k))] +
√

2ητϵ,

where y(k) is the modification of zL,t, and DKL(y(k)) = λKL(pθ(x̂0|y(k))||pθ(x̂0|y(0))) is the KL divergence
for regularization of the guided Markov transition. The gradient of the KL term plays a similar role as
∇pθ(x) in (7). It will be interesting to leverage deterministic updates Liu & Wang (2016); Han & Liu (2018)
to accelerate this process.

Example: Suppose that the context c is to generate a EHR x such that x has diabete disease, i.e., the k-th
token of x equals [1, 0], where k = 156 for MIMIC data set. Then we have p(c|x̂0) = 1 if k-th token of x
equals [1, 0] and p(c|x̂0) = 0 otherwise. In addition pθ(x̂0|y(k)) is the k-th position output of softmax layer
when input y(k). Then we can compute the energy function as follows,

Vθ(y(k)) = log(p(c|y(k))) = log
( ∑

x̂0

pθ(x̂0|y(k))p(c|x̂0)
)

.

In all experiments of guided generation, the number of Langevin update steps is 10, η = 0.1 and λ = 0.01.
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