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ABSTRACT

Reinforcement learning from human feedback (RLHF) approaches are widely
used for fine-tuning large language models (LLMs) to align with instructional
preferences. However, traditional RLHF methods often rely on binary labels,
which fail to capture the pairwise differences in human perception, leading to
potential performance degradation. To address this limitation, we introduce Gap-
Aware Preference Optimization (GaPO), a novel approach that integrates the
degree of semantic gaps into preference optimization. By modifying the exist-
ing margin term in the loss function and replacing it with an estimated gap com-
puted using general metrics, GaPO provides a new supervisory signal that explic-
itly highlights the nuances between preference pairs. This new signal helps the
model allocate gradients more rationally during optimization, facilitating more
effective learning from the preference data. Experiments conducted with a strong
base model, Llama-3-8B-Instruct, demonstrate that GaPO surpasses State-of-the-
Art methods on widely used benchmarks. Our best-performing model, GaPO-
ROUGE_L, achieves a win rate of 52.8% on AlpacaEval 2.0, exceeding the base-
line methods by 5.3 points.

1 INTRODUCTION

Reinforcement Learning with Human Feedback (RLHEF, |Christiano et al.| (2017); |(Ouyang et al.
(2022)) has proven to be an effective and promising method for fine-tuning large-scale language
models (LLMs, [Achiam et al.| (2023); Bai et al.| (2023); |Dubey et al.| (2024)), aligning their gen-
erative preferences with human-established standards. This alignment extends beyond content ac-
curacy to encompass attributes such as helpfulness, harmlessness, and logical coherence, which
are fundamental to human linguistic norms (Wang et al., [2024a)). Furthermore, RLHF enables the
customization of generative behaviors to meet the specific demands of particular tasks. Notably,
RLHF-optimized models with fewer parameters can achieve generation quality that is comparable
to, or even rivals, that of larger models. This significantly enhances the practical utility of smaller
models in real-world applications.

The RLHF dataset consists of winning and losing response pairs, assigned binary labels of 1 and 0,
respectively. This binary labeling scheme does not reflect the nuanced quality differences between
the preference pairs. During training, this results in uniform treatment of all data pairs, potentially
causing a sub-optimal optimization trajectory. Specifically, the model might disproportionately fo-
cus on complex examples at the expense of adequately learning from simpler, yet informative data
points, thus undermining its general fitting performance.

Alternatively, the model might expand its search space excessively to accommodate challenging
cases, resulting in a potential decrease in the log probabilities of positive examples and creating
unmanageable contamination of the base model.

From a human perspective, some winning cases may only be marginally better than losing cases,
while others can be substantially superior. Therefore, during optimization, it is essential to allocate
more gradient updates to the latter. Although the reward functions in previous Preference Optimiza-
tion approaches assess the overall sentence generation probability by cumulatively summing the
generation probabilities of each token, they still fail to fully consider the sentence as a whole and do
not effectively compute the margin at the sentence level.



Under review as a conference paper at ICLR 2025

GaPO-rougel

B me(ywlx) B e (y11x) 52 GaPO-bert f  GaPObertfi
L =-E|l —1 —— L M
Gapro (Tg) [Ogﬂ(lywl og 1 v og EFWI

L ]
51 GaPO-rouge2
50 GaPO-rougel

B B 1 GaPO-bert_p
=~ [toga ([ log maOul) ~ <log meOnl) — Blogzp)|

Win Rate (%)

48 SimPO

Reward Gap  Semantic Gap

-1.85 -1.75 -1.65 -1.55
Log Probability of Chosen Responses

Figure 1: Left, GaPO utilize an estimated semantic gap to instruct reward gap optimization. Right,
Scatter plot illustrating the average log probability of chosen responses and Win Rate on the Al-
pacaEval 2.0 evaluation benchmark, highlighting GaPQO’s capability to improve Win Rates in down-
stream tasks.

We first seek to quantify and simulate the perceived differences between pairs of training data with
minimal complexity. To achieve this, we tested various traditional machine translation evalua-
tion metrics, such as Jaccard Score (Costal, [2021)), ROUGE (Lin| (2004)); [Lin & Och| (2004)), and
BERTScore (Zhang et al., 2019).

Secondly, to incorporate these degree metrics into the training phase and reduce the model’s fitting
difficulty, we propose a straightforward transformation of these metrics into a ”gap” score, which
represents the reward difference between winning and losing examples in the loss function. Empiri-
cally, we experimented with several mappings to ensure compatibility with the reward space.

From another perspective, our novel loss function can also be viewed as a replacement for the reward
function in DPO (See Figure[I). In this framework, the reward function for winning examples is as-
signed a denominator of 1, while the denominator for losing examples is dynamically determined by
our evaluation factor (EF). This approach not only circumvents potential conflicts between reward
optimization and the actual log probability optimization objective, but also alleviates inconsistencies
in the gaps between training pairs.

In conclusion, our contributions are highlighted as follows:

* Introduction of GaPO: We propose GaPO, a novel method that introduces the concept of
human preference intensity to provide additional preference information. This approach not
only aligns with human preferences but also ensures that the model reflects the strength of
these preferences. Consequently, it enhances the model’s ability to accurately capture and
reflect the subtleties of human preference intensity. Additionally, this approach ensures that
the log probability of generating a good response does not experience a significant decrease
during the training phase.

* Comparison with State-of-the-Art Methods: We compare our GaPO method with state-
of-the-art approaches, including DPO and SimPO. Our results demonstrate that the GaPO
loss function effectively utilizes pairwise gap instruction signals to achieve superior perfor-
mance in downstream tasks.

» Explore Different Gap forms: We empirically evaluate the performance of GaPO by ex-
perimenting with different EF function forms and normalization techniques. Our model
trained by ROUGE_L as estimated gap values achieves 52.8% win rate on the AlpacaEval
2.0 test set.

2 RELATED WORKS

Traditional RLHF (Reinforcement Learning from Human Feedback) such as PPO (Schulman et al.,
2017) methods typically involve optimizing reward functions derived from human preferences.
While this approach is effective, it can also introduce some challenges, such as increased computa-
tional complexity and the need to consider bias-variance trade-offs when estimating and optimizing
rewards (Schulman et al., 2015).
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Table 1: Summary of EF' Metrics and Their Calculation Formulas.

EF Metric Description Calculation Formula
Jaccard The similarity between two sets by compar- Izwsw
Score ing the intersection and the union of the sets.
. |Common Unigrams| |Common Unigrams|
1 The overlap of unigrams. F1( nigramsin g1~ Onfgrams i yo] )
. |Common Bigrams| |Common Bigrams|
ROUGE 2  The overlap of bigrams. F1( Bigramsmyi]* [Bigrams iy )
L  The longest common subsequence (LCS). F1( ILCS‘(Z;”"yl)l , \Lcs‘(;;w‘,y,)\ )
P The precision using BERT (Devlinl 2018) 2, max; COS(BE‘];;Flyw [i],BERTy. [5])

embeddings to evaluate the similarity.
Zj max; cos(BERTy,, [i],BERTy;[5])
[yl

BERT

The recall using BERT embeddings to eval-
Score

uate the similarity.

F1 The F1 score using the precision and recall F1(BERTScore,, BERTScore,)
from BERT embeddings.

Recent research has explored other methods aimed at directly optimizing LLMs strategies based
on human preferences, without relying on a scalar reward signal (Ouyang et al., 2022)). The goal
of these methods is to simplify the alignment process, reduce computational overhead, and achieve
more robust optimization by directly utilizing preference data. The most well-known approach is
DPO (Rafailov et al., [2024), which employs a method called the Bradley-Terry model. It directly
optimizes preference data pairs by leveraging an analytical mapping from the reward function to
the optimal policy. However, DPO is highly sensitive to the parameter beta, making it prone to
overfit to preference data (Feng et al., 2024). This may reduce the probability of generating good
responses, leading to sub-optimal training outcomes. Additionally, the use of a reference model
causes a inconsistency between the win-loss reward ranking in the training objective and the model
win-loss output ranking.

Currently, many works have focused on optimization from different perspectives, which can be
mainly divided into two directions:

Retain the Reference Model. 5-DPO (Wu et al.| [2024) concentrates on data quality and trains
using batch-level dynamic 5 adjustments. R-DPO (Park et al.,[2024) and DPOP (Pal et al., 2024)
both introduce new normalization terms, represented by the difference in sentence length and the
difference in generation probability from the model of optimization and reference, respectively.
RSO (Liu et al., 2023 computes gradients only for data pairs where there is a discrepancy between
the model-generated objectives and human preferences, and it employs a rejection sampling method
to acquire preference data. WPO (Zhou et al.l |2024) adjusts the weights of data pairs based on the
preference output information provided by the current model policy. TPO (Azar et al.l 2024) and
KTO (Ethayarajh et al.,|2024) use KL divergence to guide model updates and IPO ensures that the
KL regularisation remains effective.

Remove the Reference Model. RRHF (Yuan et al.,|[2023) trains by using rank loss robustly without
complex hyperparameter tuning. SLiC-HF (Zhao et al.l [2023) calculates contrastive loss through
Sequence Likelihood Calibration and introduces a regularization term to increase the margin dis-
tance. ORPO (Hong et al., 2024) propose a reference-free loss function that enables simultaneous
supervised fine-tuning and preference alignment within a single training session. CPO (Xu et al.,
2024) directly uses log likelihood as a reward function and the SFT objective as a regulation. SimPO
(Meng et al.,[2024) introduces a target reward margin 7y, which helps to separate winning and losing
responses. Additionally, most methods incorporate SFT loss to ensure the probability of generating
high-quality responses, and they all use sequence length as a normalization factor. On a higher level,
GPO (Tang et al., [2024) summarizes preference optimization from a unified perspective.
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(b) Gap Dist. (Train)
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Figure 2: Comparative Analysis of Estimated Distributions for Different £'F’ Forms in the Llama3-
Ultrafeedback-Armorm Dataset. This figure illustrates the distributions of various F'F' forms used
to compute preference pairs. Through the logarithmic mapping and normalization, we attain a more
compact distribution, which is optimally configured to define the reward space for effective fine-
tuning guidance.

3 GAPO: GAP AWARE PREFERENCE OPTIMIZATION

3.1 RETHINKING ABOUT DPO AND SIMPO

Direct preference optimization (DPO, [Rafailov et al.| (2024))) is currently one of the most widely
used methods for model preference alignment. Given a triplet (z, ., ;) from a preference training
dataset D consisting of the prompt z, the winning response y,,, and the losing response y;, the
objective of DPO is to maximize the log-likelihood of p(y,, > y;|x) by direct policy optimization
without explicit reward estimation.

Based on the Bradley-Terry model and the reparameterized reward functions, the loss function can
be derived as the following form

Lppo(me; Tret) = —E(ay, y)~p 080 (rpPo(z,y1) — TDPO (T, Y1))] 5 (1)

where rppo(z,y) = [log :"fé’;ﬁc)). By performing some algebraic manipulations, we obtain a
margin-based form of DPO,

‘CDPO (71—0; Wref) = _E(x,yw,yl)ND [log O—ﬁ (log o (yw | LU) - log Uy (yl | {I,') - ’V)] ) (2)

where 7 = 10gTef (Y | ) — logmret(y; | ) is a margin term. Recent advancements in SimPO
(Meng et al) 2024) demonstrate that in DPO, satisfying the reward ranking rppo(z, ) >
rppo(x,y;) does not necessarily imply that the likelihood ranking py(y, | ) > pe(y; | z) is
met. From the perspective of margins, this means -y is not always positive.

To mitigate the impact of optimization inconsistency, SimPO replaces the reward formulation in
DPO with the length normalized py to align with the nature of maximized log-likelihood of se-
quences in LLM inference and apply a fixed positive hyper-parameter v as margin, yielding the
following form:

LsimpPo(79) = —E(z,yu y)~D [logo (hﬂ log 79 (Y |) — |Z| log mg (yi|) — 7)} )



Under review as a conference paper at ICLR 2025

While SimPO effectively establishes a discrepancy between reward and generation for preference
optimization, it still potentially sacrifices pairwise optimization by employing a fixed margin y com-
pared to DPO. Some training pairs exhibit a clear distinction from a human perception perspective,
whereas others are merely borderline cases. Addressing these pairs with the same preset margin
could lead to an unnecessary compromise of distinctly identifiable cases when fitting borderline
ones.

3.2 GAPO OBIJECTIVE

Accurate preference training in models necessitates a nuanced understanding of human perception.
To address this issue, it is crucial to develop methods for computing and stimulating the degrees of
human perception. By quantifying perception, we can introduce a spectrum of preference intensities
that provide additional layers of information beyond binary labels. This enriched data allows models
to differentiate between varying degrees of preference quality, leading to a more refined and accurate
optimization process.

Utilizing estimated margin into Preference optimization. Intuitively, we directly employ a pair-
wise margin term to introduce a gap-related signal,

Laapo (m9) = —E(z . .y)~ [log o (B (A7 — Estimated Margin))] “4)

Where A7 =7, — 7, represents the difference in the values of the implicit reward functions.

We adopted SimPO’s reward formulation as 7 because it directly optimizes log-likelihood and nor-
malizes the length of response, resulting in the following specific form:

LGapro (10) = —E(z,y, y)~D {bgﬂ <yﬂ|10g 7o (Yo | ) — |yﬁl| log 7o (1 | )

— [Estimated Margin)] 4)

Estimate the Human Perception Gap. To quantify the superiority between pairs of data in human
perception, we selected evaluation metrics commonly used in the field of machine translation, in-
cluding Jaccard Score, ROUGE, and BERTScore (See table|1| for more details). These metrics are
not only simple to compute and cost-effective but also effectively capture the degree-based charac-
teristics of the data. We collectively term these metrics as the Evaluation Factor (E'F).

EF measures the gap between the winning response and the losing response. Specifically, an E'F'
value closer to 1 denotes a pair of responses with minimal difference, signifying a close match,
whereas a value nearing O signifies a larger gap. To utilize it in the margin term, we choose a

negative logarithmic mapping, Estimated Margin = — log(EF'), then we have
Lcaro (m0) = —E(z,y, ) ~D _IOgU (B log 79 (Y | ) — ﬁlog mo (yi | ) — 510g(i)
o i Y 1] EF
(6)
[ B o (Yw | ) I} 7o (Y1 | x)
= ~Egy, y)~p _1oga <|yw| log 1wl log “Erwl )| (N

Since the EF' always ranges between (0, 1), the estimated margin term is always positive, which
helps the model effectively distinguish between winning and losing responses in the correct direc-
tion. From the perspective of an implicit reward function, the reward ranking still guarantees the
likelihood ranking. This is because EF¥!| is less than 1, which assigns a larger reward to the losing
response compared to the winning response.

Normalization of the Estimated Gap. The EF distributions are closely related to the margin term
in the loss function, but they vary across different metrics (see Figure [2)) and cannot directly fit
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Table 2: Experiment results compared with state-of-the-art fine-tuning methods. We use Llama3-
Instruct(8B) as the base model and an enhanced preference dataset ranked by a strong reward model
ArmoRM-Llama3-8B-v0.1. We report performance on commonly used benchmarks, including Al-
pacaEval 2.0, Arena-Hard, and MT-Bench.

Llama3-Instruct(8B)

Method AlpacaEval 2.0 Arena-Hard MT-Bench
LC(%) WR(%) Length WR(%) Length GPT-4 Turbo
SFT 26.0 25.3 1920 22.3 596 6.9
RRHF 37.9 31.6 1700 28.8 467 7.1
SLiC-HF 33.9 32.5 1938 29.3 599 6.9
DPO 48.2 475 2000 352 609 7.0
PO 46.8 42.4 1830 36.6 527 7.2
RLHF CPO 34.1 36.4 2086 30.9 604 7.2
KTO 34.1 32.1 1878 27.3 541 7.2
ORPO 38.1 33.8 1803 28.2 520 7.2
R-DPO 48.0 45.8 1933 35.1 608 7.0
SimPO 53.7 47.5 1777 36.5 530 7.0
GaPO-ROUGE_L  56.1 52.8 1,902 36.3 538 7.1

the reward space. To obtain a more stable estimated gap, we apply normalization using a hyper-
parameter . Specifically, we have adopted a scaling normalization approach, which means

1 1 1
N lized Margin = N log —,7) = vlog(—==)/log(—== 8
ormalized Margin orm(log TP v) =7 og(EF)/ og(EF) (8)
After the logarithmic mapping and normalization, we observe a more compact distribution that
preserves the ranking and degree of the original F'F'. Finally, we get the Loss funtion of GaPO,

B
Lcapro (1) = —E(z,yp y)~D [loga <y log g (yw | ) — |§Z| log g (y1 | @)

Yl

1
— Norm(log Yolak ’Y))] )

4 EXPERIMENTS

In this section, we conduct extensive experiments to show the performance of our GaPO method and
compare it with other baselines. We further undertake a sequence of ablation studies to illustrate the
impact of the metrics for E'F', different mapping functions, and normalization forms. Additionally,
we provide a qualitative assessment focusing on log probability metrics and models’ performance
on the downstream task.

4.1 EXPERIMENTAL SETUP

Base Model and Dataset. We follow the experimental configuration as demonstrated by SimPO.
Specifically, we leverage the instruct-tuned model, meta-llama/Meta-Llama-3-8B-Instruct (Dubey
et al., 2024), as our foundational model, alongside the princeton-nlp/llama3-ultrafeedback-armorm
(Cui et al| (2023), Meng et al.| (2024)) dataset for training. This dataset is crafted using
RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al.l [2024b) as the reward model to evaluate and
prioritize the generated data, thereby establishing a superior and highly resilient preference dataset.



Under review as a conference paper at ICLR 2025

Table 3: Exploring the Impact of Various E'F' Metrics on Performance. This ablation study investi-
gates the effectiveness of different machine translation evaluation metrics—such as Jaccard Score,
BERTScore, and ROUGE when computing the EF. Our findings indicate that ROUGE scores exhibit
the highest performance.

Llama3-Instruct(8B)

Method AlpacaEval 2.0 MT-Bench
LC(%) WR(%) Length GPT-4 Turbo

SFT 26.0 253 1920 6.9
DPO 48.2 47.5 2000 7.0

SimPO 53.7 47.5 1777 7.0
Jaccard_Score 51.0 44 .4 1745 7.0

BERTScore_f1 55.2 51.7 1,888 7.0

RLHF BERTScore_r 55.0 51.6 1,906 7.1
GaPO BERTScore_p 54.6 50.2 1,856 7.0
ROUGE_1 53.4 49.6 1,859 7.1

ROUGE_2 55.1 51.5 1,884 7.3

ROUGE_L 56.1 52.8 1,902 7.1

The hyper-parameters are consistent with those used in SimPO, we set learning rate = 1e=%, 3 = 10
and v = 0.3.

Benchmarks. Following previous works, we use AlpacaEval 2.0 (Dubois et al.| 2024), MT-Bench
(Zheng et al.| [2023)), and Arena-Hard (Li et al.,|2024) as our evaluation benchmarks.

» AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It utilizes the Alpaca-
Farm dataset, which comprises a diverse set of general human instructions as prompts.
The benchmark evaluates model responses by comparing them with reference responses
generated by GPT-4-Turbo. These comparisons are conducted using a GPT-4-Turbo-based
annotator. Following standard evaluation procedures, we report both the raw win rate (WR)
and the length-controlled win rate (LC) of model responses over the reference responses.

* MT-Bench is a collection of 80 high-quality multi-turn open-ended questions. The ques-
tions cover topics like writing, role-playing, math, coding, etc.. The generated answer is
judged and given a score directly without pairwise comparison, range from 0 to 10. We
report the average score with GPT-4-Turbo as the judgement model.

* Arena-Hard is an advanced version of the MT-Bench, incorporating 500 meticulously
designed technical problem-solving queries derived from challenging clusters. This bench-
mark employs GPT-4-Turbo as an evaluator to compare the responses of various models
against a baseline model, categorizing outcomes into big win, small win, tie, small loss,
and big loss. We report the win rate with GPT-4-0314 serving as the baseline model.

Baselines. We compare our method with various offline preference optimization methods, including
RRHF (Yuan et al., [2023)), SLiC-HF [Zhao et al., 2023, DPORafailov et al.| (2024), IPO(Azar et al.,
2024), CPO (Xu et al] [2024), KTO(?), ORPO (Hong et al., 2024), R-DPO(Park et al., [2024)), and
SimPO(Meng et al.| [2024). The proposed methods aim to align closely with human preferences
through varied objectives. However, they generally overlook the potential of utilizing the human
perception gap for fine-tuning enhancements. SimPO is the most closely related baseline, and we
utilize its length normalization form implicit reward function. Notably, our GaPO method is com-
patible with most DPO-based approaches (beyond just SimPO), further enhancing its applicability.
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Table 4: Ablation Study on the Efficacy of Mapping Functions and Normalization Approaches. We
investigated a range of mapping functions designed to inversely convert E'F’ into an estimated gap
value, finding that the logarithmic mapping function outperforms others. Furthermore, our experi-
mentation with the absence of normalization and an alternative additional normalization highlights
the advantageous performance of scaling normalization.

AlpacaEval 2.0
Method
LC(%) WR(%) Length

DPO 48.2 474 2000
SimPO 53.7 47.5 1777

1—EF 53.9 50.9 1910

1— EF? 53.9 50.7 1901
GaPO 1-VEF 55.0 52.0 1915
Rouge L w/o norm 28.8 25.4 1717

log(#7) add. norm 53.5 50.2 1898

scale. norm (ours) 56.1 52.8 1902

4.2 EXPERIMENT RESULTS AND ABLATION

GaPO significantly improves performance on AlpacaEval 2.0. As shown in Table[3.2] our GaPO
method achieves the best performance on the AlpacaEval 2.0 evaluation dataset. Specifically, GaPO
attains a notable win rate (WR) of 52.8% and a length-controlled win rate (LC) of 56.1%, out-
performing the best baseline, SimPO, by 5.3 and 2.4 percentage points, respectively. In the more
challenging benchmark Arena-Hard, our GaPO method performs comparably to the baseline SimPO
in terms of win rate. This suggests that GaPO does not demonstrate an enhancement over SimPO
in addressing complex problems, potentially owing to constraints in the quality of the dataset and
the capacity of the model. In the MT-Bench benchmark, our GaPO method attains a score of 7.1,
marginally outperforming the SimPO score of 7.0. However, the MT-Bench benchmark demon-
strates limited discriminatory capacity when assessing diverse responses across the three datasets.
This limitation could stem from the assessment model’s dependence on single-score evaluations,
which tend to be less sensitive at discerning fine-grained distinctions than pairwise comparison
methods.

Different EF metrics show different improvements. We explored various functions to compute
the evaluation factor (EF) for assessing human perception of the gap between pairs, including Jac-
card Score, BERTScore_R, BERTScore_P, BERTScore_F1, ROUGE-1, ROUGE-2, and ROUGE-L.
Results can be found in table [I| BERTScore and ROUGE metrics improved the win rate from 4.2
points to 5.3 points compared to the baselines DPO and SimPO on AlpacaEval 2.0. For the MT-
Bench dataset, ROUGE-2 achieved a score of 7.3 compared to 7.0 for SimPO and DPO. However,
the Jaccard Score and ROUGE-1 show relatively poor performance, indicating that they may not
accurately reflect the true gap between the reference and the candidate responses due to a lack of
semantic information.

Logarithmic mapping and caling normalization are the most effective. In table @ we report
the experiment results with different functional forms to map the evaluation factor (F'F') within
the range of 0 to 1 to an estimated gap value. The forms we evaluated included Estimated Gap =
1 — EF, Estimated Gap = 1 — EF?, and Estimated Gap = 1 — v/ EF. Compared to the log form
Estimated Gap = ﬁ using ROUGE-L as the E'F, we observed a decrease in win rate ranging
from 0.8 points to 1.8 points. Removing the normalization had the most negative impact on the

results, leading to an almost 50% decrease in performance. We also tested an additional form of

normalization:
Norm | 1 1 =1 L 1 ! + (10)
OgEF’Py = log EF 0g EF Y

which resulted in a decrease in win rate by 2.6 points, indicating that the scaling normalization is
the most effective.
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4.3 QUALITATIVE ANALYSIS

In preference optimization, our goal is to distinguish between preference pair rewards while main-
taining a high log probability for the winning response. This approach helps prevent significant
alterations compared to the base model during fine-tuning, which could result in unexpected out-
comes during inference. Often, a decline in log probability occurs because, during the fine-tuning
process, the model explores a larger search space to optimize the reward difference between the
winning response and the losing response, aiming to meet the preset gap in the loss function. The
goal of GaPO is to optimize this preset gap for each pair of training data, fitting the data better and
achieving higher win rates in downstream tasks without substantial adjustments to the base model
parameters. In the figure[T] we observe that the GaPO method achieves better performance in down-
stream tasks compared to SimPO, while maintaining a log probability similar to or even higher than
that of SimPO, highlighting the superiority of the GaPO method.

5 DISCUSSION AND FUTURE WORK

Conclusion. In this work, we propose a method called GaPO, which introduces semantic gap infor-
mation into the loss function. This enables the model not only to differentiate between good and bad
responses but also to develop a more nuanced understanding of the degree of quality at the semantic
level. This improvement aids in optimizing the gradient update process, thereby enhancing the ef-
fectiveness of RLHF. By incorporating sentence-level gap information, the model is able to reduce
the log probability for the chosen response to a lesser degree while achieving a higher win rate.
Additionally, our GaPO approach is designed to be interoperable with all margin-based preference
optimization techniques to further improve performance.

Future work. Firstly, the test datasets used in this study are all derived from the question-answering
(QA) domain. Given the widespread application of Al agents and the increasing demand for such
technologies, future work will explore how the GAPO method can be applied within AI agent con-
texts, particularly in scenarios where gaps in API calls are easier to quantify. Secondly, the cur-
rent semantic gap primarily relies on machine translation evaluation metrics such as ROUGE and
BERTScore. Future research will explore more appropriate evaluation functions and consider using
the reward model employed during DPO dataset generation to replace the existing semantic gap
calculation method. Lastly, drawing from the inference generation strategy of OpenAl-ol, we plan
to use Monte Carlo Tree Search (MCTS) in future work to generate datasets, which will be com-
bined with GAPO training to further optimize model performance and its ability to capture human
preferences.
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